METEOROLOGICAL OFFICE # THE OBSERVATORIES' YEAR BOOK 1965 Comprising the geophysical results obtained from autographic records and eye observations at the Lerwick, Eskdalemuir and Kew Observatories LONDON: HER MAJESTY'S STATIONERY OFFICE 1968 Universal Decimal Classification 550.389.5(411) 551.510.42(058) 551.594.(058) ### PREFACE The Observatories' Year Book was published for the years 1922 to 1937 in continuation of Part III Section II and Part IV of the British Meteorological and Magnetic Year Book for the period 1908 to 1921. Further publication was resumed eventually after a long interruption because of the 1939-45 war but in an abridged form as outlined in the next paragraph. The General Introduction to the Meteorological Tables and the parts of the Sectional Introductions which dealt with site, instruments, procedure and tabulations included in the volume for 1938 served as the standards of reference up to 1956; only important departures from these standards were mentioned explicitly in subsequent Year Books. The space devoted to the discussion of observations was reduced and the monthly tables of individual hourly values of meteorological elements were discontinued, but summaries of the daily mean values (or totals), monthly means (or totals) of the hourly values and some maximum and minimum values were given. The diary of cloud, weather and visibility, and, after 1939, the aerological and seismological tables were also discontinued, but no major changes were made in the tables of atmospheric electricity and geomagnetism. Another major review of the contents of the Observatories' Year Book was then carried out and a number of important changes made, commencing with the volume for 1957. The meteorological data for Kew and Eskdalemuir were omitted; a punched card system of recording such data centrally, at the Meteorological Office, Bracknell, has been adopted. It was also decided to omit all mention of the seismological work at Kew. Full details of the seismological measurements are given in the Meteorological Office Seismological Bulletin, distribution of which was resumed in 1947 after a break of seven years, and are also communicated to the International Seismological Summary. There were also some changes in the geomagnetism and atmospheric electricity tables; further changes in these tables were introduced in the 1964 volume. Full details of all the tables are given in the present Introduction. It may be of assistance to those who make use of the data in this volume to know the full range of the other work now carried out at the three observatories and this is detailed below. Requests for information about this other work should be addressed, unless otherwise stated below, to the Director-General, Meteorological Office, London Road, Bracknell, Berkshire, England. ### Lerwick Observatory Full hourly synoptic observations of the weather. Continuous recording and hourly tabulations of pressure, wind, rainfall, sunshine, temperature, humidity, total and diffuse solar radiation on a horizontal surface, daylight illumination on a horizontal surface and of radiation balance. Daily measurements of evaporation (until 30 September) and of smoke pollution in the air. Observations, when applicable, of noctilucent cloud. Routine radiosonde and radar-wind upper air measurements (twice and four times daily respectively). Daily measurements of the total amount of ozone. Chemical sampling of the air and rain-water. Sampling for radio-activity of particulate matter in the air near the surface and sampling for radio-activity of rain-water. There is a Radio and Space Research Station Unit, attached to Lerwick Observatory, which makes some measurements in connexion with its work on radio wave propagation, as well as solar proton measurements, using a neutron monitor, and magnetic micropulsation measurements, using a fluxgate magnetometer. Requests for information about this work should be addressed to the Director, Radio and Space Research Station, Ditton Park, Slough, Buckinghamshire, England. ### Eskdalemuir Observatory Full hourly synoptic observations of the weather and, when applicable, of aurora and noctilucent cloud. Continuous recording and hourly tabulations of pressure, wind, rainfall, sunshine, temperature, humidity, total and diffuse solar radiation on a horizontal surface, daylight illumination on a horizontal surface and radiation balance. Daily measurements of evaporation, smoke pollution in the air, and soil temperatures (at depths of 30 and 122 cm). Chemical sampling of the air and rain-water. Sampling for radio-activity of particulate matter in the air near the surface and sampling for radio-activity of rain-water. Records from a set of the American world wide standard seismographs - 3 components on both short and long period instruments. ### Kew Observatory Three-hourly synoptic observations of the weather, 06-21 GMT. Continuous recording and hourly tabulations of pressure, wind, rainfall, sunshine, temperature, humidity, total and diffuse radiation on a horizontal surface, solar radiation at normal incidence, total and diffuse daylight illumination on a horizontal surface and radiation balance. Continuous recording and three-hourly tabulations (00-21 GMT) of soil temperatures at surface and depths of 5, 10, 20 and 30 cm together with daily measurements at depths of 50, 100 and 122 cm. Daily measurements of evaporation. Daily and hourly tabulations of smoke, and daily tabulations of sulphur dioxide concentrations in the air. Records from a short period vertical seismograph. CONTENTS | | | | | | | | | | | | | | | | | | | , | PAGE | |----------|------------------------------------|-----------------|------------------|------------------|----------------|-----------------|---------------|----------------|----------------------------------|----------------|--------|------------|-------------------|----------------|----------------|----------------|----------------|-------|-------------| | | Preface Introduction | •• | •• | •• | •• | •• | •• | •• | •• | •• | | | | •• | •• | •• | •• | •• | iii
1 | | | | | | | | LER | WICK | OBSE | RVAT | ORY | | | | | | | | | | | | | | | | | (| Geoma | agnet | ism | | | | | | | | | | | | TABLES | 1 | Hourly values | ofh | orizo | ntal | compo | onent | : hou | ırlv. | dailv | and | month | ılv su | ıma ar | nd mes | in s | | | | 26 | | 2 | Hourly values | | | | | | | | - | | | • | | •• | ••• | • • | • • | •• | 26 | | 3 | Hourly values | | | | _ | | - | | - | | - | | | | • • | • • | •• | • • | 27 | | 4 | Geomagnetic o | | | | | | | | | | tempe: | ratur | e in | magne | togra | ph ho | use | • • | 27 | | 5
6 | Mean monthly Diurnal inequ | | | | | - | _ | | | | e: moi |
hthly | | ··
•one1 | end | ••• | ··
1 mear | ••• | 50
51 | | 7 | Diurnal inequ | | | | | | | | | | | | | | | | | | 31 | | • | and annual | | | • • | | | | | | • • | • • | | • • | •• | • • | •• | •• | ••• | 52 | | 8 | Diurnal inequ | aliti | es of | the | geoma | gnet | ic ele | ement | , int | ernat | tiona | l dis | turbe | d day | s; mo | nth1y | • | | | | _ | seasonal an | | | | | • • | • • | • • | • • | • • | •• | • • | • • | • • | • • | • • | • • | • • | 53 | | 9 | Range of mean | | | | | | | | | | | | • • | • • | • • | • • | • • | • • | 54 | | 10
11 | Average depar
Monthly, seas | | | | | - | | | _ | | |
Orizor |
itel | COMDO | nent. | deci | insti. | · · | 54 | | ** | and vertica | | | | | | | | ••• | | ••• | | | | | | | | 54 | | 12 | Average range | | - | | qual i | ty 19 | 32-53 | 3 with | 1965 | as s | a perc | centag | ge of | this | | | • • | • • | 54 | | 13 | Ratio of rang | e of | inequ | ality | at I | erwic | k to | that | at Es | kdale | emuir | • • | • • | • • | • • | • • | • • | • • | 54 | | 14 | Noteworthy ge | omagn | etic | distu | rband | es re | corde | ed at | Lerwi | .ck | •• | • • | • • | • • | • • | • • | •• | •• | 55 | | | | | | | | | Αι | ırora | ì | 15
16 | Auroral log
General auro |
ral ta |
able* | •• | •• | •• | •• | •• | •• | •• | •• | •• | •• | •• | •• | •• | •• | •• | 56
60 | | | | | | | At | mosp | heri | c ele | ectri | city | 7 | | | | | | | | | | 17 | Hourly value | • of r | noteni | rial c | radi | ent (| close | to t | he gr | ound | over | an on | en le | evel s | urfac | ce): ł | our ly | , | | | 18 | and monthly
Monthly mean | y mear
hourl | ns for
Ly val | r hous
lues c | rs wi
of po | thout
tenti | hydr
al gr | omete
adien | ors a | nd fo
ose t | r fai | r wea | ther | hours
er an | it
oper |
n leve |
•1 | • • | 62 | | | surface); | seasor | nal ar | nd ann | nual | means | , for | hour | s with | hout | hydro | meteo | rs, e | und fo | r fa | ir wes | ither | | | | | hours‡ | •• | •• | •• | •• | •• | • • | •• | •• | • • | •• | •• | •• | • • | • • | • • | • • | •• | 68 | | | | | | | E | SKDAI | .EMU I | R OB | SERV | ATOR | Y | | | | | | | | | | | | | | | | (| Geom | agnet | ism | | | | | | | | | | | | 19 | Hourly values | of h | orizo | ntal | compo | onent | ; hou | rly, o | daily | and r | month | ly su | ms an | d mea | n s | | | •• | 70 | | 20 | Hourly values | | | | | | | | | | | | | •• | •• | •• | •• | •• | 70 | | *In t | the Observatori | es' Y | ear B | ook 1 | 964 1 | this | tab1e | had 1 | the w | rong | addit | ion o | f - | Brit | ish I | sles" | • | | | | | should be noted
rase "and for f | | | | | dings | in th | he Obs | servai | torie | s' Ye | ar Bo | ok 19 | 64 ac | ciden | tally | omit | ted | the | | ‡It s | should be noted
title "Monthly | that | the | table | head | iings
al mea | in then | ne Obs | s <i>ervat</i>
ır s wi | ories
thou | s' Yea | ar Boo | ok 19
eors | 64 ac | ciden
or fa | tally
ir we | omits
ather | ted t | the
rs". | vi CONTENTS # ESKDALEMUIR OBSERVATORY - continued | TABLES
 | PAGES | |------------|--|--------------------| | 21 | Hourly values of vertical component; hourly, daily and monthly sums and means | 71 | | 22 | Geomagnetic character figures (K, KH, KD, KZ, and C) and temperature in magnetograph chamber | 71 | | 23 | Mean monthly and annual values of geomagnetic elements | 94 | | 24 | Diurnal inequalities of the geographical components of geomagnetic force, all days; hourly, | 06 | | 25 | seasonal and annual means | 96 | | 26 | Diurnal inequalities of the geographical components of geomagnetic force, international | 91 | | -0 | quiet days; hourly, seasonal and annual means | 98 | | 27 | Diurnal inequalities of the geomagnetic elements, international quiet days; hourly, seasonal | •• 30 | | | and annual means | 99 | | 28 | Diurnal inequalities of the geographical components of geomagnetic force, international | •• 55 | | | disturbed days; hourly, seasonal and annual means | 100 | | 29 | Diurnal inequalities of the geomagnetic elements, international disturbed days; hourly, | 200 | | | seasonal and annual means | 101 | | 30 | Range of mean diurnal inequalities for the months, season and year | 102 | | 31 | Monthly, seasonal and annual values of non-cyclic changes of horizontal component, declination | | | • | and vertical component | 102 | | 32 | Average range of diurnal inequality 1932-53 with 1965 as a percentage of this | 102 | | 33 | Harmonic components of the diurnal inequality of geomagnetic force | 103 | | 34 | Noteworthy geomagnetic disturbances recorded at Eskdalemuir | 104 | | 35
36 | Hourly values of potential gradient (close to the ground over an open level surface); hourly and monthly means for hours without hydrometeors and for fair weather hours Monthly mean hourly values of potential gradient (close to the ground over an open level surfa seasonal and annual means, for hours without hydrometeors, and for fair weather hours. | 106
ce);
112 | | | KEW OBSERVATORY | | | | Atmospheric electricity | | | 37 | Hourly values of potential gradient (close to the ground over an open level surface); hourly and monthly means for hours without hydrometeors and for fair weather hours | · 114 | | 38 | Monthly mean hourly values of potential gradient (close to the ground over an open level surface | e);
120 | | 3 9 | Values of potential gradient, air-earth current and conductivity measured by the Wilson apparatus, together with monthly and annual means | 121 | | | | | | | Air pollution | | | 40 | Monthly, seasonal and annual means for each hour | 122 | | | | | | | hould be noted that the table headings in the <i>Observatories' Year Book</i> 1964 accidentally omitted
se "and for fair weather hours". | the | | ‡It si | hould be noted that the table headings in the Observatories' Year Book 1964 accidentally omitted | the | sub-title "Monthly, seasonal and annual means for hours without hydrometeors and for fair weather hours". | | | LERWICK OBSERVATORY | Between pages | |--------|-----|--|-----------------| | Figure | 1. | Contour map of surroundings | 24 and 25 | | | 2. | General view from the south - Loch of Trebister in the foreground, | | | | | June 1965 | 11 11 | | | 3. | Site plan 1965 | 11 11 | | | 4. | View from west-north-west, showing instrumental layout, June 1965 | •• 11 11 | | | | ESKDALEMUIR OBSERVATORY | | | | 5. | Contour map of surroundings | 24 and 25 | | | 6. | The Observatory and Davington village looking westwards, July 1965 | 11 11 | | | 7. | Site plan 1965 | !! !! | | | 8. | General view of the Observatory looking northwards (on the left) and south-eastwards (on the right), November 1966 | 11 11 | | | | KEW OBSERVATORY | | | | 9. | Contour and built-up area map | 24 and 25 | | | 10. | Aerial view of Observatory looking northwards from 500 feet, | | | | | August 1965 | •• 11 11 | | | 11. | · · · | •• 11 11 | | | 12. | General view from south-south-west, February 1967 | •• 11 11 | | | | PROTON VECTOR MAGNETOMETER | | | | 13. | Eskdalemuir: proton vector magnetometer (in East hut - see Figures 8) with coils (80 cm diameter) in position for annulling the horizontal component, H | 7 and 24 and 25 | | | 14. | Eskdalemuir: proton vector magnetometer (in East hut - see Figures 8) with coils (80 cm diameter) in position for annulling the vertical component, Z | 7 and !! !! | | , | 15. | Lerwick: proton vector magnetometer (in hut H - see Figures 3 and 4 diameter of outer coil 100 cm. The Kew pattern unifilar magnetome is to the right on the nearer pillar | | ### INTRODUCTION ### DESCRIPTION OF OBSERVATORIES Lerwick Observatory, Shetland (60°08'N, 1°11'W) The Observatory is set on a ridge of high ground about 85 m above MSL and about 2½ km to the south-west of the port of Lerwick (population about 6000). The surrounding country is desolate moorland. General views of the Observatory, a site plan and a contour map of the surrounding country are given in Figures 2 and 4, 3 and 1 respectively. An account of the history of the Observatory is given by W. G. Harper¹. Eskdalemuir Observatory, Dumfriesshire (55°19'N, 3°12'W) The Observatory is situated on a rising shoulder of open moorland about 245 m above MSL in the upper part of the valley of the River White Esk in the Southern Uplands of Scotland. It is surrounded by open moorland with hills rising within 8 km to the northwest to nearly 700 m above MSL. General views of the Observatory, a site plan and a contour map of the surrounding country are given in Figures 6 and 8, 7 and 5 respectively. The history of the Observatory is described by M. J. Blackwell² in a paper marking the fiftieth anniversary of the commencement of observations, and by J. Crichton³. Kew Observatory, Richmond, Surrey (51°28'N, 0°19'W) Kew Observatory lies in the south-west corner of an area of parkland about 16 km west-south-west of the centre of London. The ground level is about 5 m above MSL. Outside the parkland within 1 km, the area is extremely built-up, with a number of small factories within a few kilometres to the north and east. General views of the Observatory, a site plan and a contour map of the surrounding country are given in Figures 10 and 12, 11 and 9 respectively. For the early history of the Observatory reference may be made to papers by G. Rigaud⁴, R. H. Scott⁵, C. Chree⁶, O. J. R. Howarth⁷, R. S. Whipple⁸, F. J. W. Whipple⁹, and A. J. Drummond¹⁰. - 1. HARPER. W. G.: Lerwick Observatory. Met. Mag., London, 79, 1950, p.309. - 2. BLACKWELL, M. J.: Eskdalessis Observatory the first fifty years. Met. Mag., London, 87, 1958, p.129. - 3. CRICHTON, J.: Eskdalemuir Observatory, Met. Mag., London, 79, 1950, p.337. - 4. RIGAUD. G.: Dr. Demainbray and the King's Observatory at Kew. Observatory, London, 5, 1882, p.279. - 5. SCOTT, R. H.: The history of the Kew Observatory. Proc. R. Soc., London, 39, 1885, p.37. - 6. CHREE, C.: Description of the Kew Observatory, Old Deer Park, Richmond, Surrey, Rec. R. Soc., London, 1st. edn., 1897, p.137. - 7. HOWARTH, O. J. R.: The British Association for the Advancement of Science: a retrospect 1831-1921, London, 1922. - 8. WHIPPLE, R. S.: An old catalogue and what it tells us of the scientific instruments and curios collected by Queen Charlotte and King George III, Proc. opt. Conv., London, Pt. II, 1926, p.502. - 9. WHIPPLE, F. J. W.: Some aspects of the early history of Kew Observatory, Q. Jnl R. met. Soc., London, 63, 1937, p.127. - 10. DRUMMOND, A. J.: Kew Observatory. Weather, London, 2, 1947, p.69. Regular recording of the earth's geomagnetic field commenced at Kew in 1857. By the beginning of the twentieth century, however, the extension of London's electric railway and tramway system had caused so much geomagnetic disturbance that it was decided to establish another geomagnetic observatory in an area considered unlikely to be similarly affected. This led to the building of Eskdalemuir Observatory which was opened in 1908, but geomagnetic observations were also continued at Kew up to 1924. Comparisons of the geomagnetic results obtained at Kew and Eskdalemuir showed, however, that it would be very desirable to obtain geomagnetic records as far north as possible in the British Isles, and this resulted in the establishment of Lerwick Observatory in 1921. Recording of the geomagnetic field has been continuous at Lerwick since January 1923. The principal magnetographs at Lerwick and Eskdalemuir are normal and quick-run La Cour instruments, each set consisting of H, D and Z variometers; the paper speeds are 15 mm/h for the normal and 180 mm/h for the quick-run. Time marks are made at five-minute intervals except at the hour, and two-minute breaks are made three times daily at Lerwick and twice daily at Eskdalemuir. Scale values of the H and Z variometers are measured about once a week at Lerwick and once a month at Eskdalemuir, during magnetically quiet periods, by passing a current through Helmholtz-Gaugain coils placed over the variometers, the resulting deflection being recorded on the photographic paper. The current is measured by a potentiometer using a standard resistance, and a standard cell. It is thought that the scale values adopted, about 4γ /mm for H and $5-6\gamma$ /mm for Z (at both observatories) are accurate to about $\frac{1}{2}$ and 1 per cent respectively. The scale value for D is normally determined from the optics and geometry of the system, with small corrections for torsion and paper shrinkage, but is occasionally checked by a similar
electrical method to that used with the H and Z variometers; the difference between the electrical and optical methods is small and the adopted scale values are accurate to about 1 per cent. Following a complete review made in 1963-64 of the scale values used at both observatories since the installation of the La Cour variometers, in comparison with the optical calculations, electrical determinations and analyses of absolute values, it was decided that the values hitherto adopted were in error by amounts varying up to 4 per cent, mainly because geometrical calculations had been used alone, without account being taken of the curvature of the prism face. Details of the correct scale values to be adopted, over various periods, are given in the section, "Errata in Previous Volumes and in the Present Volume" on page vii of the Observatories' Year Book 1962. The monthly and yearly mean values of D are unaffected, but the other values of D published in the Observatories' Year Books for Lerwick from April 1934 to December 1961, and for Eskdalemuir from Tanuary 1936 to December 1962, are in error by the proportion of their deviation from the mean monthly or yearly values; the correction is positive if the westerly declination is greater than the mean value and negative if it is less than the mean value. Tables (for Eskdalemuir only) of diurnal inequalities of the geographical components, which involve the value of D, are correspondingly affected. The Lerwick normal D variometer was moved a distance of 6 cm further away from the photographic paper on 24 February in order to improve the focussing of the image; this reduced the scale value from 0.97'/mm (see p.vii of the Observatories' Year Book 1962) to 0.94'/mm. Complete sets (H, D and Z) of supplementary magnetographs with lower sensitivity are also operated to provide information during any breaks in the normal magnetograph records, and also to provide information when rapid geomagnetic disturbance renders the traces of the standard magnetograph indecipherable. Details of the Eskdalemuir instruments can be found in the Observatories' Year Book for 1938; a La Cour (storm) magnetograph replaced the older instruments at Lerwick from 1 January 1965, its sensitivities being about 11 γ /mm for H, 2'/mm for D and 13γ /mm for Z. The magnetograph house (K^*) at Lerwick, is above ground and is made of non-magnetic concrete: its internal dimensions are 4.9 m by 3 m with the semi-circular shaped roof about 3 m in the middle, and 2 m at the sides, above the floor; the walls and roof are ^{*}The descriptive letters or numbers, are those given in the Figures published in this volume. 76 cm thick. An electric heater, controlled by a thermostat, enables the temperature to be kept reasonably constant. The time for a cycle of temperature changes (that is, the time between successive operations of the thermostat contacts) is of the order of one hour and a small oscillation of the temperature of the magnetograph is evident from the records, but the amplitude is only about 1 degree Celsius. At Eskdalemuir the magnetographs are placed in an underground chamber (3) constructed throughout of non-magnetic material. Within the outer shell of stone and concrete and separated therefrom, and from each other, by corridors and vaultings are two similar rooms of approximate internal dimensions - length 7.6 m, width 6.1 m, height 3.0 m. The whole outer shell is covered with a thick layer of earth which forms a mound. The instruments and greater part of the rooms are below the undisturbed level of the surrounding ground. Electrical heating, thermostatically controlled, was introduced in 1936 but, although the diurnal range in temperature is normally negligible, there is an annual range of temperature of about 4 degrees Celsius. The temperature recorded by a thermometer inserted in the quick-run Z variometer, taken to be representative of the magnetograph house, is read daily at 09 GMT at Lerwick and at midnight at Eskdalemuir and the readings are given in Table 4 (for Lerwick) and Table 22 (for Eskdalemuir). Baseline values of the magnetograms are computed from the absolute measurements, made twice weekly, and measured scale values using the ordinate of the variometer curve at the times of the absolute observations. The adopted values of the baselines are obtained by a graphical smoothing process. Normally one value is adopted for one day except when instrumental discontinuities have occurred. ### **TABULATIONS** Tables 1 and 19 give, for Lerwick and Eskdalemuir respectively, mean values of the horizontal component (H) of geomagnetic force for periods of 60 minutes ending at the exact hour GMT together with hourly, daily and monthly sums and means. Tables 2 and 20 give similar information for declination (D) and Tables 3 and 21 for the vertical component (Z). Tables 4 and 22 contain the geomagnetic 3-hourly character figures K, K_H , K_D and K_Z , together with the daily character figure C and the temperature in the magnetograph house. K_H , K_D and K_Z refer to character figures assigned solely by reference to the variations in one magnetic component (H, D or Z respectively) whereas K is the higher figure out of K_H and K_D for that particular 3-hour period. These K figures are thus different from the Ks published in the Observatories' Year Book 1963 and in previous years, in which each value of K was the maximum out of the corresponding K_H , K_D and K_Z , but if these K figures are required they can be readily obtained from the data in Tables 4 and 22. The decision to publish the K figures for each component in this way, and to discontinue the previous practice of publishing the daily ranges of the geomagnetic components, is in agreement with resolutions of the International Association of Geomagnetism and Aeronomy (IAGA) meeting at the International Union of Geodesy and Geophysics (UGGI) Assembly at Berkeley, California, U.S.A., in August 1963. The geomagnetic character figures C are determined merely by inspection of the magnetograms. The standard is related to the general level of activity during the year, and the following recommendations, made in 1910 by Chree, Van Everdingen and Schmidt are adopted as guiding principles "that no one of the characters, 0, 1 and 2 should be attributed to more than two-thirds of the days of the year, and that in each quarter the number of days of character 2 should be on the average at least 6". The geomagnetic character figures K have been derived generally in the conventional way (see, for example, IGY Instruction Manual, Part IV, Geomagnetism, Part I Section 1.7). The lower limit for K=9 is 1000γ for Lerwick and 750γ for Eskdalemuir. Tables 1-4 are subdivided into monthly sections and the same monthly parts of each table are grouped together on facing pages. Tables 19-22 are treated similarly. The days selected by IAGA as being typical "quiet" and "disturbed" days are marked by the letters " q^{M} and " d^{H} respectively. In general the declination (D) is measured to the west, and is considered to increase with increasing westerly declination, in accordance with the convention adopted in previous volumes. There is, however, an important exception in Tables 14 and 34 entitled "Noteworthy Geomagnetic Disturbances" (see below). In these two tables a movement of D to the east (that is decreasing westerly declination) is regarded as positive, in order that the data in the tables may agree in every respect with data already supplied to IAGA. Tables 5 (for Lerwick) and 23 (for Eskdalemuir) give the mean monthly and annual values of the geomagnetic elements H, D and Z together with the values of the north component (X), west component (Y), inclination (X) and total force (Y). The values for H, D and Z are also given for the international quiet and disturbed days. The next set of tables (6-13 for Lerwick and 24-32 for Eskdalemuir) gives data on the diurnal inequalities of each geomagnetic element. As recommended by a resolution of the Commission for Terrestrial Magnetism and Atmospheric Electricity and approved by the Conference of Directors at Warsaw in 1935, the diurnal inequalities are all uncorrected for non-cyclic change, but the values of the non-cyclic change are also given separately in Tables 11 and 31. Some information is given for Eskdalemuir but not for Lerwick. This includes the diurnal inequalities of the north (X) and west (-Y) components and the inclination (I), and values of the first four harmonic components of the diurnal inequalities of the north, west and vertical components. The inequalities of X, $\neg Y$ and I have been computed from those of H, D and Z by means of the formulae: $$\delta X = \cos D. \, \delta H - \frac{\pi}{180 \times 60} \, H \sin D. \, \delta D$$ $$-\delta Y = \sin D \cdot \delta H + \frac{\pi}{180 \times 60} H \cos D \cdot \delta D$$ $$\delta I = \frac{180 \times 60}{\pi} \cos I \left[\frac{\delta Z \cos I - \delta H \sin I}{H} \right]$$ in which δD and δI are expressed in minutes of arc, and H, D and I for any given month are the respective mean values for that month as published in Table 23. The results of harmonic analysis of the mean diurnal inequalities of X, -Y and Z for the months, seasons and year are to be found in Table 33, in which are given the values of a_n , b_n , c_n and a_n in the two equivalent series $\sum (a_n \cos 15nt^\circ + b_n \sin 15nt^\circ)$ and $\sum c_n \sin (15nt^\circ + a_n)$. In the former series t is reckoned in hours from midnight GMT, whilst the published values of a_n refer to local mean time. The harmonic coefficients have been computed from the inequalities as given in Tables 24-29, but for this purpose the non-cyclic change has been eliminated. A correction has been applied where necessary, because the hourly values are not instantaneous but are mean values; the factors by which the
coefficients have to be multiplied (see Report of the British Association, 1883, p.98) are 1.00286 for a_1 , b_1 , and c_1 ; 1.01152 for a_2 , b_2 and c_2 ; 1.02617 for a_3 , b_3 and c_3 ; and 1.04720 for a_4 , b_4 and c_4 . The values were obtained to two decimal places and finally were rounded off to 0.1γ . Tables 14 and 34 are entitled "Noteworthy Geomagnetic Disturbances". These were revised in content in 1947 and now include all the disturbances which would have been included in the previous type of tables, with, however, additional disturbances with sudden commencement (ssc) and those which can be recognised as being solar flare effects (sfe). The tables are divided into three parts: - (a) Disturbances noteworthy for some reason (usually, but not always, range) and without a sudden commencement. - (b) Well marked sudden commencements whether followed by a large disturbance or not. - (c) Disturbances accompanying a solar flare or other known solar flare effect. The time given of commencement and ending of disturbances in (a) must depend on an arbitrary judgement. The list of sudden commencements under (b) will usually be a little shorter than that given in the IAGA bulletins because a somewhat stricter meaning has been given to the words "well marked". The (c) table has been made as complete as possible by a careful scrutiny of the magnetograms at the time of any known solar flare or solar flare effect, but a small "crochet" can easily be masked by other disturbances. Doubtful cases are not included. The signs given to the movements of H, D and Z are positive for increasing H, Z and an increase of force towards the east (that is, a decreasing westerly declination). Particulars of the same disturbances are given in both the Lerwick and Eskdalemuir tables, even if the disturbance at one of the stations is relatively small. ### NOTES ON THE RESULTS Comparing mean values on all days of 1965 with those of 1964, at Lerwick H increased by 22γ , D (west) decreased by $3\cdot3'$ and Z increased by 21γ . The changes deduced in X, -Y, I and F are $+23\gamma$, -11γ , $-1\cdot0'$ and $+27\gamma$ respectively. The ranges between the extreme values recorded during 1965 were H 1034γ , D $1^{\circ}27\cdot6'$ and Z 765γ . The range of $1^{\circ}27\cdot6'$ in declination corresponded to a range of 373γ in the component of force perpendicular to the magnetic meridian. Similarly at Eskdalemuir H increased by 27γ , D (west) decreased by $4\cdot5'$ and Z increased by 13γ . The changes deduced in X, -Y, I and F are $+32\gamma$, -17γ , $-1\cdot6'$ and $+22\gamma$ respectively. The ranges between the extreme values recorded during 1965 were H 358γ , D $1^{\circ}0\cdot5'$ and Z 287γ . The range of $1^{\circ}0\cdot5'$ in declination corresponded to a range of 298γ in the component of force perpendicular to the magnetic meridian. It has been decided to discontinue this section after the 1965 Observatories' Year Book. ### ABSOLUTE STANDARDS OF GEOMAGNETIC FORCE AT LERWICK AND ESKDALEMUIR While the standard instrument for declination measurement continues to be the Kew pattern unifilar magnetometer, the standard instrument for H and Z became, at the end of 1964, the proton vector magnetometer. ### Proton magnetometer The basic instrument is the proton magnetometer (see, for example, G. S. Waters and P. D. Francis, A nuclear magnetometer, *Journal of Scientific Instruments*, 35, 1958, p.88) which measures the magnitude of the total field acting on a sample (usually water). It does this by enabling the free precession frequency (f) of the proton to be determined; this is related to the total magnetic field F at the proton sample by the equation $$f = \gamma_p F/2\pi$$ where f is the precession frequency in cycles per second and $\gamma_{\rm p}$ is the gyromagnetic ratio of the proton. The value adopted for $\gamma_{\rm p}$ is 2.67513 x 10⁴ radians per gauss per second; this is the value as measured by Driscoll and Bender (R. L. Driscoll and P. L. Bender, Proton gyromagnetic ratio, *Physical Review Letters*, 1, 1958, p.413 and P. L. Bender and R. L. Driscoll, A free precession determination of the proton gyromagnetic ratio, I.E.R.E., *Transactions on Instrumentation*, 1-7, 1958, p.176), and recommended provisionally at the IAGA Meeting at the UGGI Assembly at Helsinki, Finland in 1960 (J. R. Nelson, The gyromagnetic ratio of the proton, *Journal of Atmospheric and Terrestrial Physics*, *London*, 19, 1960, p.292). ### Proton vector magnetometer To convert a proton magnetometer to a vector instrument, so that the components of magnetic force can be measured, as well as the total field, requires the addition of suitable coils so that artificial magnetic fields may be superimposed on the natural field. If this artificial field, for example, is made exactly equal in magnitude and exactly opposite in direction to the horizontal component of the field, then the resultant field (i.e. the natural field plus artificial field) is equal to the vertical component of the natural field. Similarly, if the artificial field is exactly equal in magnitude and opposite in direction to the vertical component then the resultant field is equal to the horizontal component. This principle is the basis of the proton vector magnetometers at Lerwick and Eskdalemuir, and has been described by Hurwitz and Nelson (Proton vector magnetometer, Journal of Geophysical Research, 65, 1960, p.1759). A photograph of the Lerwick instrument is at Figure 15. It stands on the west pillar in the absolute hut, H (see Figure 3); the ancillary equipment is in an adjacent hut, I. The artificial field, opposing H, is produced by the Helmsholtz-Gaugain pair of coils, of 80 cm diameter, plane vertical (the -H coil) while the artificial field opposing Z is produced by the pair of coils, of 100 cm diameter, plane horizontal (the -Z coil). The whole system of coils is mounted on a rotating graduated base, which can be accurately levelled, and, in addition, each pair of coils can be further adjusted relative to the base so that the axis of the -H coil can be made closely horizontal and the axis of the -Z coil can be made closely vertical. The water sample is in a cylindrical plastic bottle, 14 cm long and 6 cm in diameter, and is mounted horizontally on the axis of a solenoid in the common centre of the Helmholtz-Gaugain coils. The solenoid serves a double purpose; firstly, it is used to produce the strong polarising field approximately at right angles to the resultant field, and, secondly, to detect the proton precession signal once the polarising current is switched off. When measuring H it has been found desirable, in order to increase the signal to noise ratio, to use as well a second coil, wound on top of the main solenoid coil and connected in series with it by a simple switching arrangement; it is easily disconnected when measuring F or Z. Photographs of the Eskdalemuir instrument are at Figures 13 and 14. It is mounted on a pillar in the East Hut (34 on Figure 7). In this instrument only a single Helmholtz-Gaugain coil system, of 80 cm diameter, is used, but it can be rotated about a horizontal axis as well as about the usual vertical axis, so that the axis of the coil system can be set in any required direction. The dimensions of the water bottle and coil are similar to those of the Lerwick instrument. To ensure that the artificial field is due solely to the coil system, which is rotated rigidly about the vertical axis, the lead-in wires are made from coaxial cable so that the external magnetic field, due to the coil currents flowing in them, is negligible. To minimise any physical distortion of the coils the lead-in cables are supported above the instruments. The instruments at Lerwick and Eskdalemuir were carefully checked to ensure that the magnetic field at the water sample was unaffected by any residual magnetism in the materials used; any disturbance is considered to be much less than 0.5γ The precession signal is amplified, and its frequency is measured by timing a selected number of cycles, in 10 microsecond units, using a 100 kilocycles per second quartz oscillator. At Lerwick, the precession frequency in the H field is about 620 cycles per second, in the Z field about 2020 cycles per second and in the F field about 2110 cycles per second. Usually 128 cycles of the precession frequency are timed in the H measurement; this takes about 0.21 seconds and is timed to the nearest 0.00001 second, or 1 part in 20,000. This random error in timing corresponds to about 0.7γ , but it can, of course, be reduced by taking the mean of repeated measurements. The frequency of the quartz oscillator is checked periodically against a standard broadcast radio frequency; it is kept within 1 part in 100,000 of its nominal value. When measuring F and Z, 2048 cycles are usually timed; measuring to the nearest 0.00001 second corresponds then to the nearest 0.5%. The corresponding frequencies for the geomagnetic field at Eskdalemuir are about 720 cycles per second for H, 1930 cycles per second for Z and 2060 cycles per second for F; the random errors in timing are similar to those for Lerwick. The electronic measuring equipment is kept at a safe distance from the magnetometer bottle (and coils); this is readily checked by making magnetometer measurements with the equipment at different distances. The procedure for measuring Z is as follows. The artificial field is made closely equal in magnitude, and opposite in direction, to H and the resultant field is measured. (At Lerwick the coil system with the horizontal axis is used; at Eskdalemuir the axis of the single coil system is made horizontal). The coil system is rotated through 180 degrees about a vertical axis, the current in the coil system is reversed in direction, and a fresh measurement is made. A mean of the two
measurements is taken as the measurement of Z. The contribution to Z due to small misalignments of the axis of the field in the vertical plane is equal and opposite in the two measurements to the first order of approximation, and is cancelled out when taking the mean. The procedure for measuring H follows similar principles. The artificial field is made equal and opposite to Z and the resultant field is measured. (At Lerwick the coil system with the vertical axis is used: at Eskdalemuir the axis of the single coil system is made vertical). The coil system is then rotated through 180 degrees in azimuth about a vertical axis (but in this instance there is no need to reverse the current direction) and a further measurement made. A mean of the two measurements gives H since the spurious field component in the direction of H, due to misalignment of the coil system, is thus cancelled. Each of these measurements consists of a number, usually between 5 and 10, of independent determinations of the precession frequency made in quick succession over a period of 1-2 minutes. The accuracy required for the setting of the electric current and for the orientation of the coil systems has been fully discussed in the paper by Hurwitz and Nelson to which reference has been made above. A summary follows of their conclusions; these depend on the relative magnitudes of Z and H, but the difference between the results from Lerwick and from Eskdalemuir, for this purpose, is small and mean values are quoted here. The effect of a deviation of the axis of rotation of the base from the vertical is by far the most important; a deviation of three seconds of arc leads to a possible error in H of 0.7 γ and in Z of 0.2 γ . It is considered, however, that the maximum deviation likely for the present instruments is 1-2 seconds of arc (see below). Errors in the other adjustments detailed below produce only second order effects; these are now discussed. To keep the error in the measurements of H and Z, due to errors in any one adjustment, below 0.5γ the following tolerances must not be exceeded:- The difference between the magnitude of the artificial H field and the natural H field must not exceed 200 γ . The azimuth of the artificial H field must not deviate by more than 50 minutes of arc from the true magnetic meridian. The angle between the direction of the artificial # field and the horizontal must not exceed 50 minutes of arc. The difference between the magnitude of the artificial Z field and the natural Z field must not exceed 120γ . The axis of the artificial Z field must not deviate from the vertical by more than 6 minutes of arc. In addition the coil currents must not change between the two halves of each measure- All these second order tolerances are easily met, and, in practice, the errors due to any one of these factors will probably not exceed 0.1γ . When the instrument is first set up there are several preliminary determinations and adjustments to be made. First there is the determination of the base graduated scale reading when the -H coil axis is accurately set in the meridian; then there are the fine adjustments to the coil axes to make them as nearly as possible horizontal and vertical (for the -H and -Z fields respectively). Lastly there is the determination of the coil currents necessary to give fields of -H and -Z. To determine the correct azimuth of the -H coil, the coil axis is first aligned approximately magnetic east-west, the coil current set to give an artificial field of about the same magnitude as H (using a rough, calculated, coil constant) and a measurement of the resultant field is made with the proton magnetometer. The coil is then rotated about the vertical axis through exactly 180 degrees and another field measurement is made. If the two field measurements are the same then the coil is exactly aligned east-west, and, from this, the graduated scale reading for north-south alignment is readily determined. If, however, there is a difference between the field measurements, then the azimuth of the coil is slightly altered until the new field measurement is about equal to the mean of the two previous measurements. This sequence of measurements is repeated until turning the coil through 180 degrees produces no change of reading. The coil axes must now be adjusted relative to the axis of the rotating base. The axis of the coil producing -H is set in the meridian, and the -H field is generated, using the computed coil constant to set the current. A field measurement is made, and then the coil system is rotated about the vertical axis through exactly 180 degrees, the coil current is reversed and then another field measurement is made. If the two field measurements differ then the axis of the H coil is adjusted slightly in the vertical plane until the field measurement is about equal to the mean of the previous two measurements. The procedure is then repeated until, on rotation through 180 degrees and reversal of the current, the change in field measurement is very small. It is possible to make the setting so that the change in field on rotating the coil system is less than 10%; this corresponds to an error in the orientation of the -H coil in the vertical plane, of less than one minute of arc. At Lerwick this setting, once made, does not have to be changed, but at Eskdalemuir, where one coil is used for measuring both components, a fixed mirror, on the coil system, is used to reflect a light beam on to a fixed card; by marking the position of the light spot when the adjustment is correct, the setting can be repeated whenever necessary. The axis of the coil producing -Z has to be adjusted in two planes. This -Z field is generated and the orientation of the coil axis is adjusted until field measurements at any azimuth M of the rotating base, and at 180 degrees +M, differ by less than 50γ . Then field measurements are made at 90 +M and 270 +M; if these also differ by less than 50γ the adjustment is correct; if not an adjustment of the coil axis is made. The whole process of these four measurements is repeated, as necessary, until no difference is greater than 50γ . The error in orientation of the Z coil is then much less than 6 minutes of arc. To determine the coil current necessary to produce a field of -#, the -# coil axis is set parallel to the meridian (magnetic north-south) and the current through the coils set to a value that gives a field of approximately -2H. Field measurements are then made first with the coil current on, and then with the coil current off. The coil current is adjusted until the two field measurements are the same and the current noted; then the coil is rotated through exactly 180 degrees and the procedure repeated; the mean of the two current readings gives the coil current for a field of -2H. This is all that is necessary for the Eskdalemuir instrument, since the same coil is used for backing off both H and Z, but, at Lerwick, it is also necessary to determine the coil constant of the $\neg Z$ coil, independently of the $\neg H$ coil. In theory, a similar method could be applied, but, in practice, there are difficulties because of the large backing off field required, and a simpler method is used. It is seen that if, when measuring H, the current through the $\neg Z$ coil is varied from below the corrent value to above the correct value, the measured field at first falls to a minimum and then rises again. The minimum value occurs when the coil current is the correct value; in practice the minimum is determined by finding the two currents each of which gives a field a discrete amount (about 5-10 γ) above the minimum, and taking the mean value. The coil constants of the Lerwick instrument are, for $\neg H$, about 103γ per milliampere, for $\neg Z$ about 322γ per milliampere, and for the Eskdalemuir instrument about 100γ per milliampere. As can be seen from the discussion above on the allowable tolerances, the crucial adjustment is the setting of the vertical axis of rotation. The standard technique is used for this; each base is fitted with a sensitive spirit level (at Eskdalemuir 1 division equals 2.8 seconds of arc, at Lerwick 1 division equals 5 seconds of arc, a division at both places being about 2.5 mm wide) and the levelling adjustment is such that the change in bubble position throughout a complete rotation is ½ division or less. The levelling adjustment is checked before each observation. It is considered that the average systematic errors in a long series of field measurements, due to incorrect levelling, are unlikely to exceed 0.5%. An upper limit to the magnitude of the remaining sources of error can be estimated by considering the internal consistency of the measurements since independent measurements of F, H and Z are available. For each observation the expression $F - \sqrt{(H^2 + Z^2)}$ is calculated (the measurements being corrected, as necessary, to the same time by using the magnetograms). The effect on measurement of H and Z of the maladjustments described above is always positive and thus, if present, the expression will not be zero. It is found that the mean value of this expression over many observations is less than 0.2γ , and has a standard deviation of $0.5-0.7\gamma$. Thus, to summarize taking into account all sources of error it is considered that the mean values of H and Z are probably accurate to about $\pm 0.5\gamma$. # Older instruments Older instruments, using proton magnetometers, from 1960, are described in the Observatories' Year Book 1963 (pages 6-7); the instruments previously in use are described in the Observatories' Year Books, 1957-59. ### Review of past measurements In view of the improved accuracy (particularly in Z measurements) that the new instruments have provided, the opportunity has been taken to review the whole series of geomagnetic measurements
made at Eskdalemuir and Lerwick, and to estimate (where possible) the probable corrections to past values. Much weight has naturally been given to the various intercomparisons between the two observatories (and between the observatories and Abinger/Hartland) which have been reported in past Observatories' Year Books, but it will not be necessary in the following account to trace every step that was made. The errata arising from this review were listed on pages vii-xi of the Observatories' Year Book 1964. ### Horizontal component At Lerwick, from 1922 until 1939, the standard instrument for measuring H was Kew unifilar magnetometer L3951 mounted on the central pillar in Hut H. This was replaced in October 1939 by a portable Smith coil, placed on the central pillar in Hut I, which was standardized by comparison with L3951; this is referred to below as the Lerwick H standard. Observations continued to be made twice monthly with L3951 until 1946, and the two instruments showed complete agreement during this period. In June 1953 there was a decrease in the standard of 1.3γ when, following a recalibration of the Smith coil potentiometer at the National Physical Laboratory (NPL) it was discovered that hitherto an old and slightly incorrect factor had been used to convert from international amperes to absolute amperes. Early in 1965, comparisons with the proton vector magnetometer showed that the Lerwick H standard, then in force, (i.e. 1γ below the pre-1953 standard) was, in fact, correct (error less than 1γ). The position has not, however, been clear in the past, and the published Lerwick H values have been in error for two reasons. Firstly, it was decided, after the 1946 inter-observatory comparisons, to assimilate the Lerwick H values to the inferred Abinger standard and 6y was subtracted from the Lerwick H values. This was backdated to 1 January 1934, the date on which the change from dip circle to dip inductor (for determination of inclination and thence vertical component) was made effective. Secondly, the recalibration of the Smith coil potentiometer at the NPL in 1953 showed a small change in the value of the resistances from the 1938 calibration. and, in order to avoid an apparent discontinuity, the correction was altered from -67 to +17 from 1 June 1953. The present review has shown that both these decisions were incorrect; the first because subsequent inter-observatory comparisons led to the 6γ being attributed partly to experimental error and partly to an error in the Abinger standard; the second because it seems most probable that the changes in the resistances occurred during the transport of the potentiometer to the NPL. The correction for the period 1 June 1953 to 31 December 1964, of 1γ , can be ignored, but it seems best to repeal the correction from 1934 to June 1953, by now adding 5y to the published values as previously amended for this period (i.e. 6γ by removing the assimilation to the inferred Abinger standard minus 1γ due to the incorrect conversion from international to absolute amperes). In a number of previous Observatories' Year Books (particularly those for the years 1957-61) references are made to the "uncorrected coil" values of H derived from measurements with the Lerwick Smith coil magnetometer. This refers to H values obtained when the calibration constant first assigned to this instrument, in 1932, after calibration at Abinger, and not since altered, is used. The instrument was, however, modified before being used at Lerwick, and it is not surprising that changes were introduced into its effective constant. Essentially, as stated above, the instrument was recalibrated in 1938 against the existing Kew pattern magnetometer, and this was carried out by adding corrections to the "uncorrected coil" values. At Eskdalemuir the standard instrument for absolute observations of H was the Kew unifilar magnetometer, Elliott 60, mounted on a pillar in the west absolute hut (34). This Elliot 60 standard was replaced on 1 January 1934 by a Schuster-Smith coil magnetometer, placed on a specially built pillar in the same (west) hut, about 1.5 m south of the other pillar. This involved a discontinuity of -14γ , which is remarked on in the Observatories' Year Book, 1934 p.173. Of this total amount it was estimated that 10 γ was due to the departure of the moment of inertia of the magnet system of the Elliott magnetometer, as determined in 1933, from the value originally determined in 1908, and as used up to and including 1933 in the reduction of the results of absolute observations. The likely suggestion was then made that the change occurred gradually throughout the period of use, 1908-33, a regular change of less than 0.5γ per year being caused. Observations with the Elliott 60 magnetometer continued to be made up to 1948 with no change in the difference between the two magnetometers. The current measuring potentiometer in the Schuster-Smith coil apparatus had been originally calibrated by the NPL in international electrical units but, as with the Lerwick instrument, the conversion factor used to convert international amperes to absolute amperes (0.99997) was an old value, subsequently found to be greater than the correct value (0.99985). There is no reason to doubt that the NPL calibration was correct in international units and so the original measurements of H were too high by a factor of 0.00012 H (= 2.0γ). This was put right in March 1954 when the potentiometer was recalibrated in absolute units, but, of course, there was a drop of 2γ in the H standard at this time. Towards the end of 1964 a series of comparisons with the new proton vector magnetometer showed that the Schuster-Smith coil magnetometer was reading 3γ high. This was in good agreement with the expected value based on inter-observatory comparisons. A summary of the required changes in the published ${\it H}$ data as previously amended is given below. ### Lerwick 1 January 1934 to 31 May 1953 add 5γ Eskdalemuir 1908 to 31 December 1933 subtract 9γ in 1908 increasing uniformly to a subtraction of 19γ in 1933 1 January 1934 to 28 February 1954 subtract 5γ 1 March 1954 to 31 December 1964 subtract 3γ . ### Vertical component The earlier history of the measurements of Z at Lerwick and Eskdalemuir has been fully described in past Observatories' Year Books. At both observatories dip circles were originally used (at Eskdalemuir up to the end of 1913 and at Lerwick up to the end of 1933) and these were followed by dip inductors; these instrumental changes gave rise to discontinuities in the measurements of inclination, and thus of Z, which appear in the published values and must be noted. For Lerwick the present review has suggested no change to published values, as previously amended, up to 1954, but there is good evidence that sometime between then and April 1959 the measured value of Z became 7γ too high. It seems most probable that this took place when the balance magnetometer (BMZ) (No. 83) received an accidental knock on 28 September 1958 - a correction to its constant was applied from that time, but a review of the monthly mean quiet day values of Z around this date strongly suggests that the correction applied was 7γ too large. This reduction of 7γ is therefore made from then until 1 January 1962, when the Z values were first derived direct from the proton magnetometer total force measurements and the Smith coil values of H. No change is required since this latter date. For Eskdalemuir the review of the published Z data has had to take account of the changes of the H standard (see above) because the dip inductor was the standard instrument for the measurement of Z up to May 1960, when the Z values were first derived from the proton magnetometer total force measurement and the Schuster-Smith coil value of H. There was no change in the Z standard at this time but there was a small change (of 1γ) when the proton vector magnetometer was brought into use (1 January 1965). A critical re-examination of the inter-observatory comparisions, taking into account all the evidence now available, strongly suggested, however, that the Z standard at Eskdalemuir decreased by about 15γ between 1953 and 1954; 5γ of this was accounted for by the change in H standard in March 1954 (see above) and an examination of the quiet day monthly mean values indicated that a decrease of 10γ occurred in July 1953. This was presumably due to a change in the dip inductor (a decrease of only 0.25 minute in the measurement of the angle of dip would give this change of Z at Eskdalemuir). There is no evidence of any other discontinuity in the observations by the dip inductor and so the only other changes in Z at Eskdalemuir which are now proposed are the effects of changes in the H standard. Details of these are given in the previous section. On 1 January 1934 the sudden decrease of 14γ in H gave a consequence decrease of 37γ in Z and the gradual rise in H from 1908 to 1933 (10γ over the period) gave rise to a corresponding increase of 27γ in Z. A summary of the changes in the published Z data, as previously amended, which are now considered necessary, is given below (changes of 1γ have been ignored). ### Lerwick Up to and including 27 September 1958 no change 28 September 1958 to 31 December 1961 subtract 7γ 1 January 1962 onwards no change ### Eskdalemuir From 1908 up to 31 December 1933 subtract an amount varying steadily from 24 γ in 1908 to 51 γ in 1933 1 January 1934 to 30 June 1953 subtract 14γ 1 July 1953 to 28 February 1954 subtract 4γ 1 March 1954 onwards no change. ### Declination It was decided in 1963 to re-examine all the available manuscript data on the determination of the azimuth of the fixed mark at Lerwick,
from the first measurement in 1922 to the most recent value in 1961. (Measurements were made in 1922, 1923, 1930, 1932, 1937, 1938, 1939, 1940, 1944, 1948 and 1961, the last two being by the Ordnance Survey.) The clear conclusion was reached that the apparent drift of the mark between 1923 and 1948, mentioned in the 1938 and subsequent Observatories' Year Books was not real and was due to errors of observation with the instruments available at Lerwick. The most accurate observation (08°38.8' ± 4" east of south) is that made by the Ordnance Survey in 1961, and it is considered that this has always been the true value since declination observations began in 1922. The conclusion is consistent with the geology of the region, since both concrete pillars - that on which the declinometer stands and that, 117 m away, on which the azimuth mark is placed, are firmly cemented into solid bedrock. The change from the already published corrections for the years 1923 to 1946 are that (i) the original 1923 determination was in error by 4.2' and not 3.5', and (ii) that this figure of 4.2' is the amount by which westerly declination is too large between 1923 and 1946, and not the range from 3.5' in 1923 to 4.4' in 1946, hitherto mentioned. In addition the published values of westerly declination from 1947 to 7 November 1961 are too small by 0.2'. Attention was drawn to these points in the Observatories' Year Book 1962, p.vii; in the Errata published in the Observatories' Year Book 1964, p.vii-ix mention is also made of the resulting changes in X, -Y. The observations of the azimuth of the fixed mark at Eskdalemuir in 1948 gave results negligibly different from previous observations and no changes were required in the tabulations. Further observations of the fixed mark at Eskdalemuir were made in July 1961, by the Observatory staff, using a Tavistock theodolite, with Polaris as a reference star. The value determined was negligibly different (only 7", the standard deviation of the observations being 6") from the value adopted after the Ordnance Survey determination in 1948; it was, however, brought into use on 1 September 1961. Inter-observatory comparisons of H and Z, 1946-1960 There have been frequent inter-observatory comparisons, including comparisons with Abinger/Hartland, using quartz horizontal magnetometers (QHMs) for horizontal components and BMZs for vertical components. In such comparisons the portable instrument is operated first at one station and then at the other, and it is clear that, included in the final result, and inseparable from it, is the net effect of any site differences there might be between the observing pier used for the portable instrument and the observing pier used for the standard instrument at each Observatory. There seems to be no site difference in Z between the various piers involved, but there is some evidence that, at Eskdalemuir, the value of H at the QHM pier is 2-3 γ higher than that at the Schuster-Smith pier. The results of the various inter-observatory comparisons have been reported in previous Observatories' Year Books (1958 for Z and 1960 for H) and these have now been revised to take account of the changes now adopted, and are given below. In this revision account has been taken of all changes considered to be reliably known, including the small ones ignored for the purposes of corrections to published data. Revised inter-observatory comparisons of horizontal component | Date | Instruments used for comparison | Difference Eskdalemuir H - Lerwick H | Difference Eskdalemuir H - Abinger (Hartland after 1957) H | |------|---------------------------------|--------------------------------------|--| | | Ł | | , | | | | γ | γ | | 1938 | Direct | - 2 | | | 1946 | QHM 89 | -4 | +1 | | 1948 | QHM 89 | -1.5 | +1 | | 1950 | QHM 90, 91 & 92 | - 3 | | | 1950 | QHM 91 & 92 | | +5 | | 1954 | QHM 120 | | +2 | | 1957 | QHM 119A, 120 &
121A | +1 | | | 1959 | QHM 119A, 120 & 121A | - 3 | | | 1959 | QHM 119A, 120
477, 478 & | | +1 | | 1960 | 479
QHM 119A & 120 | 0 | +3 | Revised inter-observatory comparisons of vertical component | <u>D</u> ate | Instruments used for comparison | Difference Eskdalemuir Z - Lerwick | Difference Eskdalemuir Z
- Abinger (Hartland after
1957) Z | |--------------|---------------------------------|------------------------------------|--| | | | γ | γ | | 1948 | BMZ 35 | +4 | | | 1949 | BMZ 35 | | +5 | | 1950 | BMZ 35 | 0 | 0 | | 1951-52 | BMZ 35 | | +5 | | 1952 | BMZ 35 | +4 | | | 1952-53 | BMZ 35 | +1 | | | 1954 | BMZ 35 & 53 | | +4 | | 1957 | BMZ 35 & 53 | - 19 | | | 1959 | BMZ 35 | 0 | +7 | It is evident that the 1957 Eskdalemuir and Lerwick Z comparison is anomalous and there is some other evidence for this - but, apart from this, it is seen that the H and Z standards at the two observatories are now in good agreement. The small mean residual difference in H of about 2γ can be accounted for by the possible site difference between the QHM pier and the Schuster-Smith coil pier at Eskdalemuir. Tables have now been prepared of the revised annual values of the geomagnetic components at Lerwick for the period 1923-66 and at Eskdalemuir for the period 1908-66, and these follow. It should be noted that the year to year changes mentioned in NOTES ON THE RESULTS in previous Observatories' Year Books should be amended accordingly. LERWICK REVISED ANNUAL MEAN VALUES OF GEOMAGNETIC COMPONENTS | Year | H | D (west) | $oldsymbol{z}{\gamma}$ | X _Y | -Y
γ | . I | F
γ | |--------------|----------------|--------------------|------------------------|-----------------------|----------------|--------------------|---------------| | | γ | 15 40 2 | | | | 70 22.7 | 48902 | | 1923 | 14655 | 15 40.3 | 46655 | 14111 | 3959 | 72 33·7
72 35·7 | 48950 | | 1924 | 14642 | 15 26.5 | 46708 | 14113
14108 | 3899 | 72 33.7 | 48948 | | 1925 | 14621 | 15 13.5 | 46713 | 14108 | 3840
3778 | 72 37 2 | 48933 | | 1926 | 14618 | 14 58.6 | 46699
46713 | 14121 | 3778 | 72 38 1 | 48944 | | 1927 | 14607 | 14 45·7
14 32·9 | | 14123 | 3664 | 72 39 4 | 48926 | | 1928 | 14585 | 14 32·9
14 19·4 | 46702
46651 | 14117 | 3601 | 72 40.3 | 48869 | | 1929 | 14556
14527 | 14 19 4 | 46624 | 14088 | 3543 | 72 41.6 | 48835 | | 1930 | 14527 | 13 55.4 | 46623 | 14090 | 3493 | 72 42.3 | 48830 | | 1931
1932 | 14317 | 13 41.9 | 46608 | 14083 | 3433 | 72 43.5 | 48809 | | 1932 | 14493 | 13 29.8 | 46605* | 14077 | 3379 | 72 44.6* | 48802* | | 1933 | 14462 | 13 17.7 | 46716* | 14074 | 3326 | 72 48 0* | 48903* | | 1934 | 14445 | 13 5.3 | 46730 | 14070 | 3271 | 72 49.4 | 48911 | | 1935 | 14428 | 12 53.6 | 46763 | 14064 | 3220 | 72 51.2 | 48938 | | 1937 | 14411 | 12 42.4 | 46785 | 14058 | 3170 | 72 52.8 | 48955 | | 1937 | 14401 | 12 31.6 | 46809 | 14059 | 3124 | 72 53.9 | 48973 | | 1939 | 14394 | 12 21 4 | 46833 | 14061 | 3080 | 72 54.9 | 48995 | | 1940 | 14389 | 12 11.1 | 46860 | 14065 | 3037 | 72 55.8 | 49018 | | 1941 | 14382 | 12 1.0 | 46884 | 14067 | 2994 | 72 56.8 | 49040 | | 1942 | 14386 | 11 52.5 | 46899 | 14078 | 2960 | 72 56.8 | 49055 | | 1943 | 14378 | 11 43.5 | 46919 | 14078 | 2922 | 72 57.8 | 49072 | | 1944 | 14380 | 11 35 1 | 46940 | 14087 | 2888 | 72 58 • 1 | 49093 | | 1945 | 14376 | 11 26.3 | 46963 | 14091 | 2851 | 72 58.8 | 49113 | | 1946 | 14363 | 11 17 1 | 46989 | 14086 | 2810 | 73 0.2 | 49135 | | 1947 | 14363 | 11 8.7 | 47002 | 14093 | 2776 | 73 0.5 | 49147 | | 1948 | 14371 | 11 0.9 | 47009 | 14106 | 2745 | 73 0 • 1 | 49156 | | 1949 | 14378 | 10 53.1 | 47037 | 14119 | 2714 | 73 0.2 | 49184 | | 1950 | 14388 | 10 45.5 | 47039 | 14135 | 2685 | 72 59.6 | 49190 | | 1951 | 14402 | 10 37.7 | 47061 | 14156 | 2656 | 72 59 1 | 49215 | | 1952 | 14417 | 10 29.9 | 47087 | 14176 | 2626 | 72 58.7 | 49244 | | 1953 | 14435 | 10 22.8 | 47106 | 14199 | 2601 | 72 57.8 | 49268 | | 1954 | 14450 | 10 15.6 | 47129 | 14219 | 2573 | 72 57.2 | 49295 | | 1955 | 14464 | 10 9.2 | 47156 | 14238 | 2549 | 72 56.8 | 49324 | | 1956 | 14469 | 10 2.8 | 47191 | 14247 | 2523 | 72 57.3 | 49359 | | 1957 | 14486 | 9 57.5 | 47225 | 14268 | 2504 | 72 56.8 | 49396 | | 1958 | 14507 | 9 52.7 | 47246 | 14292 | 2487 | 72 55.8 | 49423 | | 1959 | 14523 | 9 48 • 1 | 47271 | 14311 | 2472 | 72 55.4 | 49452 | | 1960 | 14538 | 9 43.4 | 47299 | 14329 | 2454 | 72 54.9 | 49483 | | 1961 | 14565 | 9 39 1 | 47318 | 14359 | 2441 | 72 53.5 | 49509 | | 1962 | 14591 | 9 33.3 | 47336 | 14388 | 2422 | 72 52.1 | 49534 | | 1963 | 14610 | 9 28.5 | 47359 | 14411 | 2405 | 72 51.3 | 49562 | | 1964 | 14634 | 9 24 4 | 47382 | 14438 | 2392 | 72 50.2 | 49590 | | 1965 | 14656 | 9 21.1 | 47403 | 14461 | 2381 | 72 49.2 | 49617 | | 1966 | 14672 | 9 17.8 | 47431 | 14479 | 2370 | 72 48.7 | 49648 | *Due to the change from dip circle to dip inductor measurements from 1 January 1934, there was a discontinuity of 2.8' in I and thus 116 γ in Z and 121 γ in F (see Observatories' Year Book, 1938, pp.19-21). The values for the years 1923 to 1925 inclusive are based on the results from absolute observations only. ESKDALEMUIR REVISED ANNUAL MEAN VALUES OF GEOMAGNETIC COMPONENTS | | H | D (west) | Z | X | - Y | I | F | |------|---------|-----------|--------|-------|------------|-----------|----------| | Year | γ | · ' ' | γ | γ | γ | 0 / | γ | | 1908 | 16821 | 18 33.3 | 45283 | 15947 | 5353 | 69 37.3 | 48306 | | 1909 | 16826 | 18 30.1 | 45360 | 15956 | 5339 | 69 38.9 | 48380 | | 1910 | 16826 | 18 23.3 | 45317 | 15967 | 5307 | 69 37.8 | 48340 | | 1911 | 16836 | 18 12.4 | 45317 | 15993 | 5260 | 69 37 • 1 | 48343 | | 1912 | 16836 | 18 3.9 | 45318 | 16006 | 5221 | 69 37 • 2 | 48344 | | 1913 | 16811 | 17 54.9 | 45254* | 15996 | 5171 | 69 37.3* | 48276* | | 1914 | 16793 | 17 45.3 | 45159* | 15993 | 5121 | 69 36 1* | 48180* |
 1915 | 16774 | 17 35.9 | 45143 | 15989 | 5071 | 69 36.9 | 48159 | | 1916 | 16744 | 17 26 • 1 | 45088 | 15975 | 5017 | 69 37.6 | 48097 | | 1917 | 16720 | 17 17 1 | 45061 | 15965 | 4968 | 69 38.6 | 48063 | | 1918 | 16702 | 17 8.1 | 45034 | 15961 | 4921 | 69 39.0 | 48032 | | 1919 | 16700 | 16 58.7 | 45049 | 15972 | 4875 | 69 39.6 | 48045 | | 1920 | 16693 | 16 48.7 | 45026 | 15980 | 4828 | 69 39.5 | 48021 | | 1921 | 16681 | 16 37.3 | 45025 | 15984 | 4771 | 69 40.3 | 48016 | | 1922 | 16666 | 16 25.8 | 44974 | 15985 | 4714 | 69 40.0 | 47963 | | 1923 | 16661 - | 16 13.8 | 44915 | 15997 | 4657 | 69 38.8 | 47906 | | 1924 | 16658 | 16 1.2 | 44898 | 16010 | 4597 | 69 38.7 | 47889 | | 1925 | 16650 | 15 48.4 | 44902 | 16020 | 4535 | 69 39.3 | 47890 | | 1926 | 16632 | 15 35.3 | 44896 | 16020 | 4469 | 49 40 • 3 | 47878 | | 1927 | 16615 | 15 22.7 | 44843 | 16020 | 4406 | 69 40 2 | 47822 | | 1928 | 16602 | 15 10.5 | 44849 | 16024 | 4346 | 69 41.2 | 47823 | | 1929 | 16586 | 14 58.9 | 44832 | 16022 | 4287 | 69 41.9 | 47802 | | 1930 | 16568 | 14 47 1 | 44834 | 16019 | 4228 | 69 43.2 | 47797 | | 1931 | 16565 | 14 34.8 | 44850 | 16032 | 4170 | 69 43.7 | 47812 | | 1932 | 16553 | 14 23.7 | 44867 | 16033 | 4115 | 69 45.0 | 47823 | | 1933 | 16539 | 14 12.1 | 44839 | 16033 | 4058 | 69 45 2 | 47792 | | 1934 | 16531 | 14 0.6 | 44845 | 16039 | 4002 | 69 45.9 | 47795 | | 1935 | 16520 | 13 48.8 | 44861 | 16042 | 3944 | 69 47.0 | 47806 | | 1936 | 16512 | 13 37 • 4 | 44894 | 16047 | 3889 | 69 48 4 | 47834 | | 1937 | 16501 | 13 26.9 | 44920 | 16049 | 3837 | 69 49 8 | 47855 | | 1938 | 16499 | 13 17.1 | 44953 | 16057 | 3791 | 69 50.7 | 47885 | | 1939 | 16502 | 13 7.3 | 44977 | 16071 | 3746 | 69 51.1 | 47909 | | 1940 | 16503 | 12 57.9 | 45008 | 16082 | 3703 | 69 51.8 | 47938 | | 1941 | 16503 | 12 48 • 2 | 45037 | 16093 | 3657 | 69 52.5 | 47965 | | 1942 | 16513 | 12 39 · 8 | 45039 | 16111 | 3620 | 69 51.9 | 47971 | | 1943 | 16511 | 12 31.2 | 45064 | 16118 | 3579 | 69 52.7 | 47993 | | 1944 | 16518 | 12 23.0 | 45076 | 16134 | 3542 | 69 52.5 | 48007 | | 1945 | 16522 | 12 14.5 | 45093 | 16146 | 3503 | 69 52.6 | 48025 | | 1946 | 16512 | 12 5.9 | 45120 | 16145 | 3461 | 69 54.0 | 48046 | | 1947 | 16520 | 11 57 · 1 | 45140 | 16162 | 3421 | 69 53.9 | 48068 | | 1948 | 16532 | 11 48.9 | 45144 | 16182 | 3385 | 69 53.2 | 48076 | | 1949 | 16544 | 11 40.9 | 45158 | 16201 | 3350 | 69 52.8 | 48093 | | 1950 | 16564 | 11 33 2 | 45180 | 16228 | 3317 | 69 52.0 | 48121 | | 1951 | 16581 | 11 25.5 | 45193 | 16252 | 3284 | 69 51.1 | 48139 | | ESKDALEMUIR REVISED ANNUAL MEAN VALUES OF GE | GEOMAGNETIC COMPONENTS (| contd) | |--|--------------------------|--------| |--|--------------------------|--------| | Year | H | D (west) | Z | X | - Y | I | F | |------|----------|----------|----------|----------|------------|-----------|----------| | Iear | γ | · ' / | γ | γ | γ | 0 / | γ | | 1952 | 16601 | 11 18.0 | 45203 | 16279 | 3253 | 69 50.0 | 48155 | | 1953 | 16625 | 11 11.0 | 45213 | 16309 | 3224 | 69 48.7 | 48173 | | 1954 | 16647 | 11 3.4 | 45228 | 16338 | 3193 | 69 47•4 | 48194 | | 1955 | 16665 | 10 56.3 | 45250 | 16362 | 3162 | 69 46 • 9 | 48221 | | 1956 | 16674 | 10 49.7 | 45277 | 16377 | 3132 | 69 47.0 | 48250 | | 1957 | 16695 | 10 43.6 | 45296 | 16403 | 3107 | 69 46.0 | 48275 | | 1958 | 16719 | 10 38.0 | 45320 | 16432 | 3085 | 69 45.0 | 48305 | | 1959 | 16742 | 10 32.1 | 45344 | 16460 | 3061 | 69 44 • 1 | 48336 | | 1960 | 16761 | 10 26.3 | 45370 | 16484 | 3037 | 69 43.4 | 48367 | | 1961 | 16792 | 10 20.9 | 45385 | 16519 | 3016 | 69 41.8 | 48392 | | 1962 | 16825 | 10 15.7 | 45396 | 16556 | 2997 | 69 39.8 | 48414 | | 1963 | 16850 | 10 10.2 | 45413 | 16585 | 2975 | 69 38.6 | 48438 | | 1964 | 16880 | 10 5.3 | 45427 | 16619 | 2957 | 69 36.9 | 48462 | | 1965 | 16907 | 10 0.8 | 45440 | 16650 | 2940 | 69 35.4 | 48483 | | 1966 | 16929 | 9 56.2 | 45462 | 16676 | 2921 | 69 34.5 | 48512 | *Due to the change from dip circle to dip inductor measurements, on 1 January 1914, there were discontinuities in Z, I, and F; these were not determined at the time but the annual mean values suggest that the discontinuity in I was about -1½ and thus -60 γ in Z and -55 γ in F. The values for the years 1908 to 1910 inclusive are based on the results from absolute observations only. ### **AURORA** An all-sky cine camera of the Alaskan type (compare IGY Instruction Manual Part II - Aurora and Airglow) continued in operation at Lerwick during 1965. When the sky was sufficiently clear for the photographing of aurora to be possible, but no aurora was visible, the camera was operated at a speed of 12 frames an hour. As soon as aurora became visible the speed was increased to four frames a minute; the speed was reduced again when no aurora had been visible for half an hour. The films were processed and the required data extracted at the World Data Centre at the Balfour Stewart Auroral Laboratory, University of Edinburgh, to which the camera belongs. In addition to the photographing of the aurora, a visual watch of aurora was kept, and, in particular, hourly observations were made and recorded. The period of the hourly observations was from 20 to 10 minutes before each hour, i.e. the observational period for the hourly observation 23 was from 2240 to 2250 GMT. When aurora was observed detailed descriptions were recorded throughout the period of the display, but this work had to be suspended during the periods of the upper air soundings. Copies of the hourly observations and of the detailed description of the aurora were sent to the World Data Centre at Edinburgh. A careful watch for noctilucent clouds is also maintained and notes of its occurrence or non-occurrence in very clear conditions are sent to the World Data Centre at Edinburgh. The form of the Lerwick Auroral Log has been changed, and it now consists of the hourly auroral observations, with brief notes on form and brightness. In Table 15 a symbol is given for each hourly observation during the hours of darkness, according to the following code (but to save space all nights during which the sky was overcast throughout have been omitted):- - L * aurora is observed - 0 = observing conditions are good and aurora is clearly absent - X = observing conditions made a decision about the presence of aurora impossible - ? = aurora is suspected but observing conditions are not good enough for a firm decision. When aurora was observed a brief note has been added describing the structure, form and brightness according to the following code: - Structure H = homogeneous S * striated R = rayed A = arc B = band P = patch V = veil R = rays N = not identifiable Brightness index 1 = comparable with Milky Way 2 = comparable with moonlit cirrus cloud 3 = comparable with brightly moonlit cirrus cloud or moonlit cumulus cloud 4 = much brighter than 3 Complete definitions of the terms are given in the International Auroral Atlas (1963). Table 16 is a general auroral table compiled in the Balfour Stewart Laboratory from all data available for the sector included within geomagnetic longitudes 70° and 90°E, extending from Iceland to France. Most of the observations used are made at British Meteorological Office stations, in British ships and aircraft, and by voluntary observers in the United Kingdom, but observations from Iceland and Faroes, Eire and France are also used. A more detailed analysis of the data appears annually in Observatory, London; for example that for 1965 is in Volume 86, December 1966. ### ATMOSPHERIC ELECTRICITY The programme at Lerwick and Eskdalemuir is to maintain a continuous record of atmospheric electric potential gradient as it exists just above a natural (short grass) open level surface. This is also done at Kew Observatory but there, in addition, regular measurements are made on suitable afternoons* of the air-earth current and from these the air conductivity is deduced. These latter are expressed as mean values covering the period of observation which is normally about 20 minutes centred on about 1430 GMT. Continuous recording of potential gradient The methods used for the recording of the potential gradient are similar in principle at all three observatories. An insulated boom projects through the wall of the building and takes up the potential of the air because of the ionization caused by a small radioactive collector fitted to its tip. The potential of the boom is recorded by a valve voltmeter (as described by A. W. Brewer, Journal of Scientific Instruments, 30, 1953, p.91), and these recordings are used for the tabulations, except at Kew where the records from the older electrostatic voltmeter continue to be analysed. (Eskdalemuir retains the electrostatic voltmeter, previously in use, as a standby instrument). The collectors are of polonium deposited on a copper rod about 4 cm long by 0.5 cm diameter; recoated collectors are supplied periodically by the Government Chemist, and a fresh collector is brought into use each quarter. Tests at Kew Observatory in 1959 showed that the strength of a new collector is usually between 80 and 200 micro-curies. A note about the supply of the collectors and of the techniques used in plating them is given in Nature, 1955, 175, p.965. ^{*}Mainly in fair weather as defined on page 20. The potential of the boom is, of course, affected by the presence of buildings, Standardizing measurements have therefore to be made of the true potential gradient at a suitable open site. The ratio of the potential gradient in the open to the potential of the boom is called the exposure factor and is expressed in the units (metre⁻¹). The factors are given at the head of Tables 17, 35 and 37. The methods of making the standardization measurements of potential gradient are different at each observatory. At Lerwick an insulated wire with a polonium collector fixed to its centre is stretched
horizontally between two stout wooden posts 9 m apart (for position see Figure 3). The centre of the wire is exactly 1 m above a levelled piece of ground. The potential of this wire is measured at half-minute intervals for a period of 10 minutes by a Wulf electrometer; the exposure factor is calculated from the mean value of the observed potential and the mean reading of the electrograph. Observations are made on as many suitable days* as possible. At Eskdalemuir absolute observations of potential gradient are made with a Wulf electrometer using a small pit about 50 m from the main building (for position see Figure 7). The electrometer is placed inside the pit and from the electrometer a thin metal rod (0.4 cm in diameter) projects vertically upwards through a hole in the metal lid covering the pit. A polonium collector is fixed to the rod at exactly one metre above the ground level. It has been shown that, in practice, the potential of the rod is the same (within experimental error) as that of a stretched wire at one metre exposed to the same potential gradient. The observer shuts himself in the pit and takes readings of the electrometer every half minute until 15-30 readings have been obtained. As at Lerwick the exposure factor is then calculated and observations are made on as many suitable days* as possible. The absolute measurements at Kew yielding the exposure factors are made with special (Wilson) apparatus in an underground laboratory; these are described on page 19. At all three observatories, for any given month, a mean exposure factor is used and this is a smoothed running mean using also observations made during the preceding and following months. Details of the methods of recording at Lerwick follow. The boom projects 58 cm from the north-east wall of the electrograph room at a height of 220 cm above the ground. The instrument is 160 m from the site of the absolute potential gradient measurements (it is to be noted that at both sites the insulators are made of polytetrafluoroethylene which is kept clean). A pen record is obtained on a chart 7.5 cm wide, which normally moves at a speed of 1.2 cm per hour. The scale value of the electrograph is 3 volts per mm on its sensitive scale, and about 15 volts per mm on its insensitive scale. The boom is automatically earthed at each hour, and then operates on the sensitive scale. When the voltage exceeds 90 volts, the electrograph automatically changes to its insensitive scale. Full scale deflection on the insensitive scale is obtained with about 540 volts, so with an exposure factor of around 2.5 the electrograph can record a range of +1350 to -1350 volts per metre in the open. Scale value measurements are made once weekly, using dry batteries and a calibrated voltmeter. The insulation is tested daily and, even in wet weather, is good. In fine weather the rate of leak is so small, that the time taken for the instrument to lose half its potential has never been measured; only after 15 minutes has a movement of the pen been detectable. Tests of the rate of rise of potential of the electrograph and boom with the polonium collector fitted are made at intervals. The time taken for the potential to rise to half its final value is 2-3 seconds. The rate of leak is thus so very much less than the rate of charging that the difference between the potential of the boom and that of the air surrounding it is negligible. ^{*}Mainly in fair weather as defined on page 20. At Eskdalemuir the valve voltmeter replaced the electrostatic voltmeter from 1 January 1965. The output is normally recorded on the punched paper tape of a data logging equipment for later computer processing; the range at first was from -1250 to +3500 volts per metre, but from 1 July it was changed to -350 to +1100 volts per metre. In the event of failure of the data logging equipment the output is fed to a pen recorder (±230 volts per metre on the sensitive range and ±1150 volts per metre on the insensitive range, with automatic changeover). The electrograph boom projects through a wooden door a distance of 66 cm so that the collector is flush with the outer wall of the building and 4.8 m above ground level; it is supported on polythene insulators which are inspected regularly and cleaned as necessary of dust and spider webs. A leak test is carried out about three times per week; about 120 volts are applied to the boom and 5 per cent loss of potential over 2 minutes is accepted as satisfactory. The Kew electrograph, which is also a quadrant electrometer recording photographically, is situated in the main observatory building. Its boom is supported on sulphur insulators which are kept dry and warm with two small electric heaters. The radio-active collector is 90 cm from the window of the building through which the boom projects at 360 cm above ground level. The insulators and boom are inspected regularly and kept free from dust and spider webs; provided the electric heaters are also functioning, the insulator then remains satisfactory but a leak test is performed at about monthly intervals (the loss of potential should be negligible [less than 5 per cent in 2 minutes]). The scale value of the electrograph has been fixed at about 17 volts per metre per millimetre, and the full scale deflections correspond to about +1600 volts per metre and -1000 volts per metre. Kew: air-earth current and conductivity Measurements of the air-earth current and potential gradient are made in an underground laboratory (for position see Figure 11) using a modified Wilson apparatus which was devised by C. T. R. Wilson (*Proceedings of the Cambridge Philosophical Society*, London, 13, 1906, pp.184 and 363) and is described in detail by F. J. Scrase (*Geophysical Memoir*, London, 7, No. 60, 1934). From these observations the conductivity can be calculated. Briefly, the apparatus consists of an insulated brass plate, mounted with its top surface flush with the ground level, and connected to a sensitive electrometer. The test plate can be covered when necessary with an earthed cylindrical cover, and can be maintained at any desired potential (usually zero) by a small charged variable capacitor (called the compensator). The method of using the instrument at Kew differs slightly from that adopted by Wilson, who used the readings of the position of the compensator to obtain the charge on the test plate. At Kew the compensator is used merely to keep the plate at zero potential, and the charge is measured by reading the deflection of the electrometer. The sequence of measurements is as follows; firstly a measurement of potential gradient, secondly a measurement of air-earth current made by accumulating the charge on the test plate for a period of 5 minutes and lastly another measurement of potential gradient. This sequence is normally repeated four times and is supplemented by additional measurements of potential gradient at the beginning and the end of the series and between each sequence. There are 18-20 measurements of potential gradient in a complete set of operations; in half of these the test plate is first exposed to the field, earthed, shielded and then the potential (v) of the plate is measured with the electrometer; in the other half the plate is first shielded, earthed and then exposed to the field and its potential measured. These two slightly different procedures are adopted for convenience and give negligibly different results. If A is the area of the test plate (in square centimetres) and C is the capacity of the system (in farads) then the potential gradient F (in volts per centimetre) is given by $$F = 4\pi (9 \times 10^{11}) \text{ Cv/A}$$ (A is 339 and C is 6.1×10^{-11}). The potential gradient found in this way is, to a close approximation, equal to that found by measuring the potential at a height of 1 m in the open part of the grounds with a stretched wire apparatus. The air-earth current (i) is measured by finding the potential (δv) acquired by the plate during a period of t seconds because of the charge collected. The relationship is: ### $i = C\delta v/At$ The value of δv that is used is a mean result from the four observations each lasting five minutes. From the mean values of i and F the conductivity λ is deduced. There is a slight difference (about 1%) in the capacity of the system when shielded and when unshielded; a mean of the two values is used when computing the potential gradient but the shielded value is that applicable to, and used for, the air-earth current measurements. The conductivity is that due to positive ions only since measurements are made only with positive fields. No measurements are made in precipitation or fog. ### **TABULATIONS** The potential gradient tables have been entirely recast with effect from the Observatories' Year Book 1964 to bring them more into line with recent requirements as discussed by the International Year of the Quiet Sun (IQSY) Working Group of the Joint Committee on Atmospheric Electricity of the International Association of Meteorology and Atmospheric Physics (IAMAP) and the International Association of Geomagnetism and Aeronomy (IAGA). In 1957 (see Observatories' Year Book 1957 p.17) the change was made that only hours without precipitation were considered in obtaining the means - also, for this purpose, hours for which the mean was indeterminate, because of large fluctuations, were excluded. In 1964 the further change was made to exclude consideration of periods with hydrometeors (according to the World Meteorological Organisation definition); the main change is that periods with fog are now excluded as well as periods with precipitation. Thus tables 17 (Lerwick), 35 (for Eskdalemuir) and 37 (for Kew) contain mean values of potential gradient for those periods of 60 minutes, ending at exact hours GMT, which are without hydrometeors. Hours with hydrometeors are left blank, and hours for which no record is obtained, because
of instrumental faults, contain a - . A distinction has also been drawn between "fair weather hours" and those hours without hydrometeors which are "non-fair weather hours". The criteria used to distinguish between these classes, which follow below, are at present, to a certain extent experimental, although based on the recommendations of the Working Group, but it is hoped that, in the future, a set of objective rules can be drawn up. The criteria for fair weather hours that have been used are: - - a. There must be no hydrometeors. - b. There must be no low stratus cloud (low normally means at a height up to 100 metres above station level, but at Lerwick this limiting height is generally interpreted as being 300 metres). - c. There must be generally not greater than one eighth of cumuliform cloud, but there can be up to three eighths if there is no apparent effect on the potential gradient record. - d. The surface wind should normally be less than Beaufort force 5 (that is a mean hourly wind speed of less than 8 metres per second). These weather criteria could not be applied as strictly at Kew, where weather observations are made only every 3 hours from 06 to 21 GMT daily, as at Lerwick and Eskdalemuir, where full observations are made throughout the 24 hours. At Lerwick there are occasions of very high potential gradients in hazy fine weather, usually with south-east winds, and, at this Observatory occasions with visibility of 5 kilometres or less are excluded. These criteria are supplemented by detailed study of the electrograms for the elimination of purely local effects. For Lerwick and Eskdalemuir up to, and including 1956, the selection of the special Oa days - when no negative potential was recorded and there were no complete hours during which the range of potential gradient exceeded 1000 volts per metre - was made solely by reference to the electrogram. Similarly a "selected quiet day" at Kew was one of 10 selected calendar days in each month, characterised by no negative potential gradient, no large irregular movements, no indication of inferior insulation and no large non-cyclic change; when there were not 10 such calendar days in a month, it was sometimes possible to make the number up by using other spells of 24 hours. The daily mean potential gradient, for these Oa days, and for the selected quiet days, was found by taking the average of the 24 hourly values. In 1957, when changes were made in the tabulation and publication of the hourly potential gradient tables, it was decided that, although no change was to be made in the criteria given above for 0a and selected quiet days, an additional criterion should be that hours with precipitation on these days should not be used in deriving the 0a and selected quiet day means. As stated above, there has been a further change from 1964 in that hours with hydrometeors have been omitted from the main tables. However, to give an overlap with the previous period 0a and selected quiet days have been chosen according to the 1957-63 criteria and this procedure will continue up to and including 1966. All "precipitation hours" are, of course, included in the class of "hydrometeor hours", but the latter also includes other, non-precipitation, hours; thus the mean for an 0a day may occasionally include measurements for more hours than are shown in the main tables. From 1964 the annual Oa day means have been computed by taking an average of the monthly means. It was decided to recompute the annual Oa day means for all years back to the previous change on 1 January 1957 on this basis, and these values are given in the Errata section on pages xii-xiv of the Observatories' Year Book 1964. No change has been required in the procedure for the selected quiet days at Kew, since there have, in fact, been an equal (or substantially equal) number of days used in each month. Table 18 (for Lerwick), 36 (for Eskdalemuir), and 38 (for Kew), contain monthly mean hourly values of the potential gradient, transferred from tables 17, 35 and 37 respectively, together with seasonal and annual hourly mean values. For this purpose Winter is taken as January, February, November and December, the Equinox is March, April, September and October and Summer is May to August. In all the tables 17, 18, 35, 36, 37 and 38, mean values for each month have been computed by averaging the mean for each hour, means for all hours without hydrometeors and means for fair weather hours being given separately; seasonal and annual values are the averages of the monthly mean values. Table 39 contains the results of the measurements of the potential gradient, air-earth current and conductivity due to positive ions, made with the Wilson apparatus at Kew. Each entry is the mean value for a period of about twenty minutes centred about 1430 GMT on the date in question. Monthly and annual means are also given (the annual means being calculated as described in the previous paragraph). It should be pointed out that the unit of potential gradient used in Table 39 is volts per centimetre (not volts per metre as in the other tables); the unit of air-earth current is 10^{-18} ampere per square centimetre and the unit of conductivity is 10^{-18} per ohm per centimetre. ### NOTES ON THE RESULTS While no detailed discussion of the results is attempted here it is perhaps of interest to point out that marked changes have occurred since around 1951; those occurring in the period 1951-59 were discussed by K. H. Stewart in the Quarterly Journal of the Royal Meteorological Society, 86, 1960, p.399 and attributed to the deposition on the ground of radio-active debris from nuclear explosions for test purposes. There is further discussion of the matter by R. A. Hamilton in the same *Journal* in **91**, 1965, p.348 (and in the Discussion in **93**, 1967, p.139) and (with J. G. Paren) in the *Meteorological Magazine*, London, **96**, 1967, p.81, in relation to Lerwick and Eskdalemuir measurements. ### AIR POLLUTION The automatic sampler for recording the smoke concentration in air (it replaced the Owens' air pollution recorder on 1 January 1962) is in the building known as the Clinical House, with its outside intake level about 2 metres above ground. This instrument was designed at the Warren Spring Laboratory and operates on a similar principle to their standard daily instrument. Air is drawn by a small pump through a filter and thence through an air meter. The filter material is, however, a continuous roll of glass fibre "paper", and the clamp, which defines the areas of the paper through which the air is drawn, can be released automatically by a time switch. When this happens the filter paper is also wound on a suitable distance, so that when the clamp is allowed to reposition itself the air is drawn through a fresh area of the paper and a new stain is produced. The instrument is operated from an hourly time switch so that 24 stains are produced every day. The air meter is only read once a day but it has been found that by using a constant voltage transformer to supply the power for the electric pump the rate of air flow is substantially constant. During periods of light pollution a pump sampling 5.5 cu ft an hour is used but during times of heavy pollution a different pump sampling only 2.8 cu ft an hour is used. The stains are measured with a photo-electric reflectometer. The minimum concentration of smoke that can be reliably detected is about 5 microgrammes per cubic metre. The calibration was determined at Kew by comparing the results from daily and hourly measurements on the same day; full details are given in a paper by H. E. Painter (Atmospheric Environment, London, 1, 1967, p.461). The new instrument was run side by side with the Owens' recorder for 10 months in 1961 and considerable systematic differences were found between the results of the two instruments. These were only in part due to the greater sensitivity of the new instrument. In the table below is given the mean relation between the monthly mean hourly values of smoke concentration as found from the two instruments. Relation between monthly mean hourly values of smoke concentration as found by the two recording instruments in 1961 unit: microgrammes per cubic metre | Owens | Warren Spring | Ratio | Owens | Warren Spring | Ratio | |-------|---------------|-------|-------|---------------|-------| | 75 | 27 | 2 • 8 | 160 | 230 | 0•7 | | 100 | 45 | 2 • 2 | 200 | 310 | 0.65 | | 120 | 85 | 1 • 4 | 300 | 460 | 0.65 | | 140 | 175 | 0 • 8 | 1 | | | It is seen that the Owens' instrument reads too high at low concentrations and too low at high concentrations. It undoubtedly well underestimates the peak concentrations. A further discussion of the comparison between the Owens' instrument and the new sampler is in preparation; meanwhile the discontinuity in the records should be noted. The average diurnal change in air pollution will also be much more accurately measured with the new instrument. A summary of the results obtained at Kew is given in Table 40. In this table are hourly means of the concentration of suspended matter, in microgrammes per cubic metre, for each month, the seasons and the year. Winter is taken as the months January, February, November and December, Spring as March and April, Summer as May to August and Autumn as September and October. In addition there are standard instruments at Kew, Eskdalemuir and Lerwick for the measurement of daily smoke concentration in the air. Data so obtained are incorporated in the records of the National Survey of Air Pollution maintained by Warren Spring Laboratory. Summaries of these data appear monthly and are also included in the Annual Table of Observations. Both may be obtained on request from the Director, Warren Spring Laboratory, Gunnels Wood Road, Stevenage, Hertfordshire, England. During 1965 the highest measurement of pollution at Kew was 803 microgrammes per cubic metre, this value occurring from 20-21 and
21-22 hours GMT on 28 December. This was the first year since continuous recording began (1 January 1921) in which the maximum hourly value was below 1000 microgrammes per cubic metre. Late in 1960 there was also installed at Kew Observatory, on behalf of Warren Spring Laboratory, standard daily apparatus for the measurement of the concentration of sulphur dioxide in the atmosphere. Air which has already been passed through a smoke filter is bubbled through a weak solution of hydrogen peroxide causing the sulphur dioxide to be converted to sulphuric acid which remains in solution. The acidity of the hydrogen peroxide solution is then found by titration against a 1/250 normal solution of sodium borate, using BDH 4.5 (a narrow range indicator); from this result, knowing the volume of air, the average sulphur dioxide concentration can be calculated. Measurements are made 24 hourly and, since January 1961, the results have been passed at monthly intervals to Warren Spring Laboratory and published by them alongside the smoke pollution data (see above). Full descriptions of the methods of measuring smoke and sulphur dioxide are given in the Instruction Manual of the National Survey of Smoke and Sulphur Dioxide. This may be obtained from the Warren Spring Laboratory (address as above) on request. Summarised details of these and other methods of measuring a variety of pollutants are given in the four parts of British Standard 1747. # LERWICK OBSERVATORY FIG. 1 Contour map of surroundings FIG. 2 General view from south—Loch of Trebister in the foreground, June 1965 ## LERWICK OBSERVATORY FIG. 3 Site plan 1965 FIG. 4 View from west-north-west, showing instrumental layout, June 1965 ### INSTRUMENTS - Small thermometer screen Standard 5-inch rain-gauge for hourly reading Sunshine recorder (Campbell-Stokes type) Open-scale rainfall recorder Large thermometer screen Grass minimum thermometer Total radiation solarimeter Diffuse radiation solarimeter Meteorological Office tilting-siphon rain recorder (turf-walled) Davlight illuminometers - Daylight illuminometers - Dayight Hummometers Evaporation pan (American class 'A' type) with watersurface maximum and minimum thermometers Electrical power panel Standard 5-inch rain-gauge (turf-walled) Gravity measuring site Electrical anemograph (cup generator) Cloud searchlight Alidade for cloud searchlight Boom for electrograph - Radiation balance meters - Auroral camera Stretched wire, between posts, for absolute measurements of atmospheric electric potential gradient Coils for digitally recording proton vector magneto- - Colls for digitarity recording proton vector magnetor meter Standard 5-inch rain-gauge, read monthly Collector of precipitation for subsequent chemical Lanalysis Collectors of precipitation for subsequent radioactive analysis N. ### BUILDINGS - Room for ozone spectrophotometer and electro-Room for ozone spectrophotometer and electro-graph Neutron monitor room Observatory building Boiler house Instrument enclosure Old wind-finding radar (up to 1964) Balloon filling shed Absolute hut: declinometer, proton vector magneto- - B. C. D. E. F. G. meter - Hut: Schuster-Smith coil; controls for proton vector - Hut: Schuster-Smith coil; controls for proton vector magnetometer Hut: BMZ up to 1964; amplifier of digitally recording proton magnetometer Magnetograph house: normal, quick-run and storm La Cour Hut: supplementary magnetographs before 1965 Hut: fluxgate magnetograph. Air sampling equipment for separate analysis of smoke, chemical content and radioactivity of particulate matter Azimuth pillar Water tank Power house for emergency generators Residential quarters Residential quarters New wind-finding radar (from 1964) Hut for ionosonde Wire fence Low wall Radiosonde launching mast Various huts for stores, etc. Aerial masts and caravan containing transmitter for ionosphere experiments # ESKDALEMUIR OBSERVATORY FIG. 5 Contour map of surroundings FIG. 6 The Observatory and Davington village looking westwards, July 1965 FIG. 7 Site plan, 1965 #### INSTRUMENTS Large thermometer screen Standard 5-inch rain-gauge for hourly reading Sampling of air and collection of precipitation for subsequent analysis of chemical content Cup counter anemometer Mark II 4-foot earth thermometer 1-foot earth thermometer Collectors of precipitation for subsequent radioactive analysis Louvered hut—containing photothermograph and standard thermometers thermometers Grass minimum thermometer Standard 5-inch rain-gauge Evaporation pan (American class 'A' type) with watersurface maximum and minimum thermometers Total radiation solarimeter Diffuse radiation solarimeter Daylight illuminometer Radiation recorder (bimetallic) Sunshine recorder (Campbell-Stokes type) Direct-reading pressure-tube anemograph Air pollution sampling unit Boom for electrograph Atmospheric electricity absolute observation pit International reference precipitation gauge Standard 5-inch rain-gauge (turf-walled) Meteorological Office tilting-siphon rain recorders (turfwalled) Fuess snow recorder (turf-walled) Jardi rain recorder (turf-walled) Microbarographs Stretched wire, between posts, for atmospheric electric potential gradient recording Underground chambers: La Cour normal and quick-run magnetographs, supplementary magnetographs Radiation balance meters Hut for earth current recorders 32. 33. 34. East hut: absolute instruments—declinometer, proton vector magnetometer, Schuster-Smith coil West hut: digitally recording proton vector magnetometer Air sampling equipment for subsequent analysis of radio-activity of particulate matter Cloud searchlight Control box of the proton vector magnetometer #### BUILDINGS Main observatory building Schuster House Rayleigh House Glazebrook House Shaw House Cottage Reservoir Tennis court Old ozone spectrophotometer hut Garage and battery room Recreation room Reserve petrol store Incinerator Path to seismic vault The radiation instruments (13-17) and the head of the direct-reading pressure tube anemograph are mounted above a stone tower, the parapet of which is 10.5 metres above ground. The trees surrounding the Observatory are about 16 metres high. FIG. 8 General view of the Observatory looking northwards (on the left) and south-eastwards (on the right), November 1966 ## KEW OBSERVATORY FIG. 9 Contour and built-up area map FIG. 10 Aerial view of Observatory looking northwards from 500 feet, August 1965 ### KEW OBSERVATORY FIG. 11 Site plan, 1965 FIG. 12 General view from south-south-west, February 1967 ### INSTRUMENTS - 10. - Jardi rate of rainfall recorder North-wall screen Direct-reading pressure-aube anemograph Solarimeters and daylight illuminometers Normal incidence pyrheliometer International reference sunshine recorder (installed July 1964) Sunshine recorder (Campbell-Stokes type) Boom for Dolezalek electrograph Alidade for cloud searchlight Boom for valve voltmeter recorder (installed May 1958) Air sampling equipment for smoke and sulphur dioxide content (transferred from Clinical House, May 1963) Rainfall chronograph recording unit Large thermometer screen Pillar for any special equipment Grass minimum thermometer - 16. International reference precipitation 30. International reference precipitation gauge Standard 5-inch rain-gauge Meteorological Office tilting-siphon rain recorder Radiation balance meters Rainfall chronograph Storm gauge In vault: photobarograph Radiation recorders (bimetallic) Solarimeter calibration bench Theodolite pillar Experimental recording aspirated - 19. 20. 21. 22. 23. - Theodolite pillar Experimental recording aspirated electrical resistance psychrometer Soil and earth thermometers (new site from August 1964) Meteorological Office standard evaporation tank recorder Meteorological Office standard evaporation tank - 30. Evaporation pan (American class 'A' type) with water-surface maximum and minimum thermometers 31. Cup counter anemometer 32. Cloud searchlight 33. Stretched wire, between posts, for atmospheric electric potential gradient measurements 34. Tethered balloon, used for low-level measurements 35. In vault: short period vertical seismograph. (The Galitzin three-component seismograph was in use until December 1964.) #### BUILDINGS Main observatory building Clinical House - Workshops Experimental hut Store - Store - Store Carpenter's shop Atmospheric electricity underground laboratory Pump house (erected 1964) Hut: occupied by International Seismological Summary Unit Underground seismological house Greenhouse Hot water storage tanks Static water tank Balloon-winch hut (erected September 1963) Hardstanding for hydrogen cylinder - Q. - 1963) Hardstanding for hydrogen cylinder trailer (laid in April 1964) Shrubberies or hedges. Xa and Xb are hedges 1.2 metres high The four trees shown are 6 to 8 metres high. Outside the Observatory limits, due south of the hut marked F and 6 metres from the boundary fence, are two trees 25 metres high. The southern and western boundaries shown on Figure 11 in the 1960 and 1961 'Observatories' Year Books' were just beyond the limits of the experimental equipment; the true fenced boundary has always been as shown in the present Figure 11. ## PROTON VECTOR MAGNETOMETER FIG. 13 Eskdalemuir: proton vector magnetometer (in East hut—see Figures 7 and 8) with coils (80 cm diameter) in position for annulling the horizontal component, H FIG. 14 Eskdalemuir: proton vector magnetometer (in East hut—see Figures 7 and 8) with coils (80 cm diameter) in position for annulling the vertical component, Z FIG. 15 Lerwick: proton vector magnetometer (in hut H—see Figures 3 and 4)—diameter of outer coil 100 cm. The Kew pattern unifilar magnetometer is to the right on the nearer pillar # LERWICK # GEOMAGNETIC FORCE: HORIZONTAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT | 1 LER | RWICK (| H) | | | | | | | | | 1 | 4,000γ | (0.14 | CGS uni | it) + | | | | | | | | | | JANUA | ARY 1965 |
----------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------| | | Hour (| GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
15,000γ+ | | 1
2 d
3
4
5 | 9
647
642
627
650
649 | γ
648
646
645
647
649 | γ
649
649
645
649 | 9
652
649
647
650
649 | 654
651
649
652
652 | 9
657
659
649
654
654 | 9
660
660
649
655
655 | 9
661
660
648
656
653 | 9
656
657
643
655
652 | 7
650
653
643
651
648 | γ
646
645
641
649 | 9
647
641
641
646
645 | 9
647
645
641
647
645 | 9
649
638
644
645
648 | γ
652
630
647
650
648 | γ
655
634
645
652
642 | 9
654
647
635
653
638 | 9
652
634
645
652
646 | 9
642
626
649
640
648 | 9
643
640
650
638
648 | γ
644
646
650
633
648 | γ
649
644
649
639
648 | γ
645
641
648
645
648 | γ
647
653
649
649 | γ
650
645
645
648
648 | 7
606
490
479
557
557 | | 6 q
7
8 d
9 | 648
650
644
641
640 | 648
649
649
640
639 | 647
650
645
640
642 | 648
652
646
642
645 | 651
656
648
652
647 | 652
657
649
648
647 | 654
660
646
649
650 | 656
658
641
649
649 | 652
656
632
648
647 | 650
653
631
648
647 | 648
652
636
646
645 | 645
653
641
644
645 | 648
652
640
643
647 | 651
649
637
650
652 | 652
644
630
651
654 | 652
639
625
648
656 | 652
648
635
649
650 | 651
650
639
651
641 | 652
647
632
643
637 | 649
647
633
641
642 | 649
649
634
638
645 | 649
651
635
642
644 | 649
651
653
653
645 | 649
650
641
648
651 | 650
651
639
646
646 | 602
623
342
504
507 | | 11 q
12 d
13 d
14
15 | 641
649
650
645
649 | 643
647
637
642
649 | 645
643
630
645
649 | 644
643
637
645
654 | 646
645
649
645
653 | 648
653
649
649
658 | 649
659
654
652
654 | 649
662
650
654
653 | 647
659
646
650
652 | 645
654
646
646
649 | 644
645
645
641
645 | 641
649
639
636
635 | 642
646
638
646
638 | 646
636
641
644
644 | 648
633
641
642
646 | 648
635
645
647
648 | 649
644
642
645
648 | 650
639
641
649
645 | 649
643
644
649
641 | 650
645
635
649
639 | 650
635
638
648
646 | 650
630
640
649
649 | 650
638
644
648
648 | 648
642
647
649
649 | 647
645
643
646
648 | 522
474
428
515
541 | | 16 q
17
18
19
20 | 646
637
644
644
644 | 646
644
644
642
645 | 646
645
644
642
646 | 648
647
646
642
648 | 648
648
648
647
651 | 648
651
653
653
653 | 650
652
655
655
654 | 651
654
653
652
653 | 648
655
651
647
650 | 646
653
648
646
646 | 644
643
644
644
640 | 640
644
640
645
640 | 639
643
640
645
641 | 643
646
644
648
646 | 643
619
648
653
648 | 646
629
648
654
649 | 648
648
647
654
655 | 649
639
648
653
654 | 649
633
646
652
641 | 648
634
641
651
644 | 645
637
642
648
655 | 641
640
648
644
652 | 644
645
652
641
670 | 636
645
643
648
661 | 645
643
647
648
649 | 492
431
517
550
586 | | 21
22 d
23
24 q
25 q | 637
658
648
641
647 | 629
647
644
642
647 | 635
651
641
643
648 | 633
656
640
644
647 | 641
651
642
646
648 | 648
655
644
648
649 | 651
622
650
649
651 | 650
678
655
649
652 | 647
666
649
646
652 | 646
656
643
641
648 | 642
644
640
638
646 | 640
645
643
638
645 | 640
641
640
640
644 | 647
640
637
641
645 | 648
634
637
647
648 | 648
640
640
650
648 | 649
640
642
649 | 649
640
644
651
651 | 648
639
645
650
653 | 644
637
647
649
654 | 640
648
645
651
652 | 642
640
644
649
651 | 647
640
653
650
650 | 653
644
644
648
652 | 644
646
644
646
649 | 454
512
457
500
577 | | 26
27
28
29
30 | 649
655
643
644
644 | 649
653
648
649
644 | 649
651
647
650
646 | 648
651
649
648
646 | 651
653
651
649 | 653
651
654
651
651 | 654
655
659
651
653 | 655
655
659
650
656 | 660
653
659
648
653 | 659
650
655
644
648 | 653
645
647
643
641 | 651
641
637
641
635 | 644
642
634
637
641 | 643
647
640
638
642 | 646
652
646
639
644 | 651
654
646
642
644 | 653
652
649
646
647 | 651
648
651
651
648 | 648
648
649
650
649 | 649
649
646
651
649 | 651
646
641
651
649 | 649
641
641
651
648 | 651
648
644
648
647 | 649
652
646
652
649 | 651
650
648
647
647 | 616
590
543
526
523 | | 31
Mean | 648
645 | 648
645 | 649
645 | 649
647 | 649
649 | 651
661 | 651
652 | 652
654 | 653
651 | 649
648 | 644
644 | 641
642 | 641
643 | 645
644 | 648
644 | 649
645 | 649
647 | 648
<i>637</i> | 647
645 | 647
645 | 645
645 | 643
645 | 652
648 | 654
648 | 648
647 | 552 | | Sum
19,0007+ | 1001 | 999 | 1010 | 1045 | 1124 | 1496 | 1218 | 1273 | 1189 | 1092 | 972 | 914 | 917 | 966 | 968 | 1009 | 1066 | 760 | 989 | 989 | 999 | 992 | 1088 | 1097 | | Grand Total
481,173 | | 2 LEI | RWICK (| D) | _ | | | | | | | | | 9 | • + | | | | | | | | | | | | J ANU. | ARY 1965 | |----------------|-------------|------------|--------|--------|--------|--------|--------|---------|--------|--------|--------------|--------|--------|--------------|--------|---------|--------|---------|---------|--------|--------|--------|--------|--------|--------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-1 | 3 13-14 | 14-15 | 5 15-16 | 5 16-1 | 7 17-18 | 8 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
400·0'+ | | | , | , | • | , | , | , | • | • | • | • | 7 | , | , | • | • | • | , | , | , | • | • | , | , | , | · T | | | 1 | | 23.0 | 23.6 | | | | 22.7 | 22.4 | | 22.4 | 23 · 3 | 24 · 7 | 25 · 1 | | 24 · 7 | 24 · 2 | 24.5 | | | 24.8 | 23 · 7 | 22.3 | 22.1 | | 23 · 4 | 162.6 | | 2 d | 18.9 | | 24 · 2 | | 24 · 7 | 24 · 3 | | 23.1 | 22.6 | 23 · 5 | 24 · 1 | 25 · 5 | | 29 · 2 | 27.5 | 24 · 9 | 25 · 4 | | | 18.5 | | 19.4 | 19.5 | 13.5 | 22.9 | 149 · 7 | | 3 | 19.4 | | 23 · 1 | | | | | 22.2 | 21 · 4 | 21 · 5 | 22.2 | 24 · 0 | | 25 4 | | | | | | 22.8 | 22 · 3 | 22 · 3 | 22.2 | 21 · 6 | 22.8 | 147 · 8 | | 4 | | 22.3 | | | 23.0 | | | 23.1 | | 23.3 | 24·3
23·0 | | | 25·5
25·4 | | | | 24 · 1 | | | 19.3 | | 20 · 4 | 22.6 | 23 · 1 | 155 · 1 | | 5 | 23.2 | 22.2 | 22.5 | 23.3 | 23.3 | 23.4 | 23.3 | 23.1 | 22.3 | 22.0 | 23.0 | 23.8 | 25.7 | 25.4 | 23.2 | 24 · 8 | 25 · 7 | 24 · 3 | 23 · 4 | 22.8 | 22.2 | 21 · 9 | 21 · 9 | 21 · 7 | 23.4 | 160.9 | | 6 q | 22.5 | 23 · 3 | | | 23 · 1 | | 22.5 | | | 23.7 | 23 · 3 | 23.8 | | 25 · 4 | 24.5 | 23 · 7 | | | | 22.6 | 22.5 | 22.2 | 22.2 | | 23.2 | 156.6 | | 7 | 22.9 | | 23 · 5 | | 22.8 | | | 22.7 | | | 24 · 3 | 24 · 7 | 24 · 9 | | 25 · 3 | | 24 • 4 | | | | | 22 · 3 | | | 23 · 4 | 162.2 | | 8 d | | 14 · 7 | | 22 · 2 | | | | 24 · 2 | | | | 26 • 4 | | 28.3 | 29.0 | | | 21 · 2 | | 22.3 | | 19.8 | | | 22.6 | 141.5 | | 9 | | | | 21 · 5 | | | | | | | | 25 · 6 | | 25 · 7 | 25 · 8 | | | | 22.6 | | | | 16.5 | | 22.3 | 136 · 2 | | 10 | 21.8 | 21.9 | 22 · 4 | 21.9 | 22.2 | 22.5 | 22.6 | 22.4 | 22.5 | 22.9 | 23 · 7 | 25 · 2 | 26.2 | 25.7 | 25.4 | 24 - 2 | 25.6 | 24.9 | 25 · 8 | 23.6 | 22.0 | 21 · 5 | 19.4 | 16.8 | 23.0 | 153 · 1 | | 11 g | 21 · 4 | 22 · 1 | 21 · 2 | 21 · 4 | 22.3 | 22 · 4 | 22 · 4 | 22.6 | 22 · 4 | 23 · 1 | 23.9 | 24 · 3 | 24.9 | 25.0 | 24.0 | 23 · 1 | 23 · 0 | 23.0 | 23.0 | 23 · 0 | 22.7 | 22.5 | 22.4 | 21.8 | 22.8 | 1.97.9 | | 12 d | 21 · 2 | 20.5 | 20.5 | 20 · 1 | 20.3 | 22 · 2 | 22.4 | 22.5 | 23 · 2 | 24 · 2 | 23.6 | 25.6 | 25.8 | 26 · 6 |
27 · 3 | 30 · 1 | 29.0 | 25 · 1 | 25.0 | 23 · 3 | 20.9 | | 18.5 | 22 · 2 | 23 · 2 | 157.5 | | 13 d | 24 · 8 | 15.6 | 9.6 | 18.3 | 22.4 | 22.8 | 23 · 4 | 23.8 | 22.4 | 23 · 2 | 26.0 | 26 • 0 | 26.0 | 25 · 9 | 23 · 7 | 22.5 | 24 · 4 | 23 · 1 | 22 · 4 | 15.4 | 14 · 1 | 19.9 | 20.1 | 22 · 2 | 21.6 | 118.0 | | 14 | 22.5 | 22.6 | 22 · 3 | | | | | | | | 23.5 | 25 · 0 | | 25.2 | | 22.6 | | | 23 · 2 | | 21 · 9 | | 21 · 7 | 22.3 | 22.9 | 150.6 | | 15 | 22.6 | 22.9 | 23 · 2 | 24 · 2 | 23.0 | 22 · 2 | 22.8 | 22.2 | 22.0 | 22.0 | 22.8 | 23 · 9 | 24 · 3 | 25 · 3 | 24 · 3 | 23 · 5 | 23 · 2 | 21 · 6 | 17.9 | 21 · 6 | 22 · 2 | 22 · 2 | 22 · 2 | 22:5 | 22.7 | 144 · 6 | | 16 a | 22.7 | 22.8 | 22.8 | 22.7 | 22.7 | 22.3 | 22.2 | 22:2 | 21 · 9 | 22.6 | 23.8 | 24 · 2 | 25 · 1 | 25 · 8 | 25 · 2 | 24 · 4 | 23 · 7 | 23 · 1 | 22.8 | 22.5 | 21 · 4 | 21 · 5 | 19.6 | 15.5 | 22.6 | 143.5 | | 17 | 19.3 | 22.5 | 23 · 2 | 23 · 3 | 23 · 3 | 22.6 | 22.5 | 22:5 | 22 · 4 | 22.7 | 23.3 | 24 · 2 | 25 · 3 | 27.7 | | 27 · 3 | | | 22.2 | | | 18.0 | 20.3 | 21 · 4 | 23.0 | 152.9 | | 18 | | | | 23 · 2 | | | | | | 22.3 | 23.0 | 24 • 2 | 25.3 | 25.4 | 24 • 4 | 23 • 4 | 23 · 1 | 22.9 | 22 • 4 | 21.9 | 20.7 | 19.9 | 18.7 | 20.5 | 22.7 | 144.8 | | 19 | 21.6 | 22.2 | | 24 · 3 | | | | | 22.2 | | 22.8 | 24 · 4 | 25.0 | 25 · 2 | | | | | 22.8 | 22.6 | 21 · 8 | 20.0 | 19.1 | 15.1 | 22.5 | 139 · 4 | | 20 | 20.1 | 22 • 4 | 23 · 1 | 23.0 | 23.0 | 23.0 | 22.2 | 21.9 | 21 · 4 | 22.1 | 23 · 1 | 23.8 | 25.2 | 25 • 4 | 24 · 3 | 23 · 3 | 23 · 3 | 23 • 4 | 21 · 3 | 22.8 | 23 · 3 | 21 · 4 | 15.6 | 12.8 | 22-1 | 131 · 2 | | 21 | 8 · 4 | 9.6 | 4 · 2 | 17.5 | 22.2 | 21.6 | 22.2 | 22.2 | 21 · 8 | 21 · 9 | 22.4 | 24.0 | 25.4 | 25.9 | 25 · 0 | 24 · 2 | 23 · 8 | 23 · 8 | 24.6 | 23 · 1 | 21 · 3 | 21 · 2 | 20.7 | 18.9 | 20.7 | 95.9 | | 22 d | 18.0 | 20.2 | 23.3 | 23 · 8 | 23.5 | 28.3 | 33 · 4 | 29 · 3 | 24.5 | 25.3 | 25 · 1 | 27 • 2 | 27 · 4 | 27.9 | 28.8 | 33 · 2 | 30.7 | | 25 · 2 | 23 · 8 | 21.9 | | 20.7 | | 25.6 | 213.7 | | 23 | 20.3 | 21 · 3 | 21.9 | 22.2 | 22.8 | 24.0 | 23.0 | 23 · 2 | 23.0 | 24 · 8 | 25.0 | 26.0 | 26.8 | | | | | | 22.9 | 21.0 | 20 - 2 | 21 · 2 | 19.1 | 18.0 | 23.0 | 152 · 3 | | 24 g | 21.0 | 22.2 | 22.2 | 22.4 | 22.5 | 22.5 | 22.5 | 22.2 | 21 · 5 | 21 · 2 | 22 · 1 | 23 · 1 | 24 · 7 | 25 · 1 | 24 · 7 | 23.8 | 23.5 | 23.6 | 23 · 5 | 22.7 | 22 · 1 | 22.0 | 22.0 | 22 · 2 | 22.7 | 145 · 3 | | 25 q | 22.2 | 22 · 4 | 22.6 | 22.8 | 23.0 | 23 · 1 | 22.6 | 22.5 | 22.1 | 22.2 | 22.8 | 23 • 4 | 24 · 0 | 24 · 5 | 24 · 3 | 23.8 | 23.6 | 23.6 | 23 · 4 | 23.2 | 22 · 7 | 22.3 | 22.2 | 22 • 2 | 23 · 0 | 151.5 | | 26 | 22.2 | 22 · 2 | 23 · 3 | 23 · 2 | 22.8 | 22.5 | 22.2 | 22.2 | 22 · 2 | 22.5 | 22.5 | 23 · 9 | 24.8 | 25.2 | 25 · 4 | 24.6 | 24 · 3 | 24 · 7 | 23 · 3 | 22.9 | 22 · 4 | 22.2 | 22 · 2 | 22.1 | 23 · 2 | 155.8 | | 27 | 21.8 | 22.2 | 23 · 2 | 22.2 | 22 · 4 | 24.8 | 23 · 1 | 22.2 | 21 · 5 | 21.5 | 22.3 | 23.0 | 24 · 1 | | | 25 · 2 | | | | 23.6 | 22 · 1 | | 20.0 | | 22.9 | 149.8 | | 28 | 19.8 | 23.9 | 21.6 | 22.6 | 22 · 7 | 22.5 | 22.9 | 22.8 | 22.2 | 21.9 | 22.5 | 24 · 7 | 25 · 5 | 26 · 3 | 26 · 0 | 24 · 4 | 23 · 7 | 23 · 3 | 23.3 | 20.2 | 19.4 | | | | 22.6 | 141 · 6 | | 29 | 20.5 | 20.9 | 23 · 2 | 22.3 | 22.6 | 22.5 | 22.2 | 22.0 | 21 · 3 | 20.7 | 21 · 6 | 23.8 | 24 · 8 | | | | | | 23 · 1 | | | | 21 · 2 | 16.3 | 22.6 | 141 · 4 | | 30 | 15.3 | 19.6 | 21 · 4 | 23 · 5 | 22.8 | 23 · 2 | 23 · 2 | 22.8 | 22.6 | 22.3 | 22.5 | 23.8 | 25 · 2 | 26 · 5 | 26 · 1 | 24 · 9 | 24 · 0 | 23 · 7 | 23 · 1 | 22.9 | 22 · 4 | 22.0 | 20.8 | 20.6 | 22.7 | 145 · 2 | | 31 | 20.8 | 22 · 2 | 22.7 | 22.9 | 23 · 2 | 22.8 | 22 · 4 | 21.8 | 21 · 2 | 20.9 | 21.6 | 24.0 | 25.7 | 26 · 1 | 25.1 | 24.3 | 24 · 3 | 24 · 3 | 24 · 1 | 23.3 | 20.3 | 19 • 4 | 19.9 | 20.9 | 22 · 7 | 144.2 | | Mean | 20.6 | 21.3 | 21.6 | 22.6 | 22 · 7 | 22.9 | 23.0 | 22 · 8 | 22.3 | 22.7 | 23 · 3 | 24.5 | 25.5 | 26.0 | 25.5 | 24 · 8 | 24 · 5 | 24 · 0 | 23 · 2 | 22.0 | 21 · 0 | 20.8 | 20 · 3 | 19-7 | 22 · 8 | | | Sum
600·0'+ | 38.4 | 61 · 1 | 70.6 | 100-4 | 105·3 | 109·6 | 113-4 | 106 · 4 | 91.9 | 105·3 | 123.7 | 160·5 | 191.0 | 204 · 9 | 190-6 | 168 · 2 | 160.8 | 145 · 1 | 118·4 | 88 · 1 | 51 · 8 | 45 · 6 | 30.7 | 11.0 | | Grand Total
16992·8 | ## GEOMAGNETIC FORCE: VERTICAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT | 3 LER | WICK (| Z) | | | | | | | | | | 47,000 | (0.47 | CGS u | nit) + | | | | | | | | | | JANUAR | Y 1965 | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------| | | Hour (| GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | | | | | | | 21-22 | | | Mean | Sum
9000)+ | | 1
2 d
3
4
5 | 394
397
371
389
374 | 394
395
359
391
381 | 393
392
382
394
388 | 9
392
394
389
394
392 | γ
391
392
392
394
393 | 389
390
392
393
393 | 387
390
392
392
394 | 387
390
392
391
393 | 388
390
393
390
393 | 389
389
392
390
392 | 390
391
392
389
392 | 390
393
392
390
392 | 392
393
393
393
391
393 | 395
399
395
395
395
395 | 394
408
397
396
398 | 395
411
399
398
400 | 395
402
405
398
406 | 396
410
401
399
401 | 402
421
398
406
399 | 401
407
396
407
398 | 402
384
394
410
396 | 400
382
392
403
395 | 387
392
398
393 | 396
372
391
389
389 | 394
395
391
395
393 | 7
453
479
391
487
440 | | 6 q
7
8 d
9 | 388
390
359
394
384 | 389
389
342
394
391 | 391
389
371
394
393 | 393
390
382
389
393 | 394
389
387
378
393 | 394
390
390
385
394 | 394
391
391
388
393 | 393
391
391
389
394 | 393
391
395
392
395 | 391
391
392
391
395 | 392
387
389
391
394 | 392
387
390
392
393 | 392
387
393
393
394 | 392
390
402
391
392 | 395
395
411
393
394 | 396
402
430
395
395 | 396
397
416
396
399 | 397
398
417
398
406 | 397
399
422
406
412 | 397
399
425
410
409 | 396
397
424
411
407 | 394
395
420
409
400 | 392
392
400
384
404 | 391
387
395
376
396 | 393
392
397
393
397 | 439
413
534
439
526 | | 11 q
12 d
13 d
14
15 | 395
394
335
389
397 | 394
393
330
391
397 | 393
393
316
391
395 | 392
392
348
389
390 | 392
393
366
389
386 | 392
391
380
389
385 | 394
390
385
389
387 | 396
388
390
389
387 | 397
390
394
391
389 | 398
390
395
392
390 | 397
393
395
395
392 | 395
392
400
398
398 | 395
395
401
397
398 | 395
401
401
401
396 | 395
390
403
405
398 | 395
408
404
403
399 | 394
407
402
400
398 | 395
411
403
398
399 | 395
412
402
397
402 | 396
407
408
396
399 | 397
412
403
399
396 | 396
417
397
397
395 | 396
404
395
398
395 | 397
393
392
397
396 | 395
398
385
395
394 | 481
556
245
480
464 | | 16 q
17
18
19
20 | 397
392
391
390
384 | 397
392
395
392
388 | 397
394
395
392
392 | 395
394
392
394
395 | 394
394
389
394
396 | 393
393
386
396
395 | 392
391
388
393
395 | 391
391
389
394
394 | 392
389
389
394
393 | 392
390
391
392
392 | 393
392
391
390
391 | 394
392
392
391
391 | 396
397
392
391
391 | 398
404
394
391
392 | 401
421
397
395
394 | 400
420
399
398
397 | 400
407
400
398
397 | 397
413
399
398
398 | 396
417
400
398
408 | 395
417
402
398
407 | 396
412
399
396
398 | 397
384
394
398
398 | 393
385
384
395
377 | 392
388
388
382
339 | 395
399
393
394
392 | 488
569
439
450
402 | | 21
22 d
23
24 q
25 q | 358
365
392
392
396 | 343
370
383
393
395 | 348
373
389
394
393 | 381
369
392
396
392 | 392
373
392
395
392 | 397
366
394
396
392 | 397
372
395
397
393 | 397
335
395
397
394 | 397
341
397
400
396 | 394
372
397
399
396 | 393
382
396
398
397 | 392
387
395
397
397 | 391
392
396
398
396 | 392
397
398
397
395 | 394
409
402
397
395 | 397
417
403
396
394 | 398
423
403
396
393 | 399
432
404
396
394 | 400
454
405
397
394 | 403
443
404
399
395 | 405
410
404
399
396 |
402
427
404
399
397 | 394
417
393
398
397 | 382
405
392
397
395 | 389
393
397
397
395 | 346
431
525
523
474 | | 26
27
28
29
30 | 393
389
391
396
395 | 392
387
386
386
392 | 391
387
389
387
389 | 391
389
391
392
391 | 391
390
391
394
391 | 391
387
391
392
391 | 391
385
389
393
391 | 391
388
389
393
388 | 389
390
390
393
389 | 389
391
390
393
389 | 391
392
393
393
393 | 393
393
397
395
397 | 395
394
396
397
396 | 396
396
396
399
399 | 397
395
397
403
401 | 394
395
399
402
401 | 393
396
397
400
399 | 395
398
396
397
398 | 397
397
397
396
396 | 397
399
402
395
396 | 397
400
405
395
396 | 397
402
406
395
397 | 397
392
404
396
397 | 396
387
400
395
394 | 393
392
395
395
394 | 444
419
482
477
466 | | 31
Mean | 395
386 | 396
384 | 395
387 | 396
389 | 396
390 | 395
390 | 394
391 | 392
390 | 391
391 | 391
391 | 391
392 | 394
393 | 397
394 | 398
396 | 400
399 | 400 | 399
400 | 398
401 | 399
404 | 400 | 405
401 | 404 | 390
395 | 381
389 | 396
394 | 497 | | Sum
11,000γ+ | 966 | 917 | 983 | 1069 | 1093 | 1102 | | 1079 | | | | 1191 | | 1282 | 1370 | 1442 | 1410 | 1441 | 1521 | 1507 | 1441 | 1399 | 1240 | 1070 | | Grand Total
213,259 | GEOMAGNETIC CHARACTER FIGURES (K, $K_{\rm H}$, $K_{\rm D}$, $K_{\rm Z}$, AND C) AND TEMPERATURE IN MAGNETOGRAPH HOUSE | 4 | LERWICK | | | | | | | | JANU | IARY 1965 | |----------|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------|--|-------------------------------------|--|---| | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of K _D indices | 3-h range
indices
K _Z | Sum of
K _Z
indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph house
200°A+ | | - | 2002 2112 | 4 | 0000 0101 | 2 | 0000 0012 | 3 | 0000 0001 | 1 | 1 | 86.0 | | 1 | 0000 0112 | | 1101 2223 | 12 | 2111 2233 | 15 | 0000 2132 | 8 | 1 | 86.0 | | 2 d | 2111 2233 | 15
6 | 2000 0201 | 5 | 3000 0100 | 4 | 2000 0100 | 3 | 1 | 86 · 1 | | 3 | 3000 0201 | 7 | 1000 1021 | 5 | 1001 0022 | 6 | 0000 0012 | 3 | 1 | 85.8 | | 4
5 | 1001 1022
1000 0101 | 3 | 0000 0100 | 1 | 1000 0101 | 3 | 1000 0000 | 1 | 0 | 86.0 | | 6 a | 1000 0000 | 1 | 0000 0000 | 0 | 1000 0000 | 1 | 0000 0000 | 0 | 0 | 86.3 | | | 0100 1212 | 7 | 0000 1212 | 6 | 0100 1111 | 5 | 0000 1001 | 2 | 1 | 87.0 | | 7
8 d | 3012 2323 | 16 | 2012 2213 | 13 | 3012 1322 | 14 | 3101 2212 | 12 | 1 | 87.0 | | | 1100 1114 | 9 | 1100 1112 | 7 | 0100 1114 | 8 | 0100 0013 | 5 | 1 | 86.9 | | 9
0 | 1110 0213 | 9 | 0010 0212 | 6 | 1110 0113 | 8 | 1000 0101 | 3 | 1 | 86.3 | | 1 a | 1000 0000 | 1 | 0000 0000 | 0 | 1000 0000 | 1 | 0000 0000 | 0 | 0 | 86 · 3 | | 2 d | 1102 3323 | 15 | 1101 2223 | 12 | 1102 3323 | 15 | 0000 2113 | 7 | 1 | 86.8 | | 3 d | 4312 2232 | 19 | 3211 1111 | 11 | 4312 2232 | 19 | 3310 0010 | 8 | 1 | 86.3 | | 1 | 1101 2100 | 6 | 0001 2100 | 4 | 1101 1100 | 5 | 0000 1000 | 1 | 1 : | 86 • 1 | | 5 | 1101 1220 | 8 | 0101 1110 | 5 | 1100 0220 | 6 | 0000 0010 | 1 | 1 | 86.0 | | 6 q | 0000 0002 | 2 | 0000 0001 | 1 | 0000 0002 | 2 | 9000 0000 | 0 | 0 | 86.0 | | 7 | 2001 3332 | 14 | 1001 3322 | 12 | 2000 2232 | 11 | 0000 2223 | 9 | 1 | 86.0 | | 8 | 0110 0002 | 4 | 0110 0002 | 4 | 0100 0002 | 3 | 0000 0001 | 1 | 1 | 86 · 1 | | 9 | 1110 0013 | 7 | 0110 0002 | 4 | 1110 0013 | 7 | 0000 0002 | . 2 | 1 | 86.0 | | Ó | 2000 0124 | 9 | 0000 0123 | 6 | 2000 0024 | 8 | 1000 0023 | 6 | 1 | 86.0 | | 1 | 4300 1111 | 11 | 2200 1001 | 6 | 4300 0111 | 10 | 2200 0002 | 6 | 1 | 86.0 | | 2 d | 3342 1242 | 21 | 1242 1232 | 17 | 3332 1242 | 20 | 2231 2242 | 18 | 1 | 85.5 | | 3 | 2111 0022 | 9 | 1111 0012 | 7 | 2101 0022 | 8 | 2000 0000 | 2 | 1 | 86.0 | | 4 q | 1000 0000 | 1 | 0000 0000 | 0 | 1000 0000 | 1 | 0000 0000 | 0 | 0 | 86.0 | | 5 q | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 86.3 | | 5 | 1000 0000 | 1 | 0000 0000 | 0 | 1000 0000 | 1 | 0000 0000 | 0 | 0 | 86 · 2 | | 7 | 1110 1101 | 6 | 0000 1101 | 3 | 1110 0001 | 4 | 0000 0001 | 1 | 1 1 | 86 · 2 | | 8 | 2000 1021 | 6 | 1000 1011 | 4 | 2000 0021 | 5 | 0000 0011 | 2 | 1 | 86 · 1 | | 9 | 2000 0002 | 4 | 1000 0001 | 2 | 2000 0002 | 4 | 1000 1000 | 2 | 1 | 85.8 | | 0 | 2100 0001 | 4 | 0000 0000 | 0 | 2100 0001 | 4 | 0000 0000 | 0 | 1 | 85.6 | | 1 | 0000 0012 | 3 | 0000 0001 | 1 | 0000 0012 | 3 | 0000 0002 | 2 | 1 | 85.8 | | | · | | | | | | | Mean | 0.77 | 86.1 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. $K_{\overline{B}}$ For horizontal component. $K_{\overline{D}}$ For declination. $K_{\overline{Z}}$ For vertical component. (See Introduction). # GEOMAGNETIC FORCE: HORIZONTAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT | 1 LER | WICK (| H) | | | | | | | | | | 14,000 | y (0·14 | CGS u | nit) 1 | + | | | | | | | | | FEBRU | ARY 1965 | |--|---|--|--|---|--|--|---|--|---|---|---|---|---|---|---|--|---|---|--|---|---|---|---|---|---|--| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 3 23-24 | Mean | Sum
14,000y+ | | 1
2 q
3
4
5
6
7 d
8 d | γ
651
648
650
645
651
640
642
633 | γ
650
649
652
648
645
652
648 | 9
648
649
651
655
640
646
629 | 9
653
651
654
651
641
646
644
639 | 7
655
652
659
651
642
648
648 | 9
655
654
660
659
647
650
645 | 9
659
654
659
662
651
650
598
645 | 9
657
656
661
658
653
651
601 | γ
657
655
659
653
651
651
581
643 | γ
651
654
655
654
646
648
570
644 | γ
644
648
651
644
642
644
578
647 | γ
637
646
648
649
636
640
589
643 | 9
637
645
646
651
633
636
603
640 | γ
642
647
651
647
639
633
615
638 | γ
648
649
651
651
647
646
620
639 | 7
648
651
652
648
652
641
641 | γ
649
655
654
643
650
621
635
646 | 9
651
657
655
645
651
623
644
653 | γ
652
658
655
653
648
648
643 | 9
651
655
654
642
652
651
622
644 | γ
651
654
653
641
649
648
607
670 | γ
651
652
652
647
648
648
617
646 | 9
650
653
638
647
648
650
621
622 | γ
649
653
634
653
647
647
631
637 | 9
650
652
652
650
646
644
620
642 | 7
1596
1645
1654
1597
1509
1458
872
1417 | | 9
10
11
12 q
13 q
14
15 | 639
642
649
651
651
647
637 | 637
638
649
644
651
648
637 | 639
644
646
646
651
648
642 | 640
651
648
645
651
648
644 | 641
652
648
648
652
648
653 | 641
644
646
650
652
646
653 | 645
646
651
651
654
658
649 | 646
655
640
648
654
654
651 | 648
650
648
643
650
658
648 | 646
640
647
638
644
649 | 638
622
641
632
641
642
640 | 635
624
634
634
641
621
640 | 632
619
628
633
645
638
645 | 633
627
633
636
651
641
639 | 648
636
644
644
655
644
633 | 651
646
648
646
654
647
640 | 648
648
647
651
649
636 | 626
648
650
649
651
651
647 | 644
648
636
648
641
644
645 | 646
644
642
649
648
647
644 |
644
636
648
648
649
651
649 | 642
635
650
649
651
650
645 | 637
643
649
650
656
649
648 | 641
646
648
650
645
656
655 | 641
645
645
645
650
647
644 | 1387
1384
1471
1479
1589
1534
1464 | | 16
17 <i>q</i>
18
19 <i>q</i>
20 | 648
652
650
651
655 | 648
648
650
651
653 | 641
648
651
649
655 | 642
651
650
649
652 | 644
654
651
646
655 | 656
655
651
651
655 | 656
655
651
652
653 | 651
653
648
651
648 | 649
649
646
647
648 | 640
641
642
642
645 | 637
634
640
636
639 | 628
632
638
633
640 | 629
630
642
637
645 | 637
629
645
647
648 | 637
643
649
648
648 | 642
650
655
651
657 | 645
651
651
648
654 | 648
652
649
646
654 | 651
653
653
648
650 | 652
652
655
649
655 | 651
651
651
651
655 | 649
652
642
649
650 | 648
651
648
657
654 | 652
650
648
651
659 | 645
647
648
647
651 | 1481
1536
1556
1540
1627 | | 21 d
22
23 d
24
25 d | 655
647
650
633
639 | 655
644
650
637
591 | 655
648
649
639
637 | 640
645
653
642
642 | 649
648
658
639
644 | 651
648
660
640
646 | 662
652
660
644
655 | 659
650
659
645
646 | 656
647
659
642
647 | 647
643
650
637
640 | 632
635
633
626
636 | 621
630
622
614
631 | 623
631
626
623
629 | 630
635
643
634
632 | 640
639
647
636
639 | 641
646
655
647
643 | 639
648
643
647
650 | 638
652
664
645
652 | 640
656
659
645
650 | 645
658
628
644
646 | 661
655
642
650
648 | 661
648
642
650
660 | 644
646
658
650
654 | 647
653
637
632
644 | 645
646
648
639
642 | 1491
1504
1547
1341
1401 | | 26
27
28 | 639
644
643 | 642
642
641 | 641
639
635 | 643
644
643 | 646
648
649 | 647
649
651 | 650
650
650 | 643
650
647 | 637
648
644 | 637
638
638 | 631
630
634 | 629
625
631 | 633
633
638 | 640
644
645 | 641
640
650 | 638
644
640 | 648
645
641 | 653
646
649 | 646
646
648 | 646
647
649 | 642
647
648 | 643
648
651 | 644
650
650 | 647
661
650 | 642
644
644 | 1406
1458
1465 | | Mean | 646 | 644 | 645 | 647 | 649 | 650 | 651 | 649 | 647 | 642 | 636 | 632 | 634 | 639 | 643 | 647 | 646 | 648 | 648 | 647 | 648 | 647 | 647 | 647 | 645 | | | Sum
17,000γ+ | 1082 | 1036 | 1058 | 1102 | 1170 | 1206 | 1222 | 1179 | 1114 | 970 | 797 | 691 | 750 | 881 | 1012 | 1115 | 1090 | 1149 | 1152 | 1117 | 1150 | 1128 | 1115 | 1123 | | Grand Total
433,409 | | 2 LEF | WICK | (D) | | | | | | | | | | 9 | ° + | | | | | | | | | | | | FEBRU | ARY 1965 | |--------------|-------------|------------|--------|---------|---------|---------|--------|---------|--------|--------|--------|---------|---------|---------|---------|---------|--------|---------|--------|---------|--------|--------|--------|--------|--------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-1 | 5 15-10 | 16-17 | 7 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
400·0' | | | | | | | • | • | • | • | | • | , | , | | • | , | • | | | , | • | • | • | • | • | • | | | 1 | 22.0 | 22.3 | 25 · 3 | 23 · 4 | 22.5 | 23 · 2 | 23 · 6 | 23.1 | 22.6 | 22 · 2 | 22.3 | 24 · 4 | 25.8 | 26 · 1 | 25 · 1 | 24 · 0 | 23 · 4 | 23.3 | 23 · 1 | 22.8 | 22 · 4 | 22.3 | 22.3 | 22.3 | 23.3 | 159.8 | | 2 q | 22 · 3 | 22.8 | 22.7 | 24 · 3 | 23.2 | 22.9 | 22.8 | 22 · 2 | 21.5 | 21 · 3 | 21 · 9 | 23 · 5 | 25.2 | 25.8 | 25.5 | 24 · 8 | 24 · 1 | 24 · 1 | 23 · 8 | 23.6 | 22.6 | 22.8 | 22 · 4 | 22.3 | 23.3 | 158 · 4 | | 3 ' | 22.7 | 21.8 | 22 · 2 | 22.9 | 21 · 4 | 22.0 | 22.8 | 22 · 4 | 21 · 9 | 21 · 4 | 22.2 | 23 · 3 | 24.9 | 25 · 9 | 25 · 5 | 24 · 6 | 24 · 5 | 24 · 5 | 24 · 9 | 24 · 1 | 23.9 | 22.5 | 14.7 | 16.5 | 22.6 | 143.5 | | 4 | 20.6 | 22.4 | 22.0 | | 19 · 1 | | | | | 23 · 5 | 23.9 | 24 · 4 | 26.6 | 27.0 | 26 · 9 | | 29 · 2 | | 24 · 4 | 21 · 5 | 21 · 1 | 20.8 | 21 · 4 | 18.8 | 23.0 | 152.9 | | 5 | 17.3 | 18.8 | 20.5 | 21 : 2 | 22.2 | 22.3 | 22 · 1 | 21 · 9 | 21 · 6 | 21 · 6 | 22.0 | 23 · 5 | 25 · 3 | 25.5 | 25.3 | 25 · 2 | 24 · 3 | 23 · 5 | 20.8 | 22 · 1 | 22.3 | 22.0 | 19.7 | 19·1 | 22.1 | 130 · 1 | | 6 | 21 · 2 | 19.9 | 19.7 | 20.8 | 21.0 | 21 · 4 | 21 · 7 | 21.8 | 21 · 1 | 21.5 | 22.4 | 24 · 3 | 26 · 2 | 27 · 1 | 28 · 4 | 25.5 | 11.0 | 28.3 | 27.5 | 26 · 7 | 23.3 | 22.3 | 22.3 | 22.0 | 22.8 | 147 - 4 | | 7 d | 21.0 | 17.4 | 11 · 1 | 8.0 | 7 · 2 | 18.3 | 30 · 4 | 35 · 0 | 30.4 | 31 · 3 | 29.8 | 31 · 2 | 30.1 | 31 · 7 | 33.0 | 32 · 2 | | | 20.3 | 16.6 | 9.8 | 12.9 | 15.7 | 18.6 | 22.7 | 143.8 | | 8 d | 20.6 | 22.4 | 22 · 3 | 22.0 | 21 · 7 | | 21 · 9 | | | 21.6 | 23 · 5 | 23.6 | 24.0 | | 24 · 5 | | | | | 25 · 5 | 8.8 | -5.8 | 2.5 | 19.0 | 20 · 2 | 85 · 1 | | 9 | 22.3 | 21.8 | 22 · 1 | 21.8 | | | 22.0 | | | 21 · 6 | 22 · 3 | 22.8 | 24.9 | | 27.6 | | | | | 22.6 | 22.0 | 21 · 1 | 18.5 | 18.7 | 22.5 | 140-9 | | 10 | 21.0 | 22.5 | 21 · 5 | 21 · 7 | 21 · 8 | 22.8 | 22.7 | 22.0 | 22.0 | 22.3 | 23 · 4 | 24 · 5 | 26 · 2 | 27 · 2 | 25.0 | 23 · 1 | 24 · 0 | 23 · 5 | 23 · 3 | 22.3 | 16 · 1 | 18.5 | 21 · 4 | 21 · 6 | 22.5 | 140 · 4 | | 11 | 21.6 | 22.0 | 22.3 | 24.6 | 24 · 4 | 19.6 | 21.5 | 21.5 | 21 · 3 | 20.7 | 22.6 | 25.3 | 25.5 | 26 · 2 | 24.9 | 24 · 2 | 23.6 | 22 · 1 | 16.6 | 19.4 | 22 · 4 | 22.6 | 22.3 | 20-4 | 22.4 | 137.6 | | 12 q | 16.1 | 21 · 4 | 22.3 | 22.5 | 22.6 | 22.5 | 21 · 9 | 21.5 | 21 · 4 | 21.6 | 22.3 | 24.6 | 25 · 5 | 25 · 8 | 25 · 0 | 23 · 5 | 22.7 | 22.3 | 22 · 3 | 22.4 | 22.3 | 22.0 | 22.2 | 22.3 | 22.5 | 139.0 | | 13 q | 22.3 | 22.5 | 22.3 | 22.3 | 22.3 | 22 · 2 | 22.0 | 21 · 5 | 21.7 | 22.3 | 22.9 | 25 · 3 | 26 • 2 | 26.5 | 25 · 4 | | | | 22 · 3 | 22.2 | 22 · 4 | 21.0 | 16.6 | 18-7 | 22.6 | 141.9 | | 14 | 21.6 | 22.5 | | | | | | 29 · 2 | 26 · 4 | 24.0 | 25.3 | 24 · 9 | 23.9 | 24.9 | 25.3 | | 23.8 | | 19.5 | | 22.4 | 21.3 | 19.9 | 16.1 | 23.1 | 154 · 1 | | 15 | 17 · 1 | 24 · 2 | 23 · 5 | 22 · 5 | 21 · 7 | 21 · 5 | 21 · 4 | 21 · 4 | 20.7 | 21 · 2 | 22.7 | 25 · 3 | 26.9 | 28 · 3 | 28 · 3 | 23.6 | 20.5 | 24 · 7 | 23 · 4 | 22.5 | 20.3 | 19·4 | 18.6 | 16.8 | 22.4 | 136 · 5 | | 16 | 21.6 | 21 · 6 | 21 · 8 | 23 · 4 | 25 · 3 | 21 · 9 | 21 · Q | 20.6 | | 20.9 | 22.2 | 24.0 | 27.0 | 28 · 1 | 27 · 3 | 25 · 8 | 24 · 9 | | 22.5 | 22.3 | 21 · 6 | 21.5 | 20.6 | 20.0 | 22.9 | 150 · 4 | | 17 q | 18.9 | 21 · 7 | 21 · 9 | 22.4 | 22.3 | | | | 20.6 | 20 · 7 | | 25.6 | 26 · 4 | 26 · 9 | 26 · 2 | | 23 · 3 | | | 22.3 | 22.3 | 22 · 1 | 21 · 6 | 21 · 4 | 22.7 | 144.7 | | 18 | 22.1 | 22.3 | 22.0 | | | | | 21 · 1 | | 31·6 | 23.0 | 25 · 1 | 26 · 7 | | 27 · 4 | 27 · 0 | | 25.9 | 24 · 6 | 24 · 5 | 24 · 3 | | 15.3 | 21.8 | 23 · 2 | 156 · 4 | | 19 q | , | 22.3 | | | | | | | _ | 21.6 | 23.9 | 26 · 1 | 28.3 | 28 · 6 | 28 · 4 | | 28.5 | | | 24 · 5 | | | | 20 · 4 | 23.8 | 170:8 | | 20 | 19.9 | 20.3 | 21.0 | 20 · 4 | 20.6 | 20・4 | 20.5 | 20.9 | 20.9 | 21.5 | 22.3 | 24 · 2 | 27.0 | 27.9 | 27 · 2 | 26 · 2 | 26 · 2 | 24 · 3 | 25 · 5 | 23.5 | 22 · 7 | 22.0 | 20 · 4 | 21.6 | 22.8 | 147 • 4 | | 21 d | 22.0 | 22.3 | 22 · 1 | 24 · 5 | 24 · 7 | 24 · 3 | 22.9 | 22.3 | 22.5 | 22.1 | 23.6 | 26 · 3 | 29 · 2 | 28 · 2 | 26 · 3 | 22.7 | 14 · 1 | 14.5 | 22 · 4 | 21.5 | 19.3 | 18.7 | 21.5 | 21 · 7 | 22.5 | 139 · 7 | | 22 | 22.0 | 22.7 | 23 · 5 | 21 · 6 | 21.6 | 21 · 4 | 21 · 3 | 21 · 2 | 20.3 | 19.4 | 21 · 4 | 23 · 5 | 25 · 3 | 25.5 | 25 · 2 | 23 · 4 | | | | 22.6 | | | | 21.6 | 22 · 2 | 132 · 8 | | 23 d | 21.6 | 22 · 4 | 23 · 3 | 23 · 4 | 22.6 | 22 · 4 | | | 20 · 3 | 21.0 | 22 · 4 | 25 · 3 | | 30 · 1 | 31 · 1 | | | 26 · 3 | | | | | 15.6 | 15.8 | 22.5 | 141 · 2 | | 24 | | 19.5 | | | | 21.6 | | | 19.0 | | | 27 · 4 | | 27 · 2 | | | | 23 · 7 | | | | | | 22.3 | 22.5 | 140.3 | | 25 d | 18.1 | 19.0 | 22 · 7 | 20.5 | 21 · 4 | 21 · 8 | 22 · 4 | 23 · 1 | 23.2 | 21.8 | 22.4 | 25 · 3 | 25.3 | 26 · 2 | 26 · 3 | 25 · 0 | 23 · 5 | 23 · 6 | 23 · 4 | 23 · 3 | 22.6 | 17.1 | 18.5 | 20.1 | 22 · 4 | 136 · 6 | | 26 | 21.9 | 23.3 | 24.0 | 21.3 | 20.8 | | | | | 23.4 | | 25 · 3 | | | | | | 23 · 2 | | | | | 22 · 4 | 22.6 | 22.9 | 149 · 1 | | 27 | 23 · 3 | 21.5 | 24 · 2 | | | | | 20.9 | | 21.8 | | 26 · 4 | 25.4 | | 27 · 1 | | | 23 · 2 | | | 21 · 3 | | 20.3 | 17.8 | 22.6 | 142.6 | | 28 | 19.7 | 21 · 9 | 23 · 3 | 23 · 3 | 21.5 | 20.8 | 20.5 | 19.9 | 19.5 | 20.4 | 22.8 | 24 · 7 | 26.3 | 26 · 2 | 25.3 | 24 · 3 | 21 · 3 | 22.5 | 22.8 | 22.0 | 18.5 | 18.5 | 21 · 2 | 21 · 4 | 22.0 | 128 · 6 | lean | 20.7 | 21.6 | 21.9 | 21.6 | 21.5 | 21 · 7 | 22.3 | 22 • 4 | 21.9 | 21 · 9 | 23.0 | 25.0 | 26.3 | 26 · 9 | 26 · 7 | 25 · 2 | 23.7 | 23.6 | 22.7 | 22.4 | 20.8 | 19.5 | 19·2 | 20.1 | 22.6 | | | Sum
0·0'+ | 79.5 | 105 · 5 | 114.0 | 105 · 3 | 103 · 2 | 108 · 1 | 122.9 | 126 · 5 | 112.0 | 113.2 | 145-1 | 200 · 1 | 235 · 4 | 253 · 9 | 246 · 4 | 205 · 8 | 163.7 | 162.0 | 135-1 | 127 · 1 | 81 · 7 | 47.3 | 36 · 5 | 61 · 7 | | Grand Tot
15192 • 0 | ## GEOMAGNETIC FORCE: VERTICAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT | 3 LER | WICK (| Z) | | | | | | | | | 4 | 7,000γ | (0.47 | CGS un | it) + | | | | | | | | | | FEBRUARY | 1965 | |---------------|----------|------------|-----|-----|-----|-----|-----|-----|-----|------|-------|--------|-------|------------------|-------|-------|----------|------------|------------|------------|------------|------------|------------|------------|------------
-----------------------| | | Hour 0-1 | CMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21 - 22 | 22-23 | 23-24 | Mean | Sum
9000γ+ | | | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | у , | <i>y</i> | У | γ | γ | γ | γ | γ | γ | γ | γ | | 1 | 387 | 392 | 390 | 380 | 382 | 384 | 385 | 388 | 389 | 394 | 396 | 396 | 392 | 394 | 397 | 399 | 400 | 397 | 397 | 396 | 395 | 394 | 395 | 394 | 392 | 413 | | 2 q | 395 | 395 | 395 | 393 | 391 | 391 | 391 | 391 | 390 | 391 | 392 | 392 | 392 | 394 | 397 | 398 | 398 | 397 | 396 | 397 | 397 | 398 | 397 | 395 | 394 | 463
472 | | 3 | 397 | 395 | 393 | 390 | 389 | 390 | 390 | 389 | 388 | 390 | 392 | 392 | 392 | 393 | 397 | 398 | 398 | 398 | 397 | 397 | 398 | 399 | 406 | 404 | 395 | 527 | | 4 | 397 | 396 | 378 | 388 | 390 | 387 | 387 | 386 | 387 | 386 | 390 | 387 | 391 | 394 | 398 | 404 | 412 | 417 | 407 | 419 | 417 | 409 | 403 | 397 | 397 | 517 | | 5 | 389 | 389 | 394 | 396 | 397 | 397 | 397 | 397 | 396 | 396 | 395 | 394 | 395 | 3 9 6 | 397 | 398 | 400 | 402 | 404 | 400 | 399 | 398 | 397 | 394 | 397 | | | 6 | 392 | 366 | 376 | 387 | 391 | 392 | 392 | 392 | 392 | 391 | 390 | 392 | 392 | 395 | 396 | 409 | 453 | 427 | 410 | 409 | 414 | 410 | 400 | 398 | 399 | 566 | | 7 d | 396 | 369 | 383 | 363 | 331 | 300 | 304 | 342 | 380 | 397 | 409 | 420 | 429 | 441 | 454 | 447 | 490 | 439 | 439 | 412 | 466 | 419 | 398 | 380 | 413 | 908 | | 8 d | 381 | 386 | 392 | 395 | 397 | 398 | 399 | 400 | 398 | 395 | 393 | 394 | 394 | 398 | 400 | 399 | 402 | 402 | 407 | 413 | 433 | 365 | 354 | 379 | 395 | 474 | | 9 | 391 | 398 | 399 | 398 | 399 | 402 | 399 | 399 | 400 | 399 | 399 | 398 | 395 | 395 | 395 | 396 | 406 | 427 | 410 | 404 | 404 | 404 | 404 | 399 | 401 | 620
592 | | 10 | 394 | 388 | 384 | 387 | 386 | 387 | 383 | 384 | 390 | 394 | 402 | 403 | 406 | 410 | 420 | 422 | 410 | 405 | 402 | 406 | 414 | 412 | 403 | 400 | 400 | | | 11 | 394 | 393 | 393 | 382 | 376 | 378 | 380 | 388 | 389 | 390 | 395 | 398 | 398 | 397 | 397 | 398 | 397 | 399 | 410 | 404 | 398 | 397 | 397 | 397 | 394 | 445 | | 12 q | 389 | 391 | 393 | 393 | 390 | 392 | 393 | 395 | 398 | 400 | 402 | 402 | 402 | 404 | 404 | 402 | 399 | 397 | 396 | 397 | 397 | 397 | 397 | 397 | 397 | 527 | | 13 9 | 397 | 396 | 396 | 395 | 394 | 392 | 391 | 392 | 395 | 394 | 392 | 394 | 395 | 395 | 393 | 397 | 397 | 399 | 405 | 403 | 401 | 401 | 394 | 395 | 396 | 503 | | 14 | 395 | 396 | 396 | 396 | 395 | 389 | 377 | 375 | 374 | 382 | 389 | 401 | 404 | 402 | 404 | 404 | 403 | 402 | 409 | 404 | 396 | 398 | 397 | 384 | 395 | 472 | | 15 | 386 | 382 | 382 | 391 | 394 | 394 | 395 | 392 | 395 | 396 | 395 | 396 | 400 | 410 | 424 | 438 | 445 | 412 | 409 | 406 | 396 | 396 | 392 | 364 | 400 | 590 | | 16 | 367 | 377 | 385 | 379 | 382 | 380 | 387 | 392 | 391 | 394 | 392 | 395 | 395 | 403 | 410 | 409 | 407 | 405 | 403 | 399 | 397 | 396 | 394 | 389 | 393 | 428 | | 17 g | 380 | 382 | 391 | 394 | 396 | 396 | 395 | 393 | 393 | 394 | 393 | 395 | 401 | 405 | 402 | 403 | 404 | 402 | 400 | 398 | 396 | 393 | 393 | 393
395 | 395 | 492
560 | | 18 | 393 | 394 | 396 | 397 | 397 | 397 | 397 | 395 | 394 | 394 | 393 | 394 | 394 | 395 | 397 | 401 | 403 | 403 | 403 | 403 | 408 | 412 | 405 | 389 | 398
398 | 554 | | 19 q | 393 | 394 | 395 | 397 | 398 | 395 | 395 | 396 | 394 | 392 | 391 | 390 | 389 | 390 | 394 | 400 | 407 | 412
402 | 416
406 | 414
401 | 411
400 | 407
402 | 395
397 | 392 | 394 | 448 | | 20 | 386 | 385 | 385 | 390 | 392 | 392 | 394 | 394 | 393 | 393 | 392 | 389 | 388 | 390 | 392 | 395 | 398 | 402 | | | | | | | | | | 21 d | 392 | 390 | 389 | 389 | 360 | 357 | 367 | 380 | 386 | 391 | 394 | 396 | 396 | 402 | 411 | 423 | 433 | 426 | 412 | 407 | 392 | 380 | 389 | 389 | 394 | 451 | | 22 | 389 | 389 | 382 | 387 | 390 | 393 | 394 | 395 | 397 | 397 | 393 | 393 | 394 | 392 | 394 | 395 | 395 | 397 | 395 | 394 | 397 | 403 | 405 | 396
311 | 394 | 456
827 | | 23 d | 395 | 391 | 391 | 389 | 389 | 390 | 389 | 390 | 391 | 392 | 395 | 396 | 394 | 394 | 406 | 436 | 475 | 521 | 570 | 476
398 | 434 | 389
396 | 323 | 374 | 409
392 | 413 | | 24 | 347 | 373 | 390 | 394 | 393 | 384 | 393 | 397 | 399 | 401 | 420 | 396 | 394 | 393 | 396 | 394 | 396 | 396
396 | 399
398 | 398 | 396
400 | 396 | 394
363 | 379 | 380 | 120 | | 25 d | 267 | 306 | 343 | 374 | 382 | 386 | 384 | 387 | 389 | 395 | 394 | 397 | 399 | 397 | 397 | 400 | 401 | | | | | | | | | | | 26 | 385 | 390 | 389 | 388 | 389 | 389 | 389 | 390 | 391 | 392 | 395 | 397 | 397 | 397 | 401 | 410 | 406 | 400 | 404 | 404 | 406 | 402 | 399 | 397 | 396 | 507 | | 27 | 395 | 395 | 391 | 388 | 391 | 393 | 393 | 392 | 391 | 393 | 392 | 393 | 396 | 400 | 410 | 422 | 408 | 406 | 402 | 402 | 400 | 398 | 392 | 373 | 397 | 516 | | 28 | 378 | 387 | 390 | 388 | 393 | 395 | 395 | 395 | 397 | 399 | 398 | 397 | 396 | 398 | 403 | 410 | 409 | 403 | 401 | 400 | 401 | 397 | 397 | 398 | 397 | 525 | | M | 204 | 205 | 388 | 389 | 388 | 386 | 387 | 389 | 392 | 394 | 395 | 396 | 397 | 399 | 403 | 407 | 413 | 414 | 415 | 409 | 406 | 399 | 392 | 388 | 396 | | | Sum
,000y+ | 747 | 385
785 | 861 | 888 | 854 | 820 | 835 | 906 | 967 | 1022 | 1073 | 1087 | 1110 | 1174 | 1286 | 1407 | | 1589 | | 1462 | | 1159 | 980 | 852 | | Grand Tota
266,386 | ## GEOMAGNETIC CHARACTER FIGURES (K, K_{H} , K_{D} , K_{Z} , and C) and temperature in magnetograph house | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of K _H indices | 3-h range
indices
K _D | Sum of
K _D
indices | 3-h range
indices
K _Z | Sum of
K _Z
indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph house
200°A+ | |----------|---------------------------|------------------------|--|-------------------------------|--|-------------------------------------|--|-------------------------------------|--|---| | 1 | 2100 0000 | 3 | 1000 0000 | 1 | 2100 0000 | 3 | 1000 0000 | 1 | 0 | 86.0 | | 2 9 | 0100 0000 | 1 | 0000 0000 | Ō | 0100 0000 | 1 | 0000 0000 | 0 | 0 | 86 · 1 | | 3 | 1100 1003 | 6 | 0000 1002 | 3 | 1100 0003 | 5 | 0000 0001 | 1 | 1 | 86 · 1 | | 4 | 3111 1222 | 13 | 1111 1122 | 10 | 3111 1222 | 13 | 2000 0212 | 7 | 1 | 86 · 5 | | 5 | 2000 1111 | 6 | 1000 1111 | 5 | 2000 0111 | 5 | 0000 0000 | 0 | 1 | 86 · 8 | | 6 | 2110 2421 | 13 | 2000 2321 | 10 | 2110 1421 | 12 | 2100 0311 | 8 | 1 | 87.0 | | 7 d | 3432 2333 | 23 | 3432 2232 | 21 | 3432 2333 | 23 | 3442 3443 | 27 | 2 | 87.0 | | 8 d | 1001 0265 | 15 | 0001 0244 | 11 | 1001 0165 | 14 | 2000 0043 | 9 | 2 | 86 · 7 | | 9 | 2111 2322 | 14 | 1001 2311 | 9 | 2111 1222 | 12 | 1000 0210 | 4 | 1 | 86 · 7 | | ő . | 2212 2232 | 16 | 1212 1111 | 10 | 2112 2232 | 15 | 1011 2212 | 10 | 1 | 86 • 4 | | 1 | 1220 1222 | 12 | 1120 1121 | 9 | 1210 1222 | 11 | 0210 0010 | 4 | 1 | 86 · 5 | | 2 a | 2001 0000 | 3 | 1001 0000 | 2 | 2000 0000 | 2 | 0000 0000 | 0 | 0 | 86 · 9 | | 3 9 | 0000 0122 | 5 | 0000 0122 | 5 | 0000 0122 | 5 | 0000 0011 | 2 | 1 | 86 · 1 | | 4 | 1122 1032 | 12 | 0012 1012 | 7 | 1122 1032 | 12 | 0111 0021 | 6 | 1 | 85.9 | | 5 | 3101 2412 | 14 | 2100 2212 | 10 | 3101 2412 | 14 | 1100 2312 | 10 | 1 | 85.9 | | 6 | 1201 1002 | 7 | 1101 1001 | 5 | 1200 0002 | 5 | 2100 1001 | 5 | 1 | 86 · 2 | | 7 a | 2000 0000 | 2 | 1000 0000 | 1 | 2000 0000 | 2 | 1000 0000 | 1 | 0 | 86 · 9 | | 8 | 0000 1003 | 4 | 0000 1001 | 2 | 0000 0003 | 3 | 0000 0002 | 2 | 1 | 87.0 | | 9 a | 0100 0002 | 3 | 0000 0002 | 2 | 0100 0002 | 3 | 0000 0001 | 1 | 0 | 86 · 8 | | 0 " | 1000 1101 | 4 | 1000 1101 | 4 | 1000 1101 | 4 | 0000 0001 | 1 | 0 | 87.0 | | 1 d | 1312 2332 | 17 | 1211 2232 | 14 | 1312 2311 | 14 | 0320 1121 | 10 | 1 | 87.0 | | 2 | 1000 0002 | 3 | 0000 0001 | 1 | 1000 0002 | 3 | 0000 0001 | 1 | 0 | 87.0 | | 2
3 d | 1101 2444 | 17 | 1001 2444 | 16 | 0101 2333 | 13 | 0000 2454 | 15 | 2 | 86 · 3 | | 4 | 2211 1113 | 12 | 1011 1113 | 9 | 2201 1013 | 10 | 3110 0003 | 8 | 1 | 86 • 6 | | 5 d | 4112 1113 | 14 | 4011 1103 | 11 | 3112 0013 | 11 | 4210 0003 | 10 | 1 | 86 · 3 | | 6 | 1111 1221 | 10 | 1010 1211 | 7 | 1111 1221 | 10 | 0000 0101 | 2 | 1 | 85.8 | | 7 | 1001 2212 | 9 | 0001 2202 | 7 | 1001 2112 | 8 | 1000 2102 | 6 | 1 1 | 85.7 | | 8 | 1101 1221 | 9 | 1001 1210 | 6 | 1100 0121 | 6 | 1000 1100 | 3 | 1 | 86.0 | | | | | | | | | | Mean | 0.86 | 86.5 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. $[\]mathbf{K}_{\!\!\mathbf{H}}$ For horizontal component. $\mathbf{K}_{\!\!\mathbf{D}}$ For declination. $\mathbf{K}_{\!\!\mathbf{Z}}$ For vertical component. (See Introduction). GEOMAGNETIC FORCE: HORIZONTAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT | 1 LER | WICK (| H) | | | | | | | | | 1 | 4 ,000γ | (0.14 | CGS un | it) + | | | | | | | | | | MAR | CH 1965 | |-----------------|-------------|------------|------------|-------------------|----------|----------|------------|------------|-------------|------------|------------|----------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------------|----------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
14,000γ+ | | 1 | γ
650 | γ
648 | γ
649 | γ
6 4 6 | γ
649 | γ
651 | у
655 | 655 | γ
648 | γ
639 | γ
631 | γ
625 | γ
628 | γ
636 | γ
647 | γ
645 | γ
6 4 0 | γ
654 | γ
632 | γ
639 | γ
643 | γ
650 |
γ
650 | γ
6 51 | γ
644 | γ
1461 | | 2 | 650 | 648 | 649 | 649 | 651 | 657 | 657 | 652 | 646 | 639 | 633 | 628 | 629 | 639 | 648 | 653 | 654 | 643 | 646 | 651 | 651 | 654 | 656 | 655 | 647 | 1538 | | 3 d | 655 | 649 | 645 | 651 | 653 | 658 | 651 | 644 | 650 | 638 | 635 | 642 | 644 | 646 | 663 | 665 | 657 | 700 | 657 | 633 | 639 | 642 | 611 | 616 | 648 | 1544 | | 4 d | 612 | 616 | 612 | 620 | 636 | 577 | 596 | 596 | 612 | 608 | 625 | 618 | 628 | 635 | 632 | 636 | 638 | 635 | 643 | 639 | 639 | 639 | 642 | 641 | 624 | 975 | | 5 | 641 | 642 | 643 | 646 | 647 | 650 | 651 | 647 | 646 | 642 | 624 | 617 | 629 | 641 | 649 | 652 | 651 | 647 | 646 | 650 | 651 | 652 | 650 | 658 | 645 | 1472 | | 6 | 648 | 648 | 647 | 648 | 647 | 650 | 649 | 649 | 648 | 644 | 642 | 636 | 633 | 639 | 647 | 646 | 650 | 648 | 649 | 644 | 642 | 641 | 648 | 645 | 645 | 1488 | | 7 | 644 | 644 | 646 | 647 | 649 | 649 | 651 | 660 | 657 | 644 | 638 | 632 | 628 | 637 | 640 | 635 | 639 | 645 | 648 | 647 | 647 | 647 | 647 | 647 | 645 | 1468 | | 8 <i>q</i> | 647 | 647 | 646 | 646 | 650 | 651 | 653 | 651 | 647 | 642 | 635 | 626 | 628 | 632 | 643 | 648 | 651 | 651 | 652 | 652 | 654 | 653 | 651 | 651 | 646 | 1507 | | 9 | 649 | 652 | 655 | 658 | 661 | 662 | 661 | 656 | 649 | 642 | 636 | 633 | 635 | 639 | 641 | 645 | 643 | 651 | 652 | 654 | 653 | 651 | 650 | 651 | 649 | 1579 | | 10 q | 657 | 650 | 651 | 652 | 652 | 654 | 654 | 653 | 650 | 641 | 637 | 638 | 640 | 642 | 646 | 643 | 646 | 649 | 652 | 654 | 656 | 657 | 657 | 656 | 649 | 1587 | | 11 q | 655 | 651 | 647 | 651 | 651 | 653 | 653 | 653 | 651 | 646 | 640 | 635 | 636 | 640 | 645 | 645 | 645 | 652 | 653 | 652 | 655 | 656 | 655 | 65.5 | 649 | 1575 | | 12 | 653 | 653 | 652 | 651 | 652 | 654 | 654 | 651 | 648 | 642 | 636 | 632 | 640 | 642 | 648 | 654 | 660 | 659 | 655 | 640 | 639 | 649 | 659 | 655 | 649 | 1578 | | 13 | 649 | 651 | 650 | 650 | 650 | 654 | 658 | 650 | 648 | 641 | 621 | 621 | 621 | 634 | 621 | 632 | 652 | 658 | 657 | 651 | 655 | 655 | 653 | 653 | 645 | 1485 | | 14 | 651 | 651 | 650 | 650 | 648 | 651 | 654 | 652 | 645 | 640 | 636 | 634 | 636 | 643 | 644 | 649 | 639 | 648 | 651 | 651 | 658 | 633 | 628 | 649 | 645 | 1491 | | 15 | 662 | 648 | 647 | 650 | 658 | 658 | 648 | 653 | 641 | 629 | 632 | 629 | 631 | 634 | 638 | 648 | 652 | 650 | 636 | 662 | 662 | 649 | 653 | 651 | 647 | 1521 | | 16 | 648 | 648 | 647 | 652 | 650 | 650 | 649 | 646 | 639 | 633 | 628 | 625 | 630 | 638 | 644 | 647 | 648 | 644 | 650 | 654 | 656 | 655 | 668 | 654 | 646 | 1503 | | 17 | 654 | 653 | 653 | 654 | 658 | 658 | 658 | 656 | 649 | 637 | 630 | 631 | 635 | 641 | 653 | 651 | 651 | 646 | 643 | 644 | 651 | 653 | 654 | 653 | 649 | 1566 | | 18 q | 651 | 652 | 652 | 651 | 653 | 654 | 654 | 650 | 639 | 629 | 625 | 622 | 628 | 639 | 643 | 648 | 649 | 652 | 655 | 656 | 658 | 658 | 658 | 658 | 647 | 1534 | | 19 | 657 | 658 | 657 | 658 | 658 | 660 | 659 | 655 | 643 | 632 | 632 | 632 | 635 | 640 | 644 | 648 | 653 | 656 | 659 | 662 | 662 | 662 | 659 | 659 | 652 | 1640 | | 20 | 657 | 651 | 658 | 655 | 657 | 658 | 657 | 654 | 646 | 634 | 627 | 633 | 643 | 640 | 646 | 655 | 657 | 661 | 665 | 663 | 661 | 661 | 661 | 658 | 652 | 1658 | | 21 | 660 | 653 | 655 | 655 | 656 | 640 | 641 | 641 | 637 | 650 | 643 | 638 | 643 | 637 | 639 | 639 | 640 | 649 | 652 | 653 | 654 | 669 | 651 | 655 | 648 | 1550 | | 22 | 654 | 654 | 652 | 653 | 655 | 657 | 658 | 655 | 648 | 639 | 629 | 626 | 630 | 639 | 647 | 659 | 655 | 660 | 657 | 654 | 655 | 638 | 647 | 650 | 649 | 1571 | | 23 d | 655 | 655 | 654 | 651 | 643 | 632 | 646 | 640 | 624 | 617 | 614 | 620 | 635 | 636 | 652 | 632 | 639 | 644 | 650 | 651 | 638 | 635 | 653 | 650 | 640 | 1366 | | 24 | 650 | 648 | 647 | 646 | 650 | 651 | 650
639 | 646
643 | 643
608 | 625
610 | 625
629 | 621
629 | 629
629 | 639
639 | 652
649 | 649
655 | 649
653 | 644
662 | 653
659 | 653
670 | 652
665 | 667
647 | 658
649 | 655 | 646 | 1502 | | 25 d | 654 | 649 | 648 | 655 | 655 | 648 | 039 | 043 | 008 | 010 | 029 | 029 | 029 | 039 | 049 | 033 | 033 | 002 | 039 | 670 | 003 | 047 | 049 | 654 | 646 | 1498 | | 26 d | 639 | 650 | 634 | 652 | 655 | 647 | 647 | 645 | 625 | 632 | 628 | 623 | 625 | 639 | 639 | 643 | 656 | 659 | 658 | 658 | 654 | 657 | 657 | 654 | 645 | 1476 | | 27 | 652 | 644 | 651 | 654 | 648 | 646 | 645 | 647 | 636 | 632 | 629 | 630 | 632 | 643 | 643 | 644 | 652 | 662 | 665 | 655 | 666 | 658 | 656 | 654 | 648 | 1544 | | 28 | 652 | 654 | 651 | 653 | 653 | 651 | 652 | 644 | 635 | 632 | 626 | 624 | 626 | 632 | 639 | 647 | 654 | 653 | 655 | 660 | 658 | 657 | 654 | 654 | 647 | 1516 | | 29 | 652 | 650 | 650
651 | 651 | 653 | 657 | 653
655 | 648
652 | 642
644 | 634
632 | 632
625 | 633 | 637
629 | 643
639 | 643
644 | 638
647 | 636
648 | 651
654 | 651
658 | 653
660 | 658
661 | 651
659 | 651 | 651 | 647 | 1518 | | 30 q | 651 | 651 | 021 | 651 | 651 | 654 | 033 | 032 | U 44 | 032 | 023 | 023 | 029 | 039 | 044 | 04/ | 0-10 | 034 | w 8 | 000 | 001 | 039 | 658 | 658 | 648 | 1555 | | 31 | 657 | 659 | 658 | 653 | 652 | 659 | 658 | 654 | 641 | 624 | 621 | 625 | 629 | 635 | 640 | 643 | 648 | 654 | 660 | 661 | 662 | 662 | 659 | 659 | 649 | 1573 | | Mean | 651 | 649 | 649 | 650 | 652 | 650 | 651 | 648 | 642 | 635 | 631 | 628 | 632 | 639 | 644 | 647 | 649 | 653 | 652 | 653 | 653 | 652 | 652 | 652 | 646 | | | Sum
19,000γ+ | 1166 | 1127 | 1107 | 1159 | 1201 | 1151 | 1166 | 1098 | 885 | 669 | 544 | 481 | 601 | 798 | 969 | 1041 | 1105 | 1241 | 1219 | 1226 | 1255 | 1217 | 1203 | 1210 | | Grand Total
480,839 | ## $\label{eq:GEOMAGNETIC DECLINATION (WEST)} \\ \text{Mean values for periods of sixty minutes ending at exact hours, GMT}$ | 2 LEF | RWICK (| (ם) | | | | | | | | | | 9 | • + | | | | | | | | | | | | M | ARCH 1965 | |-----------------|--------------|--------------|--------------|--------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------|--------------|--------------|--------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------|------------------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 3 13-14 | 14-15 | 5 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21 -22 | 22-23 | 23-24 | Mean | Sum
500·0′+ | | 1 | 21.7 | 21 · 7 | 22·3
22·3 | 21·6
22·3 | | 21·0
21·5 | | 20·2
20·6 | 19·8
19·6 | 20·5
21·4 | 22·8
22·4 | 25·8
24·6 | 29·2
25·9 | 27·8
27·1 | 28·4
27·1 | 27·6
25·7 | 25·8
26·6 | 17·7
22·3 | 23·7
25·9 | 22·6
18·4 | 22·3
22·6 | 20·3
21·3 | | 21.5 | 22.8 | 46.7 | | 2
3 d | 22.5 | 22 · 4 | 28 · 2 | | | | 22.6 | 26.6 | | 21.0 | 20.9 | 26 · 1 | 29.4 | | | | | | 15.2 | | _ | | 21·1
13·9 | 21.3 | 22·8
23·2 | 47·1
56·0 | | 4 d | 8.0 | 8.1 | 4.0 | 8.3 | | | 37.3 | | 30.7 | | 27.9 | 27.9 | 28 · 1 | | | | | | | | | 21.4 | | 22.2 | 22.5 | 39.7 | | 5 | 21.8 | 21 · 9 | 21 · 5 | 21 · 5 | 21 · 4 | 21 · 4 | 21.5 | 21.5 | 20 · 4 | 23.0 | 24.3 | 27 · 1 | 25.9 | 25.9 | 25 · 2 | 24 · 7 | 24 · 2 | 23 • 4 | 19.6 | 20.7 | 22.5 | 21 · 4 | 21 · 3 | 20.3 | 22.6 | 42 · 4 | | 6 | 21 · 4 | 21 · 6 | 21 · 1 | | | 20.5 | | | | | 22.7 | 25.3 | 25.9 | | | | 25.3 | | | | 21 · 7 | | 19.8 | | 22 · 4 | 36 · 5 | | 7 | 25.4 | 19.7 | 20·2
21·5 | 21·2
21·7 | | 20.0 | 17·7
20·7 | 20.4 | 20·3
18·6 | 21.4 | 21·7
21·5 | 24 · 2
24 · 0 | 26 · 7 | | | | 27.0 | 23.3 | 21·7
21·8 | 21.5 | 21.6 | 21 - 3 | | 20.4 | 22.7 | 45.4 | | 8 <i>q</i>
9 | 20.6 | 21·1
21·5 | | 21.4 | | | | | | 20.8 | 22 · 4 | 25.3 | 1 | 29 · 2 | | | | | 22.6 | | | 21.6 | 21·6
20·0 | 21.4 | 22·1
22·7 | 29·4
45·5 | | 10 q | 21 4 | 21 . 7 | 21 · 4 | 21 3 | | | | 20.2 | | | 21.8 | 24 · 8 | 26 · 8 | | 26 · 3 | | | 22.6 | 22.5 | 22.2 | 21.8 | 21.7 | | 21.7 | 22.4 | 37.0 | | 11 q | 21.6 | 21.6 | 22.5 | 19.5 | 19.3 | 19.0 | 19.7 | 19.7 | 21 · 3 | 21 · 6 | 24 · 0 | 25.5 | 27 · 2 | 28.9 | 28 · 2 | 27 · 1 | 24 · 0 | 22.0 | 21.5 | 20.3 | 21 · 3 | 21 · 3 | 21 · 0 | 21.1 | 22.5 | 39.2 | | 12 | 21.3 | 21 · 4 | 21 · 1 | 20.9 | 20.7 | 20.6 | | | | | | 24 · 5 | 27.1 | 27.6 | 27.0 | | | | 25 · 2 | | | 18.8 | | 21.7 | 22 · 2 | 33 · 7 | | 13 | 21.9 | 21 · 4 | 20.6 | 19.6 | 20.3 | | | | | 20.4 | | 27·3
25·3 | 29.8 | 30·9
27·8 | 30·9
29·1 | 26 · 4
28 · 4 | 23.2 | 22.0 | 22.0 | | | 21.5 | | 21.2 | 22.6 | 41.8 | | 14
15 | 21·5
16·7 | 21·5
20·7 | 21·2
21·4 | 21·3
20·6 | | | 21.5 | | | | 24.6 | 25.8 | | 27.2 | 25.9 | 24.3 | | | | 18.0 | 15·0
14·6 | | | 21.4 | 21 · 6
21 · 8 | 19·2
23·2 | | 16 | 21.5 | 22 · 1 | 22.3 | 22.3 | 19.5 | 19.2 | 18.9 | 18.2 | 18 · 2 | 19-4 | 21 · 5 | 24.9 | 26.5 | 27 · 1 | 26 • 0 | 24 · 1 | 22 · 1 | 21 · 5 | 21.6 | 21 · 4 | 21 · 4 | 20.4 | 19.3 | 20.5 | 21 · 7 | 19.9 | | 17 | 21.5 | 21 · 3 | 20.6 | 20.5 | 20.2 | 20.3 | 20.3 | 18.6 | 18 · 4 | 18.9 | 20.8 | 23.3 | 25 · 3 | 25.7 | 27 · 1 | 26 · 1 | 25 · 2 | | 21 · 2 | 20.5 | 21 · 7 | 22.5 | 22.7 | 22.5 | 21.9 | 24.6 | | 18 q | 22.5 | 22.3 | 22.3 | 21 · 7 | 21 · 5 | 21 · 1 | | | 19.3 | | 22.5 | 25.6 | 28 · 1 | 28 · 4 | 27.0 | 24 · 7 | 23 · 2 | | 22.5 | | 22.5 | | | 22.4 | 22.8 | 47 · 4 | | 19 | 22.3 | 21.9 | 21.6 | 21.2 | | | 20.3 | | | 23 · 3 | | 28.9 | 29.1 | | 27.4 | 24 · 9 | 23 · 4 | | 22.9 | | | | 21.5 | | 23 · 2 | 57.0 | | 20 | 20.4 | 22.5 | 20.8 | 20.5 | 19.9 | 20.1 | | | | 20.5 | | 26.6 | 29 · 2 | | 28 · 1 | | 24 · 1 | | | 23.0 | 22.5 | 21 · 4 | 20 · 7 | 17.7 | 22.6 | 41 · 4 | | 21 | 19.5 | 21 · 2 | 20.4 | 20.5 | | 19.9 | 20.6 | | 19.5 | 20.4 | 22.5 | 25.6 | 29.0 | 30 1 | 28 · 1 | 28 · 1 | 24.9 | 23.9 | 20.6 | 21 · 6 | | | | 20.6 | 22 · 4 | 36.6 | | 22
23 d | 21.0 | 21·3
20·5 | 21·3
20·5 | 21·2
20·5 | 21 · 2
20 · 5 | 21·1
24·2 | 20.8 | 19·8
29·6 | 18·9
23·7 | 19·6
24·4 | 21·6
25·2 | 24 · 2
25 · 8 | 26 · 3 | 27·4
29·2 |
27·4
30·1 | 20 · 1 | 24 · 3 | 24·4
19·2 | 24 · 8 | 22.5 | 23·5
12·7 | 8.5 | 5.2 | | 21 · 3 | 10.1 | | 23 4 | 21.8 | 20.5 | 20.5 | 20.6 | | 20.2 | 20.7 | | | 23 · 1 | 25 2 | | 28.0 | | 27.7 | | 25 · 3 | 22.3 | | | 19.8 | | | 20.8 | 22·5
22·7 | 40·2
43·8 | | 25 d | 22.0 | | 21.5 | 19.4 | | 19.5 | | | | 25.7 | 24 · 2 | | 27.3 | | 25.7 | 24.0 | 23.3 | 22.7 | 22.1 | | 15.7 | 20.6 | | 21.6 | 22.3 | 35.4 | | 26 d | 21.7 | 20.6 | 17 · 7 | 18.4 | | 18.8 | 21.6 | 22 · 1 | 22.2 | 22.0 | 23.5 | | 27 · 2 | 27 · 4 | 26 · 7 | 24 · 4 | 22.5 | | 22.2 | | 20.9 | 19·2 | 20.3 | 23.5 | 22 · 2 | 31.8 | | 27 | 22.1 | 22.2 | 21.3 | 19 • 4 | 20.3 | 20.7 | 22.9 | 21 · 5 | 20.5 | 21.5 | | 25.0 | 26 · 1 | 26 · 7 | 25.7 | 24 · 5 | | | 21.5 | | | | 21 · 6 | 1 | 22.0 | 27.8 | | 28
29 | 20.9 | 20·9
21·7 | 20·7
22·9 | 20·5
20·8 | 20·3
20·6 | 20·5
20·4 | | 19·7
18·2 | | 20·7
19·2 | | 24·9
24·6 | 26·7
26·8 | 27·3
28·1 | 26·5
26·5 | | | | 21·2
21·4 | 21 · 5 | 21.5 | | | 21.4 | 22.1 | 30.0 | | 30 q | 21.7 | 21.7 | 21.5 | 21.3 | 20.7 | | | | | | | | 27.8 | 28.5 | 28.0 | | | | | | | | 21.5 | 21.6 | 21·7
22·2 | 20·8
33·8 | | 31 | 22.1 | 21 · 6 | 20.9 | 20.6 | 21 · 4 | 21.3 | 19 • 4 | 17.9 | 17.5 | 19.2 | 21.0 | 23.6 | 26 · 6 | 28 · 1 | 27 • 6 | 26 · 1 | 24.3 | 22.5 | 21 • 1 | 21 · 4 | 21 · 3 | 21.0 | 20.8 | 21.2 | 22.0 | 28.5 | | Mean | 21.0 | 21.0 | 20.9 | 20 · 4 | 20.3 | 20.7 | 21 · 3 | 20.9 | 20.4 | 21.3 | 22.9 | 25.6 | 27.3 | 28.0 | 27.5 | 26 · 1 | 24 · 5 | 22.2 | 21.6 | 20.9 | 20.4 | 19.7 | 20.2 | 20.8 | 22.3 | | | Sum
600·0'+ | 51 · 4 | 51.7 | 47.6 | 33 · 2 | 29·2 | 41.6 | 60.5 | 47.6 | 31 · 5 | 59·2 | 109.8 | 193·5 | 246 · 4 | 268.9 | 252 · 4 | 209 · 2 | 159 · 1 | 88 · 1 | 68.8 | 46 · 8 | 33.6 | 11.0 | 26 • 4 | 44 · 4 | | Grand Total
16611.9 | mean values for periods of sixty minutes ending at exact hours, GMT 3 LERWICK (Z) 47,000 γ (0.47 CGS unit) + | 3 LER | WICK (| z) | | | | | | | | | 4 | 7,000y | (0.47 (| CGS un | it) + | | | | | | | | | | MARC | н 1965 | |----------------|------------|-----------------|------------|-----------------|------------|------------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|------------------|----------|----------|----------|----------|----------|----------|----------|------------------------| | | Hour 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21 - 22 | 22-23 | 23-24 | Mean | Sum
8000γ+ | | 1 | γ
398 | γ
400 | γ
398 | γ
398 | γ
397 | γ
39 6 | γ
394 | γ
393 | γ
396 | γ
397 | γ
396 | у
392 | у
396 | у
401 | γ
406 | γ
418 | γ
429 | у
43 6 | γ
436 | γ
419 | γ
408 | γ
400 | γ
395 | γ
393 | γ
404 | γ
1692 | | 2 . | 396 | 398 | 400 | 400 | 397 | 393 | 392 | 395 | 397 | 397 | 397 | 400 | 400 | 400 | 401 | 405 | 416 | 440 | 456 | 438 | 411 | 406 | 400 | 399 | 406 | 1734 | | 3 d
4 d | 397
376 | 396
358 | 384
302 | 368
271 | 382
236 | 387
249 | 385
287 | 378
322 | 370 | 381 | 386 | 384 | 389 | 402 | 407 | 420 | 445 | 512 | 512 | 460 | 423 | 403 | 377 | 384 | 405 | 1732 | | 5 | 403 | 404 | 405 | 405 | 405 | 403 | 401 | 400 | 344
397 | 364
394 | 378
399 | 394 | 393 | 406 | 414 | 416 | 420 | 430 | 426 | 420 | 417 | 410 | 403 | 403 | 368 | 839 | | , | 400 | | | | 405 | 403 | 401 | 400 | 397 | 394 | 399 | 399 | 396 | 401 | 407 | 408 | 409 | 410 | 413 | 409 | 403 | 401 | 400 | 390 | 403 | 1662 | | 6 | 385 | 387 | 388 | 395 | 399 | 400 | 399 | 398 | 395 | 392 | 391 | 392 | 395 | 396 | 400 | 410 | 414 | 416 | 417 | 422 | 423 | 416 | 403 | 402 | 401 | 1635 | | 7 | 387 | 373 | 392 | 398 | 401 | 401 | 396 | 391 | 391 | 394 | 394 | 392 | 395 | 402 | 411 | 416 | 415 | 414 | 413 | 410 | 408 | 405 | 402 | 398 | 400 | 1599 | | 8 q | 394 | 393 | 396 | 398 | 400 | 401 | 400 | 400 | 399 | 395 | 394 | 393 | 391 | 393 | 396 | 398 | 400 | 403 | 404 | 402 | 402 | 400 | 399 | 399 | 398 | 1550 | | 9
10 q | 397
385 | 396
388 | 395
393 | 394
395 | 395
396 | 395 | 395 | 399
399 | 400 | 396 | 394 | 392 | 390 | 393 | 400 | 406 | 407 | 405 | 405 | 404 | 404 | 404 | 401 | 396 | 398 | 1563 | | 10 4 | 303 | 300 | 393 | | 390 | 397 | 398 | 399 | 400 | 397 | 395 | 390 | 390 | 390 | 393 | 400 | 400 | 400 | 399 | 399 | 400 | 399 | 399 | 397 | 396 | 1499 | | 11 q | 397 | 396 | 391 | 387 | 392 | 394 | 394 | 395 | 395 | 397 | 396 | 394 | 390 | 391 | 396 | 402 | 402 | 402 | 403 | 406 | 402 | 400 | 400 | 398 | 397 | 1520 | | 12 | 398 | 397 | 397 | 397 | 395 | 395 | 397 | 397 | 398 | 398 | 397 | 394 | 390 | 393 | 394 | 396 | 400 | 405 | 415 | 440 | 446 | 424 | 408 | 407 | 403 | 1678 | | 13 | 405 | 402 | 400 | 398 | 397 | 394 | 391 | 394 | 393 | 392 | 395 | 390 | 392 | 396 | 420 | 424 | 409 | 403 | 403 | 407 | 404 | 401 | 400 | 401 | 400 | 1611 | | 14 | 401 | 399 | 399 | 398 | 397 | 393 | 393 | 394 | 394 | 393 | 391 | 389 | 387 | 391 | 405 | 412 | 415 | 405 | 402 | 403 | 399 | 400 | 398 | 376 | 397 | 1534 | | 15 | 348 | 358 | 381 | 390 | 389 | 388 | 390 | 383 | 384 | 387 | 382 | 384 | 389 | 395 | 400 | 404 | 408 | 413 | 426 | 403 | 384 | 389 | 394 | 395 | 390 | 1364 | | 16 | 398 | 398 | 395 | 395 | 395 | 397 | 397 | 397 | 397 | 397 | 395 | 394 | 394 | 397 | 400 | 405 | 406 | 403 | 398 | 396 | 395 | 394 | 379 | 379 | 396 | 1501 | | 17 | 389 | 395 | 398 | 398 | 397 | 394 | 392 | 394 | 395 | 395 | 395 | 391 | 392 | 394 | 398 | 407 | 414 | 426 | 428 | 424 | 410 | 401 | 398 | 397 | 401 | 1622 | | 18 q | 398 | 400 | 400 | 400 | 401 | 400 | 399 | 400 | 399 | 396 | 393 | 390 | 388 | 390 | 398 | 400 | 402 | 399 | 398 | 396 | 394 | 393 | 392 | 392 | 397 | 1518 | | 19 | 394 | 395 | 396 | 397 | 398 | 396 | 396
396 | 395 | 397 | 395 | 390 | 388 | 387 | 390 | 396 | 398 | 400 | 399 | 397 | 398 | 396 | 394 | 393 | 390 | 395 | 1475 | | 20 | 383 | 388 | 383 | 388 | 393 | 395 | 396 | 397 | 397 | 394 | 390 | 385 | 382 | 390 | 395 | 401 | 405 | 400 | 399 | 399 | 399 | 399 | 395 | 392 | 394 | 1445 | | 21 | 370 | 376 | 388 | 392 | 396 | 395 | 394 | 393 | 392 | 390 | 389 | 390 | 390 | 398 | 407 | 411 | 415 | 419 | 420 | 414 | 407 | 388 | 377 | 385 | 396 | 1496 | | 22 | 392 | 394 | 396 | 396 | 396 | 396 | 397 | 397 | 397 | 394 | 389 | 391 | 390 | 391 | 393 | 394 | 399 | 402 | 409 | 414 | 415 | 422 | 379 | 382 | 397 | 1525 | | 23 d | 392 | 395 | 397 | 396 | 397 | 380 | 357 | 366 | 378 | 388 | 389 | 392 | 389 | 394 | 402 | 431 | 436 | 449 | 443 | 433 | 353 | 303 | 375 | 393 | 393 | 1428 | | 24 | 395 | 397 | 396 | 398 | 396 | 397 | 396 | 397 | 395 | 396 | 392 | 395 | 400 | 395 | 396 | 403 | 415 | 419 | 417 | 410 | 409 | 383 | 367 | 374 | 397 | 1538 | | 25 d | 380 | 379 | 381 | 388 | 392 | 394 | 390 | 389 | 403 | 401 | 392 | 396 | 399 | 402 | 407 | 410 | 407 | 402 | 407 | 411 | 398 | 404 | 403 | 394 | 397 | 1529 | | 26 d | 368 | 314 | 352 | 368 | 379 | 385 | 390 | 395 | 401 | 402 | 401 | 402 | 401 | 401 | 408 | 409 | 406 | 405 | 405 | 403 | 407 | 403 | 387 | 376 | 390 | 1368 | | 27 | 379 | 389 | 384 | 391 | 393 | 390 | 390 | 393 | 398 | 395 | 395 | 398 | 401 | 402 | 407 | 415 | 409 | 405 | 410 | 413 | 404 | 396 | 399 | 401 | 398 | 1557 | | 28 | 400 | 398 | 400 | 398 | 397 | 395 | 395 | 398 | 401 | 400 | 399 | 397 | 395 | 399 | 402 | 403 | 403 | 408 | 403 | 401 | 401 | 400 | 401 | 402 | 400 | 1596 | | 29 | 400 | 400 | 397 | 397 | 397 | 396 | 398 | 399 | 398 | 396 | 394 | 393 | 395 | 401 | 407 | 415 | 414 | 410 | 408 | 408 | 407 | 402 | 400 | 400 | 401 | 1632 | | 30 q | 400 | 401 | 401 | 400 | 400 | 397 | 397 | 397 | 398 | 396 | 395 | 392 | 388 | 389 | 394 | 396 | 397 | 400 | 397 | 397 | 397 | 396 | 397 | 398 | 397 | 1520 | | 31 | 397 | 395 | 397 | 398 | 397 | 391 | 393 | 394 | 396 | 397 | 396 | 396 | 396 | 397 | 400 | 402 | 404 | 404 | 401 | 399 | 396 | 396 | 397 | 394 | 397 | 1533 | | Mean | 390 | 389 | 390 | 390 | 390 | 390 | 390 | 392 | 393 | 394 | 393 | 393 | 393 | 396 | 402 | 408 | 410 | 414 | 415 | 411 | 404 | 398 | 394 | 393 | 397 | | | Sum
2,000γ+ | 102 | 59 | 82 | 92 | 102 | .84 | 89 | 139 | 195 | 206 | 179 | 169 | 170 | 280 | 460 | 635 | 721 | 844 | 870 | 758 | 522 | 332 | 218 | 187 | • | Grand Total
295,495 | ## GEOMAGNETIC CHARACTER FIGURES (K, K_{H} , K_{D} , K_{Z} , AND C) AND TEMPERATURE IN MAGNETOGRAPH HOUSE | 4 | LERWICK | | | | | | | | | MARCH 1965 | |--------------------------------|---|---------------------------|---|-------------------------------------|---|-------------------------------|---|-------------------------------------|--|---| | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of K _D indices | 3-h range
indices
K _Z | Sum of
K _Z
indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph house
200°A+ | | 1
2
3 d
4 d
5 | 0000 2412
0100 2331
3232 3554
3532 1110
0012 2122 | 9
10
27
16
10 | 0000 2311
0100 2211
2122 3544
3422 1110
0012 2102 | 7
7
23
14
8 | 0000 1412
0000 1331
3232 2554
3532 1110
0011 1121 | 8
8
26
16
7 | 0000 1221
0000 0331
2210 2544
3332 1110
0000 0001 | 6
7
20
14
1 | 1
1
2
1
1 | 85·3
85·2
84·6
86·0
85·9 | | 6
7
8 q
9
10 q | 1000 1122
3111 2200
0001 0000
0000 1101
1000 0000 | 7
10
1
3
1 | 0000 1011
0011 2100
0001 0000
0000 1101
1000 0000 |
3
5
1
3 | 1000 0122
3100 1200
0000 0000
0000 1001
0000 0000 | 6
7
0
2
0 | 0000 0001
2000 1100
0000 0000
0000 0001
1000 0000 | 4
0
1
1 | 1
1
0
0
0 | 86 · 0
86 · 0
86 · 1
86 · 0
86 · 0 | | 11 q
12
13
14
15 | 1100 0110
0000 2121
0112 2210
0100 1232
2121 1231 | 4
6
9
9 | 1000 0110
0000 2121
0112 2210
0100 1222
2121 1231 | 3
6
9
8
13 | 1100 0110
0000 1021
0112 1200
0100 1132
2011 1031 | 4
4
7
8
9 | 1000 0000
0000 0022
0001 2200
0000 0122
3000 0130 | 1
4
5
5
7 | 0
1
1
1
1 | 86 · 1
86 · 5
86 · 5
86 · 7
86 · 9 | | 16
17
18 q
19
20 | 1100 0002
0000 2210
0000 0000
0011 1001
1001 2011 | 4
5
0
4
6 | 0100 0002
0000 2210
0000 0000
0011 1000
1001 2011 | 3
5
0
3
6 | 1100 0002
0000 1210
0000 0000
0011 0001
1000 1001 | 4
4
0
3
3 | 0000 0002
0000 0120
0000 0000
0000 0001
1000 0001 | 2
3
0
1
2 | 0
1
0
0 | 86 · 9
86 · 8
86 · 9
86 · 4
86 · 1 | | 21
22
23 d
24
25 d | 2001 2213
0000 0114
1232 2355
1113 3222
1233 2242 | 11
6
23
15
19 | 1001 2213
0000 0112
0231 2355
0113 3212
0233 2232 | 10
4
21
13
17 | 2000 1113
0000 0114
1232 1354
1111 1022
1112 1041 | 8
5
21
9
11 | 2000 0002
0000 0023
0220 0355
0001 0002
0022 0022 | 4
5
17
3
8 | 1
1
2
1
1 | 86·0
86·0
86·0
86·0
85·8 | | 26 d
27
28
29
30 q | 4122 2213
2121 1131
0111 0100
1100 2221
0000 1110 | 17
12
4
9
3 | 3122 2212
1110 1121
0111 0100
0100 2210
0000 1110 | 15
8
4
6
3 | 4121 0013
2121 0031
0110 0000
1000 1021
0000 1000 | 12
10
2
5 | 3210 0002
2010 0021
0000 0000
0000 0000
0000 0000 | 8
6
0
0 | 1
1
0
1
0 | 85 · 9
86 · 0
86 · 4
86 · 5
87 · 0 | | 31 | 1101 0001 | 4 | 0100 0000 | 1 | 1101 0001 | 4 | 0000 0000 | 0
Mean | 0
0·71 | 86.8 | | | | | | | | | | mean | 0.71 | 86 • 2 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. $[\]mathbf{K_{H}}$ For horizontal component. $\mathbf{K_{D}}$ For declination. $\mathbf{K_{Z}}$ For vertical component. (See Introduction). # GEOMAGNETIC FORCE: HORIZONTAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT | 1 LEF | RWICK (| (H) | | | | | | | | | | 14,000 | (0.14 | CGS u | nit) + | | | | | | | | | | APR | IL 1965 | |--------------|---------|------|------|------|------|------|------|------|-----|------|-------|--------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|--------------------| | | Hour | GMT | ļ | Sum | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | 14,000γ | | | γ | | 1 | 659 | 660 | 653 | 656 | 658 | 662 | 659 | 654 | 643 | 631 | 624 | 625 | 632 | 644 | 650 | 647 | 655 | 662 | 663 | 663 | 662 | 662 | 660 | 660 | 652 | 1644 | | 2 q | 661 | 659 | 659 | 659 | 656 | 659 | 659 | 652 | 645 | 633 | 628 | 630 | 637 | 645 | 652 | 656 | 657 | 659 | 662 | 662 | 661 | 660 | 660 | 660 | 653 | 1671 | | 3 a | 659 | 659 | 660 | 660 | 661 | 661 | 660 | 657 | 649 | 639 | 633 | 632 | 636 | 640 | 649 | 654 | 662 | 666 | 663 | 664 | 666 | 665 | 662 | 663 | 655 | 1720 | | 4 | 663 | 663 | 666 | 666 | 662 | 666 | 668 | 659 | 637 | 627 | 627 | 633 | 641 | 651 | 651 | 647 | 648 | 659 | 666 | 664 | 663 | 660 | 661 | 661 | 655 | 1709 | | 5 | 663 | 662 | 660 | 657 | 657 | 657 | 659 | 652 | 641 | 632 | 625 | 625 | 630 | 640 | 649 | 654 | 655 | 658 | 659 | 663 | 660 | 655 | 656 | 656 | 651 | 1625 | | 6 | 656 | 655 | 653 | 652 | 656 | 660 | 663 | 659 | 646 | 633 | 623 | 622 | 635 | 638 | 653 | 650 | 653 | 656 | 666 | 671 | 673 | 670 | 674 | 680 | 654 | 1697 | | 7 | 674 | 651 | 652 | 645 | 648 | 654 | 662 | 659 | 649 | 637 | 626 | 621 | 627 | 634 | 649 | 663 | 659 | 661 | 659 | 655 | 656 | 662 | 660 | 657 | 651 | 1620 | | 8 q | 664 | 659 | 659 | 660 | 661 | 660 | 659 | 652 | 641 | 629 | 619 | 622 | 630 | 640 | 646 | 663 | 659 | 664 | 670 | 673 | 674 | 674 | 670 | 665 | 655 | 1713 | | 9 d | 669 | 663 | 649 | 659 | 659 | 659 | 659 | 641 | 641 | 637 | 629 | 624 | 629 | 641 | 649 | 658 | 658 | 659 | 663 | 666 | 672 | 670 | 661 | 672 | 654 | 1687 | | 10 | 648 | 656 | 656 | 656 | 660 | 665 | 663 | 650 | 638 | 622 | 619 | 625 | 633 | 642 | 653 | 657 | 659 | 663 | 665 | 664 | 664 | 663 | 662 | 663 | 652 | 1646 | | 11 | 662 | 660 | 655 | 659 | 660 | 661 | 660 | 654 | 645 | 637 | 634 | 637 | 644 | 652 | 660 | 674 | 662 | 685 | 678 | 655 | 646 | 651 | 650 | 652 | 656 | 1733 | | 12 | 641 | 652 | 650 | 649 | 644 | 653 | 655 | 649 | 640 | 629 | 626 | 627 | 634 | 641 | 656 | 666 | 671 | 674 | 670 | 663 | 664 | 662 | 662 | 660 | 652 | 1638 | | 13 | 656 | 651 | 652 | 652 | 659 | 657 | 653 | 646 | 633 | 631 | 629 | 632 | 641 | 647 | 660 | 663 | 662 | 667 | 665 | 663 | 663 | 664 | 663 | 666 | 653 | 1675 | | 14 | 662 | 662 | 656 | 654 | 660 | 663 | 663 | 655 | 641 | 633 | 636 | 637 | 647 | 656 | 658 | 666 | 669 | 668 | 670 | 670 | 669 | 666 | 667 | 663 | 658 | 1791 | | 15 | 665 | 659 | 653 | 654 | 662 | 667 | 664 | 653 | 639 | 625 | 621 | 621 | 629 | 639 | 651 | 656 | 658 | 668 | 667 | 666 | 664 | 665 | 665 | 664 | 653 | 1675 | | 16 | 668 | 658 | 661 | 662 | 662 | 662 | 662 | 654 | 644 | 634 | 629 | 629 | 637 | 644 | 655 | 660 | 662 | 663 | 662 | 667 | 666 | 667 | 665 | 666 | 656 | 1739 | | 17 d | 665 | 665 | 662 | 662 | 663 | 663 | 661 | 655 | 647 | 636 | 627 | 625 | 632 | 657 | 676 | 684 | 669 | 668 | 659 | 677 | 675 | 674 | 673 | 672 | 660 | 1847 | | 18 d | 668 | 665 | 653 | 634 | 590 | 473 | 415 | 382 | 458 | 513 | 564 | 606 | 632 | 643 | 634 | 647 | 639 | 645 | 644 | 652 | 633 | 629 | 628 | 621 | 595 | 268 | | 19 d | 620 | 618 | 613 | 632 | 637 | 634 | 629 | 623 | 614 | 607 | 603 | 611 | 609 | 625 | 640 | 682 | 703 | 658 | 662 | 654 | 652 | 637 | 635 | 634 | 635 | 1232 | | 20 d | 637 | 638 | 630 | 628 | 641 | 640 | 638 | 633 | 624 | 610 | 603 | 614 | 630 | 615 | 620 | 638 | 642 | 653 | 655 | 653 | 649 | 650 | 647 | 642 | 635 | 1230 | | 21 q | 643 | 643 | 641 | 643 | 641 | 641 | 640 | 634 | 626 | 617 | 610 | 607 | 611 | 623 | 636 | 646 | 644 | 655 | 658 | 651 | 652 | 652 | 652 | 651 | 638 | 1317 | | 22 | 649 | 647 | 646 | 645 | 645 | 647 | 646 | 643 | 637 | 631 | 623 | 627 | 630 | 633 | 640 | 644 | 652 | 655 | 658 | 658 | 655 | 658 | 660 | 656 | 645 | 1485 | | 23 | 653 | 654 | 655 | 655 | 651 | 651 | 653 | 648 | 645 | 637 | 634 | 629 | 626 | 626 | 633 | 641 | 647 | 662 | 659 | 664 | 663 | 659 | 662 | 656 | 648 | 1563 | | 24 | 659 | 655 | 654 | 655 | 655 | 655 | 655 | 651 | 643 | 633 | 625 | 620 | 626 | 636 | 650 | 651 | 651 | 666 | 665 | 666 | 660 | 658 | 655 | 655 | 650 | 1599 | | 25 | 655 | 655 | 654 | 654 | 654 | 654 | 651 | 644 | 633 | 624 | 620 | 618 | 622 | 628 | 629 | 643 | 654 | 667 | 665 | 666 | 662 | 667 | 668 | 665 | 648 | 1552 | | 26 | 665 | 665 | 655 | 655 | 657 | 657 | 654 | 648 | 634 | 624 | 621 | 617 | 618 | 629 | 640 | 644 | 661 | 662 | 661 | 671 | 668 | 666 | 664 | 662 | 650 | 1598 | | 27 | 660 | 658 | 656 | 658 | 655 | 652 | 649 | 644 | 637 | 629 | 618 | 614 | 629 | 640 | 654 | 662 | 665 | 666 | 669 | 660 | 658 | 659 | 660 | 657 | 650 | 1609 | | 28 q | 657 | 654 | 654 | 654 | 655 | 653 | 648 | 642 | 632 | 622 | 617 | 625 | 636 | 641 | 649 | 653 | 660 | 660 | 666 | 669 | 665 | 662 | 662 | 660 | 650 | 1596 | | 29 | 659 | 659 | 659 | 659 | 658 | 656 | 653 | 647 | 640 | 629 | 624 | 628 | 636 | 650 | 657 | 665 | 669 | 677 | 677 | 672 | 667 | 668 | 669 | 669 | 656 | 1747 | | 30 | 668 | 663 | 659 | 657 | 654 | 658 | 654 | 645 | 640 | 635 | 631 | 633 | 636 | 641 | 651 | 649 | 656 | 662 | 665 | 664 | 662 | 666 | 664 | 666 | 653 | 1679 | ean | 658 | 656 | 653 | 653 | 653 | 650 | 647 | 639 | 633 | 625 | 622 | 624 | 631 | 639 | 648 | 656 | 659 | 663 | 664 | 663 | 661 | 661 | 660 | 659 | 649 | | | Sum
0007+ | 1728 | 1668 | 1585 | 1591 | 1581 | 1500 | 1414 | 1185 | 982 | 756 | 648 | 716 | 935 | 1181 | 1450 | 1683 | 1761 | 1888 | 1911 | 1906 | 1844 | 1821 | 1797 | 1774 | | Grand To
467.30 | | 2 LE | RWICK | (D) | | | | | | | | | | 9 | ° + | | | | | | | | | | | | AP | RIL 1965 | |----------------|-------------|--------|--------|--------|--------|------|--------|--------|--------|--------|---------|---------|---------|---------|--------|---------|---------|---------|--------|---------|---------|---------|--------|--------|--------|------------------------| | | Hour
0-1 | | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 0 10-11 | 11-12 | 12-13 | 3 13-14 | 14-15 | 15-16 | 16-17 | 7 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
400·0′+ | | | , | • | • | , | | , | | | • | , | · · | , | , | • | , | , | | • | | , | | | · | • | . 1 | , | | 1 | 21.2 | 22.1 | 22.6 | 21 · 3 | 21 · 4 | 19.8 | 18.7 | 17.9 | 17.0 | 18.3 | 21.6 | 26 · 2 | 28.3 | 28.9 | 27.9 | 24.6 | 23 · 1 | 22.5 | 22 · 1 | 21 · 7 | 21.5 | 21 · 2 | 21 · 2 | 21 · 2 | 22.2 | 132.3 | | 2 q | 20.6 | 20.9 | 21.0 | 20.5 | | | 18.8 | | | 18.9 | 21.5 | 24 - 7 | 26 · 7 | 27 • 2 | 26 · 3 | 24 • 9 | 23.0 | | 20.6 | 20.8 | 21.0 | 21 · 3 | 20.9 | 20.9 | 21.5 | 116.8 | | 3 q | 20.9 | 20 · 7 | 20.8 | | | 20.2 | | | | 18.4 | 20.5 | 23 · 2 | 26 · 2 | 27.5 | | 25.5 | | 22 · 7 | 21.6 | 21 · 5 | | 21.5 | | 21.0 | 21 · 7 | 121.8 | | 4 | | | 21 · 1 | | | 20.6 | | | | | 25.3 | 26 · 4 | | 30.0 | | 26 · 4 | | | | | | 21 · 5 | 21 · 2 | 21 · 2 | 22.7 | 144 · 1 | |
5 | 21.4 | 21 · 3 | 21 · 5 | 20.5 | 21 · 4 | 19.3 | 18.5 | 16 · 8 | 16.6 | 17.7 | 20.2 | 23 · 4 | 25.4 | 26 · 3 | 24.9 | 23 · 4 | 22.0 | 21 · 3 | 20.6 | 21 · 1 | 20.7 | 19.8 | 18 • 4 | 20.9 | 21.0 | 103 · 4 | | 6 | 21.5 | 20.8 | 20.9 | 21.0 | 20.3 | 19.7 | 18.6 | 18.5 | 17.8 | 18.6 | 20.5 | 23.9 | 27.4 | 28 · 7 | 28.0 | 27 · 7 | 24.0 | 22 · 4 | 21.6 | 21.9 | 21 · 8 | 21 · 9 | 19.8 | 16 · 7 | 21.8 | 124.0 | | 7 | 17.3 | 16 · 1 | 15.9 | 16 · 7 | 16 · 8 | 19.1 | 18.7 | 17.0 | 17.7 | 19.1 | 21 · 7 | 25 · 3 | 29.1 | 31.0 | 30.1 | 29.3 | 26 · 7 | 25 · 2 | 23 · 5 | 22.5 | 20.8 | 19 4 | 20.5 | 23.3 | 21.8 | 122.8 | | 8 q | 22.0 | 20.5 | 20.5 | | | | | | | | 22.5 | 25 · 1 | | 29 · 2 | 27.6 | 26 · 7 | | 24 · 3 | 23 · 2 | | 22.2 | | 20.6 | 18.8 | 22.3 | 134 · 6 | | 9 d | 17.5 | | | | | | | | | | 21.7 | | | 28 · 5 | | | | | 22.6 | | | | | 14.8 | 20.7 | 96 · 2 | | 10 | 15.8 | 18.7 | 19 · 1 | 19.3 | 19.7 | 18.7 | 18.6 | 18.6 | 19.1 | 21.0 | 22 · 4 | 24 · 6 | 26.3 | 27.0 | 26 · 2 | 24 · 4 | 23 · 2 | 22-4 | 22.0 | 21 · 7 | 21 · 7 | 21 · 4 | 20.7 | 20.8 | 21 · 4 | 113 · 4 | | 11 | 19.8 | 20.5 | 21.5 | 20.3 | 19.7 | 18.7 | 17.9 | 17.6 | 17.8 | 19.2 | 21 · 3 | 24 · 1 | 26.0 | 26 · 3 | 26 · 3 | 26 · 7 | 24 · 8 | 23 · 1 | 22.4 | 15.3 | 17.9 | 17.7 | 18.7 | 18.6 | 20-9 | 102 · 2 | | 12 | 22.5 | 21.7 | 19.0 | 17.5 | 19.2 | 17.7 | 15.9 | 15.9 | 16 · 7 | 19.5 | 21 · 3 | 23.9 | 25.9 | 26 · 4 | 24 · 2 | 22.3 | 21 · 5 | 21.6 | 21 · 7 | 23 · 2 | 20 · 1 | 18.7 | 18.6 | 19.4 | 20.6 | 94 • 4 | | 13 | 20.7 | 22 · 4 | | 19.5 | | | | | | | 21.6 | 23.9 | 26 · 1 | 26 · 3 | 24 · 3 | 22.4 | 20.7 | 20 · 2 | 20.4 | 20.8 | 21 · 4 | 21 · 2 | 21.0 | 21 · 3 | 20-9 | 101 · 3 | | 14 | 21.2 | 20 • 4 | | 21.0 | | | | | | | 23.6 | 25 · 3 | | 26 · 4 | 25.0 | | | | 21 · 1 | | | | 18.5 | | 21 · 2 | 109 · 4 | | 15 | 18.7 | 19•1 | 19.4 | 18.8 | 20 · 1 | 17.8 | 17.1 | 16.3 | 17.5 | 19.6 | 22.7 | 26 · 3 | 28.5 | 29 · 6 | 28 • 9 | 27.5 | 24 · 9 | 22.6 | 20.9 | 20.3 | 20 - 1 | 20 · 7 | 21 · 2 | 20.5 | 21.6 | 119-1 | | 16 | 21.8 | 20.8 | 20.5 | 19.6 | 19.0 | 18.8 | 17-1 | 16.2 | 17.0 | 19.1 | 21.9 | 24.9 | 27.7 | 28.7 | 27 · 7 | 25.8 | 24.0 | 22.3 | 20.0 | 19.5 | 20 · 2 | 20.3 | 21 · 1 | 21 · 1 | 21 · 5 | 115-1 | | 17 d | 21.3 | 21.2 | 21.0 | 20.4 | 19.5 | 18.5 | 17.4 | 16 · 4 | 16 · 3 | 17.8 | 20.7 | 24 • 0 | 26 · 7 | 30.2 | 32.2 | 34.8 | | | 21 · 4 | 22.9 | | 21 · 9 | 21.8 | 21.6 | 23 · 1 | 154 · 3 | | 18 d | | | 20.5 | | | | | | | | | 27.0 | 25.2 | | 30.1 | | | | 22.2 | | | | 21.0 | | 24.2 | 181 - 1 | | 19 d | | | | | | | | | | | 22 · 1 | | | 27 · 4 | | | | | | | | 18 · 6 | | | 20.7 | 97 · 7 | | 20 d | 18.2 | 16.8 | 17.0 | 19-1 | 16.8 | 17.0 | 16.0 | 16.0 | 17.1 | 20.6 | 23.7 | 24.8 | 26.8 | 29.0 | 25.7 | 24.0 | 22.8 | 21.8 | 21.0 | 21 · 3 | 20.0 | 19.6 | 20.9 | 20.4 | 20-7 | 96 • 4 | | 21 q | 20.8 | 20.0 | | 19.2 | | | | | | | | 21.7 | 24.0 | 24 · 8 | 24 · 5 | | | | 21.9 | | | | 20.7 | 20.3 | 20.5 | 90.8 | | 22 | 20.2 | 19.7 | | 19-1 | | | | | | | | 22.1 | 23.2 | | 24 · 1 | | | | | | 21 · 5 | 21.0 | 16 • 2 | 16 · 5 | 20.5 | 92.9 | | 23 | 18.9 | | 19.6 | | | 19.0 | | | | | 20 · 1 | 22 · 4 | 24 · 8 | | 25.7 | | | | | | | | | 19.7 | 21 · 1 | 105.5 | | 24 | 18.8 | | | 19.1 | | | | | | | | 23 · 1 | 25.8 | | 25 · 3 | | | | | | | 20 · 7 | | 20.1 | 20 · 7 | 96 · 4 | | 25 | 20.3 | 20.2 | 20 · 1 | 19.5 | 18.4 | 17.1 | 16.0 | 15.0 | 15.7 | 17.8 | 20.6 | 23 · 4 | 25.5 | 26 · 7 | 26 · 7 | 25.0 | 23 · 1 | 21.6 | 20.9 | 19.8 | 20 · 7 | 20.8 | 19.9 | 18.9 | 20.6 | 93 · 7 | | 26 | 19.7 | 23 · 5 | 18.8 | | | 15.4 | | | | | | 22.8 | 24 · 9 | | 24 · 7 | | | | | 21.9 | 21 · 2 | | 20.8 | 19.9 | 20 · 2 | 85 · 4 | | 27 | 19.9 | 19.8 | | 19·1 | | | | | | | 21.8 | 24.8 | 26.6 | | 25.9 | 23.8 | 22.5 | | | | 21 · 2 | | | 20.9 | 20.8 | 98 · 7 | | 28 q | 22 · 1 | | | 19·4 | | 18.2 | | | | | | 24.6 | 26 · 7 | | | | 23.0 | | 22 · 1 | | 21 · 5 | | 20.9 | | 21.5 | 114.8 | | 29 | | 20.2 | | | | 17.3 | | | | | | 22.8 | 24 · 7 | | | | | | | | | 21.5 | | 20.8 | 21 · 1 | 107 · 4 | | 30 | 20.5 | 21.3 | 21.0 | 20.5 | 18.7 | 18.1 | 16 · 5 | 16 · 4 | 18.8 | 20.5 | 20.8 | 22.7 | 24.5 | 25 · 1 | 24 · 4 | 22 · 4 | 21.3 | 21 · 1 | 21 · 1 | 21 · 2 | 20.5 | 20 · 1 | 18·3 | 20 · 4 | 20.7 | 96 · 2 | | Mean | 20.2 | 20.3 | 20 · 1 | 19·1 | 19.1 | 18.3 | 17 · 6 | 17.7 | 17 · 7 | 19.5 | 21.8 | 24 · 2 | 26 · 3 | 27 · 3 | 26 · 6 | 25 · 2 | 23 · 7 | 22 · 7 | 21.7 | 21 · 3 | 20.9 | 20.6 | 20 · 2 | 19.9 | 21.3 | | | Sum
500·0'+ | 106 • 4 | 109.3 | 102.2 | 73.5 | 71.9 | 50.2 | 28.8 | 30.3 | 31.8 | 84 • 2 | 154.7 | 226 · 3 | 290 · 2 | 319-9 | 297·6 | 256 · 9 | 211 · 2 | 179·6 | 149.8 | 138 · 5 | 126 · 4 | 119-1 1 | 05 · 2 | 98 · 2 | | Grand Total
15362·2 | Mean values for periods of sixty minutes ending at exact hours, CA 3 LERWICK (Z) 47,000 y (0.47 CGS unit) + | 3 LEF | RWICK (| Z) | | | | | | | | | 4 | 7,000y | (0.47 | CGS un | it) + | | | | | | | | | | APR | L 1965 | |-----------------|------------|-------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|-------|-------|---------|-------|-------|-------|-------|-------|-------|------|------------------------| | | Hour (| GMT | | | | | | | | | | | Τ | | | | | | | | | | | | ı T | Sum | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 7 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | 9000γ+ | | | γ | | 1 | 391 | 379 | 380 | 378 | 384 | 388 | 393 | 396 | 398 | 399 | 397 | 395 | 395 | 397 | 401 | 404 | 403 | 401 | 400 | 398 | 398 | 397 | 397 | 397 | 394 | 466 | | 2 q | 398
397 | 400
399 | 401
400 | 401
400 | 401
399 | 399
397 | 399
394 | 399
392 | 396
392 | 395
388 | 395 | 393 | 393 | 396 | 397 | 399 | 401 | 402 | 401 | 399 | 397 | 397 | 397 | 396 | 398 | 552 | | 3 q | 395 | 396 | 396 | 397 | 398 | 393 | 392 | 392 | 392 | 389 | 386
384 | 386
380 | 386 | 389 | 393 | 396 | 398 | 400 | 401 | 399 | 396 | 396 | 396 | 394 | 395 | 474 | | 5 | 393 | 395 | 396 | 397 | 393 | 394 | 396 | 392 | 400 | 397 | 396 | 394 | 373
389 | 378
387 | 392
391 | 405 | 404 | 403 | 400 | 399 | 398 | 397 | 394 | 394 | 393 | 444 | | 3 | 393 | 393 | 390 | 397 | 393 | 394 | 390 | 399 | 400 | 397 | 390 | 394 | 389 | 367 | 391 | 395 | 401 | 404 | 403 | 401 | 401 | 401 | 397 | 393 | 396 | 513 | | 6 | 394 | 397 | 398 | 398 | 401 | 396 | 395 | 394 | 394 | 392 | 387 | 383 | 380 | 384 | 392 | 396 | 404 | 404 | 401 | 397 | 396 | 396 | 392 | 369 | 393 | 440 | | 7 | 354 | 367 | 369 | 381 | 386 | 382 | 379 | 386 | 388 | 388 | 387 | 383 | 382 | 386 | 392 | 405 | 418 | 424 | 427 | 428 | 420 | 403 | 397 | 387 | 392 | 419 | | 8 q | 379 | 388 | 394 | 396 | 397 | 399 | 401 | 402 | 401 | 399 | 398 | 395 | 394 | 397 | 396 | 396 | 401 | 403 | 400 | 399 | 400 | 398 | 399 | 401 | 397 | 533 | | 9 d | 391 | 380 | 356 | 343 | 340 | 365 | 379 | 392 | 395 | 399 | 399 | 397 | 393 | 391 | 391 | 395 | 401 | 404 | 404 | 404 | 399 | 394 | 399 | 371 | 387 | 282 | | 10 | 358 | 371 | 390 | 395 | 393 | 394 | 396 | 401 | 404 | 404 | 400 | 394 | 388 | 388 | 391 | 392 | 393 | 394 | 395 | 395 | 397 | 399 | 401 | 399 | 393 | 432 | | 11 | 398 | 396 | 396 | 395 | 396 | 396 | 397 | 399 | 397 | 394 | 392 | 390 | 392 | 390 | 391 | 392 | 395 | 397 | 428 | 463 | 441 | 420 | 406 | 394 | 402 | 655 | | 12 | 392 | 386 | 397 | 400 | 397 | 386 | 391 | 394 | 395 | 393 | 391 | 391 | 392 | 396 | 394 | 394 | 396 | 399 | 403 | 409 | 404 | 400 | 390 | 389 | 395 | 479 | | 13 | 392 | 389 | 378 | 384 | 389 | 391 | 394 | 395 | 396 | 392 | 391 | 386 | 384 | 388 | 393 | 398 | 399 | 400 | 400 | 397 | 395 | 394 | 396 | 394 | 392 | 415 | | 14 | 397 | 396 | 399 | 396 | 390 | 391 | 390 | 390 | 386 | 386 | 383 | 381 | 383 | 387 | 391 | 396 | 399 | 398 | 395 | 394 | 393 | 395 | 392 | 392 | 392 | 400 | | 15 | 387 | 389 | 393 | 395 | 389 | 388 | 392 | 393 | 392 | 393 | 391 | 390 | 390 | 394 | 397 | 401 | 401 | 404 | 405 | 403 | 400 | 396 | 392 | 390 | 394 | 465 | | 16 | 383 | 392 | 397 | 399 | 400 | 398 | 397 | 396 | 393 | 391 | 386 | 384 | 385 | 390 | 393 | 398 | 402 | 405 | 407 | 402 | 397 | 394 | 393 | 393 | 395 | 475 | | 17 d | 395 | 397 | 398 | 400 | 400 | 398 | 398 | 395 | 390 | 389 | 388 | 386 | 385 | 381 | 387 | 396 | 405 | 413 | 418 | 400 | 394 | 392 | 392 | 393 | 395 | 490 | | 18 d | 393 | 393 | 349 | 274 | 210 | 197 | 290 | 331 | 366 | 384 | 387 | 408 | 409 | 420 | 455 | 471 | 462 | 455 | 465 | 453 | 429 | 420 | 414 | 394 | 385 | 229 | | 19 d | 385 | 395 | 381 | 402 | 415 | 416 | 414 | 412 | 410 | 412 | 413 | 415 | 416 | 422 | 422 | 447 | 470 | 447 | 431 | 434 | 428 | 414 | 414 | 355 | 415 | 970 | | 20 d | 360 | 382 | 393 | 405 | 406 | 411 | 413 | 411 | 409 | 413 | 411 | 408 | 415 | 424 | 420 | 415 | 416 | 416 | 416 | 418 | 416 | 406 | 393 | 398 | 407 | 775 | | 21 q | 403 | 406 | 407 | 408 | 411 | 414 | 415 | 415 | 413 | 414 | 411 | 409 | 409 | 405 | 407 | 411 | 416 | 415 | 417 | 418 | 416 | 413 | 410 | 408 | 411 | 871 | | 22 | 409 | 409 | 409 | 410 | 410 | 409 | 408 | 408 | 407 | 406 | 407 | 404 | 403 | 404 | 404 | 406 | 409 | 410 | 410 | 410 | 410 | 408 | 402 | 391 | 407 | 763 | | 23 | 400 | 403 | 404 | 405 | 407 | 406 | 404 | 403 | 401 | 402 | 404 | 404 | 403 | 404 | 401 | 406 | 407 | 408 | 414 | 412 | 412 | 411 | 407 | 398 | 405 | 726 | | 24 | 398 | 403 | 403 | 404 | 406 | 405 | 405 | 407 | 406 | 406 | 408 | 409 | 407 | 404 | 402 | 408 | 410 | 410 | 412 | 409 | 410 | 409 | 408 | 407 | 407 | 756 | | 25 | 405 | 404 | 405 | 405 | 405 | 408 | 408 | 408 | 408 | 404 | 401 | 401 | 398 | 398 | 398 | 398 | 400 | 404 | 409 | 410 | 409 | 406 | 403 | 401 | 404 | 696 | | 26 | 396 | 381 | 393 | 399 | 403 | 404 | 404 | 404 | 405 | 409 | 407 | 406 | 403 | 403 | 404 | 406 | 405 | 411 | 411 | 407 | 405 | 404 | 405 | 404 | 403 | 679 | | 27 | 404 | 404 | 404 | 403 | 405 | 405 | 406 | 404 | 403 | 403 | 402 | 398 | 395 | 395 |
399 | 404 | 410 | 410 | 410 | 410 | 406 | 405 | 403 | 405 | 404 | 693 | | 28 g | 401 | 398 | 402 | 402 | 403 | 404 | 404 | 403 | 400 | 398 | 393 | 390 | 397 | 400 | 401 | 404 | 404 | 407 | 404 | 403 | 404 | 403 | 403 | 403 | 401 | 631 | | 29 | 404 | 405 | 404 | 404 | 405 | 405 | 402 | 39 9 | 395 | 394 | 391 | 391 | 391 | 395 | 397 | 401 | 401 | 402 | 405 | 412 | 410 | 406 | 406 | 406 | 401 | 631 | | 30 | 407 | 40 5 | 404 | 404 | 404 | 402 | 404 | 403 | 395 | 391 | 391 | 392 | 397 | 400 | 404 | 406 | 408 | 408 | 408 | 406 | 404 | 403 | 400 | 401 | 402 | 648 | Mean | 392 | 393 | 393 | 393 | 391 | 391 | 395 | 397 | 398 | 397 | 396 | 395 | 394 | 396 | 400 | 405 | 408 | 409 | 410 | 410 | 406 | 403 | 400 | 394 | 399 | | | Sum
11,000γ+ | 759 | 806 | 796 | 780 | 743 | 741 | 860 | 923 | 930 | 924 | 877 | 843 | 827 | 893 | 996 | 1141 | 1239 | 1258 | 1300 | 1289 | 1185 | 1077 | 998 | 817 | | Grand Total
287,002 | ## GEOMAGNETIC CHARACTER FIGURES (K. K_{H} , K_{D} , K_{Z} , and c) and temperature in magnetograph house | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of K _H indices | 3-h range
indices
^K D | Sum of K _D indices | 3-h range
indices
K _Z | Sum of
K _Z
indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph house
200°A+ | |------------|---------------------------|------------------------|--|-------------------------------|--|-------------------------------|--|-------------------------------------|--|---| | 1 | 1110 1000 | 4 | 1000 1000 | 2 | 1110 1000 | 4 | 2100 0000 | 3 | 0 | 86 · 5 | | 2 q | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 86 • 7 | | 3 q | 0000 1100 | 2 | 0000 1100 | 2 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 87.0 | | 4 | 0111 2200 | 7 | 0011 2200 | 6 | 0110 1000 | 3 | 0000 1100 | 2 | 1 | 87.0 | | 5 | 0100 0001 | 2 | 0100 0000 | 1 | 0100 0001 | 2 | 0100 0000 | 1 | 0 | 87.0 | | 6 | 0110 2312 | 10 | 0110 2312 | 10 | 0110 1102 | 6 | 0000 0102 | 3 | 1 | 87.1 | | 7 | 2210 2102 | 10 | 2200 2100 | 7 | 2210 1002 | 8 | 2110 0111 | 7 | 1 | 86 • 9 | | 8 q | 1000 1101 | 4 | 1000 1101 | 4 | 0000 0001 | 1 | 1000 0001 | 2 | 0 | 86 • 9 | | 9 d | 2210 0222 | 11 | 2210 0212 | 10 | 2210 0022 | 9 | 3320 0013 | 12 | 1 | 86 • 9 | | 10 | 3100 0001 | 5 | 2100 0000 | 3 | 3100 0001 | 5 | 3000 0000 | 3 | 1 | 86.3 | | 11 | 1000 0331 | 8 | 1000 0331 | 8 | 1000 0131 | 6 | 0000 0132 | 6 | 1 1 | 86 · 5 | | 12 | 2200 1032 | 10 | 1100 1012 | 6 | 2200 0032 | 9 | 1100 0011 | 4 | 1 | 87.0 | | 13 | 2110 1100 | 6 | 1110 1100 | 5 | 2100 0000 | 3 | 1000 0000 | 1 | 1 | 86 • 9 | | 14 | 1100 2101 | 6 | 1000 2101 | 5 | 1100 0001 | 3 | 0000 0000 | 0 | 1 | 86 · 7 | | 15 | 1100 0211 | 6 | 1100 0201 | 5 | 1100 0011 | 4 | 0100 0000 | 1 | 1 | 86 • 9 | | 16 | 1000 0110 | 3 | 1000 0110 | 3 | 1000 0010 | 2 | 1000 0000 | 1 | 0 | 87.0 | | 17 d | 0000 2431 | 10 | 0000 2431 | 10 | 0000 2311 | 7 | 0000 0330 | 6 | 1 | 86 • 6 | | 18 d | 3655 3332 | 30 | 2655 3332 | 29 | 3553 3232 | 26 | 4443 3233 | 26 | 2 | 86.9 | | 9 d | 2212 3423 | 19 | 2202 3423 | 18 | 2111 0323 | 13 | 2200 1313 | 12 | 1 | 86 · 3 | | 20 d | 1212.3112 | 13 | 1212 3112 | 13 | 1111 2011 | 8 | 3100 2001 | 7 | 1 | 86 · 5 | | 21 q | 1000 1200 | 4 | 0000 1200 | 3 | 1000 0000 | 1 | 0000 0000 | 0 | 1 | 86 • 8 | | 22 | 0002 1102 | 6 | 0002 1102 | 6 | 0001 0002 | 3 | 0000 0002 | 2 | 1 | 86 · 2 | | 23 | 0000 1201 | 4 | 0000 1201 | 4 | 0000 0001 | 1 | 0000 0001 | 1 | 1 | 86 • 9 | | <u>!</u> 4 | 1102 2210 | 9 | 1002 2210 | 8 | 1100 1100 | 4 | 0000 1000 | 1 | 1 | 86 · 8 | | 25 | 0110 1211 | 7 | 0000 1211 | 5 | 0110 0111 | 5 | 0000 0000 | 0 | 1 | 87.0 | | 6 | 3000 1321 | 10 | 2000 1321 | 9 | 3000 0111 | 6 | 2000 0110 | 4 | 1 | 87.0 | | 27 | 1110 1111 | 7 | 0000 1111 | 4 | 1110 0101 | 5 | 0000 0000 | 0 | 1 | 87.0 | | 28 q | 1010 1110 | 5 | 1000 1110 | 4 | 1010 1100 | 4 | 1000 0000 | 1 | 0 | 87.0 | | 19 | 0001 1220 | 6 | 0001 1220 | 6 | 0000 0000 | 0 | 0000 0010 | 1 | 1 | 87.2 | | 0 | 1111 1101 | 7 | 1101 1101 | 6 | 1110 0001 | 4 | 1000 0000 | 1 | 0 | 87.6 | Mean | 0-77 | 86-8 | $[\]emph{q}$ denotes an international quiet day and \emph{d} an international disturbed day. $[\]mathbf{K}_{\mathbf{H}}$ For horizontal component. $\mathbf{K}_{\mathbf{D}}$ For declination. $\mathbf{K}_{\mathbf{Z}}$ For vertical component. (See Introduction). ## GEOMAGNETIC FORCE: HORIZONTAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT | 1 LER | WICK (| (H) | | | | | | | | | | 14,000 | γ (0·1 | 4 CGS | unit) | + | | | | | | | | | | MAY 1965 | |---------------------------|--------------------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
15,000y+ | | 1
2 q
3
4
5 d | γ
667
663
662
666
686 | γ
662
662
662
664
676 | 9
660
662
662
663
644 | γ
658
660
659
662
651 | γ
659
659
659
662
644 | γ
655
657
658
662
618 | γ
654
653
655
660
613 | γ
651
647
651
655
642 | 9
647
638
641
647
638 | 9
640
628
637
636
629 | 9
636
625
633
631
620 | 9
641
630
632
628
624 | 9
649
643
639
636
633 | 9
651
654
647
651
635 | γ
655
661
658
661
652 | γ
658
662
670
667
645 | γ
660
665
672
681
685 | γ
665
666
675
675
679 | 9
669
666
673
680
679 | γ
670
664
670
689
667 | 9
666
664
669
684
662 | γ
665
665
669
680
662 | γ
664
666
667
678
655 | γ
662
662
667
689
644 | 9
657
655
658
663
649 | 7
764
722
787
907
583 | | 6 | 653 | 648 | 648 | 651 | 651 | 653 | 649 | 639 | 626 | 626 | 628 | 635 | 636 | 641 | 657 | 664 | 667 | 666 | 676 | 673 | 670 | 668 | 663 | 651 | 652 | 639 | | 7 | 652 | 659 | 656 | 651 | 644 | 648 | 650 | 643 | 633 | 626 | 629 | 630 | 630 | 645 | 656 | 664 | 670 | 667 | 660 | 666 | 662 | 660 | 659 | 658 | 651 | 618 | | 8 d | 656 | 658 | 655 | 654 | 654 | 655 | 656 | 651 | 638 | 623 | 622 | 625 | 636 | 644 | 663 | 662 | 661 | 667 | 669 | 684 | 663 | 645 | 605 | 584 | 647 | 530 | | 9 d | 568 | 630 | 664 | 651 | 643 | 627 | 636 | 634 | 633 | 630 | 634 | 640 | 645 | 644 | 655 | 654 | 664 | 670 | 667 | 670 | 674 | 651 | 647 | 636 | <i>644</i> | 467 | | 10 d | 649 | 652 | 648 | 648 | 659 | 655 | 641 | 636 | 637 | 639 | 629 | 636 | 643 | 647 | 651 | 661 | 669 | 671 | 677 | 676 | 669 | 667 | 656 | 655 | 653 | 671 | | 11 q | 654 | 655 | 653 | 653 | 651 | 649 | 648 | 644 | 637 | 629 | 629 | 630 | 641 | 649 | 649 | 655 | 660 | 666 | 667 | 669 | 663 | 663 | 665 | 662 | 652 | 641 | | 12 | 659 | 660 | 653 | 650 | 660 | 655 | 647 | 643 | 637 | 639 | 633 | 636 | 640 | 647 | 652 | 663 | 670 | 674 | 674 | 669 | 665 | 664 | 660 | 661 | 655 | 711 | | 13 q | 656 | 655 | 655 | 655 | 656 | 655 | 649 | 644 | 643 | 637 | 634 | 632 | 644 | 655 | 664 | 661 | 664 | 674 | 673 | 674 | 673 | 666 | 663 | 665 | 656 | 747 | | 14 q | 663 | 657 | 657 | 656 | 654 | 652 | 651 | 649 | 646 | 640 | 636 | 635 | 643 | 642 | 648 | 659 | 670 | 681 | 678 | 684 | 675 | 669 | 667 | 669 | 658 | 781 | | 15 | 667 | 671 | 668 | 667 | 665 | 663 | 663 | 663 | 659 | 647 | 634 | 629 | 633 | 640 | 649 | 664 | 677 | 681 | 678 | 674 | 677 | 675 | 677 | 680 | 663 | 901 | | 16 d | 678 | 675 | 673 | 678 | 684 | 674 | 648 | 636 | 648 | 644 | 630 | 621 | 635 | 691 | 624 | 661 | 665 | 672 | 675 | 674 | 674 | 677 | 671 | 659 | 661 | 867 | | 17 | 661 | 656 | 648 | 646 | 640 | 642 | 648 | 646 | 641 | 631 | 627 | 633 | 638 | 657 | 659 | 673 | 666 | 675 | 675 | 670 | 668 | 663 | 663 | 663 | 654 | 689 | | 18 | 663 | 663 | 662 | 658 | 660 | 663 | 661 | 659 | 643 | 630 | 629 | 632 | 642 | 655 | 661 | 666 | 674 | 677 | 674 | 667 | 667 | 666 | 665 | 663 | 658 | 800 | | 19 q | 660 | 660 | 659 | 660 | 660 | 659 | 655 | 650 | 640 | 629 | 625 | 625 | 636 | 652 | 658 | 666 | 667 | 673 | 674 | 673 | 671 | 670 | 669 | 669 | 657 | 760 | | 20 | 667 | 666 | 666 | 664 | 663 | 662 | 656 | 648 | 637 | 629 | 625 | 629 | 644 | 655 | 662 | 670 | 683 | 684 | 685 | 686 | 682 | 678 | 671 | 673 | 662 | 885 | | 21 | 671 | 663 | 666 | 670 | 670 | 666 | 659 | 650 | 637 | 626 | 624 | 634 | 648 | 663 | 667 | 681 | 677 | 687 | 685 | 681 | 676 | 655 | 657 | 659 | 661 | 872 | | 22 | 652 | 655 | 664 | 659 | 656 | 655 | 651 | 651 | 644 | 635 | 634 | 630 | 634 | 639 | 651 | 667 | 669 | 686 | 700 | 691 | 682 | 674 | 670
 667 | 659 | 816 | | 23 | 666 | 664 | 659 | 658 | 661 | 660 | 656 | 646 | 638 | 633 | 629 | 633 | 640 | 637 | 639 | 643 | 662 | 677 | 679 | 680 | 677 | 670 | 663 | 671 | 656 | 741 | | 24 | 667 | 662 | 661 | 663 | 666 | 663 | 654 | 651 | 661 | 656 | 646 | 645 | 647 | 650 | 652 | 655 | 666 | 676 | 674 | 677 | 671 | 667 | 659 | 659 | 660 | 848 | | 25 | 662 | 663 | 663 | 665 | 665 | 662 | 659 | 655 | 643 | 632 | 628 | 630 | 640 | 652 | 654 | 663 | 674 | 679 | 685 | 679 | 673 | 667 | 663 | 663 | 659 | 819 | | 26 | 663 | 662 | 666 | 670 | 670 | 665 | 658 | 650 | 641 | 638 | 638 | 647 | 659 | 670 | 680 | 681 | 684 | 681 | 676 | 679 | 681 | 677 | 674 | 674 | 666 | 984 | | 27 | 667 | 666 | 664 | 670 | 673 | 667 | 659 | 648 | 641 | 632 | 629 | 637 | 641 | 649 | 651 | 659 | 670 | 686 | 683 | 686 | 680 | 678 | 678 | 676 | 662 | 890 | | 28 | 670 | 667 | 670 | 672 | 670 | 667 | 663 | 656 | 647 | 633 | 625 | 643 | 647 | 649 | 668 | 665 | 673 | 677 | 681 | 679 | 673 | 672 | 671 | 670 | 663 | 908 | | 29 | 669 | 666 | 664 | 670 | 667 | 663 | 656 | 651 | 644 | 640 | 638 | 640 | 653 | 654 | 662 | 665 | 666 | 672 | 678 | 683 | 679 | 676 | 672 | 668 | 662 | 896 | | 30 | 667 | 664 | 661 | 661 | 664 | 663 | 660 | 658 | 652 | 647 | 643 | 644 | 656 | 662 | 667 | 667 | 664 | 668 | 676 | 681 | 677 | 677 | 676 | 673 | 664 | 928 | | Mean Mean | 661 | 667 | 667 | 669 | 666 | 666 | 653 | 663 | 657 | 648 | 637 | 644 | 643
642 | 651
651 | 662 | 663 | 680
670 | 680 | 681 | 679
676 | 681
673 | 681
668 | 677
664 | 678
662 | 666 | 983 | | Sum
19,000y+ | 1475 | 1490 | 1461 | 1459 | 1455 | 1359 | 1232 | 1110 | 914 | 689 | 560 | 650 | | | | | 1775 | 1927 | | | 1848 | | 1591 | | | Grand Total
489,155 | | 2 LE | RWICK | (D) | | | | | | | | | | 9° | + | | | | | | | | | | | | | MAY 1965 | |----------------|-------------|------------|-----------|-----------|--------|-----------|-----------|-----------|--------|-----------|--------------|-------------|--------------|--------------|---------|---------|--------|-----------|--------|-----------|---------|---------|--------|-----------|--------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-2 | 3 23-24 | Mean | Sum
400·0'+ | | 1 | 20.1 | 20.4 | ,
19·7 | ,
19·3 | 18·7 | ,
17·6 | ,
17·1 | ,
17·0 | 17·3 | ,
19·3 | 22.3 | 24·7 | ,
26·1 | 25·8 | 24 · 9 | 23.9 | 23.0 | ,
22·4 | 22.0 | ,
21·4 | 20.9 | 20.9 | 20.5 | ,
19·9 | 21.1 | 105.2 | | 2 a | 20.1 | | 19.6 | 19.2 | 18.7 | 17.4 | 16 · 1 | 15.8 | 16.9 | 19.0 | 20.9 | 24 - 7 | 27.7 | 27.7 | 26 · 2 | 24 . 7 | 23.2 | 22.8 | 21.8 | 20.9 | 20.9 | 20.3 | 19.9 | | 21.0 | 103-3 | | 3 7 | 19.1 | | 20.0 | 18.9 | | 15.8 | | | | 18.5 | 21.7 | 23.6 | 24 - 8 | 25.4 | 24.8 | 24 - 9 | 24.0 | 22.8 | 21.5 | 20.9 | 20.9 | 20.9 | 20.6 | | 20.6 | 93.7 | | 4 | 20.6 | 20.0 | 19.3 | 18.4 | 16.4 | 16.0 | 14.8 | 14.6 | 15.3 | 18.1 | 23.8 | 26.6 | 27.8 | 28.5 | 28.3 | 27.6 | 26 · 9 | 25.7 | 23.9 | 22.9 | 23.8 | 23 · 2 | 23 · 3 | 23.9 | 22 · 1 | 129 · 7 | | 5 d | 23 · 5 | 21.8 | 9.5 | 9.6 | 9.6 | 22.8 | 25 · 9 | 16.5 | 15.3 | 20 • 4 | 23.3 | 24.8 | 26 · 1 | 28 · 7 | 29.3 | 28 • 5 | 27.5 | 25.6 | 23.6 | 22.6 | 20 · 2 | 19.3 | 16 · 5 | 17.4 | 21.2 | 108.3 | | 6 | 19.1 | 18.5 | 21 · 2 | 20.9 | 19.3 | | 18.0 | | 19.0 | 21.0 | 23.0 | 26 · 5 | 29.5 | 28.9 | 27 · 7 | 26.6 | 24.8 | 22.9 | 21.6 | 21.0 | 21.8 | 20.8 | 20 · 2 | 22.7 | 22.1 | 131 · 2 | | 7 | 21.5 | | 18.2 | 18.7 | 19.5 | | 18.2 | 18.3 | 18.3 | 21.0 | 23 · 7 | 27 • 4 | 29.3 | 29.3 | 28 • 4 | 25 · 6 | 23.9 | 22.8 | 20.9 | 19.2 | 21 · 9 | 21 · 9 | 21.6 | 21 · 4 | 22.0 | 129.0 | | 8 d | 21 · 2 | | 20 · 1 | | | 17.7 | | | | 20.8 | 23 · 7 | 27 · 4 | 28 · 3 | 28.3 | 28.6 | 28.6 | 26 · 6 | 25.7 | 24 · 4 | 23.6 | 23 · 4 | | 12 · 1 | | 21.4 | 113 · 2 | | 9 d | 14.2 | | 19.5 | | | 17.9 | 17.5 | 16 · 4 | 18.3 | 21.0 | 22.5 | | 24.6 | | 24 · 7 | | 22.8 | | 21.6 | | | | 15.2 | | 19.8 | 76 • 2 | | 10 d | 19.5 | 18 • 4 | 15.3 | 15.3 | 16.6 | 18.8 | 19 · 2 | 19.0 | 19.0 | 20.8 | 23.2 | 24 · 6 | 26 · 2 | 25.9 | 24 · 8 | 23.5 | 23.0 | 21.9 | 19.9 | 21.8 | 21.8 | 18.0 | 21 · 4 | 21 · 4 | 20.8 | 99.3 | | 11 q | 20.8 | | 20.3 | 19.9 | | 18.3 | 17.6 | 17.6 | 18 · 4 | 19.4 | 21 · 2 | 23 · 9 | 26 · 4 | 27 · 4 | 26 · 6 | | 24 · 1 | 23 · 2 | | 22.4 | 22.0 | 21 · 8 | 21 · 5 | 21.0 | 21.7 | 121.7 | | 12 | 20.9 | 20.3 | 21 · 4 | 21.8 | 16.6 | 15.4 | | 18.1 | 20 · 1 | 21.3 | 24 · 2 | 25 · 7 | 25.7 | 25.0 | 24 · 8 | 23 · 8 | 22.9 | | | | | 21 · 5 | 21 · 8 | 20.5 | 21.5 | 114.8 | | 13 q | 20.8 | | 19.3 | 18.8 | 18.7 | | 18 · 3 | 18.2 | | | | 26 · 3 | 26 · 7 | 25.4 | 24.9 | 24 · 8 | 24.0 | 23.0 | 22.8 | 22.2 | 22.0 | | 21.3 | | 21.5 | 117-1 | | 14 q | | 18.6 | | 18.3 | | 18.0 | | | | 19.0 | 21.5 | 25.0 | 27.8 | | 28.0 | | | | | 21.6 | 20.0 | 20.3 | | | 21.6 | 119-2 | | 15 | 21.1 | 22.0 | 20.4 | 19・4 | 17.9 | 16.7 | 15 · 2 | 14.5 | 15.2 | 18-4 | 22.5 | 26 • 1 | 28 · 4 | 29 · 2 | 29 · 2 | 27 · 6 | 25.7 | 24 · 4 | 22.6 | 21.6 | 21 · 8 | 21.0 | 18 · 3 | 20.7 | 21.7 | 119.9 | | 16 d | 20.5 | 19.0 | 19·1 | 19.0 | 16 · 9 | 17 · 3 | 17 · 4 | 20.1 | 23.9 | 22 · 4 | 25.0 | 30 · 3 | 34.5 | 32.6 | 31 · 3 | 26 · 6 | 25.6 | 23.6 | 21.8 | 21 · 4 | 21.7 | 20.9 | 19.2 | 20.1 | 22.9 | 150-2 | | 17 | 20.8 | | 22.8 | 21 · 1 | 19.6 | 17.4 | 16 · 8 | 15.8 | 17.7 | 19.3 | 22.2 | 26 · 7 | 29 · 1 | 28 • 4 | 26 · 3 | 23.0 | 22.2 | | | | 22.2 | | 21 · 7 | | 21.7 | 122.0 | | 18 | 21.2 | 21 · 1 | 21 · 2 | | | 15.8 | 14.8 | 16.0 | 19.1 | 21.5 | 24 · 4 | 27 · 0 | 28 · 7 | 28 · 2 | 26 · 1 | | 22.8 | 21.8 | 21 · 4 | 21.5 | 21 · 8 | | 21 · 2 | | 21.8 | 123.6 | | 19 q | 21.2 | | | | | 17.0 | | 17.3 | 18.2 | 20.3 | 23.9 | 26 · 7 | 28.3 | 27.5 | 25.9 | 24 - 4 | 22.7 | | | 21.3 | | | 21.9 | | 21.6 | 119.4 | | 20 | 21 · 1 | 20.9 | 20.5 | 20.2 | 18.5 | 16 · 3 | 14 · 5 | 14.3 | 17.3 | 20.3 | 23 · 1 | 25 · 7 | 26 · 8 | 26.6 | 25 · 5 | 24 · 9 | 23 · 2 | 23.6 | 23.7 | 24 · 0 | 23.5 | 23 · 2 | 22.7 | 21 · 2 | 21.7 | 121-6 | | 21 | 18-1 | 18 • 1 | 18.7 | | | 15.7 | | 15.3 | 16 · 1 | 19.0 | 20.9 | 23.6 | 26 · 3 | 26.3 | 24 • 9 | | 22.1 | 22.2 | | 22.5 | 20.0 | 18.0 | 20.2 | 18.2 | 20.1 | 83.6 | | 22 | 16.3 | 17.4 | 15.4 | | | 13.3 | | 16.3 | | 23.0 | 24 · 2 | 26 · 2 | 28 · 5 | | 26.6 | | 24 · 1 | 24.0 | 24 · 1 | | | | 21 · 8 | | 20.8 | 99-4 | | 23 | 21.5 | | | | 14.2 | | | 14.2 | | 22.1 | 24.8 | 27.0 | 27.8 | 26 · 7 | 25.4 | 24 · 8 | 23.2 | | 21.8 | 21.2 | | | 21 · 1 | | 20.9 | 102.2 | | 24 | 22.1 | | 19.4 | | | 15.3 | | | 16.2 | | 21·2
22·0 | 23·2
4·1 | 24 · 8 | | 25.2 | | 24.0 | | | | 21.8 | | | | 21.1 | 106.2 | | 25 | 20.1 | 19.7 | 19.4 | 19.1 | 10.7 | 17.3 | 15.7 | 15.3 | 10.7 | 19 · 1 | 22.0 | 74.1 | 25.3 | 26 · 0 | 26 · 7 | 26 · 7 | 25 · 7 | 24 · 1 | 23.0 | 22.2 | 21 · 9 | 21 · 3 | 21 · 6 | 21 · 2 | 21.3 | 111.9 | | 26 | 20.9 | 20.3 | | | 16.0 | | 17 · 3 | | | 18.5 | 20.5 | 23.2 | 25.7 | 26 · 5 | 26.0 | 24 · 9 | 23.9 | 22.9 | 22.7 | 22.9 | 22.9 | 23 · 1 | 22.1 | 19.4 | 21 · 2 | 107 · 7 | | 27 | 19.4 | 17 · 4 | 13.5 | 16.8 | | 16.3 | | | 20 · 2 | 24 · 4 | 27.6 | 27.3 | 27.8 | 27.8 | 26 · 7 | | 21 · 7 | | 22.3 | | | | 23 · 7 | | 21.9 | 125.3 | | 28 | 21.7 | 20.1 | 19.6 | | | 17.9 | | | 18.7 | 21.5 | 25.1 | 28.6 | 29.9 | 27 · 7 | 25.7 | 24.9 | 22.9 | 21.6 | 22.7 | | | | 22.5 | | 22.2 | 132.9 | | 29
30 | 21.2 | | 19.7 | | | 15.7 | | | | 18.7 | 21·2
24·2 | 24 · 3 | 26·1
25·8 | 26·5
25·6 | 25.7 | | | 22.2 | | | 21 · 1 | | 21.2 | | 20.8 | 99.3 | | | 20.6 | | | 19.2 | | 17.3 | | | 18.7 | | | | | | 24 · 9 | | | | | 22.7 | 22.0 | 21 · 4 | 21 · 3 | 21 · 3 | 21.8 | 123-4 | | 31 | 21.5 | | | | | 18.6 | | | | | 24 · 3 | | 28 · 6 | | 28.4 | 26.8 | 24.9 | | | | | | 22.0 | | 22.6 | 142-1 | | Mean | 20 · 3 | 20.2 | 19.2 | 18.3 | 17.3 | 17.0 | 16 · 8 | 16.9 | 18 · 1 | 20.3 | 23 · 1 | 25.7 | 27 · 4 | 27.3 | 26 · 5 | 25 · 3 | 24.0 | 23·1 | 22.4 | 21.9 | 21.8 | 21 · 1 | 20.6 | 20-1 | 21.4 | | | Sum
500·0'+ | 129:3 | 125-4 | 94 • 4 | 67 · 7 | 34 · 8 | 27 · 3 | 22.1 | 22.4 | 59 • 4 | 129·6 | 214.6 | 297·6 | 349 • 4 | 347.5 | 322 · 5 | 285 · 3 | 245.0 | 216 · 7 | 193-3 | 177-9 | 174-6 1 | 153-8 1 | 39 • 7 | 122-3 | | Grand Total
15952.6 | Mean values for periods of sixty minutes ending at exact hours, GMT 3 LERWICK (Z) 47,000 % (0.47 CGS unit) + | | WICK (| | | | | | | | | | | | (0.47 | | | | | | | | | | | | | AY 1965 | |-------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------------| | | Hour | | 2.2 | 2.4 | 4 5 | | 6-7 | 7-8 | 8-9 | 0 10 | 10 11 | | | | | | | | | | | | | | l., | Sum | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 0-/ | /-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | 9000γ | | | γ. | γ | γ | γ | | 1 | 402 | 404 | 406 | 408 | 409 | 409 | 407 | 403 | 396 | 394 | 396 | 392 | 392 | 397 | 403 | 404 | 407 | 408 | 406 | 406 | 405 | 404 | 404 | 405 | 403 | 667 | | 2 q | 406 | 407 | 409 | 409 | 409 | 409 | 408 | 404 | 397 | 395 | 395 | 387 | 387 | 392 | 399 | 401 | 404 | 405 | 409 | 407 | 405 | 402 | 401 | 400 | 402 | 647 | | 3 | 400 | 398 | 397 | 398 | 401 | 401 | 399 | 392 | 387 | 387 | 391 | 395 | 395 | 396 | 396 | 396 | 400 | 403 | 405 | 403 | 402 | 398 | 398 | 398 | 397 i | 536 | | 4 | 398 | 400 | 402 | 405 | 406 | 405 | 402 | 398 | 394 | 392 | 400 | 396 | 389 | 388 | 391 | 394 | 398 | 403 | 404 | 401 | 401 | 398 | 395 | 388 | 398 | 548 | | 5 d | 383 | 342 | 320 | 340 | 355 | 369 | 349 | 348 | 360 | 372 | 386 | 392 | 391 | 399 | 408 | 417 | 425 | 444 | 442 | 427 | 415 | 401 | 369 | 364 | 384 | 218 | | 6 | 368 | 386 | 394 | 400 | 405 | 408 | 409 | 409 | 406 | 404 | 400 | 392 | 394 | 401 | 402 | 403 | 410 | 416 | 414 | 412 | 409 | 405 | 388 | 363 | 400 | 598 | | 7
| 346 | 375 | 392 | 397 | 401 | 396 | 400 | 400 | 399 | 391 | 391 | 391 | 391 | 391 | 396 | 405 | 410 | 413 | 414 | 414 | 409 | 406 | 405 | 405 | 397 | 538 | | 8 d | 403 | 401 | 401 | 398 | 396 | 393 | 393 | 395 | 396 | 397 | 394 | 392 | 391 | 394 | 395 | 403 | 406 | 405 | 405 | 405 | 421 | 397 | 338 | 305 | 393 | 424 | | 9 d | 307 | 305 | 288 | 342 | 376 | 383 | 383 | 393 | 395 | 395 | 393 | 393 | 396 | 399 | 401 | 405 | 404 | 405 | 406 | 408 | 405 | 401 | 373 | 380 | 381 | 136 | | 10 d | 360 | 352 | 361 | 359 | 352 | 359 | 373 | 384 | 387 | 393 | 396 | 400 | 399 | 402 | 405 | 404 | 405 | 408 | 412 | 411 | 410 | 406 | 403 | 405 | 389 | 346 | | 11 q | 405 | 405 | 405 | 405 | 403 | 402 | 400 | 402 | 402 | 403 | 404 | 400 | 392 | 396 | 401 | 407 | 410 | 409 | 407 | 405 | 406 | 405 | 401 | 402 | 403 | 677 | | 12 | 404 | 400 | 394 | 387 | 379 | 387 | 392 | 392 | 392 | 389 | 393 | 395 | 397 | 402 | 404 | 404 | 405 | 406 | 406 | 404 | 404 | 402 | 405 | 399 | 398 | 542 | | 13 q | 402 | 404 | 406 | 405 | 404 | 401 | 403 | 401 | 396 | 394 | 395 | 393 | 386 | 386 | 391 | 399 | 404 | 406 | 409 | 409 | 409 | 409 | 403 | 399 | 401 | 614 | | 14 q | 397 | 399 | 404 | 405 | 406 | 402 | 400 | 396 | 392 | 395 | 396 | 393 | 393 | 397 | 399 | 397 | 399 | 400 | 405 | 405 | 411 | 409 | 404 | 401 | 400 | 605 | | 15 | 402 | 395 | 397 | 401 | 402 | 401 | 400 | 394 | 389 | 389 | 390 | 390 | 393 | 400 | 401 | 401 | 405 | 408 | 409 | 408 | 401 | 401 | 391 | 384 | 398 | 552 | | 16 d | 383 | 392 | 401 | 400 | 399 | 401 | 403 | 398 | 381 | 380 | 385 | 394 | 395 | 418 | 455 | 433 | 428 | 419 | 416 | 412 | 406 | 396 | 374 | 389 | 402 | 658 | | 17 | 397 | 401 | 401 | 399 | 397 | 396 | 402 | 405 | 401 | 397 | 392 | 391 | 395 | 402 | 412 | 419 | 425 | 418 | 415 | 412 | 409 | 407 | 404 | 404 i | 404 | 701 | | 18 | 404 | 405 | 406 | 407 | 405 | 409 | 410 | 409 | 407 | 405 | 404 | 401 | 398 | 403 | 406 | 409 | 408 | 411 | 414 | 414 | 408 | 406 | 405 | 404 | 407 | 758 | | 19 q | 405 | 405 | 408 | 409 | 409 | 409 | 410 | 409 | 406 | 404 | 400 | 396 | 396 | 397 | 401 | 403 | 408 | 409 | 409 | 408 | 405 | 405 | 402 | 402 | 405 | 715 | | 20 | 402 | 403 | 405 | 405 | 406 | 406 | 405 | 402 | 394 | 387 | 383 | 378 | 382 | 386 | 392 | 397 | 399 | 404 | 404 | 405 | 403 | 401 | 401 | 397 | 398 | 547 | | 21 | 397 | 401 | 401 | 402 | 401 | 401 | 403 | 404 | 401 | 398 | 391 | 384 | 390 | 396 | 401 | 406 | 411 | 413 | 417 | 415 | 414 | 414 | 405 | 397 | 403 | 663 | | 22 | 395 | 389 | 380 | 382 | 387 | 389 | 390 | 388 | 388 | 387 | 383 | 385 | 391 | 392 | 395 | 397 | 405 | 401 | 403 | 421 | 417 | 409 | 406 | 405 | 395 | 485 | | 23 | 402 | 398 | 387 | 387 | 392 | 394 | 396 | 397 | 396 | 397 | 397 | 396 | 396 | 396 | 402 | 405 | 405 | 409 | 407 | 406 | 409 | 408 | 399 | 373 | 398 | 554 | | 24 | 369 | 378 | 385 | 384 | 390 | 391 | 390 | 383 | 381 | 391 | 394 | 391 | 392 | 396 | 395 | 393 | 396 | 398 | 405 | 407 | 409 | 405 | 405 | 405 | 393 | 433 | | 25 | 401 | 402 | 401 | 401 | 400 | 399 | 396 | 400 | 401 | 401 | 396 | 388 | 383 | 383 | 387 | 392 | 396 | 401 | 405 | 407 | 406 | 407 | 405 | 404 | 398 | 562 | | 6 | 401 | 401 | 396 | 396 | 397 | 398 | 398 | 401 | 399 | 396 | 391 | 387 | 382 | 382 | 388 | 388 | 392 | 398 | 401 | 400 | 399 | 398 | 396 | 391 | 395 | 476 | | 7 | 397 | 392 | 393 | 396 | 396 | 396 | 396 | 395 | 391 | 386 | 379 | 380 | 388 | 395 | 400 | 404 | 403 | 402 | 404 | 405 | 404 | 404 | 401 | 403 | 396 | 510 | | 28 | 405 | 408 | 408 | 405 | 403 | 401 | 397 | 397 | 400 | 400 | 398 | 393 | 401 | 409 | 410 | 418 | 420 | 419 | 416 | 413 | 411 | 405 | 404 | 404 | 406 | 745 | | 29 | 405 | 408 | 409 | 406 | 405 | 405 | 403 | 405 | 401 | 393 | 392 | 396 | 397 | 401 | 403 | 407 | 409 | 404 | 399 | 399 | 401 | 400 | 401 | 402 | 402 | 651 | | 30 | 404 | 405 | 405 | 405 | 404 | 405 | 403 | 398 | 392 | 391 | 388 | 388 | 389 | 395 | 396 | 397 | 400 | 398 | 397 | 400 | 400 | 398 | 399 | 400 | 398 | 557 | | 11 | 401 | 402 | 402 | 402 | 402 | 398 | 399 | 396 | 391 | 387 | 387 | 384 | 383 | 390 | 394 | 398 | 403 | 406 | 404 | 401 | 400 | 399 | 397 | 396 | 397 | 522 | | ean | 392 | 392 | 392 | 395 | 397 | 397 | 397 | 397 | 394 | 394 | 393 | 391 | 391 | 396 | 401 | 403 | 407 | 408 | 409 | 408 | 407 | 403 | 396 | 393 | 398 | | | um
000γ+ | 151 | 163 | 164 | 245 | 297 | 323 | 319 | 298 | 218 | 210 | 180 | 133 | 134 | 281 | 419 | 506 | 600 | 649 | 669 | 650 | 614 | 506 | 282 | 174 | | Grand To:
296.185 | ## GEOMAGNETIC CHARACTER FIGURES (K, K_{H} , K_{D} , K_{Z} , AND C) AND TEMPERATURE IN MAGNETOGRAPH HOUSE | 3-h | range
dices | Sum of
K
indices | 3-h range
indices
K _H | Sum of K _H indices | 3-h range indices | Sum of K _D indices | 3-h range
indices
K _Z | Sum of K _Z inclices | Geomagnetic
character
of day, C
(0-2) | Temperatur
in magneto
graph hous
200°A+ | |----------|----------------|------------------------|--|-------------------------------|-------------------|-------------------------------|--|--------------------------------|--|--| | 1 101 | 0 1010 | 4 | 1000 1010 | 3 | 0010 0000 | 1 | 0000 0000 | 0 | ` 0 | 87.8 | | | 0 0001 | l i | 0000 0001 | 1 | 0000 0000 | ō | 0000 0000 | Ö | ŏ | 87.9 | | | 0 1100 | 3 | 0000 1100 | 2 | 1000 0000 | i | 0000 0000 | ١٠٥ | ŏ | 87.2 | | | 0 0212 | 6 | 0000 0212 | 5 | 0100 0010 | 2 | 0000 0000 | l ŏ | ĺ i l | 87.0 | | 5 d 444 | | 24 | 3331 2323 | 20 | 4441 1133 | 21 | 3221 0223 | 15 | 2 | 87.5 | | 6 201 | 0 2112 | 9 | 0010 2111 | 6 | 2010 1012 | 7 | 2000 1003 | 6 | 1 | 87.5 | | 7 111 | 1 1020 | 7 | 1101 1010 | 5 | 1110 0020 | 5 | 3000 0000 | 3 | 1 | 87.5 | | 3 d 111 | 1 2234 | 15 | 1001 2234 | 13 | 1110 0114 | 9 | 0000 0124 | 7 | 2 | 87 • 4 | | d 521 | 1 1133 | 17 | 5211 1123 | 16 | 3211 0033 | 13 | 3310 0013 | 11 | 2 | 87.3 | | 0 d 322 | 1 1112 | 13 | 3221 1112 | 13 | 2110 0112 | 8 | 2120 0000 | 5 | 1 | 87.3 | | | 0 1000 | 1 | 0000 1000 | 1 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 87.5 | | 121 | 0 1001 | 6 | 1200 1001 | 5 | 1210 0001 | 5 | 0100 0000 | 1 | 1 | 87 · 8 | | 3 q 0000 | 0 1101 | 3 | 0000 1101 | 3 | 0000 0001 | 1 | 0000 0000 | 0 | 1 | 87 · 7 | | | 0 1010 | 3 | 1000 1010 | 3 | 0000 0010 | 1 | 0000 0000 | 0 | 1 | 87.5 | | 5 1000 | 0 1212 | 7 | 1000 1211 | 6 | 1000 0002 | 3 | 1000 0001 | 2 | 1 | 87.8 | | | 2 4211 | 16 | 1232 4211 | 16 | 1232 2001 | 11 | 2021 3202 | 12 | 1 | 87 • 8 | | 1111 | 1 1210 | 8 | 1101 1210 | 7 | 0110 0000 | 2 | 1000 0100 | 2 | 1 | 87 · 7 | | | 0 0111 | 4 | 0100 0111 | 4 | 0100 0000 | 1 | 0000 0000 | 0 | 0 | 86 • 9 | | | 0 1000 | 1 | 0000 100Q | 1 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 86 • 8 | | 0000 | 0 1201 | 4 | 0000 1201 | 4 | 0000 0001 | 1 | 0000 0000 | 0 | 1 | 86.9 | | 1000 | 0 2222 | 9 | 1000 2221 | 8 | 1000 0022 | 5 | 0001 0001 | 2 | 1 | 86 · 8 | | 2201 | 1 0221 | 10 | 2101 0220 | 8 | 1200 0021 | 6 | 1100 0110 | 4 | 1 | 86 · 8 | | 0010 | 0 1101 | 4 | 0000 1101 | 3 | 0010 0001 | 2 | 1000 0002 | 3 | 1 | 87 • 2 | | 1021 | 1 1221 | 10 | 0021 1221 | 9 | 1010 0000 | 2 | 2110 0000 | 4 | 1 | 87.3 | | 0010 | 1110 | 4 | 0000 1110 | 3 | 0010 0000 | 1 | 0000 0000 | 0 | 0 | 87 • 4 | | | 0111 | 5 | 0000 0110 | 2 | 0110 0001 | 3 | 0000 0001 | 1 | 0 | 87.9 | | | 1211 | 9 | 1001 1211 | 7 | 2100 0000 | 3 | 0000 0000 | 0 | 1 | 87 • 7 | | | 2 2210 | 8 | 0002 2210 | 7 | 0100 0100 | 2 | 0000 0000 | 0 | 1 | 87 • 2 | | | 1100 | 2 | 0000 1100 | 2 | 0000 0000 | 0 | 0000 0000 | 0 | O | 87 • 6 | | 0000 | 1100 | 2 | 0000 1100 | 2 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 87 • 7 | | 0001 | 1111 | 5 | 0001 1111 | 5 | 0000 0000 | 0 | 0000 0000 | 0 | 1 | 87.6 | | | | | | | | | | Mean | 0.77 | 87.4 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. $[\]mathbf{K_{H}}$ For horizontal component. $\mathbf{K_{D}}$ For declination. $\mathbf{K_{Z}}$ For vertical component. (See Introduction). ## GEOMAGNETIC FORCE: HORIZONTAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT | 1 LER | WICK (| H) | | | | | | | | | | 14,000 | γ (0·1 | 4 COS | unit) | + | | | | | | | | | Jt | JNE 1965 | |--|---|---|--|---|---|---|---|---|--|---|---|---|---|---|---|---|---|---|---|---|---|---|---
---|---|---| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
14,000y+ | | 1
2
3
4
5
6
7
8
9 d
10 q | 9 668 666 665 661 641 664 657 658 652 658 | 7
667
664
666
664
659
662
655
659
658
662 | 7
669
663
663
666
636
659
654
659
657 | 9
671
663
663
670
632
658
657
660
658
656 | 9
670
663
660
673
641
658
657
658
661
655 | 9
668
663
658
666
641
658
655
654
664
656 | 9 661 651 654 644 652 651 647 637 635 649 | 7
658
658
644
643
646
648
643
641
627
647 | 7
653
652
633
643
635
641
632
641
626
642
643 | 9
645
644
625
632
627
631
622
640
629
639 | 7
636
642
621
629
622
631
622
638
633
639 | 7
638
643
626
629
626
634
628
641
648
643 | 7
647
657
637
652
633
648
640
646
661
643 | 9
656
666
661
673
647
660
647
652
664
649 | 7
674
654
678
674
655
670
659
655
677
651 | 9
681
674
675
674
662
678
667
664
675
655 | 7
687
685
679
697
669
685
677
685
677
662 | 7
686
691
701
704
674
688
666
697
669
671 | 7
687
696
705
696
676
685
668
711
680
678 | 7
685
687
679
680
674
686
670
691
688
678 | 7
679
671
683
681
666
674
667
695
684
672 | 7
674
669
684
675
664
666
664
682
673
666 | 7
671
667
673
661
666
660
661
638
666
663 | 7
667
664
657
654
666
659
660
615
663
662 | 9
667
665
662
665
650
661
653
659
660
656 | 7
1998
1963
1887
1951
1602
1855
1679
1827
1830
1755 | | 12
13 q
14
15 d
16 d
17 d
18
19
20 q | 672
670
677
669
620
320
592
657
659 | 670
668
674
673
603
514
635
659
659 | 667
669
674
669
657
580
640
656
658 | 670
671
670
667
654
562
655
658
657 | 669
672
664
666
630
566
651
659
659 | 668
670
663
659
641
616
653
658 | 662
662
661
655
620
641
656
652
653 | 655
651
658
648
599
615
645
643
648 | 642
637
651
641
551
611
636
635
641 | 633
631
638
638
529
618
625
628
633 | 630
633
637
639
576
616
621
626
625 | 640
641
639
645
636
628
622
628
625 | 644
654
649
659
673
644
634
637
631 | 655
660
660
690
822
674
645
648 | 666
664
681
694
981
692
655
649
652 | 671
670
681
694
1036
697
666
655
662 | 679
673
682
711
987
715
666
661
668 | 681
687
731
810
704
677
667 | 678
689
687
740
717
682
701
668
677 | 684
692
700
698
597
673
689
670
677 | 682
686
684
687
454
666
692
668
677 | 678
682
669
686
436
669
681
665
666 | 677
681
668
685
468
640
666
664
662 | 674
678
664
657
678
445
670
662
659 | 664
666
667
675
666
616
653
653
655 | 1947
1985
2018
2201
1975
788
1673
1673
1719 | | 21 q
22
23
24 q
25 | 658
668
663
666
670
678 | 661
668
656
665
670 | 662
665
662
667
669 | 663
664
666
667
670 | 663
664
666
665
670 | 662
666
661
662
670 | 659
661
655
658
667 | 654
655
652
652
659 | 648
648
647
648
651 | 641
637
641
651
646 | 632
636
632
651
643 | 633
636
633
651
641 | 639
642
630
651
632
662 | 648
644
641
649
645 | 663
652
648
644
672 | 669
666
668
659
721
676 | 669
672
674
677
708 | 673
681
676
679
720 | 678
687
677
689
727 | 678
685
678
691
700 | 679
677
674
685
692
689 | 674
678
674
678
680 | 672
675
669
674
678 | 668
674
665
674
678 | 660
663
659
665
674 | 1846
1901
1808
1953
2179 | | 27
28
29
30 d | 671
665
672
666 | 661
665
675
666 | 665
664
680
665 | 662
661
684
658 | 652
661
677
645 | 644
658
673
648 | 645
652
654
662 | 642
649
639
655 | 639
644
639
641 | 634
637
636
633 | 642
632
637
629 | 649
638
641
635 | 663
655
651
654 | 659
666
649
641 | 663
671
654
671 | 660
671
663
681 | 666
673
688
681 | 674
678
693
684 | 677
679
711
695 | 678
681
707
691 | 675
678
698
686 | 668
674
681
691 | 669
667
689
664 | 669
667
671
666 | 659
662
669
663 | 1827
1886
2062
1908 | | Sum
18,000y+ | 1463 | 1692 | 1792 | 1786 | 1733 | 1747 | 1610 | 1386 | 1152 | 958 | 943 | 1110 | 1415 | 1834 | 2252 | 2536 | 2713 | 2679 | 2715 | 2478 | 2198 | 2019 | 1850 | 1742 | | Grand Total
475,803 | | 2 LEI | RWICK (| D) | | | | | | | | | | 9 | ٠ + | | | | | | | | | | | | J | UNE 1965 | |--------------------|--------------|--------------|--------------|--------|--------------|--------|--------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|--------|--------------|--------|--------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
400·0'+ | | | • | • | • | , | • | , | • | • | , | • | , | • | | • | , | | • | • | | | • | , | , | , | , , | | | 1 | 19.6 | 19.7 | 19.2 | | | 15.2 | | | 16 · 1 | 18.5 | | 25.0 | 26 · 8 | 26 · 9 | 26 · 8 | 26 · 2 | 25.8 | 23 · 4 | 23 · 3 | 23.2 | 22.4 | 20.3 | 16.8 | 20.2 | 20.9 | 100.6 | | 2 | 20 · 2 | 21.1 | 21.2 | 19.3 | 18.3 | 16.0 | 15.3 | | 16.3 | 19.3 | 23.0 | 26.8 | 29.9 | 30.5 | 28 · 8 | 26 · 2 | 25.5 | | 22.1 | 20.9 | 20.5 | 20.2 | 20.0 | 20.2 | 21.6 | 119.2 | | 3 | 20.5 | 21 · 2 | 20.3 | 19.2 | | 16.4 | | 16·8
14·3 | 18.8 | 20·4
18·0 | | 27·5
22·4 | 29.7 | 29.9 | 29·8
29·9 | 28·8
26·4 | 27·1
25·7 | | 20.9 | 23.0 | | 21 · 1 | 14.2 | | 22.1 | 129.6 | | 5 | 19·6
23·0 | 19 6
21 2 | 19·2
17·5 | 17.2 | 17·1
16·1 | 17.1 | | | | | 23.3 | | 25·3
27·7 | 27.9 | | | 22.8 | | 20·7
21·2 | 21·2
21·8 | | | 16·3
21·3 | 21.8 | 20.3 | 87·4
104·4 | | 6 | 20.9 | 20.2 | 19.4 | 17.6 | 16 · 2 | 14.3 | 14.6 | 15.6 | 17.4 | 20.1 | 23 · 2 | 27.0 | 28.5 | 27.3 | 23 · 2 | 22 · 1 | 21.9 | 22.1 | 23 · 3 | 20 · 2 | 21.9 | 22 · 1 | 22 · 1 | 22.0 | 21.0 | 103.2 | | 7 | 21.3 | 21.8 | 17.2 | 16.9 | | | 14 · 2 | | 17 · 4 | 19.7 | 22.1 | 24 · 9 | 26 · 7 | 26 · 3 | 23.9 | 21.9 | 21 · 2 | | 20.9 | 21.8 | 22.0 | 21 · 9 | 21 · 6 | 21 · 3 | 20.4 | 89.5 | | 8 | 21 · 2 | 20.7 | 19.9 | | 17.5 | | | | 17.8 | 21 · 2 | | 26 · 1 | 29.0 | 29 • 4 | 28 · 5 | | | 25.0 | | | 22.0 | | 11.0 | 16.7 | 21.1 | 106 · 9 | | 9 d | | | | | 16 · 4 | | | | 19.4 | 23.0 | 25 · 1 | 28 · 7 | 30.0 | | | | | 25.3 | | | | | | 21.2 | 21.3 | 112.2 | | 10 q | 21 · 2 | 21 · 2 | 19.6 | 18.6 | 18.0 | 17.5 | 16.5 | 16 · 8 | 18.0 | 20.9 | 23 · 2 | 25.0 | 25.8 | 25.1 | 24 · 4 | 23 · 7 | 22.8 | 21 · 7 | 21 · 4 | 21.3 | 21 · 2 | 21 • 3 | 21 · 3 | 21.0 | 21 · 1 | 107.5 | | 11 | 20.2 | 20.0 | 19.4 | 18.4 | 16.9 | 15.8 | 15.6 | 15.9 | 16 · 9 | 19.0 | 21.8 | 24 · 6 | 25.5 | 25.8 | 25 • 4 | 24 · 2 | 23.0 | | 22.9 | 22.8 | 22.7 | 22.5 | 21 · 1 | 22.5 | 21.1 | 106 · 4 | | 12 | 22.8 | 22.3 | 21 · 1 | 18.6 | 16.8 | 15.4 | | | | 17.5 | | | 29 · 1 | 29 · 8 | 29.0 | 26 · 6 | 23.0 | | 22 · 2 | 22.9 | 22.6 | 22.0 | 22.0 | 22.2 | 21.7 | 119.7 | | 13 q | 22.0 | 21.2 | 20.5 | 19•1 | | | | | | 18 - 5 | | | 27.8 | 27.8 | 26 · 8 | | | 23.3 | | | | 21.8 | | 21.2 | 21.5 | 115.8 | | 14 | 20.5 | | 19.9 | | | | 15 · 7 | | 15.3 | | | 23.0 | 24.8 | 26.9 | 27.6 | | | 24 · 1 | 23 · 1 | 22.3 | | | | 16.5 | 20.3 | 87 · 4 | | 15 d | 18 · 5 | 19.1 | 18.3 | 17.5 | 17.3 | 17.5 | 17.5 | 17-4 | 18.6 | 20.1 | 23.3 | 28.6 | 34.3 | 37 · 7 | 34 · 4 | 33 8 | 30 · 1 | 30.5 | 27 · 9 | 18.3 | 21.8 | 22.5 | 15.8 | 14.6 | 23.1 | 155.4 | | 16 d | 12.5 | | 17.7 | 13.7 | 16.3 | 25.9 | | 13.9 | 22.9 | | 19.7 | | | | 19.8 | | 31 · 1 | | | 18.6 | | 15.7 | 3.3 | | 19.4 | 66 • 2 | | 17 d | 21.8 | 27.6 | 15.1 | 21 - 2 | | | 18.5 | 23.3 | 23.0 | 24 · 4 | 26 · 1 | 25.7 | 25.0 | 22.0 | 21.0 | | 24 · 6 | | | | | | | 23.1 | 22.7 | 144 · 8 | | 18 | 10.1 | | | 16.3 | 15.7 | 14.8 | 13.8 | 13.6 | 14.9 | 17.4 | 19.5 | 23.0 | 25.0 | 25.0 | 25.1 | | | 22.3 | 24 · 3 | | | | 22 · 1 | | 19.2 | 61 · 7 | | 19 | | | 17.2 | | | 15.6 | 16.1 | | 15·6
15·8 | 17.5 | 19·3
20·4 | 21·9
23·9 | 24 · 3 | 25·1
27·7 | 24·6
27·0 | | | 23·1
23·5 | 22.3 | | | | | 19.9 | 19.9 | 76.6 | | 20 q | 19.6 | 19.3 | 19.7 | 19.3 | 18.3 | 17 · 1 | | 12.2 | 12.9 | | | | | | | 25.4 | | | 22.4 | 21.3 | 20.5 | 21 · 8 | 21 · 3 | 21 ·
3 | 21.1 | 106.5 | | 21 q | 21.3 | 20.4 | 19・4 | 18.3 | 17.5 | 16 · 4 | 15.0 | 14 · 4 | 15-4 | | | 22 · 4 | 23.9 | 24 · 0 | 24 · 7 | 24 · 7 | 23 · 1 | | 21 · 2 | 22.0 | | | 22 · 1 | 21.7 | 20.4 | 90-2 | | 22 | 21.0 | 20.4 | 19.4 | 19.3 | 18.5 | 16.3 | | 15.1 | | 17.7 | 20.2 | 24 · 1 | 27.8 | 28 · 8 | 27.9 | 26 · 8 | 25 · 1 | | | | | | | 18.5 | 21.3 | 110.8 | | 23 | 20 · 1 | 20.3 | | 17.5 | 16.3 | 15.5 | 14.8 | 14.5 | | 18.1 | 21.3 | 25 · 1 | 28 · 7 | 28 · 2 | 26.9 | 25 · 7 | 23 · 1 | | 21.7 | 21.8 | | | 21 · 3 | | 20.9 | 101.0 | | 24 q | 20 · 3 | | | | 16·8
17·3 | | 16.3 | 16.9 | 17.0 | 18·6
19·1 | | 21·5
25·5 | 23 · 3 | 24·8
28·2 | 25·5
28·2 | | | 23·9
26·2 | | | | | | 21.0 | 20.7 | 95.6 | | 25 | | | 19.0 | | 17.3 | 10.0 | | | | | | | | | | | | | | 20.6 | 23.6 | 24 · 1 | 22.9 | 23.3 | 22.0 | 128.7 | | 26 | 20.3 | | 20.0 | 20.6 | 18.5 | 15.5 | | | 19.8 | 21 · 3 | | 23.9 | 23.9 | 23.7 | 23.3 | 23 · 1 | | 17.5 | | 21.5 | | | 19.6 | | 20.3 | 87 • 4 | | 27 | 18.6 | | 14.6 | 16.5 | 16.8 | | 16.7 | 16.7 | | | 21 · 4 | 25 · 1 | 25 · 7 | 24.8 | 23.0 | 23 · 1 | | 20.6 | | | | | | 20.8 | 20.2 | 83 · 8 | | 28 | 21.4 | 20.4 | | 19.3 | 18.4 | 16.7 | 16.2 | | 16.7 | 17.5 | 20.0 | 23.9 | 26 · 0 | 25.1 | 25.1 | 24 · 2 | | | | | 20.3 | | | | 20.7 | 97 · 7 | | 29 | 20.5 | 20.2 | | | | | | 14.2 | | 18.1 | 22·5
19·1 | 25.8 | 26·7
27·1 | | 29.3 | | | 25.9 | | | | | 11.7 | | 20.8 | 98.8 | | 30 d | 10.3 | 17.5 | 1/./ | 18.2 | 17.2 | 13.7 | 11.9 | 11.3 | 12.4 | 17.0 | 19.1 | 43°3 | 2/-1 | 49.2 | 21.1 | 21.9 | 40.4 | 23·4 | 22.0 | 22.0 | 18.4 | 14.3 | 10.2 | 20.3 | 19.6 | 71 · 4 | | Mean | 19.6 | 20 · 2 | 18.6 | 18.0 | 17.4 | 16 · 1 | 15 · 1 | 15.5 | 17.0 | 19.3 | 21 · 7 | 24 · 8 | 26.8 | 27 · 1 | 26 · 5 | 25.7 | 24 · 6 | 23 · 2 | 22.7 | 21.7 | 21.3 | 20 · 7 | 18.7 | 19.8 | 20.9 | | | Sum
100 · 0 * + | 188 • 2 | 206 · 1 | 159-0 | 141·3 | 121.6 | 83 · 2 | 54 · 3 | 63 · 5 | 110.9 | 178•3 | 251 · 2 | 344 · 5 | 404 · 2 4 | 13.6 | 393.7 | 371 · 9 | 337 · 3 | 296 • 4 | 281 · 9 | 250.8 | 237.6 2 | 21.2 1 | 61.4 1 | 94.3 | | Grand Total
15066-4 | Grand Total 288.184 ## GEOMAGNETIC FORCE: VERTICAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT 3 LERWICE (Z) 47.000y (0.47 CQS unit) + **JUNE 1965** Hour GMI Sum 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 8000y+ 4Ó5 4Ó1 424 424 402 410 404 408 397 410 406 403 401 402 402 276 398 392 384 389 9 d 404 10 q 397 400 13 q 402 404 404 392 392 397 394 15 d 400 16 d 17 d 18 388 414 443 400 437 413 450 419 435 416 427 421 362 413 156 178 241 308 375 405 403 399 404 408 401 416 1377 407 407 408 404 406 400 401 403 398 401 413 414 411 407 20 q 21 q 22 404 399 404 397 398 396 399 395 394 393 24 q 25 402 404 404 405 407 413 404 403 389 389 401 401 403 405 407 409 409 407 385 405 405 1630 28 403 421 421 30 d 374 388 398 Mean ### GEOMAGNETIC CHARACTER FIGURES (K, K_{H} , K_{D} , K_{Z} , AND C) AND TEMPERATURE IN MAGNETOGRAPH HOUSE 969 1128 1284 1428 1576 1637 1518 1401 1254 1110 | | 3-h range | Sum of | Geomagnetic | JUNE 1965 Temperature | |------|--------------|--------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------|---------------------------------|--------------------------------------| | | indices
K | K
indices | indices
K _H | K _H
indices | indices
K _D | K _D
indices | indices
K _Z | Kz | character
of day, C
(0-2) | in magneto-
graph house
200°A+ | | 1 | 0000 2112 | 6 | 0000 2111 | 5 | 0000 0102 | 3 | 0000 0000 | 0 | 1 | 87.6 | | 2 | 1011 2221 | 10 | 0001 2221 | 8 | 1010 0111 | 5 | 0000 0000 | 0 | 1 | 87.9 | | 3 | 0000 1333 | 10 | 0000 1333 | 10 | 0000 0123 | 6 | 0000 0122 | 5 | 1 | 87.9 | | 4 | 1111 3333 | 16 | 0011 3333 | 14 | 1111 1323 | 13 | 0001 1212 | 7 | 1 | 88.0 | | 5 | 2211 1010 | 8 | 2211 1010 | 8 | 2200 0000 | 4 | 2300 0000 | 5 | 1 | 88 · 1 | | 6 | 0001 1120 | 5 | 0001 1120 | 5 | 0000 1120 | 4 | 0000 0000 | 0 | 0 | 88.3 | | 7 | 1001 1210 | 6 | 1001 1210 | 6 | 1000 0000 | 1 | 1000 0000 | 1 | 1 | 88 • 5 | | 8 | 1021 2334 | 16 | 0011 2334 | 14 | 1020 1023 | 9 | 0000 1125 | 9 | 2 | 89.0 | | 9 d | 3321 2332 | 19 | 3221 2321 | 16 | 3311 1232 | 16 | 4200 2321 | 14 | 2 | 88 • 4 | | 10 q | 1000 0000 | 1 | 0000 0000 | 0 | 1000 0000 | 1 | 1000 0000 | 1 | 0 | 88.3 | | 11 | 0000 1221 | 6 | 0000 1221 | 6 | 0000 0111 | 3 | 0000 0100 | 1 | 1 | 87.8 | | 12 | 0101 1111 | 6 | 0001 1111 | 5 | 0100 0000 | 1 | 0000 0000 | 0 | 0 | 87 · 7 | | 13 q | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 87 · 7 | | 14 | 0011 1221 | 8 | 0001 1221 | 7 | 0010 0011 | 3 | 0001 0121 | 5 | 1 | 88.0 | | 15 d | 1102 3333 | 16 | 0002 3333 | 14 | 1102 2233 | 14 | 0001 3234 | 13 | 2 | 87.8 | | 16 d | 4444 7776 | 43 | 4344 7776 | 42 | 4433 5534 | 31 | 4334 5555 | 34 | 2 | 87.8 | | 17 d | 7432 3217 | 29 | 7432 3217 | 29 | 5421 2204 | 20 | 6532 2225 | 27 | 2 | 87.9 | | 18 | 4211 0122 | 13 | 4211 0121 | 12 | 4100 0022 | 9 | 5310 0012 | 12 | 1 1 | 88 • 1 | | 19 | 1000 0000 | 1 | 0000 0000 | 0 | 1000 0000 | 1 | 1000 0000 | 1 | 0 | 88.0 | | 20 q | 0000 0010 | 1 | 0000 0010 | 1 | 0000 0010 | 1 | 0000 0000 | 0 | 0 | 87.9 | | 21 g | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0 1 | 88 • 1 | | 22 | 0101 1011 | 5 | 0101 1011 | 5 | 0000 0001 | 1 | 0000 1000 | 1 | 1 1 | 88 · 4 | | 23 | 1000 1100 | 3 | 0000 1100 | 2 | 1000 0000 | 1 | 0000 0000 | 0 | 0 | 88.0 | | 24 q | 0000 1100 | 2 | 0000 1100 | 2 | 0000 0000 | 0 | 0000 0010 | 1 | 0 | 88-1 | | 25 | 0000 3331 | 10 | 0000 3331 | 10 | 0000 0221 | 5 | 0000 1431 | 9 | 1 | 88 · 1 | | 26 | 2211 1123 | 13 | 1101 1121 | 8 | 2210 0113 | 10 | 1000 0012 | 4 | 1 1 | 88.0 | | 27 | 2110 1000 | 5 | 2100 1000 | 4 | 2110 0000 | 4 | 3100 1100 | 6 | 1 1 | 88.0 | | 28 | 0001 1100 | 3 | 0001 1100 | 3 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 88.0 | | 29 | 1222 2223 | 16 | 1122 2222 | 14 | 1212 1113 | 12 | 0010 1112 | 6 | 1 | 88.0 | | 30 d | 1222 3233 | 18 | 0222 3223 | 16 | 1121 2133 | 14 | 2111 1004 | 10 | 1 | 88.1 | Mean | 0.81 | 87.8 | $[\]it q$ denotes an international quiet day and $\it d$ an international disturbed day. 11,000y 974 997 923 896 $K_{\!\!\!R}$ For horizontal component. $K_{\!\!\!D}$ For declination. $K_{\!\!\!2}$ For vertical component. (See Introduction). # GEOMAGNETIC FORCE: HORIZONTAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT | 1 LER | WICK (| H) | | | | | | | | | | 14,000 | η (0·1 | 4 CGS | unit) | + | | | | | | | | | Ju | TLY 1965 | |---------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|-------------------------------|--------------------------------------|--------------------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6~7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21 -22 | 22-23 | 23-24 | Mean | Sum
15,000γ+ | | 1
2
3
4 q
5 q | γ
657
660
655
659
667 | 7
658
656
658
656
669 | 9
664
656
647
660
670 | 9
662
655
654
666
672 | γ
663
659
659
664
671 | 9
663
659
660
657
667 | 9
650
648
656
649
658 | 634
644
645
645
645 | γ
618
636
640
644
643 | 9
614
629
636
637
640 | 9
629
626
637
630
637 | 9
638
625
638
631
638 | 653
627
644
639
647 | γ
656
637
650
647
659 | γ
668
644
662
656
670 | 9
672
666
676
667
673 | γ
678
683
677
675
674 | 679
685
686
682
678 | 9
684
686
700
682
682 | γ
700
685
696
679
680 | 704
680
691
678
677 | 9
674
670
677
675
675 | γ
659
667
663
672
676 | γ
663
664
663
673 | γ
660
656
661
659
664 | 9
840
747
870
823
947 | | 6 d | 676 | 666 | 666 | 666 | 664 | 657 | 680 | 680 | 657 | 637 | 631 | 635 | 644 | 671 | 672 | 711 | 696 | 696 | 696 | 683 | 676 | 670 | 664 | 669 | 669 | 1063 | | 7 | 657 | 646 | 644 | 655 | 655 | 652 | 647 | 648 | 649 | 644 | 644 | 645 | 650 | 656 | 660 | 670 | 669 | 680 | 685 | 690 | 685 | 677 | 665 | 666 | 660 | 839 | | 8 d | 662 | 663 | 644 | 633 | 670 | 670 | 663 | 661 | 659 | 652 | 650 | 654 | 661 | 671 | 674 | 682 | 708 | 730 | 723 | 690 | 686 | 685 | 670 | 623 | 670 | 1084 | | 9 | 663 | 657 | 641 | 633 | 663 | 662 | 652 | 643 | 637 | 630 | 629 | 634 | 641 | 655 | 679 | 696 | 679 | 675 | 681 | 684 | 686 | 686 | 689 | 681 | 661 | 876 | | 10 d | 670 | 672 | 670 | 637 | 659 | 655 | 640 | 630 | 629 | 623 | 629 | 623 | 637 | 671 | 681 | 676 | 683 | 678 | 670 | 667 | 667 | 667 | 666 | 664 | 657 | 764 | | 11 q | 663 | 663 | 662 | 661 | 657 | 655 | 649 | 644 | 637 | 633 | 630 | 630 | 640 | 651 | 663 | 671 | 678 | 675 | 671 | 670 | 670 | 667 | 665 | 663 | 657 | 768 | | 12 | 662 | 663 | 664 | 664 | 663 | 657 | 648 | 642 | 640 | 637 | 632 | 632 |
640 | 647 | 650 | 652 | 674 | 680 | 696 | 696 | 684 | 678 | 681 | 674 | 661 | 856 | | 13 | 671 | 672 | 670 | 666 | 670 | 666 | 663 | 657 | 648 | 648 | 649 | 651 | 637 | 654 | 674 | 685 | 690 | 687 | 696 | 693 | 674 | 671 | 669 | 667 | 668 | 1028 | | 14 | 663 | 667 | 664 | 664 | 663 | 655 | 653 | 654 | 648 | 643 | 644 | 645 | 651 | 658 | 664 | 674 | 675 | 688 | 679 | 680 | 681 | 674 | 674 | 667 | 664 | 928 | | 15 | 666 | 671 | 666 | 669 | 669 | 667 | 656 | 641 | 635 | 642 | 645 | 636 | 633 | 654 | 671 | 685 | 682 | 685 | 679 | 675 | 668 | 667 | 659 | 657 | 662 | 878 | | 16 | 654 | 649 | 652 | 656 | 657 | 653 | 649 | 639 | 637 | 640 | 639 | 639 | 647 | 655 | 664 | 676 | 670 | 674 | 671 | 676 | 676 | 673 | 666 | 668 | 657 | 780 | | 17 <i>q</i> | 666 | 665 | 665 | 666 | 663 | 662 | 661 | 656 | 651 | 640 | 632 | 627 | 636 | 647 | 658 | 658 | 666 | 673 | 680 | 678 | 677 | 674 | 673 | 673 | 660 | 847 | | 18 | 671 | 669 | 670 | 669 | 669 | 669 | 662 | 657 | 650 | 640 | 632 | 628 | 628 | 640 | 652 | 681 | 698 | 703 | 720 | 707 | 699 | 695 | 692 | 691 | 671 | 1092 | | 19 | 689 | 685 | 681 | 678 | 671 | 666 | 648 | 636 | 643 | 629 | 625 | 628 | 637 | 655 | 655 | 681 | 695 | 691 | 688 | 681 | 677 | 666 | 666 | 662 | 654 | 933 | | 20 | 660 | 662 | 663 | 665 | 663 | 659 | 654 | 647 | 640 | 632 | 640 | 644 | 647 | 650 | 662 | 679 | 688 | 699 | 703 | 68 8 | 677 | 663 | 658 | 657 | 663 | 900 | | 21 | 657 | 657 | 657 | 658 | 664 | 655 | 652 | 650 | 649 | 642 | 639 | 636 | 642 | 652 | 659 | 664 | 669 | 678 | 682 | 676 | 673 | 672 | 671 | 669 | 659 | 823 | | 22 | 670 | 668 | 665 | 667 | 664 | 658 | 656 | 654 | 653 | 643 | 636 | 626 | 627 | 639 | 659 | 678 | 677 | 678 | 680 | 680 | 685 | 689 | 682 | 679 | 663 | 913 | | 23 <i>d</i> | 679 | 679 | 677 | 676 | 673 | 670 | 673 | 676 | 668 | 651 | 641 | 637 | 644 | 675 | 656 | 659 | 679 | 700 | 699 | 696 | 685 | 677 | 671 | 668 | <i>671</i> | 1109 | | 24 | 669 | 662 | 662 | 662 | 665 | 659 | 661 | 653 | 640 | 629 | 629 | 639 | 636 | 650 | 662 | 667 | 672 | 681 | 677 | 679 | 679 | 673 | 670 | 668 | 660 | 844 | | 25 | 668 | 660 | 655 | 662 | 662 | 660 | 661 | 657 | 650 | 654 | 654 | 651 | 652 | 657 | 666 | 658 | 669 | 685 | 677 | 676 | 677 | 673 | 670 | 669 | 663 | 923 | | 26 | 669 | 666 | 666 | 667 | 666 | 667 | 672 | 672 | 667 | 658 | 648 | 647 | 650 | 653 | 658 | 662 | 666 | 678 | 678 | 676 | 677 | 677 | 674 | 671 | 666 | 985 | | 27 | 667 | 670 | 673 | 673 | 676 | 676 | 674 | 672 | 661 | 650 | 645 | 642 | 644 | 656 | 659 | 666 | 685 | 689 | 689 | 695 | 682 | 677 | 673 | 665 | 669 | 1059 | | 28 d | 640 | 663 | 651 | 655 | 646 | 625 | 614 | 623 | 639 | 632 | 632 | 635 | 637 | 658 | 665 | 670 | 684 | 670 | 675 | 684 | 680 | 675 | 667 | 666 | <i>654</i> | 686 | | 29 | 655 | 659 | 662 | 657 | 659 | 649 | 650 | 659 | 654 | 644 | 630 | 640 | 647 | 655 | 672 | 690 | 700 | 691 | 707 | 686 | 674 | 666 | 662 | 662 | 664 | 930 | | 30 | 659 | 655 | 655 | 654 | 658 | 655 | 648 | 643 | 639 | 642 | 641 | 640 | 649 | 659 | 667 | 672 | 673 | 674 | 670 | 669 | 669 | 670 | 662 | 663 | 658 | 786 | | 31 q
Mean | 655 | 656 | 662 | 665 | 666 | 662 | 654 | 644 | 631 | 620 | 622 | 633 | 648 | 665 | 669 | 671
674 | 676
680 | 680
685 | 677 | 674 | 672 | 674 | 663 | 660 | 658 | 791 | | Sum
19,000y+ | 1579 | | 1504 | 1487 | 1571 | 1447 | 1301 | 1156 | 992 | 791 | 727 | 747 | 915 | 1303 | 1571 | 1888 | 2088 | 2228 | 2283 | 2189 | | | | 1659 | 002 | Grand Total
492,712 | | 2 LE | RWICK | (D) | | | | | | | | | | 9 | ۰ + | | | | | | | | | | | | | JULY | 1965 | |-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|------------------|--------------|------------------|--------------|--------|--------------|--------------|--------------|--------------|--------------|------------------|--------------|--------|------|----------------| | | Hour
0-1 | | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 3 13-14 | 14-15 | 5 15-16 | 5 16-1 | 7 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | | Sum
400·0'+ | | | | • | • | • | • | • | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | , | • | , | • | | • | | 1 2 | 18·1
16·7 | 17·8
17·2 | 17·4
18·1 | 15·9
19·4 | 15·9
16·9 | 15·9
15·7 | 14·6
14·6 | 15·6
13·9 | 17·7
13·9 | 21·1
17·2 | | 26·2
23·1 | 27.3 | | 26·7
26·2 | 26·1
24·3 | | | | 22·9
21·0 | 16·0
21·6 | 18·3
20·6 | | 17·7
19·5 | 19.9 | | 89·2
77·7 | | 3 | 21.5 | | | | | | | 13.9 | | 16.0 | | | 25.7 | | | | | 24 · 2 | | | | 17.0 | 18.9 | | 20.5 | 1 | 92.2 | | 4 q | | | 15.3 | | | | | 16.4 | | | | | 26.0 | | | | | 21.5 | | | | 21.5 | 21 · 4 | | 20.0 | | 79.5 | | 5 q | 17.7 | 17.7 | 17.7 | 17.0 | 15.7 | 14.7 | 13.9 | 15.1 | 16.0 | 17.7 | 20.5 | 23.3 | 25.5 | 27 • 1 | 26 · 3 | 25 · 1 | 23.3 | 22.5 | 22 · 1 | 22 • 4 | 22.1 | 22.0 | 21 · 5 | 20.7 | 20.3 | ļ | 87.6 | | 6 d | 19-6 | 18 · 4 | 17.8 | 14-9 | | | | | 20 · 4 | 21.5 | | | | 27.9 | 30 · 4 | | | 22.7 | | | 23 · 1 | 22.5 | 21 · 6 | 21.3 | 22.6 | | 142 · 8 | | 7 | 22.0 | | 19 · 4 | | 15.3 | 14.0 | | 14.7 | | 18.4 | | | 25.0 | | 26.6 | | 23 · 7 | | 22.9 | | 18.8 | 21 · 9 | 17 · 8 | 18.8 | 20 · 1 | 1 | 82.4 | | 8 <i>d</i>
9 | 19·5
15·6 | 18·5
14·8 | 20.9 | 16·1
16·9 | 13·8
13·5 | 14.7 | | 14·0
15·8 | 14.7 | 16.6 | | | 25 · 4 | | 26 · 2
25 · 4 | | 24 · 4 | 21.7 | 24 · 4 | 22.5 | | 19.6 | 18·7
22·6 | 21.0 | 20.3 | 1 | 86.3 | | 10 d | 18.8 | | 12.3 | | | | | | | 21 · 7 | | | 26.9 | | 25 • 4 | | | 21.3 | | 22.5 | 22.5 | 21.6 | 21.5 | 21 · 1 | 20.0 | | 80·5
84·7 | | 11 g | 20.5 | 20.0 | 19.8 | 18.9 | 17.4 | 15.0 | 15.0 | 15.9 | 17 · 1 | 18.3 | 20.6 | 23 · 3 | 25 · 2 | 24 · 5 | 23.5 | 22 · 9 | 21 · 7 | 21 • 0 | 20.9 | 21 - 5 | 21 · 2 | 20.7 | 21 · 2 | 20.4 | 20.3 | | 86 · 5 | | 12 | 20.7 | | | | 17.1 | | | 16.9 | 17.8 | 17.7 | | | 25 · 1 | 26.9 | 27.8 | 26 · 3 | | _ | 24 · 2 | | 22.0 | 21.3 | 21 . 2 | 20 4 | 21.3 | | 111.5 | | 13 | 19.9 | 19.6 | 19.4 | 17.1 | | | | 14.7 | | 17.0 | | 23 · 4 | 26 · 2 | 26.6 | 26 · 9 | 27 · 2 | | 23.5 | 22.8 | 21 · 7 | 21 · 4 | 21 · 5 | 29.8 | 20.5 | 20.7 | 1 | 96.0 | | 14 | 19.9 | | 16.4 | | | 14.5 | | 15 · 1 | | 19.6 | | | 25 · 5 | | 26 · 1 | 25.8 | | | 21 · 7 | 21.7 | | | 19 · 7 | | 20.0 | | 79.3 | | 15 | 18.6 | 18.7 | 17.9 | 17.6 | 15.7 | 13.8 | 14.2 | 16.8 | 19.6 | 19.6 | 20.5 | 25 · 4 | 29.0 | 31 · 0 | 27.5 | 25 · 7 | 23 · 7 | 22.6 | 21 · 7 | 21 · 9 | 23.3 | 22.6 | 23.3 | 17.1 | 21 · 2 | 1 | 107·8 | | 16 | 19.1 | 19-1 | 19 · 1 | 17.2 | | 16.7 | | | 18.4 | 20.0 | 21.8 | 24 · 6 | 26 · 7 | 27 · 4 | 27 · 1 | 26 · 4 | 24 · 5 | | 21 · 7 | 21 · 7 | 21.6 | 20.6 | 20 - 7 | 21 · 0 | 21.2 | | 107 · 7 | | 17 q | 20.9 | -,- | 19.8 | 18.9 | 18.0 | 16·7
15·4 | | 17·1
•15·0 | | | 22·4
18·6 | 24·6
21·0 | 25.8 | 27 . 2 | 27·4
26·1 | 26 · 7 | 24 · 8 | | 21.5 | | 20 · 7 | 20 · 7 | 20.7 | | 21.3 | | 112-1 | | 18
19 | 19.9 | | 19·4
18·8 | 17.8 | | 13.4 | | 17.5 | 19.1 | | | | 29.3 | | 33.2 | 32.3 | | 26·3
26·8 | 24.5 | | 21·8
17·5 | 23·4
21·4 | 21 · 2
20 · 5 | | 20.9 | | 102·3
125·0 | | 20 | 18.5 | | 17.4 | | | | | 16.1 | | | | 23 · 3 | 25.1 | | | | 26.3 | | 22 • 4 | | 23.1 | | 17.9 | | 20.6 | 1 | 94.5 | | 21 | 19.0 | 18 · 1 | 20.9 | 18 · 1 | 18.2 | 17.0 | 15.2 | 14.7 | 15.3 | 17.0 | 20.6 | 22 · 9 | 24.5 | 25.7 | 25 · 6 | 24 · 7 | 22.8 | 22.6 | 22.9 | 21 · 9 | 21 · 2 | 21 · 0 | 20 · 8 | 20 · 7 | 20.5 | | 91 · 4 | | 22 | 20.3 | | 19.5 | 18.9 | 17.2 | 15.1 | 15.9 | 16 · 4 | | | 19.9 | | 24 · 1 | 24.5 | 24.5 | 23.9 | 23 · 5 | | 23.3 | 23 · 1 | 23.2 | 23.3 | 20.9 | 20.8 | 20.8 | 1 | 99 · 2 | | 23 d | 22.6 | | | 18.5 | | 22 · 7 | | 18.7 | | | | 21 · 8 | 24 · 7 | 25.3 | 26 · 7 | 27 · 5 | 27.5 | | 23.8 | | | 12.8 | | 20.8 | 21 · 3 | | 111.9 | | 24
25 | 20.7 | | | 19.4 | | 15.4 | 14·0
16·1 | 13·1
17·0 | | 17·8
18·9 | 19·7
20·6 | 22·2
22·0 | 26 · 4 | 27·7
24·5 | 24·6
23·7 | 23·8
23·7 | 23.3 | 22 · 3 | 20·8
22·1 | | | 21·9
21·9 | | 20.9 | 20.4 | | 88·5
103·5 | i | | | 26
27 | 20.8 | 20·5
19·2 | 20·1
18·5 | 20·0
18·2 | 20·1
16·3 | 20·0
15·1 | | 16·1
12·7 | 17.5 | 20·7
17·1 | 22·1
19·1 | 24·5
23·0 | 26 · 6
25 · 9 | 26·8
27·6 | 26·1
29·6 | 23.8 | 21.9 | 20·5
24·9 | 21·0
22·8 | 21·3
21·9 | | 22.0 | | | 21.5 | 1 1 | 115 · 7 | | 28 d | 16.3 | | 13.6 | | | | | 19.0 | 18.4 | | 21.0 | 23.5 | 24.9 | 24 · 8 | 25.9 | 26.6 | 25 · 7 | | | 19.3 | | | 19·9
17·1 | | 20.5 | | 93·1
94·2 | | 29 | | | | | | | | 16.1 | | 17.4 | 21 · 8 | 24.0 | 26.5 | 26.9 | 26.0 | 23.0 | | | | | | 21.0 | | | 19.9 | İ | 78.8 | | 30 | 20.8 | 22 · 1 | 17.2 | 15.8 | 15.1 | 13.6 | 13.9 | 14.2 | 16.0 | 17.2 | 20 · 1 | 22.8 | 24 · 6 | 24 · 7 | 24.6 | 23.5 | 22.5 | 22.0 | 21.9 | 21 • 2 | 20.9 | 17.2 | 20 · 1 | 18.9 | 19.6 | | 70.9 | | 31 <i>q</i> | 18.7 | 18.2 | 17.7 | 17.2 | 16.8 | 16 - 2 | 16.3 | 17.2 | 17.4 | 19.3 | 21.8 | 25.6 | 28 · 6 | 28.7 | 27.0 | 24.9 | 23.0 | 21 • 2 | 21.0 | 19.5 | 19.6 | 20.9 | 20.7 | 20.0 | 20.7 | | 97 · 5 | | Mean | 19・4 | 18.9 | 18.7 | 17.3 | 16.3 | 15 · 7 | 15.6 | 15.9 | 16.9 | 18.5 | 20.7 | 23.7 | 26 · 0 | 26 · 7 | 26.5 | 25.5 | 24 · 3 | 23 · 1 | 22.5 | 21.5 | 20.9 | 20.7 | 20.4 | 19.9 | 20.7 | 1 | | | Sum
400·0′+ | 202 • 5 | 184.9 | 180.0 | 135 · 1 | 105.6 | 87 · 7 | 83 · 5 | 94.5 | 123.6 | 173 · 1 | 241 · 9 | 333 • 7 | 407 • 1 | 427 · 6 | 422.3 | 392 • 0 | 352.9 | 317.5 | 297.8 | 267 · 0 | 247.0 | 241 · 8 | 233.5 | 217.7 | | | nd Total | | 3 LER | WICE (| 2) | | | | | | | | | | 47,000 | 7 (0.4 | / CLS | unit) | +
 | | | | | | | | | Ju | LY 1965 | |---------------|--------|---------------|-----|-----|-----|------|-----|-----|-----|------|-------------|--------|--------|-------|-------|-------|-------|------------|-------|-------|-------|------------|------------|--------------|------------
--------------------| | | Hour (| CMT
1-2 | 2-3 | 3-4 | 4-5 | ·5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
9000√+ | | | γ | γ | γ | γ | γ | γ | γ | | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ. | γ | γ | γ | γ | | 1 | 295 | 339 | 375 | 393 | 403 | 404 | 403 | 403 | 400 | 395 | 393 | 390 | 393 | 408 | 408 | 415 | 413 | 416 | 411 | 4Ó3 | 399 | 398 | 366 | 3 5 7 | 391 | 380 | | 2 | 377 | 393 | 399 | 399 | 399 | 402 | 406 | 407 | 404 | 404 | 401 | 400 | 404 | 407 | 412 | 419 | 419 | 419 | 416 | 416 | 411 | 407 | 403 | 398 | 405 | 722 | | 3 | 394 | 393 | 386 | 381 | 394 | 397 | 401 | 407 | 403 | 396 | 395 | 395 | 396 | 396 | 393 | 397 | 404 | 405 | 404 | 411 | 416 | 411 | 404 | 396 | 399 | 575 | | 4 q | 396 | 396 | 397 | 399 | 404 | 411 | 411 | 410 | 408 | 403 | 398 | 392 | 389 | 389 | 891 | 393 | 398 | 400 | 405 | 408 | 407 | 407 | 405 | 400 | 401 | 617 | | 5 q | 398 | 398 | 401 | 403 | 404 | 407 | 407 | 405 | 398 | 395 | 391 | 385 | 387 | 393 | 393 | 394 | 402 | 403 | 404 | 404 | 406 | 405 | 404 | 403 | 400 | 590 | | 6 d | 399 | 398 | 397 | 388 | 380 | 368 | 339 | 348 | 366 | 384 | 392 | 394 | 419 | 461 | 453 | 449 | 474 | 447 | 453 | 449 | 434 | 424 | 417 | 407 | 410 | 840 | | 7 | 402 | 395 | 389 | 397 | 407 | 409 | 407 | 407 | 408 | 411 | 414 | 412 | 409 | 412 | 412 | 419 | 421 | 419 | 417 | 417 | 428 | 421 | 410 | 404 | 410 | 847 | | 8 d | 401 | 396 | 379 | 313 | 354 | 379 | 389 | 394 | 398 | 402 | 407 | 408 | 400 | 392 | 392 | 396 | 394 | 414 | 419 | 439 | 426 | 421 | 395 | 359 | 394 | 467 | | 9 | 343 | 353 | 361 | 324 | 359 | 392 | 403 | 404 | 404 | 405 | 406 | 407 | 408 | 405 | 401 | 412 | 425 | 425 | 416 | 411 | 407 | 404 | 400 | 402 | 395 | 477 | | 0 d | 407 | 397 | 375 | 333 | 312 | 344 | 375 | 385 | 388 | 392 | 405 | 408 | 414 | 409 | 408 | 411 | 416 | 418 | 415 | 408 | 407 | 407 | 407 | 409 | 394 | 450 | | 1 q | 411 | 413 | 413 | 413 | 411 | 410 | 412 | 415 | 411 | 408 | 404 | 406 | 409 | 410 | 411 | 411 | 412 | 416 | 411 | 409 | 407 | 408 | 408 | 408 | 410 | 847 | | 2 | 408 | 409 | 410 | 410 | 411 | 411 | 408 | 407 | 403 | 393 | 394 | 393 | 393 | 397 | 403 | 404 | 398 | 396 | 398 | 403 | 411 | 409 | 405 | 406 | 403 | 680 | | 3 | 407 | 407 | 408 | 411 | 411 | 408 | 405 | 404 | 398 | 394 | 391 | 384 | 388 | 392 | 391 | 399 | 407 | 411 | 412 | 413 | 413 | 407 | 405 | 403 | 403 | 669 | | 4 | 403 | 399 | 392 | 394 | 398 | 398 | 392 | 389 | 388 | 389 | 388 | 385 | 385 | 388 | 396 | 406 | 411 | 411 | 412 | 409 | 405 | 404 | 395 | 390 | 397 | 527 | | 5 | 394 | 395 | 397 | 400 | 403 | 406 | 403 | 400 | 393 | 387 | 386 | 394 | 404 | 407 | 416 | 430 | 439 | 434 | 430 | 418 | 406 | 402 | 394 | 385 | 405 | 723 | | 6 | 376 | 390 | 395 | 401 | 402 | 403 | 403 | 403 | 403 | 400 | 393 | 394 | 394 | 396 | 399 | 405 | 411 | 416 | 416 | 409 | 408 | 407 | 406 | 403 | 401 | 633 | | 7 q | 402 | 403 | 406 | 407 | 408 | 407 | 410 | 409 | 407 | 406 | 403 | 402 | 398 | 398 | 404 | 410 | 411 | 412 | 411 | 407 | 406 | 405 | 403 | 403 | 406 | 738 | | 8 | 403 | 403 | 406 | 407 | 408 | 408 | 407 | 403 | 405 | 401 | 396 | 396 | 397 | 396 | 398 | 393 | 393 | 398 | 405 | 421 | 421 | 412 | 405 | 400 | 403 | 682 | | 9 | 401 | 403 | 405 | 407 | 409 | 408 | 412 | 402 | 388 | 395 | 394 | 400 | 412 | 428 | 439 | 455 | 473 | 462 | 443 | 430 | 418 | 415 | 408 | 402 | 417 | 1009 | | 0 | 398 | 403 | 404 | 407 | 407 | 407 | 411 | 411 | 407 | 403 | 40 0 | 399 | 398 | 398 | 397 | 398 | 407 | 419 | 430 | 429 | 428 | 421 | 407 | 405 | 408 | 794 | | 1 | 399 | 397 | 397 | 395 | 403 | 405 | 406 | 407 | 402 | 401 | 402 | 394 | 393 | 398 | 396 | 397 | 399 | 403 | 404 | 406 | 404 | 405 | 405 | 403 | 401 | 621 | | 2 | 403 | 403 | 403 | 403 | 404 | 407 | 403 | 402 | 402 | 403 | 401 | 394 | 391 | 390 | 389 | 395 | 403 | 403 | 404 | 404 | 404 | 402 | 408 | 405 | 401 | 626 | | 3 d | 384 | 382 | 389 | 391 | 393 | 389 | 385 | 394 | 400 | 407 | 407 | 407 | 403 | 399 | 417 | 419 | 416 | 428 | 436 | 443 | 433 | 411 | 398 | 403 | 406 | 734 | | 4 | 407 | 407 | 405 | 403 | 403 | 405 | 402 | 402 | 402 | 400 | 403 | 403 | 405 | 403 | 407 | 413 | 407 | 403 | 408 | 413 | 410 | 408 | 409 | 409 | 406 | 737 | | 5 | 408 | 405 | 382 | 378 | 390 | 398 | 404 | 406 | 403 | 398 | 394 | 396 | 401 | 403 | 402 | 404 | 404 | 403 | 407 | 409 | 407 | 407 | 407 | 407 | 401 | 623 | | 5 | 407 | 407 | 407 | 407 | 403 | 395 | 390 | 389 | 389 | 389 | 389 | 394 | 393 | 390 | 398 | 405 | 411 | 410 | 407 | 403 | 404 | 402
411 | 404 | 405 | 400 | 598
710 | | 7 | 407 | 407 | 407 | 407 | 404 | 400 | 395 | 395 | 397 | 395 | 397 | 397 | 398 | 403 | 405 | 408 | 416 | 420 | 420 | 415 | 416 | | 405 | 385 | 405 | | | B d | 332 | 356 | 371 | 383 | 385 | 367 | 368 | 382 | 395 | 396 | 400 | 404 | 407 | 407 | 413 | 419 | 417 | 421 | 415 | 423 | 418 | 410 | 393
411 | 362
404 | 393
409 | 444
806 | | 9 | 380 | 398 | 403 | 403 | 407 | 396 | 395 | 390 | 394 | 392 | 393 | 397 | 401 | 416 | 433 | 439 | 430 | 425
417 | 425 | 437 | 423 | 414
408 | 407 | 397 | 404 | 703 | |) | 400 | 392 | 397 | 402 | 404 | 411 | 411 | 405 | 402 | 398 | 398 | 398 | 397 | 398 | 403 | 407 | 413 | | 414 | 413 | 411 | | | | | | | 1 q | 398 | 403 | 407 | 411 | 413 | 410 | 411 | 417 | 416 | 412 | 405 | 396 | 398 | 402 | 405 | 409 | 412 | 416 | 418 | 416 | 416 | 411 | 407 | 407 | 409 | 816 | | en | 392 | 395 | 396 | 393 | 397 | 399 | 399 | 400 | 399 | 399 | 398 | 397 | 399 | 403 | 406 | 411 | 415 | 416 | 416 | 416 | 413 | 409 | 403 | 398 | 403 | | | UBBT
1007+ | 140 | 240 | 263 | 170 | 293 | 362 | 374 | 402 | 382 | 354 | 340 | 324 | 384 | 491 | 585 | 731 | 856 | 890 | 886 | 896 | 810 | 684 | 501 | 327 | | Grand To
299,68 | GEOMAGNETIC CHARACTER FIGURES (K, K_H , K_D , K_Z , AND C) AND TEMPERATURE IN MAGNETOGRAPH HOUSE | 4 | LERWICE | | | | | | | | | JULY 1965 | |------------|----------------------|------------------------|--|-------------------------------------|--|-------------------------------|--|-------------------------------|--|--| | | 3-h range
indices | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of K _D indices | 3-h range
indices
K _Z | Sum of K _Z indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph house
200°+ | | 1 | 3122 2232 | 17 | 3122 2232 | 17 | 3112 1132 | 14 | 4200 2013 | 12 | 1 | 88 · 2 | | 2 | 1111 2101 | 8 | 0011 2101 | 6 | 1111 1101 | 7 | 2000 0000 | 2 | 1 | 88.0 | | 3 | 2200 1122 | 10 | 1100 1112 | 7 | 2200 0022 | 8 | 1100 0011 | 4 | 1 | 87 • 6 | | - | 1010 0101 | 1 4 | 0010 0100 | 2 | 1010 0001 | 3 | 0100 0000 | 1 | 0 | 87 • 7 | | 4 q
5 q | 1010 0101 | 2 | 0000 0000 | ō | 1010 0000 | 2 | 0000 0000 | 0 | 0 | 87 · 9 | | 6 d | 1333 3312 | 19 | 1222 3311 | 15 | 1333 3212 | 18 | 0232 3222 | 16 | 1 | 87 · 6 | | 7 | 2111 1222 | 12 | 2111 1212 | 11 | 2111 0022 | 9 | 2200 0111 | 7 | 1 | 87 · 3 | | 8 d | 3312 2434 | 22 | 3302 2434 | 21 | 3311 1223 | 16 | 3410 2324 | 19 | 2 | 87 • 7 | | 9 4 | 4311 3312 | 18 | 3301 3311 | 15 | 4311 0102 | 12 | 3400 1220 | 12 | 1 | 87.9 | | 10 d | 3422 3210 | 17 | 2412 3210 | 15 | 3422 0100 | 12 | 3321 1000 | 10 | 1 | 87 · 5 | | 11 q | 0000 1000 | 1 | 0000 1000 | 1 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 87 • 9 | | 12 | 6000 0231 | 6 | 0000 0231 | 6 | 0000 0000 | 0 | 0000 0120 | 3 | 1 | 87 · 4 | | 13 | 1112 2220 | 11 | 0102 2220 | 9 | 1111 0110 | 6 | 0001 0000 | 1 | 1 | 88.0 | | | 1100 1212 | 8 | 0000 1211 | 5 | 1100 0102 | 5 | 1000 0001 | 2 | 1 | 88.0 | | 14
15 | 1112 3223 | 15 | 1012 3222 | 13 | 1111 1023 | 10 | 0001 1101 | 4 | 1 | 88 · 1 | | 16 | 2111 1110 | 8 | 1111 1110 | 7 | 2110 0000 | 4 | 1000 0000 | 1 | 1 | 88 • 2 | | | 0000 1010 | 2 | 0000 1010 | 2 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 88.3 | | | 0000 1010 | 6. | 0000 0320 | 5 | 0000 0121 | 4 | 0000 0121 | 4 | 1 | 88 • 2 | | 18 | 1232 2222 | 16 | 1021 2221 | 11 | 1232 1222 | 15 | 0021 1220 | 8 | 1 | 88 · 1 | | 19
20 | 1001 1222 | 9 | 0001 1221 | 7 | 1000 0112 | 5 | 0000 0201 | 3 | 1 | 88 · 5 | | 21 | 1010 0110 | 4 | 1000 0110 | 3 | 1010 0000 | 2 | 0100 0000 | 1 | 0 | 88.3 | | 22 | 0110 1102 | 6 | 0110 1101 | 5 | 0110 0002 | 4 | 0000 0001 | 1 | 0 | 88 • 6 | | 22
23 d | 1211 3323 | 16 | 1111 3322 | 14 | 1211 0123 | 11 | 2120 2221 | 12 | 1 | 89.0 | | 23 a
24 | 1121 2121 | ii | 0111 2121 | و | 1121 1120 | 9 | 0000 0100 | 1 | 1 | 89.0 | | 25 | 2211 1210 | 10 | 1010 1210 | 6 | 2211 0000 | 6 | 2200 0000 | 4 | 1 | 88 • 9 | | 26 | 0100 0101 | 3 | 0100 0100 | 2 | 0100 0001 | 2 | 0000 0000 | 0 | 0 | 88 • 5 | | | 1111 2222 | 12 | 1011 2222 | 11 | 0111 1122 | 9 | 0000 0103 | 4 | 1 | 88 • 0 | | 27 | 3331 2222 | 18 | 3331 2221 | 17 | 2321 0022 | 12 | 3230 0113 | 13 | 1 | 87 • 9 | | 28 d | 1221 3230 | 14 | 1221 3230 | 14 | 1121 1230 | 11 | 3110 2221 | 12 | 1 | 88.0 | | 29
30 | 2100 0002 | 5 | 0000 0001 | 1 | 2100 0002 | 5 | 1000 0101 | 3 | 1 | 88.0 | | 31 q | 1010 1110 | 5 | 1000 1100 | 3 | 0010 0010 | 2 | 1000 0000 | 1 | 0 | 87 • 6 | | 31 q | 1010 1110 | | | | | | | Mean | 0.77 | 88 • 1 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. $[\]mathbf{K}_{\mathbf{H}}$ For horizontal component. $\mathbf{K}_{\mathbf{D}}$ For declination. $\mathbf{K}_{\mathbf{Z}}$ For vertical component. (See Introduction). # GEOMAGNETIC FORCE: HORIZONTAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT | 1 LER | WICK (| H) | | | | | | | | | | 14,0007 | (0.14 | CGS u | mit) + | | | | | | | | | | AUG | JST 1965 | |-----------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------
------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21 - 22 | 22-23 | 23-24 | Mean | Sum
15,000y+ | | | γ | ?_ | γ | γ | γ | γ | γ | | 1 2 | 658
669 | 658
673 | 660
676 | 658
677 | 662
678 | 658
674 | 651
664 | 644
657 | 638
644 | 628
634 | 626
631 | 632
631 | 647
638 | 658
650 | 666
691 | 669
690 | 679
705 | 688
695 | 699
692 | 687
689 | 687
671 | 675
658 | 677
661 | 670
661 | 661
667 | 875
1009 | | 3 | 665 | 660 | 657 | 664 | 658 | 653 | 647 | 638 | 634 | 638 | 642 | 644 | 642 | 642 | 653 | 673 | 692 | 667 | 668 | 680 | 680 | 672 | 668 | 670 | 659 | 807 | | 4 | 671 | 667 | 656 | 656 | 660 | 661 | 657 | 653 | 648 | 642 | 638 | 634 | 638 | 645 | 661 | 687 | 668 | 669 | 683 | 679 | 678 | 681 | 669 | 665 | 661 | 866 | | 5 q | 664 | 664 | 664 | 665 | 665 | 663 | 6 59 | 656 | 654 | 651 | 642 | 650 | 650 | 654 | 668 | 670 | 672 | 673 | 676 | 679 | 678 | 675 | 672 | 665 | 664 | 929 | | 6. q | 664 | 664 | 660 | 659 | 659 | 658 | 657 | 654 | 646 | 641 | 636 | 639 | 643 | 657 | 657 | 665 | 668 | 671 | 672 | 672 | 676 | 672 | 672 | 669 | 660 | 831 | | 7 | 670 | 669 | 669 | 672 | 670 | 665 | 661 | 655 | 653 | 654 | 653 | 643 | 644 | 654 | 664 | 657 | 672 | 673 | 677 | 678 | 677 | 676 | 678 | 672 | 665 | 956 | | 8 | 673
664 | 666
663 | 663
664 | 660
668 | 667
671 | 665 | 662
659 | 656
654 | 649
648 | 649
644 | 643
644 | 642
642 | 643
655 | 650
664 | 666
668 | 668
661 | 668
687 | 681
693 | 682
680 | 683
675 | 687
676 | 669
670 | 666 | 665
661 | 663 | 923 | | 10 a | 659 | 659 | 660 | 664 | 661 | 663
657 | 653 | 646 | 638 | 634 | 626 | 630 | 648 | 659 | 668 | 676 | 672 | 672 | 673 | 675 | 673 | 669 | 676
668 | 673 | 665
659 | 950
813 | | 11 | 680 | 675 | 660 | 657 | 657 | 661 | 657 | 651 | 647 | 644 | 639 | 641 | 647 | 656 | 664 | 672 | 673 | 675 | 677 | 677 | 677 | 680 | 675 | 657 | 662 | 899 | | 12 | 657 | 667 | 664 | 667 | 658 | 660 | 646 | 637 | 628 | 623 | 624 | 635 | 646 | 655 | 664 | 666 | 665 | 676 | 670 | 673 | 675 | 668 | 670 | 667 | 657 | 761 | | 13 a | 662 | 664 | 665 | 665 | 664 | 659 | 654 | 651 | 646 | 637 | 629 | 637 | 646 | 649 | 660 | 667 | 670 | 673 | 676 | 679 | 680 | 676 | 675 | 673 | 661 | 857 | | 14 | 672 | 673 | 665 | 661 | 659 | 663 | 665 | 661 | 653 | 642 | 638 | 640 | 657 | 653 | 664 | 672 | 671 | 673 | 679 | 675 | 677 | 679 | 664 | 662 | 663 | 918 | | 15 | 661 | 659 | 659 | 660 | 658 | 655 | 650 | 644 | 639 | 635 | 635 | 639 | 643 | 651 | 661 | 662 | 664 | 672 | 686 | 679 | 673 | 675 | 673 | 678 | 659 | 811 | | 16 | 674 | 663 | 661 | 663 | 661 | 660 | 657 | 656 | 649 | 645 | 641 | 641 | 646 | 656 | 666 | 671 | 672 | 671 | 676 | 680 | 690 | 684 | 671 | 671 | 664 | 925 | | 17 | 674 | 669 | 665 | 656 | 661 | 658 | 656 | 651 | 649 | 644 | 641 | 628 | 632 | 659 | 668 | 662 | 666 | 683 | 671 | 667 | 668 | 667 | 664 | 661 | 659 | 820 | | 18 d | 656 | 659 | 657 | 659 | 660 | 658 | 649 | 643 | 634 | 627 | 628 | 638
630 | 641 | 654 | 667 | 693 | 697 | 720 | 706 | 705 | 655 | 649 | 659 | 663 | 662 | 877 | | 19 d
20 d | 656
666 | 659
654 | 653
658 | 653
653 | 657
660 | 599
664 | 612
661 | 638
647 | 627
629 | 624
623 | 623
616 | 628 | 637
637 | 652
659 | 630
674 | 660
679 | 674
680 | 702
676 | 693
677 | 678
667 | 663
668 | 677
667 | 661
636 | 664
587 | 651
653 | 622
666 | | | | | | | | | | | | | | | | 647 | | | | | | | | | | | | | | 21
22 | 645
661 | 661
662 | 654
661 | 634
661 | 631
660 | 667
659 | 659
656 | 643
652 | 632
641 | 611
636 | 612
631 | 623
636 | 634
637 | 651 | 654
656 | 669
665 | 671
663 | 659
674 | 665
676 | 567
669 | 665
668 | 663
667 | 663
656 | 662
639 | 650
656 | 591
737 | | 23 | 641 | 649 | 651 | 654 | 656 | 656 | 656 | 652 | 642 | 637 | 636 | 640 | 649 | 653 | 662 | 671 | 687 | 679 | 693 | 676 | 684 | 663 | 646 | 653 | 658 | 786 | | 24 d | 635 | 653 | 663 | 666 | 664 | 659 | 645 | 622 | 616 | 622 | 627 | 633 | 645 | 653 | 656 | 654 | 658 | 660 | 668 | 670 | 676 | 672 | 661 | 641 | 651 | 619 | | 25 d | 631 | 641 | 642 | 652 | 671 | 662 | 658 | 653 | 647 | 642 | 639 | 643 | 647 | 656 | 670 | 660 | 668 | 673 | 678 | 687 | 671 | 666 | 667 | 676 | 658 | 800 | | 26 | 66.7 | 645 | 658 | 664 | 667 | 664 | 652 | 649 | 638 | 634 | 636 | 647 | 655 | 661 | 673 | 674 | 667 | 671 | 669 | 671 | 672 | 671 | 665 | 665 | 660 | 835 | | 27 | 665 | 663 | 661 | 664 | 664 | 663 | 663 | 654 | 648 | 638 | 631 | 637 | 653 | 665 | 678 | 673 | 671 | 674 | 671 | 671 | 678 | 667 | 664 | 666 | 662 | 882 | | 28 q | 675 | 663 | 661 | 661 | 661 | 658 | 653 | 646 | 639 | 633 | 634 | 638 | 646 | 653 | 657 | 660 | 663 | 668 | 675 | 669 | 667 | 667 | 665 | 667 | 657 | 779 | | 29 | 665 | 663 | 664 | 662 | 660 | 661 | 658 | 654 | 648 | 634 | 630
641 | 635
641 | 643 | 656 | 665
655 | 668
661 | 674 | 678
671 | 675 | 681 | 674 | 672 | 674 | 671 | 661 | 865 | | 30 | 672 | 678 | 675 | 660 | 659 | 660 | 660 | 650 | 645 | 643 | | | 645 | 648 | | | 668 | | 686 | 677 | 671 | 664 | 667 | 670 | 661 | 867 | | 31 | 680 | 668 | 660 | 664 | 653 | 658 | 661 | 646 | 615 | 607 | 620 | 642 | 656 | 665 | 663 | 673 | 667 | 665 | 671 | 674 | 673 | 660 | 662 | 663 | 657 | 766 | | Mean | 663 | 662 | 661 | 661 | 661 | 659 | 655 | 649 | 641 | 635 | 633 | 637 | 645 | 654 | 663 | 669 | 673 | 677 | 679 | 677 | 675 | 670 | 666 | 662 | 659 | | | Sum
19,000γ+ | 1552 | 1531 | 1486 | 1479 | 1492 | 1421 | 1298 | 1113 | 864 | 696 | 632 | 759 | 990 | 1285 | 1569 | 1748 | 1872 | 1975 | 2040 | 1989 | 1908 | 1771 | 1645 | 1527 | , | Grand Total
490,642 | | 2 LE | RWICK | (D) | | | | | | | | | | 9° | + | | | | | | | | | | | | AUG | TUST 1965 | |------|-------------|--------|---------|---------|--------|--------|---------|---------|---------|---------|---------|--------|--------|--------|--------|---------|--------|---------|---------|---------|---------|---------|---------|---------|--------|------------------------| | | Hour
0-1 | | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 5 15-16 | 16-17 | 7 17-18 | 18-19 | 19-20 | 20-21 | 21 - 22 | 22-23 | 3 23-24 | Mean | Sum
490 · 0 ′ | | | | • | • | • | • | , | • | • | • | , | , | • | , | • | • | | • | • | • | • | • | • | • | • | • | | | 1 | 20 · 2 | 19 · 4 | 18.9 | 18.9 | 16.7 | 14 · 4 | 14.5 | 15 · 4 | 16 • 2 | 18.2 | | 24.0 | 27 · 1 | | 26 · 1 | 24.8 | 23.0 | 22.0 | 22.2 | 22 · 1 | 22 · 1 | 22.6 | 22.7 | 19 · 4 | 20.8 | 99 · 7 | | 2 | 19-2 | 18.7 | 18.1 | 17.4 | | | | | 19.8 | 23.6 | 26 · 3 | 28 • 2 | 31.0 | 33.9 | 34 · 5 | | 24 · 8 | 21 · 1 | 22 · 2 | | | 18.9 | 21 · 0 | 22.0 | 22.3 | 135 · 3 | | 3 | | 16 · 4 | | | | | 12.5 | | 14.4 | | | 24 · 1 | 26 · 5 | | 26 · 1 | 26 · 1 | | 25.0 | | | 18.3 | | | | 19.8 | 74 - 1 | | 4 | | 17.4 | | | | | | 17.4 | | 19.2 | | 21.9 | | 26.5 | 27 · 7 | 28 · 4 | | 23.5 | | | 20-1 | | | | 20.1 | 81 · 2 | | 5 q | 19.8 | 19 · 1 | 18.3 | 18.7 | 18.9 | 17.3 | 17.1 | 17.0 | 18.3 | 19.7 | 21 · 8 | 23.8 | 25.9 | 27 · 2 | 269 | 25 · 7 | 24 • 6 | 23.9 | 22 · 1 | 21 · 8 | -21 - 1 | 20 • 2 | 17.4 | 19.9 | 21.1 | 106 · 5 | | 6 q | 19-4 | 19 · 1 | 17.4 | 17.4 | 17.5 | 16.7 | 17.4 | 17.7 | 19.0 | 19.8 | 21 · 3 | 23.0 | 25 · 8 | 26 • 9 | 25.5 | 23.9 | 22 · 1 | 20.7 | 20.6 | 22.0 | 22.3 | 22.0 | 21.9 | 21 · 4 | 20.9 | 100 · 8 | | 7 | 20 · 2 | 20 · 2 | 19.3 | 18 · 3 | 16.8 | 15.5 | 16 · 2 | 17 · 2 | 17.1 | 19.7 | 22.6 | 26 • 0 | 27.8 | 28 • 7 | 28 · 2 | | 23 · 7 | 22 · 1 | | | 22.2 | 22 · 1 | | 21 · 2 | 21.6 | 119.5 | | 8 | 17.9 | | | | 17.6 | | | 16 · 4 | | | | 24 • 4 | 27.7 | | | | | 21.0 | | | 18.4 | 20 · 1 | | | 20.7 | 96 · 7 | | 9 | | | | | | | 15.6 | | | | | 25.4 | | 29 • 6 | | | | | | | 14.5 | | | | 20.4 | 89.0 | | 10 q | 20.0 | 19 • 2 | 18.9 | 19·1 | 17.2 | 17.3 | 15.4 | 15.0 | 16 · 2 | 18.6 | 22 · 8 | 25 · 6 | 26 · 1 | 26 · 7 | 24 • 9 | 24.0 | 22 · 5 | 21.5 | 21 · 3 | 21 · 6 | 21 · 3 | 22 · 1 | 21 · 1 | 20.9 | 20.8 | 99 · 3 | | 1 | 20.2 | 17 - 7 | 16.8 | 10.9 | 12.6 | 13.4 | 14.7 | 16.7 | 18 · 5 | 20.5 | 21 • 9 | 23.7 | 25 · 2 | 25 · 2 | 24 · 3 | 23.3 | 21.6 | 21 · 2 | 21 · 9 | 20.5 | 20.2 | 21 · 1 | 18.7 | 20.7 | 19.6 | 71 · 5 | | 12 | 21.9 | | 17.9 | 17.1 | 19.0 | 18.5 | 17.9 | 17 · 4 | 17.4 | 20 · 1 | 23.0 | 24.9 | 26.9 | 27 · 3 | 26 · 5 | 25.3 | 23 · 4 | 22 · 4 | 22.2 | 21 · 6 | 18.5 | 20 · 4 | 20.3 | 19.5 | 21 · 2 | 107 - 8 | | 13 q | 19.7 | 19.3 | 18.8 | 19.1 | 18 · 3 | 17 · 4 | 17.5 | 17.3 | 18 · 3 | 20 · 1 | 22.8 | 25 • 4 | 28 · 3 | 28 · 8 | 27 • 0 | 25.5 | 24 • 6 | 23.8 | 23.6 | 23 · 3 | 22.3 | 21 · 5 | 21 • 2 | 20.3 | 21.8 | 124 · 2 | | 14 | | 20.0 | | | | | 16.8 | | | 19.6 | 22 · 1 | 25.6 | 29.0 | 27.5 | 26 · 8 | | | | | | 20.3 | 16.7 | 18 • 1 | 19.7 | 20 · 7 | 97 · 2 | | 15 | 19.6 | 19 · 2 | 18.6 | 18.5 | 17 · 2 | 15.5 | 15.0 | 16.5 | 20.9 | 24 • 2 | 27 • 2 | 29.8 | 31 · 3 | 29 · 7 | 26 · 9 | 23.5 | 21 · 3 | 20.7 | 20.7 | 18 · 5 | 19.5 | 20-9 | 20.7 | 19·1 | 21.5 | 115.0 | | l6 | 16.8 | 17.6 | 19.6 | 19-1 | 18.1 | 16.9 | 16.8 | 16.6 | 18.5 | 21 · 1 | 23 · 1 | 26 · 1 | 28.7 | 29 · 2 | 28 · 1 | 26.3 | 24 · 8 | 23.4 | 22.8 | 22.0 | 21.8 | 21.6 | 21.8 | 21 · 3 | 21.8 | 122 · 1 | | 17 | 19.6 | 17.5 | 17.6 | 18.5 | 15.9 | 10.9 | 11 · 4 | 13.8 | 18 · 5 | 19.5 | 22 · 3 | 27.3 | 29 · 2 | 29.9 | 28 · 6 | 26 · 0 | 24 · 1 | 23 · 9 | 20.2 | 20.8 | 21 · 4 | 20.5 | 16 · 9 | 16.∙2 | 20-4 | 90.5 | | 18 d | 16 · 1 | 17.4 | 17.8 | 18.0 | | | 17.3 | | | 19 · 2 | 21 · 5 | 24 · 8 | 28.3 | 29 · 9 | 29.3 | 30.5 | 31 · 0 |
32.9 | 32.8 | 25.6 | -4 · 2 | 9 · 1 | 17.5 | 18 · 5 | 21.0 | 104-4 | | 19 d | 20 · 7 | 20.9 | | | | | 31 · 6 | | | 19·2 | | 24.0 | | 27.8 | 29 · 3 | 26 · 1 | | 13.3 | | | 17.6 | | 18 · 3 | 19·2 | 20.6 | 93.6 | | 20 d | 17.9 | 18.5 | 19.0 | 19.6 | 18.6 | 15.7 | 14.9 | 16 · 5 | 19.4 | 20 · 4 | 23 · 4 | 27.8 | 29.7 | 27.0 | 26 · 1 | 26 · 0 | 23.9 | 20.9 | 16.4 | 18 · 4 | 20 · 3 | 20 · 4 | 20.5 | 30.6 | 21.3 | 111-9 | | 21 | 20.5 | 25 · 2 | 14.7 | 17-8 | 22 · 1 | 16.4 | 15.6 | 18.5 | 19.5 | 21.6 | 21 · 1 | 24.9 | 27.0 | 27.0 | 25.2 | 22 · 2 | 20.3 | 18.1 | 18.5 | 20.5 | 20.5 | 20.3 | 20.2 | 20.2 | 20.7 | 97 - 7 | | 22 | 20.0 | | 20.3 | 18.7 | 17 - 7 | 17.6 | 17.2 | 16.5 | 18 · 2 | 18.6 | 21 · 5 | 25.0 | 26 · 2 | 26 · 8 | 26 · 2 | 23.9 | 21 • 2 | 18 • 2 | 19.8 | 19.5 | 20.1 | 21 · 3 | 19.6 | 18.0 | 20.5 | 92 · 4 | | 23 | 19-1 | 20 · 2 | 19.6 | 18.5 | 17.5 | 16.5 | 15.8 | 16 · 1 | 17.6 | 19.3 | 21 · 3 | 22 · 4 | 23.0 | 23 · 1 | 22.0 | 22.3 | 22 • 2 | 22.3 | 22 · 9 | 21 · 3 | 15.6 | 7 • 5 | 10.0 | 19 • 4 | 19.0 | 55.5 | | 24 d | 16.6 | 14.7 | 15.3 | 13.6 | 13 · 7 | 15.3 | 16 · 2 | 16.6 | 15.9 | 18 · 4 | | 23.8 | 25.8 | | 24.8 | | 21.5 | 20.5 | 20 · 4 | 20.3 | 22 · 3 | | 14.8 | 9.1 | 18.3 | 38 • 4 | | 5 d | 17.2 | 16 · 1 | 24 · 1 | 15.3 | 15.5 | 16.8 | 17.9 | 15.8 | 16.5 | 18 · 4 | 22 · 3 | 25 · 1 | 27.5 | 29 · 4 | 29.0 | 27 · 7 | 24 · 7 | 22 · 3 | 20.5 | 11.6 | 17.2 | 20 - 1 | 20 · 3 | 22 · 9 | 20-6 | 94 · 2 | | 6 | 20.3 | 24 · 7 | 21 · 4 | 17.7 | 16 · 3 | 16.4 | 16.6 | 16.6 | 17.6 | 20.5 | 23 · 4 | 26.9 | 28 · 2 | 27.9 | 25.8 | 23.0 | 20.2 | 20.6 | 20.5 | | | 17.7 | 19.6 | 18.8 | 20.9 | 101 · 5 | | 7 | 19.5 | | | 18.5 | | 15.0 | | 14.6 | | 20.4 | 24 · 1 | 26.5 | 27.9 | 27 • 2 | 24.5 | 22 · 2 | 20 • 4 | 19.8 | 20.4 | | | | 19-2 | 21 · 1 | 20.0 | 79 · 5 | | 28 q | 20.8 | 18.6 | | | | | 14 · 7 | | | | | 26 • 7 | 27 - 7 | 27.0 | 24 · 8 | | 21 · 2 | 20.3 | 20 · 2 | 20 • 4 | 20.4 | | 20.0 | 20.0 | 20-4 | 89 · 5 | | 29 | 19-7 | 19.5 | 19.8 | 17.3 | | | 13 · 7 | | | | | 24 · 7 | | 26.8 | 25 · 7 | | | 21 · 3 | 20.8 | | | | 20.2 | 19·1 | 20.3 | 87 · 2 | | 30 | 19.5 | 21 · 4 | 15.3 | 14.7 | 16 · 5 | 16.3 | 16.6 | 19.6 | 20.5 | 19.8 | 21 · 3 | 24 · 1 | 26.0 | 25.8 | 24 · 2 | 22.5 | 21 • 4 | 20.5 | 20.9 | 20 · 3 | 16.8 | 21 · 0 | 19.8 | 17.5 | 20-1 | 82.3 | | 1 | 18-1 | 18.3 | 14.8 | 12.1 | 9.9 | 15.8 | 14-9 | 16.4 | 20.9 | 25 • 0 | 26 · 9 | 29·4 | 30.0 | 30.0 | 26 · 1 | 23.6 | 22 · 7 | 21.4 | 21 · 1 | 21.0 | 20 · 2 | 18.5 | 20.6 | 21 · 2 | 20.8 | 98.9 | | an | 19-2 | 19 · 1 | 18.2 | 17.3 | 16 · 7 | 16.0 | 16.3 | 16.6 | 17.9 | 19.9 | 22.5 | 25.3 | 27-4 | 27 · 8 | 26 · 7 | 25.0 | 23 · 2 | 21.5 | 21 · 3 | 20.5 | 18.8 | 18.9 | 19.4 | 19.9 | 20-6 | | | .0'+ | 196 · 0 | 192-2 | 164 · 8 | 136 · 4 | 119-2 | 95.3 | 104 · 8 | 115 · 7 | 154 · 7 | 218 · 2 | 296 - 5 | 385·3 | 449·6 | 462.5 | 426·1 | 374-5 | 318.0 | 267 · 5 | 258 · 7 | 234 - 6 | 182 · 7 | 184-3 2 | 202 - 7 | 217 · 1 | | Grand Tot
15357 • 4 | 403 405 719 Grand Total 200 480 3 LERWICK (Z) 47,000y (0.47 CGS unit) + AUGUST 1965 Hour GMT Sum 90007+ 1-2 2-3 3-4 4-5 5-6 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 Mean 0-1 403 387 386 406 403 391 405 386 406 394 403 403 402 403 403 402 463 428 435 415 399 402 448 475 441 1005 404 415 397 405 728 772 406 405 405 410 407 407 416 411 402 412 412 407 417 411 6 q 7 386 400 407 392 400 393 9 10 q 405 409 410 407 406 409 407 403 403 403 403 404 410 414 416 410 407 407 406 403 408 784 12 13 q 14 15 745 701 411 405 397 390 398 397 407 404 404 407 409 400 402 403 406 407 410 409 407 403 407 409 410 414 402 404 405 407 403 398 406 425 420 424 447 1344 1476 1589 1744 1882 1958 1955 1951 1849 1657 1450 1113 17 18 d 19 d 20 d 433 442 447 441 438 380 372 22 23 24 d 25 d 407 406 378 290 406 411 400 402 410 419 411 410 414 422 391 411 404 411 368 410 384 352 393 374 319 397 401 406 405 400 400 405 424 426 429 422 407 390 307 27 28 *q* 29 30 408 409 406 403 395 395 401 406 410 408 406 407 401 401 394 411 399 GEOMAGNETIC CHARACTER FIGURES (K, KH, KD, KZ, AND C) AND TEMPERATURE IN MAGNETOGRAPH HOUSE | | LERWICK | 1 | T · · · · · · · · · · · · · · · · · · · | | r | т | <u></u> | | A1 | UGUST 1965 | |------|---------------------------|------------------|---|-------------------------------------|--|-------------------------------|--|-------------------------------|--|---| | | 3-h range
indices
K | Sum of K indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of K _D indices | 3-h range
indices
K _Z | Sum of K _Z indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph house
200°A+ | | 1 | 0100 0222 | 8 | 0000 0222 | 6 | 0110 0002 | 4 | 0000 0012 | 3 | 1 | 88 · 1 | | 2 | 0211 3323 | 15 | 0001 3321 | 11 | 0211 1323 | 13 | 0001 2313 | 10 | 1 1 | 88.0 | | 3 | 2110 2321 | 12 | 1110 2320 | 10 | 2100 1121 | 8 | 2100 0210 | 6 | 1 | 88 - 1 | | 4 | 2111 3313 | 15 | 2101 3312 | 13 | 1110 0213 | 9 | 1100 0201 | 5 | 1 | 88.0 | | 5 q | 0001 2212 | 8 | 0001 2211 | 7 | 0001 0012 | 4 | 0000 0000 | 0 | 0 | 87.9 | | 6 a | 1010 1100 | 4 | 0000 1100 | 2 | 1010 0000 | 2 | 0000 0000 | o | 0 | 88.0 | | 7 | 0012 2222 | 11 | 0012 2221 | 10 | 0010 0002 | 3 | 0000 1102 | 4 | 1 | 88.0 | | 8 | 2101 2221 | 11 | 1101 2220 | 9 | 2100 0121 | 7 | 1000 0110 | 3 | 1 | 88.0 | | ğ | 0102 3332 | 14 | 0002 3322 | 12 | 0100 1232 | 9 | 0000 1223 | 8 | 1 | 88 • 1 | | 10 q | 0111 1101 | 6 | 0001 1101 | 4 | 0110 0000 | 2 | 0000 0001 | 1 | 0 | 88 • 4 | | 11 | 2200 0112 | 8 | 2100 0112 | 7 | 2200 0012 | 7 | 3300 0102 | 9 | 1 | 88-4 | | 12 | 2110 1212 | 10 | 2110 1212 | 10 | 2110 0011 | 6 | 2000 0011 | 4 | 0 | 88 • 4 | | 13 q | 0001 0010 | 2 | 0001 0010 | 2 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 88 • 7 | | 14 | 1212 3212 | 14 | 1112 3212 | 13 | 1211 1112 | 10 | 1210 1101 | 7 | 1 | 88.6 | | 15 | 0000 1122 | 6 | 0000 1122 | 6 | 0000 0021 | 3 | 0000 0022 | 4 | 1 | 88.9 | | 16 | 2110 1122 | 10 | 2010 1122 | 9 | 2110 0011 | 6 | 1100 0010 | 3 | 0 | 88.6 | | 17 | 2322 3221 | 17 | 2102 3221 | 13 | 2321 1021 | 12 | 1202 2030 | 10 | 1 | 88.5 | | 18 d | 1000 2354 | 15 | 1000 2342 | 12 | 1000 1254 | 13 | 0000 0143 | 8 | 2 | 88.5 | | 19 d | 3451 3433 | 26 | 2451 3333 | 24 | 3431 2433 | 23 | 4241 2323 | 21 | 2 | 88.3 | | 20 d | 2222 3324 | 20 | 1222 3324 | 19 | 2112 2224 | 16 | 2001 1225 | 13 | 2 | 88•4 | | 21 | 4312 2210 | 15 | 3312 2200 | 13 | 4312 0110 | 12 | 4230 1110 | 12 | 1 | 88.3 | | 22 | 0011 2223 | 11 | 0001 2222 | 9 | 0010 0213 | 7 | 0000 0103 | 4 | 1 | 88.4 | | 23 | 1000 0334 | 11 | 1000 0322 | 8 | 1000 0134 | 9 | 3000 0224 | 11 | 1 | 88.8 | | 24 d | 3232 1014 | 16 | 3132 1014 | 15 | 3221 0003 | 11 | 4200 0004 | 10 | 1 | 88.5 | | 25 d | 4322 2332 | 21 | 4322 2322 | 20 | 3221 1132 | 15 | 3310 0013 | 11 | 1 | 88.7 | | 26 | 3111 2202 | 12 | 3111 2201 | 11 | 3110 1102 | 9 | 2100 0000 | 3 | 1 | 88.3 | | 27 | 1001 2133 | 11 | 0001 2122 | 8 | 1000 1033 | 8 | 0000 0002 | 2 | 0 | 88.3 | | 28 q | 1010 0010 | 3 | 1000 0010 | 2 | 1010 0000 | 2 | 2000 0000 | 2 | 0 | 88.0 | | 29 · | 0210 0121 | 7 | 0000 0121 | 4 | 0210 0011 | 5 | 0000 0010 | 1 | 0 | 88.3 | | 30 | 3210 0121 | 10 | 2000 0121 | 6 | 3210 0021 | 9 | 3300 0011 | 8 | 1 | 88.4 | | 31 | 2232 2211 | 15 | 2232 2211 | 15 | 1211 1001 | 7 | 2121 1012 | 10 | 1 | 88.3 | | | | | | | | | | Mean | 0.81 | 88.3 | $[\]emph{q}$ denotes an international quiet day and \emph{d} an international disturbed day. 389 389 398 400 343 371 1417 1428 1478 1501 1451 1386 Mean Sam 11,000y 328 1075 1264 $[\]mathbf{K}_{\mathbf{H}}$ For horizontal component. $\mathbf{K}_{\mathbf{D}}$ For declination. $\mathbf{K}_{\mathbf{Z}}$ For vertical component. (See Introduction). # GEOMAGNETIC FORCE: HORIZONTAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT 1 LERWICK (H) 14,000γ (0·14 CGS unit) + SEPTEMBER 1965 | I LEK | | , | | | | | | | | | | 14,000 | (0.14 | Cus u | iit) + | | | | | | | | | | SEPTEMB | ER 1965 | |-------------|------|-----|-------|-----|-----|-----|-----|-----|-----|------|-------|--------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|----------------------| | | Hour | GMT | Τ | Sum | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | 14,000y+ | | | γ | | 1 | 667 | 666 | 667 | 663 | 660 | 650 | 638 | 629 | 637 | 635 | 634 | 639 | 651 | 664 | 675 | 675 | 675 | 682 | 672 | 664 | 667 | 670 | 664 | 667 | 659 | 1811 | | 2 | 663 | 666 | - 666 | 660 | 656 | 654 | 653 | 644 | 633 | 628 | 627 | 635 | 639 | 648 | 651 | 665 | 664 | 665 | 668 | 669 | 669 | 673 | 667 | 663 | 655 | 1726 | | 3 | 661 | 662 | 661 | 660 | 660 | 658 | 656 | 649 | 641 | 630 | 622 | 623 | 632 | 642 | 649 | 655 | 665 | 672 | 675 | 676 | 672 | 673 | 678 | 671 | 656 | 1743 | | 4 | 677 | 656 | 654 | 664 | 660 | 664 | 671 | 668 | 655 | 646 | 638 | 641 | 611 | 624 | 643 | 660 | 673 | 679 | 672 | 673 | 657 | 659 | 665 | 663 | 657 | 1773 | | 5 | 664 | 653 | 658 | 660 | 653 | 649 | 651 | 645 | 643 | 642 | 645 | 639 | 648 | 663 | 668 | 670 | 669 | 675 | 679 | 668 | 666 | 667 | 664 | 666 | 659 | 1805 | | 5 | 658 | 657 | 656 | 658 | 657 | 657 | 654 | 652 | 646 | 641 | 642 | 646 | 653 | 657 | 657 | 672 | 667 | 663 | 665 | 668 | 670 | 668 | 667 | 663 | 658 | 1794 | | 7 ' | 664 | 664 | 664 | 664 | 662 | 659 | 657 | 654 | 648 | 642 | 638 | 646 | 651 | 656 | 672 | 664 | 672 | 660 | 668 | 671 | 672 | 676 | 675 | 664 | 661 | 1863 | | 8 q | 664 | 663 | 657 | 657 | 661 | 661 | 660 | 656 | 646 | 638 | 634
| 635 | 642 | 654 | 658 | 660 | 664 | 671 | 666 | 664 | 665 | 666 | 665 | 665 | 657 | 1772 | | 9 a | 664 | 665 | 661 | 661 | 661 | 661 | 657 | 652 | 645 | 645 | 646 | 644 | 645 | 649 | 657 | 661 | 664 | 671 | 671 | 671 | 670 | 668 | 663 | 661 | 659 | 1813 | | 0 q | 664 | 665 | 665 | 665 | 663 | 662 | 661 | 655 | 645 | 640 | 639 | 639 | 647 | 657 | 660 | 661 | 658 | 666 | 672 | 672 | 669 | 668 | 670 | 668 | 660 | 1831 | | 1 | 670 | 669 | 666 | 665 | 664 | 663 | 661 | 657 | 647 | 641 | 638 | 640 | 650 | 658 | 664 | 668 | 664 | 668 | 679 | 679 | 683 | 680 | 675 | 670 | 663 | 1919 | | 2 | 676 | 672 | 654 | 666 | 673 | 666 | 661 | 653 | 638 | 628 | 628 | 634 | 646 | 656 | 664 | 670 | 673 | 675 | 660 | 678 | 679 | 675 | 675 | 672 | 661 | 1872 | | 3 | 653 | 660 | 660 | 661 | 666 | 664 | 661 | 657 | 643 | 635 | 631 | 637 | 649 | 655 | 666 | 665 | 665 | 667 | 670 | 671 | 672 | 671 | 670 | 672 | 659 | 1821 | | 1 q | 669 | 664 | 664 | 664 | 664 | 663 | 663 | 658 | 649 | 638 | 631 | 632 | 638 | 649 | 654 | 661 | 669 | 672 | 675 | 667 | 657 | 660 | 664 | 668 | 658 | 1793 | | 5 | 670 | 665 | 664 | 664 | 672 | 673 | 672 | 670 | 660 | 646 | 635 | 630 | 635 | 642 | 646 | 679 | 695 | 735 | 706 | 661 | 674 | 632 | 617 | 546 | 658 | 1793 | | 5 d | 513 | 528 | 607 | 635 | 655 | 661 | 662 | 642 | 586 | 617 | 637 | 650 | 613 | 636 | 657 | 641 | 650 | 672 | 656 | 658 | 658 | 657 | 633 | 635 | 632 | 1159 | | 7 d | 652 | 642 | 649 | 655 | 658 | 646 | 652 | 647 | 635 | 625 | 629 | 633 | 623 | 627 | 650 | 642 | 657 | 661 | 671 | 668 | 670 | 649 | 651 | 650 | 648 | 1542 | | 3 | 645 | 649 | 654 | 651 | 648 | 656 | 660 | 656 | 649 | 638 | 634 | 635 | 638 | 654 | 651 | 650 | 658 | 679 | 664 | 652 | 643 | 610 | 619 | 644 | 647 | 1537 | | d | 657 | 656 | 663 | 649 | 657 | 664 | 655 | 624 | 639 | 649 | 646 | 646 | 639 | 631 | 642 | 658 | 661 | 665 | 679 | 657 | 659 | 657 | 657 | 657 | 653 | 1667 | | ,
י | 658 | 658 | 657 | 657 | 656 | 655 | 652 | 643 | 640 | 635 | 630 | 635 | 642 | 649 | 652 | 655 | 658 | 661 | 665 | 664 | 657 | 660 | 655 | 655 | 652 | 1649 | | | 657 | 642 | 660 | 661 | 663 | 663 | 663 | 655 | 646 | 638 | 638 | 638 | 643 | 649 | 653 | 656 | 656 | 661 | 664 | 667 | 675 | 672 | 669 | 670 | 657 | 1759 | | 2 | 661 | 660 | 661 | 664 | 668 | 673 | 664 | 660 | 659 | 657 | 652 | 649 | 651 | 654 | 661 | 664 | 664 | 672 | 679 | 677 | 676 | 675 | 677 | 677 | 665 | 1955 | | 3 | 668 | 665 | 670 | 668 | 667 | 668 | 671 | 666 | 660 | 659 | 654 | 653 | 661 | 668 | 654 | 676 | 665 | 659 | 664 | 669 | 668 | 669 | 668 | 671 | 665 | 1961 | | í | 674 | 666 | 664 | 665 | 665 | 652 | 657 | 656 | 640 | 640 | 641 | 641 | 633 | 652 | 657 | 660 | 664 | 667 | 672 | 665 | 661 | 678 | 670 | 665 | 1 1 | 1805 | | | 656 | 652 | 642 | 663 | 663 | 672 | 656 | 649 | 643 | 638 | 634 | 638 | 647 | 661 | 657 | 646 | 668 | 659 | 661 | 663 | 663 | 673 | 663 | | 659 | 664 | 655 | 1731 | | | 664 | 663 | 656 | 660 | 671 | 671 | 666 | 651 | 639 | 640 | 634 | 631 | 642 | 649 | 664 | 661 | 660 | 663 | 662 | 666 | 666 | 673 | 668 | 646 | 657 | 1766 | | ď | 642 | 647 | 645 | 661 | 662 | 660 | 658 | 655 | 648 | 640 | 636 | 637 | 646 | 645 | 653 | 663 | 672 | 659 | 659 | 642 | 557 | 423 | 326 | 430 | 615 | 766 | | d | 413 | 503 | 589 | 645 | 671 | 664 | 653 | 660 | 638 | 617 | 617 | 623 | 638 | 652 | 660 | 664 | 664 | 665 | 661 | 675 | 663 | 664 | 658 | 660 | 634 | 1217 | | | 657 | 656 | 655 | 656 | 655 | 654 | 653 | 645 | 639 | 653 | 645 | 634 | 634 | 656 | 659 | 663 | 672 | 672 | 674 | 682 | 672 | 675 | 672 | 676 | 659 | 1809 | | q | 667 | 668 | 667 | 663 | 664 | 668 | 668 | 662 | 654 | 651 | 651 | 650 | 649 | 635 | 638 | 647 | 653 | 658 | 660 | 661 | 661 | 660 | 661 | 660 | 657 | 1776 | - | | | an | 649 | 650 | 655 | 659 | 662 | 661 | 659 | 652 | 643 | 639 | 637 | 638 | 641 | 650 | 656 | 661 | 665 | 670 | 670 | 667 | 663 | 657 | 651 | 651 | 654 | | | um
000y+ | 468 | 502 | 656 | 785 | 855 | 831 | 766 | 570 | 291 | 172 | 106 | 153 | 236 | 492 | 692 | 832 | 959 | 1094 | 1089 | 1018 | 891 | 701 | 526 | 539 | | Grand Tot
471.224 | | 2 LE | RWICK (| (n) | | | | | | | | | | | • +· | | | | | | | | | | | | SEPTEMBI | ER 1965 | |------|-------------|------------|--------|--------|--------|--------|--------|---------|--------|---------|---------|--------|--------|---------|--------|--------|--------|--------|---------------|--------|-----------|--------|--------|---------|----------|--------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 3 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 3 23-24 | Mean | Sum
400·0′ | | | • | , | , | • | • | • | | • | • | • | , | • | • | • | • | • | • | • | , | • | • | • | , | • | • | , | | 1 | 20.8 | 19.9 | 18.6 | 17.3 | 16 · 3 | 15.4 | 16.3 | 17.0 | 17.7 | 20.2 | 23.3 | 25.6 | 26.0 | 24 · 3 | 22.3 | 20 · 1 | 19.4 | 20.0 | 20.6 | 20.0 | 20.3 | 21 · 4 | 18 · 7 | 19.4 | 20.0 | 80.9 | | 2 | 17.5 | 20.0 | 17.2 | 15.8 | 16.6 | | 15 · 5 | 15.6 | 17 · 2 | 19.2 | 21 · 7 | 25 · 1 | 27.9 | 29 · 9 | 27 · 0 | 23 · 3 | 21 · 4 | 20.6 | 20.3 | 20 · 3 | 19 • 4 | 17.5 | 17.6 | 18 · 2 | 20 · 1 | 81 · 3 | | 3 | 20 · 2 | 19.3 | 18.6 | 17.8 | 17.8 | | 16.5 | 16.7 | | 19.2 | 21 · 4 | 24 · 3 | 26 · 6 | 26 · 9 | 25 · 1 | 22.9 | 21.5 | 21 · 4 | 21.2 | 20.9 | 21 · 1 | 20 · 5 | 20.8 | 19·1 | 20.6 | 94 · 8 | | 4 | 13.6 | 10.3 | 12.5 | 12.0 | 12.6 | | | 15.6 | | 20.3 | 23 · 2 | 25.8 | 30 · 5 | 31 · 8 | 30 · 1 | 27 · 4 | 25 · 4 | 24 · 1 | 22.3 | 13.7 | 19 • 4 | 20.3 | 20.3 | 21 · 9 | 19.9 | 78 · 7 | | 5 | 18.0 | 20 · 4 | 20.5 | 18.5 | 19.0 | 17 · 7 | 17 · 2 | 16 · 7 | 17.3 | 19 · 4 | 22.0 | 24 · 0 | 25.8 | 26 · 1 | 24 · 5 | 23.0 | 22.6 | 22.7 | 21.6 | 17.3 | 20.5 | 21.5 | 20.8 | 19.6 | 20.7 | 96 · 7 | | ; | 22.3 | 19.2 | 17.3 | 17.5 | 16 · 7 | 15.7 | 15 · 7 | 16.5 | 18.5 | 20.5 | 21 · 4 | 23.0 | 25.6 | 26 · 2 | 25 · 2 | 23.3 | 16.6 | 21.1 | 21.5 | 20.6 | 16.3 | 18.2 | 18.3 | 19 · 4 | 19.9 | 76.6 | | , | 19.4 | 19 · 1 | 18.5 | 18 · 2 | 18.0 | 17.3 | 17 · 4 | 17.6 | 18.5 | 20.2 | 22.0 | 23 · 4 | 24.3 | 24 · 2 | 24 · 2 | 21 · 9 | 21 · 4 | 22.3 | 22.1 | 21 · 3 | 20.8 | 20.3 | 14 · 4 | 13.6 | 20.0 | 80 · 4 | | q | 19.3 | 18.3 | 18 · 4 | 18 · 4 | 16.8 | 16.6 | 16.6 | 16 · 8 | 17.9 | 20.5 | 22 · 3 | 24 · 5 | 25.9 | 24 · 9 | 22.4 | 21.0 | 20.3 | 20 · 1 | 21.0 | 20.6 | 20.5 | 20.3 | 20 · 1 | 19.6 | 20 · 1 | 83 - 1 | |) q | 19.5 | 19.1 | 19.5 | 17.9 | 17 · 7 | 18 · 2 | 18.0 | 17.5 | 17.9 | 19·3 | 21 · 4 | 24 · 1 | 25.6 | 24 · 1 | 22 · 1 | 21.0 | 19 · 8 | 19.6 | 20 · 3 | 20.6 | 20.6 | 19 · 2 | 18 · 5 | 18.5 | 20.0 | 80 · 0 | |) q | 19 · 2 | 19.0 | 19.0 | 18.6 | 18 · 3 | 18.3 | 17.3 | 17 · 2 | 17.7 | 19.2 | 21.0 | 23.8 | 25.8 | 25.0 | 23.5 | 22 · 1 | 21 · 1 | 20 · 1 | 20 · 2 | 20 · 1 | 19.5 | 19.0 | 19 · 4 | 19·3 | 20 · 2 | 83 · 7 | | | 19.2 | 18.7 | 18.5 | 18.1 | 17.8 | 17.0 | 16.4 | 16.7 | 18.5 | 20.2 | 22.2 | 25 · 2 | 26 · 9 | 26 · 7 | 25.6 | 24 · 3 | 23 · 3 | 22.2 | 22.3 | 22.0 | 21.8 | 21.3 | 20.3 | 19.5 | 21.0 | 104 - 7 | | | 14.8 | 10.1 | 11.6 | 16.8 | 13.9 | 15.6 | 15.8 | 15.5 | 15.7 | 18.3 | 21.9 | 25 · 4 | 27 · 7 | 26 · 3 | 23 · 9 | 22 · 4 | 20.6 | 20 · 3 | 20.6 | 20 · 4 | 21.0 | 20.3 | 19.8 | 20.2 | 19-1 | 58 - | | | 18.5 | 10.9 | 15.4 | 17.7 | 17.5 | 17-4 | 18 · 2 | 18.9 | 20 · 2 | 21.0 | 22 · 2 | 23.7 | 25.8 | 25.0 | 23 · 3 | 21.5 | 21 · 1 | 20.9 | 20.7 | 20.3 | 20.0 | 19.8 | 19.6 | 19 · 1 | 19.9 | 78 - 7 | | q | 18 - 1 | 18.6 | 18 · 9 | 18.6 | 18.6 | 18.6 | 18 · 4 | 17 · 4 | 16.7 | 16.7 | 18.5 | 21 · 9 | 24.6 | 25 · 7 | 24 · 7 | 22.5 | 21.0 | 19.7 | 19.6 | 19.5 | 18.5 | 18.7 | 19 · 4 | 16.8 | 19.7 | 71 - 7 | | - 1 | 18 · 4 | 18 · 2 | 18.0 | 17 · 1 | 16.0 | 16 · 4 | 15.7 | 17-1 | 20.3 | 19.9 | 21.3 | 21 · 4 | 24 · 2 | 26 · 2 | 24 · 8 | 27 · 6 | 29.0 | 27.3 | 18.6 | 20.3 | 17.1 | 7.0 | 2.9 | -3.8 | 18.4 | 41 - 0 | | d | -17.3 | -5.3 | 9.7 | 19.8 | 18.0 | 16.8 | 13 · 2 | 15.6 | 21.5 | 25 · 4 | 22.5 | 25 · 8 | 28 · 5 | 27 · 2 | 26 · 5 | 26 · 1 | 22.8 | 21.0 | 8 · 7 | 18 · 1 | 17.5 | 14.7 | 8.0 | 18 · 7 | 16.8 | 3.5 | | d | 20.6 | 24.0 | 18.5 | 18.3 | 17.1 | 18.0 | 22.9 | 22.0 | 21.0 | 21.7 | 20.8 | 23.6 | 24.9 | 25 · 4 | 26 · 1 | 25.5 | 20.7 | 22.8 | 21.0 | 18.9 | 12.3 | 13.7 | 13.7 | 9.6 | 20.1 | 83 · 1 | | . | 10.2 | 18.2 | 16 · 2 | 16.1 | 20 · 4 | 20.3 | 18 · 6 | 18.0 | 19 · 1 | 20.4 | 21 · 2 | 22 · 1 | 23.5 | 26.0 | 26 · 7 | 26.0 | 21.5 | 22.7 | 18.5 | 15.3 | 15.8 | 26 · 8 | 7.9 | 13.5 | 19.4 | 65.0 | | d | 14.5 | 14.8 | 17.2 | 15.8 | 18 · 2 | 17.8 | 20.3 | 22.8 | 22.0 | 21.0 | 21 · 2 | 23.9 | 25.6 | 25.0 | 24 · 0 | 21 · 6 | 20 · 2 | 16.5 | 10.8 | 19.8 | 18.5 | 19.6 | 18 · 7 | 19.3 | 19.5 | 69 · 1 | | | 20.3 | 18.8 | 18.5 | 18 5 | 18 · 3 | 17.7 | 17.3 | 17 · 4 | 17.8 | 19.3 | 21 · 2 | 23 · 1 | 24 · 2 | 24 · 1 | 23.0 | 20.9 | 20.5 | 19.6 | 19.5 | 18 · 9 | 18.5 | 19.0 | 20.5 | 15.5 | 19.7 | 72.4 | | | 18 · 2 | 18.5 | 15-9 | 15.3 | 16.5 | 16.5 | 16 · 1 | 16.0 | 16.5 | 17.6 | 19.5 | 22 · 1 | 23.3 | 22.8 | 22.0 | 20 · 5 | 19.7 | 19.2 | 18.6 | 16.6 | 17-4 | 18.5 | 19 · 4 | 18.6 | 18.6 | 45-3 | | | 18.4 | 16.7 | 15.7 | 14.7 | 15 · 5 | 16.3 | 16 · 3 | 18 • 4 | 18.0 | 19 · 2 | 20.3 | 21.8 | 22.7 | 23 · 2 | 23 · 2 | 22.7 | 22.5 | 22.7 | 22.6 | 22 · 4 | 22.1 | 20.9 | 20 · 3 | 17 · 2 | 19.7 | 73.8 | | | 18 · 1 | 17.8 | 17.3 | 17 · 4 | 17.3 | 17.6 | 17.8 | 18.5 | 18.9 | 19 · 1 | 21.0 | 23 · 4 | 26 · 5 | 28 • 7 | 28 · 1 | 29 · 3 | 21.5 | 24 · 3 | 22.5 | 18.8 | 20 · 2 | 20.4 | 19.4 | 18.5 | 20.9 | 102 · 4 | | . 1 | 17 · 2 | 18 · 4 | 18.4 | 17.6 | 15.5 | 17.4 | 18 · 5 | 18 · 7 | 18.5 | 18.6 | 21 · 3 | 24 · 4 | 24 · 3 | 24 · 1 | 22.8 | 21 · 5 | 21 · 1 | 20 · 4 | 19.9 | 20 · 2 | 19.3 | 18 · 2 | 15.6 | 15.8 | 19.5 | 67 - 7 | | | 16 · 5 | 19.0 | 16 · 4 | 6.6 | 10.9 | 15.6 | 14.0 | 15.4 | 16.5 | 19.2 | 22 · 1 | 24 · 5 | 27.0 | 28.0 | 27 · 2 | 25 · 7 | 20 · 3 | 16.5 | 21 · 4 | 20.3 | 19 · 4 | 15.9 | 18 · 2 | 18.5 | 19.0 | 55 · 1 | | | 18.7 | 17.3 | 14 · 8 | 20.1 |
15.6 | 17.5 | 21.2 | 21 · 4 | 22.1 | 21.6 | 23.3 | 25 · 1 | 28 · 1 | 26 · 1 | 26 · 1 | 25 · 7 | 23 · 3 | 22.1 | 20.3 | 18 · 2 | 19.6 | 19.6 | 17.8 | 18.0 | 21.0 | 103-6 | | đ | 15.1 | 8.9 | 13.8 | 16.7 | 17.5 | 17.4 | 18.0 | 17.5 | 18.3 | 19・4 | 22.0 | 24 · 4 | 25.9 | 25 · 4 | 23.9 | 22.4 | 21 · 1 | | 21 · 2 | 16.0 | 5 • 4 | 2.6 | 9.2 | 0.9 | 16.7 | 2.2 | | d | 25 · 1 | -3.0 | 6.5 | 5.0 | 11.6 | 17.2 | 18 • 4 | 21.6 | 21.6 | 20.4 | 23.0 | 27.5 | 28 · 0 | 26.6 | 26.6 | 25.8 | 22.9 | 22.3 | | | 11 · 4 | 12.6 | 18.6 | 19.1 | 18.7 | 48 · 7 | | | 18 · 5 | 18.5 | 18.1 | 18.1 | 17.6 | 17.7 | 17.5 | 17.7 | | 20 • 4 | 22.3 | 23 · 2 | 24.6 | 24 · 8 | 24 · 6 | | | 21 · 1 | | 18 · 1 | | 18.0 | 19 · 2 | 19.3 | 19.9 | 77 - 9 | | q | 18.0 | 18.5 | 17 · 4 | 19.0 | 19.0 | 17.8 | 17 · 2 | 16 · 4 | 17.0 | 17.8 | 20.3 | 21.9 | 23.6 | 24 · 2 | 24 · 4 | 23 · 2 | 22.0 | 21 · 1 | 20.7 | 20.6 | 20.6 | 20 · 4 | 20 · 1 | 20.0 | 20·1 | 81 · 2 | | n | 17.0 | 16 · 1 | 16.6 | 16.6 | 16 · 7 | 17.1 | 17.2 | 17.7 | 18.5 | 19.8 | 21.6 | 23.9 | 25.8 | 25.8 | 24.8 | 23·4 | 21.4 | 21 · 1 | 20.1 | 19.3 | 18.5 | 18.2 | 17:3 | 16.8 | 19.6 | | | m + | 110.9 | 82.2 | 96.9 | 99·3 | 102.6 | 114.3 | 116.9 | 130 · 2 | 155.4 | 195 · 2 | 247 · 8 | 318.0 | 373.9 | 374 • 9 | 343.9 | 302.8 | 242.1 | 233-9 | 202.6 | 177-5 | 154 · 3 1 | 146.2 | 117.5 | 102-9 | | rand To
14142·2 | 3 LERWICK (Z) 47,000> (0.47 CGS unit) + SEPTEMBER 1965 | 3 LER | WICK (| د) | | | | | | | | | | 47,000) | (0.47 | cus u | nit) + | | | | | | | | | | | | |-----------|--------|-----|-----|-----|------|------|------|------|------|------|-------|---------|-------|-------|--------|-------------|-------|-------------|-------|-------------|-------|-------|-------|-------|------|----------------------| | | Hour (| TME | Sum | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | 8000y+ | | | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | ¥ | У | ·γ | У | У | > | Y | > | Y | > | y | У | γ | γ | γ | γ | | 1 | 394 | 393 | 400 | 407 | 411 | 416 | 412 | 407 | 397 | 393 | 393 | 393 | 394 | 400 | 404 | 409 | 411 | 411 | 417 | 423 | 416 | 411 | 412 | 407 | 405 | 1731 | | 2 | 401 | 390 | 385 | 400 | 407 | 411 | 411 | 411 | 409 | 406 | 400 | 398 | 404 | 409 | 411 | 407 | 411 | 412 | 411 | 413 | 417 | 414 | 404 | 405 | 406 | 1747 | | | 406 | 408 | 409 | 409 | 411 | 411 | 411 | 412 | 410 | 410 | 411 | 406 | 400 | 402 | 403 | 403 | 406 | 406 | 406 | 409 | 409 | 409 | 407 | 398 | 407 | 1772 | | | 376 | 374 | 380 | 394 | 401 | 400 | 397 | 400 | 402 | 400 | 401 | 399 | 411 | 416 | 414 | 421 | 418 | 423 | 451 | 443 | 423 | 418 | 409 | 393 | 407 | 1764 | | | 380 | 397 | 398 | 401 | 398 | 400 | 401 | 408 | 403 | 399 | 399 | 403 | 406 | 409 | 411 | 415 | 410 | 409 | 417 | 428 | 426 | 418 | 408 | 408 | 406 | 1752 | | | 404 | 396 | 406 | 407 | 409 | 408 | 409 | 406 | 408 | 407 | 405 | 403 | 405 | 409 | 413 | 423 | 444 | 437 | 426 | 420 | 414 | 409 | 407 | 408 | 412 | 1883 | | | 411 | 411 | 410 | 411 | 409 | 408 | 408 | 405 | 405 | 405 | 403 | 400 | 399 | 399 | 408 | 422 | 428 | 427 | 416 | 410 | 409 | 407 | 388 | 390 | 408 | 1789 | | q | 395 | 399 | 406 | 406 | 404 | 405 | 404 | 405 | 400 | 400 | 400 | 402 | 406 | 407 | 408 | 409 | 410 | 412 | 412 | 412 | 410 | 410 | 409 | 411 | 406 | 1742 | | ġ | 411 | 411 | 411 | 409 | 410 | 411 | 411 | 411 | 405 | 397 | 399 | 403 | 404 | 407 | 408 | 408 | 409 | 408 | 408 | 408 | 406 | 408 | 410 | 409 | 408 | 1782 | | q | 410 | 411 | 411 | 412 | 412 | 410 | 410 | 410 | 408 | 405 | 403 | 400 | 397 | 401 | 404 | 410 | 411 | 411 | 411 | 409 | 408 | 407 | 406 | 406 | 408 | 1783 | | | 406 | 407 | 409 | 411 | 411 | 411 | 412 | 411 | 407 | 401 | 401 | 400 | 401 | 401 | 405 | 409 | 414 | 408 | 405 | 407 | 403 | 405 | 410 | 405 | 407 | 1760 | | | 388 | 382 | 388 | 372 | 383 | 397 | 405 | 407 | 406 | 403 | 397 | 394 | 394 | 394 | 399 | 405 | 409 | 419 | 424 | 412 | 407 | 407 | 406 | 398 | 400 | 1596 | | | 330 | 355 | 384 | 398 | 402 | 405 | 406 | 406 | 404 | 403 | 400 | 393 | 393 | 399 | 402 | 407 | 410 | 410 | 409 | 408 | 407 | 406 | 405 | 402 | 398 | 1544 | | q | 401 | 404 | 408 | 410 | 411 | 412 | 412 | 410 | 409 | 408 | 407 | 405 | 399 | 403 | 411 | 414 | 416 | 418 | 417 | 421 | 419 | 411 | 397 | 396 | 409 | 1819 | | • | 398 | 399 | 401 | 405 | 402 | 401 | 400 | 398 | 399 | 400 | 400 | 401 | 402 | 407 | 414 | 418 | 433 | 499 | 557 | 488 | 475 | 456 | 387 | 301 | 418 | 2041 | | đ | 216 | 227 | 296 | 346 | 395 | 416 | 414 | 411 | 418 | 400 | 408 | 414 | 438 | 429 | 424 | 448 | 440 | 433 | 477 | 439 | 426 | 411 | 373 | 368 | 394 | 1467 | | ď | 377 | 389 | 397 | 409 | 411 | 406 | 401 | 399 | 416 | 427 | 424 | 419 | 423 | 426 | 428 | 457 | 462 | 440 | 431 | 433 | 424 | 401 | 397 | 360 | 415 | 1957 | | _ | 357 | 388 | 397 | 399 | 395 | 387 | 401 | 411 | 413 | 414 | 411 | 410 | 410 | 419 | 440 | 451 | 469 | 483 | 495 | 467 | 408 | 300 | 319 | 365 | 409 | 1809 | | d | 383 | 400 | 404 | 404 | 408 | 409 | 408 | 415 | 403 | 407 | 409 | 411 | 424 | 428 | 419 | 430 | 446 | 456 | 435 | 431 | 426 | 404 | 405 | 411 | 416 | 1976 | | • | 412 | 411 | 413 | 414 | 414 | 414 | 416 | 417 | 417 | 417 | 414 | 411 | 405 | 405 | 411 | 417 | 420 | 419 | 417 | 421 | 423 | 419 | 394 | 385 | 413 | 1906 | | | 384 | 379 | 383 | 403 | 406 | 407 | 408 | 410 | 410 | 409 | 407 | 410 | 408 | 407 | 411 | 414 | 412 | 411 | 412 | 412 | 406 | 400 | 398 | 399 | 404 | 1706 | | | 403 | 407 | 409 | 406 | 402 | 397 | 398 | 398 | 400 | 401 | 405 | 406 | 406 | 408 | 411 | 410 | 408 | 405 | 403 | 408 | 411 | 411 | 412 | 411 | 406 | 1736 | | | 415 | 415 | 411 | 411 | 410 | 408 | 405 | 403 | 401 | 400 | 403 | 405 | 401 | 406 | 411 | 4.17 | 451 | 448 | 440 | 434 | 425 | 416 | 414 | 412 | 415 | 1962 | | | 402 | 411 | 412 | 406 | 403 | 405 | 400 | 400 | 401 | 402 | 405 | 407 | 409 | 411 | 415 | 415 | 414 | 412 | 412 | 420 | 422 | 397 | 404 | 405 | 408 | 1790 | | | 412 | 388 | 323 | 338 | 357 | 350 | 366 | 383 | 393 | 397 | 397 | 397 | 401 | 414 | 431 | 436 | 440 | 440 | 419 | 415 | 414 | 406 | 411 | 412 | 397 | 1540 | | | 410 | 409 | 410 | 392 | 371 | 381 | 381 | 389 | 395 | 389 | 394 | 401 | 407 | 432 | 440 | 437 | 429 | 423 | 420 | 417 | 411 | 406 | 408 | 366 | 405 | 1718 | | d | 321 | 348 | 385 | 403 | 410 | 412 | 412 | 410 | 410 | 410 | 405 | 401 | 400 | 405 | 411 | 417 | 423 | 443 | 470 | 462 | 322 | 226 | 156 | 185 | 377 | 1047 | | d | 73 | 187 | 240 | 305 | 331 | 348 | 377 | 383 | 392 | 412 | 420 | 414 | 421 | 430 | 419 | 421 | 422 | 440 | 432 | 435 | 429 | 422 | 418 | 413 | 374 | 984 | | _ | 414 | 415 | 415 | 417 | 417 | 417 | 417 | 417 | 417 | 415 | 413 | 412 | 412 | 399 | 405 | 420 | 426 | 412 | 404 | 399 | 401 | 397 | 392 | 365 | 409 | 1818 | | q | 381 | 388 | 392 | 392 | 389 | 392 | 396 | 397 | 396 | 394 | 391 | 391 | 390 | 389 | 412 | 413 | 415 | 416 | 416 | 416 | 416 | 416 | 415 | 414 | 401 | 1627 | | | | | | | | | | | | | | | | | | | 406 | 400 | 420 | 404 | | 401 | 20.2 | 207 | 405 | | | 1 | 376 | 383 | 390 | 397 | 400 | 402 | 404 | 405 | 405 | 404 | 404 | 404 | 406 | 409 | 413 | 419 | 424 | 426 | 429 | 424 | 414 | 401 | 393 | 387 | 405 | | | n
107+ | 271 | 499 | 693 | 897 | 1000 | 1055 | 1109 | 1150 | 1154 | 1131 | 1125 | 1109 | 1170 | 1271 | 1403 | 1583 | 1717 | 1791 | 1870 | 1720 | 1413 | 1028 | 781 | 608 | | Grand Tot
291,548 | ## GEOMAGNETIC CHARACTER FIGURES (K, K_H , K_D , K_Z , AND C) AND TEMPERATURE IN MAGNETOGRAPH HOUSE | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of K _D indices | 3-h range
indices
K _Z | Sum of
K _Z | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph house
200°A+ | |------------------|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------|--|--------------------------|--|---| | 1 | 1110 0111 | 6 | 1110 0111 | 6 | 0110 0011 | 4 | 1110 0010 | 4 | 1 | 87.9 | | 2 | 2111 1112 | 10 | 1001 1112 | 7 | 2110 1011 | 7 | 2100 0001 | 4 | 1 | 88 · 1 | | 3 | 0000 0102 | 3 | 0000 0101 | 2 | 0000 0002 | 2 | 0000 0002 | 2 | 0 | 88.0 | | 4 | 2222 3332 | 19 | 2122 3322 | 17 | 2211 1131 | 12 | 1101 2222 | 11 | 1 | 88 · 2 | | 5 | 2112 2222 | 14 | 2112 2221 | 13 | 2110 0022 | 8 | 2010 0011 | 5 | 1 | 88.5 | | 6 | 2111 2332 | 15 | 0001 2221 | 8 | 2111 1332 | 14 | 1000 0210 | 4 | 1 | 88.3 | | 7 | 0101 2212 | 9 | 0001 2212 | 8 | 0100 0102 | 4 | 0000 0102 | 3 | 1 1 | 88 • 4 | | 8 9 | 1100 1110 | 5 | 1100 1110 | 5 | 1100 0000 | 2 | 1000 0000 | 1 | 0 | 87.9 | | 9 9 | 0000 0101 | 2 | 0000 0101 | 2 | 0000 0001 | 1 | 0000 0000 | 0 | 0 | 88.0 | | 0 9 | 0001 0100 | 2 | 0001 0100 | 2 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 88 · 4 | | 1 | 0000 0201 | 3 | 0000 0201 | 3 | 0000 0001 | 1 | 0000 0001 | 1 | 0 | 88.3 | | 2 | 3300 1222 | 13 | 3300 1222 | 13 | 2200 0002 | 6 | 2200 0112 | 8 | 1 | 88.5 | | 3 | 3100 1001 | 6 | 3100 1000 | 5 | 3000 0001 | 4 | 3000 0000 | 3 | 1 | 88 · 1 | | 14 a | 0000 0012 | 3 | 0000 0011 | 2 | 0000 0012 | 3 | 0000 0001 | 1 | 0 | 88 · 3 | | 15 | 1111 2555 | 21 | 1100 2555 | 19 | 1011 0344 | 14 | 1000 0545 | 15 | 2 | 88 · 1 | | 16 d | 5333 4343 | 28 | 5333 4333 | 27 | 5132 2243 | 22 | 5421 2233 | 22 | 2 | 88 · 1 | | 7 d | 3222 3333 | 21 | 1211 3332 | 16 | 3122 1233 | 17 | 3120 1333 | 16 | 1 | 88.3 | | 18 | 3211 2345 | 21 | 1101 2334 | 15 | 3211 1345 | 20 | 3110 2354 | 19 | 1 | 88 · 4 | | 9 d | 1232 2441 | 19 | 1232 2231 | 16 | 1121 1441 | 15 | 2110 1322 | 12 | 1 | 87 · 9 | | 20 | 1010 1112 | 7 | 0010 1011 | 4 | 1000 0112 | 5 | 0000 0002 | 2 | 1 | 88.2 | | 21 | 2110 0122 | 9
| 2000 0122 | 7 | 2110 0022 | 8 | 2000 0021 | 5 | 1 | 88 · 4 | | 22 | 1110 0011 | 5 | 1000 0011 | 3 | 1110 0001 | 4 | 1000 0010 | 2 | 0 | 88.0 | | 23 | 1012 3321 | 13 | 1002 3311 | 11 | 1011 1320 | 9 | 0000 1321 | 7 | 1 1 | 88 · 1 | | .3
! 4 | 2212 2012 | 12 | 2211 2012 | 11 | 1212 1012 | 10 | 1000 0012 | 4 | 1 | 88 · 1 | | 25 | 2320 2312 | 15 | 2220 2202 | 12 | 2310 1312 | 13 | 4230 2211 | 15 | 1 | 88 · 1 | | :6 | 2221 2113 | 14 | 1221 2103 | 12 | 2211 2013 | 12 | 0210 2203 | 10 | 1 1 | 88 · 1 | | .0
27 d | 3001 1256 | 18 | 3001 1256 | 18 | 3001 1245 | 16 | 4100 0355 | 18 | 2 | 88.7 | | 28 d | 6321 2243 | 23 | 6321 2231 | 20 | 6321 1143 | 21 | 6431 1220 | 19 | 2 | 88.8 | | 9 | 0011 1222 | 9 | 0011 1112 | 7 | 0010 0222 | 7 | 0000 1212 | 6 | 1 | 88.8 | | 10 a | 0110 0000 | 2 | 0000 0000 | 0 | 0110 0000 | 2 | 1000 0000 | 1 | 0 | 88.7 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. $K_{\overline{R}}$ For horizontal component. $K_{\overline{D}}$ For declination. $K_{\overline{Z}}$ For vertical component. (See Introduction). ## 1 LERWICK (H) 14,0007 (0·14 CGS unit) + | 1 LER | WICK (| Н) | | | | | | | | | | 14,000 | (0.14 | CGS u | nit) + | | | | | | | | | | осто | BER 1965 | |-------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
15,000y+ | | 1
2 d
3
4 q
5 | 661
668
662
647
664 | 9
660
665
662
648
665 | 9
660
658
660
648
668 | γ
661
658
660
648
675 | 9
662
661
664
649
672 | 662
664
663
650
671 | 9
662
672
662
646
667 | γ
658
664
660
642
668 | 651
661
634
636
665 | 641
647
626
638
658 | 9
635
640
626
656
649 | 9
634
640
623
656
645 | 637
633
625
653
653 | 9
642
652
633
645
652 | 9
648
654
638
650
639 | 9
654
655
643
656
653 | 9
659
653
650
661
665 | 661
658
654
663
668 | 9
668
668
652
665
671 | 668
669
656
665
672 | γ
671
652
656
665
672 | 9
668
639
653
665
666 | 9
665
652
652
664
665 | 9
668
659
647
664
668 | 9
657
656
648
653
663 | 7
756
742
561
680
911 | | 6 q
7
8 d
9
10 | 664
665
668
663
668 | 662
664
663
660
667 | 662
664
676
658
665 | 662
664
681
664
665 | 661
665
683
660
665 | 662
665
683
661
665 | 663
665
681
662
668 | 661
665
674
657
665 | 659
660
661
651
656 | 653
663
652
645
644 | 644
656
648
640
635 | 639
653
648
638
638 | 638
654
654
639
645 | 638
661
657
648
651 | 646
669
668
653
659 | 653
676
667
661
665 | 660
669
671
667
667 | 665
669
675
668
670 | 668
671
676
668
671 | 668
671
665
668
673 | 665
672
652
668
674 | 666
673
649
668
668 | 665
668
669
671 | 664
666
662
668
668 | 658
665
666
659
662 | 788
968
982
804
883 | | 11
12
13
14
15 q | 669
668
670
668
665 | 667
664
669
664
662 | 667
660
667
660
661 | 665
660
668
656
664 | 667
664
673
665
665 | 668
672
665
667
666 | 667
668
664
664
665 | 665
664
668
664
665 | 653
654
663
658
659 | 644
644
647
650
651 | 637
639
638
638
645 | 639
641
635
636
641 | 647
646
650
638
643 | 655
653
653
642
649 | 663
660
660
653
656 | 666
663
661
661
661 | 665
662
667
665
664 | 669
664
668
668 | 668
667
652
666
670 | 667
663
656
668
667 | 668
667
652
668
668 | 671
670
661
668
668 | 671
670
668
668
668 | 672
671
668
668
668 | 662
661
660
659
661 | 890
854
843
823
859 | | 16 q
17
18
19
20 | 668
668
678
668
670 | 667
668
678
668
668 | 668
668
671
668
669 | 668
669
676
671
669 | 668
670
678
671
670 | 669
669
682
672
670 | 668
668
674
672
671 | 667
664
671
668
672 | 659
657
668
665
667 | 651
646
657
658
660 | 641
642
649
649
648 | 642
646
645
645
646 | 645
652
647
647
649 | 651
660
658
653
656 | 659
668
662
663
662 | 667
671
663
661
667 | 670
672
666
660
669 | 673
671
670
667
671 | 668
673
670
671
672 | 670
674
664
670
672 | 671
676
669
671
672 | 670
675
672
671
668 | 670
674
671
671
671 | 669
676
669
671
671 | 663
666
667
665
666 | 919
977
1008
951
980 | | 21 q
22
23 d
24 d
25 | 671
668
663
657
661 | 669
672
663
657
636 | 671
672
659
636
634 | 671
672
653
637
650 | 671
673
650
668
657 | 674
678
667
666
661 | 671
677
668
663
670 | 663
673
657
656
672 | 657
659
646
652
664 | 656
652
646
649
651 | 650
648
648
644
638 | 647
651
645
644
640 | 650
657
631
653
641 | 656
661
631
657
653 | 660
668
644
657
648 | 664
674
657
646
654 | 666
680
665
653
656 | 668
684
665
662
652 | 671
694
661
670
656 | 672
662
658
662
664 | 672
671
656
657
665 | 671
668
620
670
662 | 669
659
656
667
657 | 669
657
641
655
642 | 665
668
652
656
653 | 959
1030
650
738
684 | | 26
27
28 <i>d</i>
29
30 | 648
665
653
662
664 | 640
664
653
660
663 | 663
663
657
660
665 | 667
668
653
663
664 | 670
668
665
664
664 | 671
668
671
664
660 | 671
668
674
665
664 | 671
671
677
664
665 | 662
667
671
660
659 | 649
659
658
655
645 | 646
653
645
650
647 | 646
657
633
650
649 | 648
659
633
654
649 | 654
659
656
660
653 | 658
660
658
664
660 | 661
668
663
668
665 | 665
668
664
670
664 | 671
672
668
667
668 | 671
675
660
665
668 | 671
674
662
670
664 | 668
674
660
667
676 | 665
669
663
652
668 | 662
676
660
650
664 | 666
669
661
660
665 | 661
666
659
661
661 | 864
994
818
864
873 | | Mean Mean | 661
664 | 662 | 662 | 663 | 666 | 670 | 665 | 668 | 658 | 650 | 654 | 653
643 | 656
646 | 652 | 657 | 662 | 660 | 657
667 | 654
668 | 657
667 | 656
666 | 658
664 | 653
665 | 660
664 | 661
661 | 867 | | Sum
19,000γ+ | 1595 | 1529 | 1526 | 1567 | 1649 | 1696 | 1685 | 1619 | 1402 | 1155 | 978 | 945 | 1026 | 1209 | 1373 | 1515 | 1593 | 1674 | 1700 | 1662 | 1651 | 1575 | 1614 | 1582 | | Grand Total
491,520 | | 2 LE | RWICK (| (D) | | | | | | | | | | 9 | ۰ + | | | | | | | | | | | | оста | BER 1965 | |----------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|---------|---------|---------|--------|---------|--------|--------|--------|--------|--------|--------|--------|------------------------| | | Hour | GMT | | | | | | | | | | | 1 | | | | | | | | | | | | | Sum | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | 400.0'+ | | | , | • | | 1 | 20 · 1 | 20.0 | 19.7 | 19.5 | 19 · 4 | 19 · 4 | 19.3 | 18 · 7 | 18.3 | 19.0 | 21 · 0 | 23 · 7 | 25 · 2 | 25 · 1 | 24 · 7 | 23.6 | 22.1 | 21 · 3 | 21 · 1 | 21.0 | 20.8 | 20.6 | 20 · 1 | 19.5 | 21.0 | 103 · 2 | | 2 d | 20.0 | 13 · 2 | 12.2 | | 13.8 | 18.0 | 16.8 | 16 · 3 | 18.0 | 19.0 | 20.8 | 25 · 7 | 27.5 | 30.5 | 30 · 4 | 29.3 | 28 • 7 | 25.7 | 24 • 4 | 24 · 3 | 22.8 | 3.1 | 14.5 | 19.0 | 20.3 | 88 • 4 | | 3 | | 19.2 | | | | 18.6 | 18 · 7 | 18.0 | 19.5 | 20.3 | 22 · 1 | 24 · 3 | 25.3 | 25 · 3 | 24 · 8 | 23 · 4 | 22 · 1 | 21.9 | 22 · 1 | 21 · 7 | 21 · 3 | | | 19·8 | 21.0 | 105 · 0 | | 4 q | | 19.9 | | | | 19 · 2 | | 18.7 | 18.3 | 18.5 | 19 · 7 | 21 · 3 | 22.6 | 23.9 | 24 · 3 | 23.3 | 21.8 |
21 · 2 | | 20.5 | 20 · 4 | 20 · 2 | 20.0 | 20.0 | 20.5 | 93 · 1 | | 5 | 19.9 | 19 · 9 | 19.9 | 18.5 | 18.5 | 18.3 | 17.5 | 17.5 | 17.5 | 18.1 | 20 · 4 | 23.3 | 27.1 | 28.9 | 28 · 8 | 26 · 4 | 24 · 2 | 22.6 | 21.5 | 20.9 | 20・4 | 19.9 | 19.6 | 18 · 5 | 21.2 | 108 · 1 | | 6 q | 18.5 | 19.5 | 19.6 | 19.5 | 19.6 | 19.3 | 18.7 | 18.2 | 17.6 | 18 · 2 | 19.5 | 21.6 | 23.3 | 25.0 | 24 · 8 | 23.4 | 21.8 | 20.9 | 20.4 | 20 · 2 | 20.3 | 20.2 | 20-4 | 20.3 | 20.5 | 90-8 | | 7 | 20.2 | 19.8 | 19.5 | 19.3 | 19.3 | 19.3 | 18 · 7 | 17.8 | 17.5 | 17.5 | 21.0 | 23.3 | 25.3 | 27.2 | 28 • 4 | 28 · 8 | 26 - 9 | 25.0 | 22.2 | 21.3 | 20∙4 | 19.5 | 19.1 | 18.3 | 21.5 | 115.6 | | 8 d | 17.8 | 17 • 4 | 19.0 | 17.5 | 17.9 | 18.5 | 18.5 | 18.5 | 18 • 2 | 18 · 3 | 20 · 1 | 22.3 | 23.6 | 23.9 | 24 · 9 | 24 · 2 | 22.5 | 21 · 7 | 21 · 5 | 20 · 1 | 12.8 | 18 · 1 | 14 · 4 | 14.4 | 19.4 | 66 · 1 | | 9 | 18 · 3 | 20 · 7 | 20.3 | 16.7 | 17.5 | 17.6 | 17.6 | 17.0 | 16.8 | 18.6 | 20 · 5 | 23.4 | 24 · 5 | 25 · 2 | 24 · 4 | 23.2 | 21.6 | 21 · 2 | 21 · 2 | 20.6 | 20 · 1 | 20 · 3 | 20 · 1 | 19.5 | 20.3 | 86 · 9 | | 10 | 19.5 | 19 · 2 | 19 · 2 | 19.5 | 18.8 | 18.7 | 18.5 | 17.5 | 16.6 | 17.7 | 20.7 | 24 · 2 | 25 · 1 | 25.2 | 23.9 | 22.3 | 21 · 3 | 20.8 | 21 · 1 | 21 · 2 | 19 · 3 | 18.8 | 20 · 5 | 20.3 | 20.4 | 89.9 | | 11 | 20.4 | 20.4 | 20.3 | 19.8 | 19.6 | 19.5 | 18.8 | 18.0 | 17.6 | 17.7 | 19.8 | 23.0 | 25 · 2 | 25 · 3 | 24 · 2 | 22.7 | 21.4 | 20.8 | 21.0 | 21 · 1 | 19.2 | 20 · 4 | 20 · 2 | 19·1 | 20.6 | 95.5 | | 12 | 17.1 | 15.4 | 17.9 | 18.2 | 19.7 | 18.8 | 18.9 | 18.8 | 18.3 | 19.6 | 21.5 | 25.3 | 25 · 7 | 26 · 1 | 25.0 | 23 · 1 | 21 · 4 | 20.5 | 20.6 | 14.8 | 17.5 | 19.2 | 20 · 2 | 20.4 | 20 · 2 | 84.0 | | . 13 | 20.0 | 20.7 | 20.3 | 19.6 | 17 · 7 | 19.3 | 21.6 | 21 · 4 | 20.7 | 20 · 2 | 22.0 | 25.2 | 26 · 3 | 27 · 2 | 26 · 3 | 24 · 3 | 23 · 1 | 23 · 1 | 9.1 | 12.0 | 13.2 | 18.6 | 19.7 | 19.7 | 20.5 | 91.3 | | 14 | 19.8 | 17.9 | 16.8 | 19.5 | 20.6 | 18.8 | 18 · 7 | 18 · 1 | 17.6 | 18.6 | 20.8 | 23.3 | 25.3 | 25 · 3 | 24 · 1 | 23 · 2 | 21 · 7 | 21 · 2 | 21 · 1 | 21.0 | 20.7 | 20.2 | 19.6 | 16.0 | 20 · 4 | 89 · 9 | | 15 q | 17.2 | 18.6 | 19.0 | 19 · 4 | 19.6 | 19.6 | 19·6 | 18.6 | 18.5 | 18.8 | 20 • 4 | 22.4 | 24.0 | 24 · 5 | 24 · 2 | 23.3 | 21.6 | 21 · 2 | 20 · 7 | 20.5 | 20 • 4 | 20 · 3 | 20 · 2 | 19·8 | 20 · 5 | 92-4 | | 16 g | 10.6 | 19.6 | 19.3 | 19.5 | 19.4 | 18.9 | 19.3 | 18.6 | 17.8 | 18-4 | 20 · 2 | 23 · 2 | 25 · 2 | 25.5 | 24 · 5 | 22.7 | 21 · 4 | 20.5 | 20.5 | 20.3 | 20.5 | 20 · 3 | 20 · 2 | 20.0 | 20.6 | 95.4 | | 17 | | 19.7 | 19.9 | | | 19.6 | 19.3 | | 17.6 | 18.6 | 21 · 2 | 24.0 | 25 · 2 | 25 · 3 | 24 · 3 | 22.4 | 21.4 | 21.2 | 20.8 | 20.7 | 20.6 | 20.5 | 19.9 | 20.5 | 20.9 | 101.0 | | 18 | | 17.6 | | 18.7 | | | | 20.5 | 20 · 4 | 19.8 | 22.5 | 24 · 4 | 27.0 | 27.6 | 25.9 | 23.8 | 21.5 | 20.7 | 20.9 | 20 · 1 | 20.3 | 20 · 1 | 20 · 3 | 20.2 | 21 · 2 | 109.5 | | 19 | 19.8 | 19.7 | 19.7 | 19.8 | 20.3 | | 19.6 | 18.5 | 18 · 1 | 19.4 | 21 · 4 | 24 · 3 | 26 · 2 | 25.1 | 24 . 5 | 23.4 | 20.5 | 20.7 | 20.7 | 20.6 | 19.7 | 19.1 | 19.8 | 20.3 | 20.9 | 100.9 | | 20 | | 19.7 | 19.9 | 20.0 | 19.9 | 19.6 | 19.0 | 18.1 | 18 · 1 | 19.5 | 21 · 4 | 23 · 4 | 24.0 | 24 • 0 | 23 · 4 | 22.6 | 21.5 | 21 · 4 | 21 · 4 | 20.5 | 15.5 | 17.6 | 19·3 | 19.7 | 20.4 | 89 · 5 | | 21 q | 19.8 | 19.9 | 20.0 | 19.6 | 19.6 | 18.9 | 18.5 | 18.3 | 18.3 | 18.7 | 20.2 | 21 · 4 | 22.6 | 23 · 3 | 22.6 | 21.7 | 20.7 | 20 · 5 | 19.9 | 19 · 7 | 19.7 | 19 · 7 | 19 · 7 | 19.7 | 20.1 | 83.0 | | 22 | 19.8 | 19.7 | 18.6 | 19.5 | 19.3 | 19.1 | | 17.9 | 17.7 | 18.9 | 19.8 | 20.9 | 23.5 | 25.3 | 26 · 3 | 25.3 | 28 · 4 | 34 · 7 | 30.8 | 21.5 | 19 · 2 | 13.6 | 13.6 | 13.7 | 21 · 1 | 106 · 2 | | 23 d | 13.9 | 15.1 | 18.0 | 18.0 | 20.0 | 18.9 | 19.7 | 19.5 | 17.6 | 17.9 | 20.0 | 25.5 | 25.3 | 28.0 | 25 · 3 | 25.7 | 21.7 | 14 · 1 | 22.2 | 8.3 | 9.3 | 11.6 | 12.1 | 16.6 | 18.5 | 44.3 | | 24 d | 15.3 | 12.1 | 9.8 | 19.6 | 18.3 | 18 • 4 | 19 · 8 | 19 · 8 | 20.7 | 15.9 | 21 · 7 | 23.4 | 24 · 7 | 25.3 | 25 · 1 | 16 · 7 | | | | | 17 · 7 | 16 · 8 | 21 · 2 | 19.0 | 19.2 | 60.8 | | 25 | 16.3 | 14 · 1 | 16 · 2 | 18.6 | 21 · 9 | 21.9 | 22 · 4 | 21.7 | 20.5 | 21 · 1 | 21.5 | 24 · 4 | 25.3 | 25.3 | 24 • 4 | 23.6 | 22.5 | 25 · 6 | 22.2 | 20.6 | 18 · 7 | 16 · 1 | 15.9 | 14.5 | 20.6 | 95.3 | | 26 | 19.7 | 26.8 | 17.6 | 18.7 | 19.5 | 19.4 | 18.9 | 18.6 | 18.1 | 17.9 | 20 · 1 | 23 · 2 | 24.3 | 24 · 2 | 23.3 | 21.7 | 21.5 | 21 · 1 | 20.6 | 20.3 | 19.0 | 18 · 2 | 18 · 7 | 23.5 | 20-6 | 94.9 | | 27 | 20.7 | 18.9 | 19.7 | 19.7 | 19.0 | 19.0 | 18 · 7 | 18 · 7 | 18.7 | 19 · 7 | 21 · 5 | 24 · 4 | 25 · 7 | 26 · 4 | 25.5 | 23 · 4 | | | 21 · 5 | 20.9 | 19.7 | 18 · 7 | 15 · 7 | 17.3 | 20.8 | 98·8 | | 28 d | 22.5 | 19.7 | 12.3 | 16.6 | 17 · 7 | 17.7 | 17.9 | 18.0 | 18.6 | 19.5 | 22.6 | 26 · 2 | 23 · 4 | 23.5 | 25 · 3 | | 21.9 | 21.5 | 19.5 | | 19 · 4 | 17.0 | 17.3 | 18.9 | 20.0 | 79 - 1 | | 29 | 20.2 | 19.8 | 18 · 4 | 18.5 | 18.6 | 19.0 | 18.7 | 18 • 4 | 17.6 | 17.7 | 19 · 4 | 21.5 | 22.5 | 23 • 1 | 22.7 | | | | 20 • 4 | | | | | 17:4 | 19.9 | 77-9 | | 30 | 17.7 | 19.5 | 17.9 | 17.6 | 18 · 1 | 19.9 | 23.5 | 21 · 5 | 20.8 | 19.8 | 20.9 | 22.9 | 23.0 | 23.5 | 23 · 2 | 21.7 | 19 · 7 | 18.5 | 20.7 | 19.9 | 12.8 | 18.7 | 18 · 0 | 17.0 | 19.9 | 76 · 8 | | 31 | 18.7 | 17.7 | 20.6 | 18.6 | 19.3 | 17.9 | 18 • 4 | 19.5 | 18 · 1 | 18.6 | 20.5 | 22.5 | 23 · 1 | 23 • 1 | 22.7 | 22.0 | 23.2 | 20.9 | 16 · 1 | 17.0 | 15.9 | 14 · 1 | 15 · 4 | 17.7 | 19-2 | 61.6 | | Mean | 19-1 | 18 · 7 | 18.4 | 18.8 | 19.0 | 19.0 | 19 · 2 | 18.7 | 18.4 | 18.9 | 20.8 | 23.5 | 24 · 7 | 25.4 | 24.9 | 23.4 | 22.4 | 21.9 | 20.7 | 19.6 | 18.7 | 18 · 2 | 18 · 4 | 18 · 7 | 20-4 | | | Sum
500·0'+ | 92.6 | 81.4 | 69.3 | 83.8 | 89.6 | 89.3 | 94 · 3 | 79·1 | 69.7 | 85.5 | 145 · 2 | 227·9 | 267.0 | 287 • 1 | 272 • 2 | 226 · 5 | 194-8 | 177.9 1 | 140-9 | 106-4 | 78-9 | 65-2 | 70-0 | 80.6 | | Grand Total
15175·2 | OCTOBER Mean values for periods of sixty minutes ending at exact hours, GMT 47.000 x (0.47 CGS unit) + 3 LERWICK (Z) 395 350 368 380 328 412 23 d 24 d 25 27 28 d 30 Mean 12,000) 350 413 Hour CMI 0-1 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 | 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 9000y+ 423 407 2 d 413 413 423 4.33 432 431 431 431 433 435 1170 415 411 413 6 q 7 8 d 415 412 406 410 414 410 13 401 15 q *q* 410 415 407 407 412 415 413 412 415 419 416 414 803 408 410 414 460 531 454 21 q 22 409 409 983 1006 1091 1054 Grand Total GEOMAGNETIC CHARACTER FIGURES (K, KH, KD, KZ, AND C) AND TEMPERATURE IN MAGNETOGRAPH HOUSE | 4 | LERWICK | | | | | | | | oc | OBER 1965 | |----------|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------------|--|-------------------------------|--|---| | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of
K _D
indices | 3-h range
indices
K _Z | Sum of K _Z indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph house
200°A+ | | 1 | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 88.5 | | 2 d | 3221 2234 | 19 | 2221 2224 | 17 | 3211 1234 | 17 | 3230 2234 | 19 | 1 | 88.6 | | 3 | 0100 0001 | 2 | 0000 0000 | 0 | 0100 0001 | 2 | 0000 0000 | 0 | 0 | 88 · 4 | | 4 9 | 0000 0000 | Ō | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 88.5 | | 5 | 1111 2201 | 9 | 1011 2200 | 7 | 1110 1101 | 6 | 0000 1000 | 1 | 1 | 88.8 | | 6 q | 1000 0000 | 1 | 0000 0000 | 0 | 1000 0000 | 1 | 0000 0000 | 0 | 0 | 88.8 | | 7 | 0002 2211 | 8 | 0002 2211 | 8 | 0001 1101 | 4 | 0000 0001 | 1 1 | 1 | 88.7 | | ,
8 d | 3131 2133 | 17 | 3121 2123 | 15 | 3130 1033 | 14 | 2100 0023 | 8 | 1 | 88 · 3 | | 9 | 2111 0010 | 6 | 1000 0000 | 1 | 2111 0010 | 6 | 1100 0000 | 2 | 1 | 88.0 | | ó | 0010 0011 | 3 | 0000 0000 | 0 | 0010 0011 | 3 | 0000 0000 | 0 | 0 | 87.9 | | 1 | 0000 1111 | 4 | 0000 0101 | 2 | 0000 1011 | 3 | 0000 0000 | 0 | 0 | 87.9 | | 2 | 1111 1130 | 9 | 1101 1110 | 6 | 1111 0130 | 8 | 1000 0010 | 2 | 1 | 87 9 | | 3 | 2110 1132 | 11 | 1110 1110 | 6 | 2110 1132 | 11 | 0000 0020 | 2 | 1 | 88.0 | | 4 | 1201 1001 | 6 | 1201 1001 | 6 | 1201 1001 | 6 | 0100 0000 | 1 1 | 1 | 87.9 | | 5 9 | 1000 0000 | 1 | 1000 0000 | 1 | 1000 0000 | 1 | 0000 0000 | 0 | 0 | 87.9 | | 6 9 | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 88.0 | | 7 | 0000 1001 | 2 | 0000 1000 | 1 | 0000 1001 | 2 | 0000 0000 | 0 | 0 | 87.8 | | 8 | 2010 1000 | 4 | 2000 1000 | 3 | 2010 0000 | 3 | 1000 0000 | 1 1 | 1 | 87.6 | | 9 | 0001 1111 | 5 | 0001 1100 | 3 | 0000 1111 | 4 | 0000 0000 | 0 | 0 | 88.5 | | ó | 0001 0022 | 5 | 0001 0010 | 2 | 0000 0022 | 4 | 0000 0000 | 0 | 1 | 88.5 | | 1 9 | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 88 • 4 | | 2 4 | 1012 1342 | 14 | 1012 1342 | 14 | 1001 1332 | 11 | 0000 0443 | 11 | 2 | 88 · 7 | | 3 d | 2222 2343 | 20 | 2222 2223 | 17 | 2222 2343 | 20 | 0220 3132 | 13 | 1 | 88 · 4 | | 4 d | 3311 2342 | 19 | 3310 2232 | 16 | 3211 1342 | 17 | 3200 2223 | 14 | 1 | 88 · 7 | | 5 | 3211 2313 | 16 | 3211 2112 | 13 | 3211 2313 | 16 | 2300 2122 | 12 | 1 | 88.7 | | 6 | 3110 0013 | 9 | 2010 0001 | 4 | 3100 0013 | 8 | 3200 0002 | 7 | 1 | 88 · 5 | | 7 | 1111 1113 | 10 | 0011 1113 | 8 | 1101 1113 | 9 | 2000 0003 | 5 | 1 | 89.0 | | B d | 3212 2132 | 16 | 2212 2121 | 13 | 3112 2032 | 14 | 3201 2022 | 12 | 1 | 89.0 | | ا و | 1000 0013 | 5 | 0000 0003 | 3 | 1000 0013 | 5 | 2000 0002 | 4 | 1 | 88.2 | | 0 | 1121 0231 | 11 | 0021 0121 | 7 | 1121 0231 | 11 | 0020 0010 | 3 | 1 | 87.9 | | 1 | 2110 0232 | 11 | 1110 0121 | 7 | 2110 0232 | 11 | 1000 0112 | 5 | 1 | 87 · 7 | | | | | | | | | | Mean | 0.68 | 88.3 | $[\]emph{q}$ denotes an international quiet day and
\emph{d} an international disturbed day. K_H For horizontal component. K_D For declination. K_Z For vertical component. (See Introduction). ## GEOMAGNETIC FORCE: HORIZONTAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT | 1 LER | WICK (| H) | | | | | | | | | | 14,000 | y (0·1· | 4 CGS | mit) | + | | | | | | | | | NOVEME | BER 1965 | |---------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
15,000y+ | | 1
2
3 q
4
5 d | 9
662
664
663
667
671 | 9
663
660
663
672
672 | 7
659
661
663
669
670 | 9
658
663
664
669
674 | 9
662
663
665
674
672 | 9
663
666
666
678
669 | γ
664
667
667
682
665 | 9
667
667
664
685
666 | 9
663
660
659
678
663 | 9
656
652
651
667
656 | γ
652
651
645
663
656 | 9
649
652
645
659
661 | 649
652
649
647
663 | γ
656
650
655
648
664 | 9
661
649
657
652
672 | γ
666
652
661
663
676 | γ
667
659
663
667
669 | 9
667
659
667
670
669 | 9
669
661
667
671
660 | 9
668
659
667
674
667 | 9
661
662
667
672
652 | 9
663
668
667
673
643 | 9
663
671
667
673
648 | 9
663
664
664
671
623 | 9
661
660
661
669
663 | 9
871
832
866
1044
901 | | 6 d | 628 | 645 | 633 | 665 | 665 | 673 | 676 | 666 | 652 | 641 | 632 | 636 | 642 | 648 | 655 | 655 | 654 | 659 | 650 | 634 | 636 | 645 | 639 | 621 | 648 | 550 | | 7 | 637 | 652 | 653 | 662 | 667 | 671 | 671 | 671 | 659 | 646 | 633 | 643 | 647 | 648 | 651 | 651 | 656 | 651 | 645 | 651 | 651 | 659 | 664 | 664 | 654 | 703 | | 8 | 664 | 663 | 663 | 664 | 665 | 667 | 666 | 670 | 663 | 654 | 651 | 652 | 655 | 659 | 660 | 660 | 659 | 659 | 660 | 661 | 656 | 659 | 666 | 665 | 660 | 851 | | 9 | 653 | 664 | 664 | 663 | 667 | 667 | 668 | 667 | 660 | 649 | 641 | 641 | 650 | 659 | 663 | 664 | 664 | 663 | 664 | 667 | 667 | 668 | 667 | 666 | 661 | 866 | | 10 q | 667 | 664 | 663 | 664 | 667 | 670 | 671 | 670 | 665 | 656 | 652 | 653 | 658 | 663 | 667 | 667 | 669 | 669 | 670 | 670 | 669 | 667 | 667 | 668 | 665 | 965 | | 11 | 666 | 667 | 666 | 666 | 667 | 670 | 670 | 670 | 668 | 663 | 655 | 655 | 659 | 665 | 667 | 670 | 665 | 669 | 672 | 666 | 668 | 664 | 671 | 671 | 666 | 990 | | 12 | 671 | 670 | 669 | 671 | 672 | 672 | 671 | 671 | 670 | 665 | 659 | 658 | 660 | 665 | 668 | 671 | 676 | 679 | 680 | 681 | 680 | 678 | 674 | 670 | 671 | 1101 | | 13 | 668 | 665 | 663 | 667 | 674 | 673 | 669 | 668 | 665 | 660 | 653 | 648 | 649 | 656 | 661 | 665 | 668 | 674 | 667 | 655 | 655 | 631 | 650 | 662 | 661 | 866 | | 14 | 664 | 662 | 664 | 664 | 665 | 664 | 664 | 664 | 664 | 659 | 654 | 652 | 653 | 659 | 664 | 667 | 668 | 669 | 662 | 660 | 665 | 668 | 668 | 666 | 663 | 909 | | 15 | 668 | 660 | 661 | 663 | 669 | 668 | 668 | 668 | 664 | 654 | 650 | 650 | 656 | 663 | 667 | 667 | 668 | 669 | 661 | 653 | 660 | 666 | 668 | 665 | 663 | 906 | | 16 q | 665 | 665 | 664 | 664 | 665 | 667 | 668 | 668 | 664 | 658 | 653 | 650 | 654 | 660 | 665 | 668 | 670 | 672 | 672 | 671 | 669 | 666 | 663 | 665 | 664 | 946 | | 17 | 665 | 665 | 666 | 665 | 670 | 674 | 677 | 674 | 666 | 660 | 654 | 649 | 653 | 656 | 662 | 666 | 668 | 671 | 673 | 672 | 672 | 670 | 669 | 669 | 666 | 986 | | 18 | 664 | 660 | 661 | 672 | 675 | 677 | 680 | 680 | 677 | 672 | 666 | 659 | 656 | 657 | 660 | 661 | 668 | 668 | 668 | 666 | 667 | 668 | 667 | 670 | 667 | 1019 | | 19 d | 670 | 670 | 670 | 672 | 668 | 672 | 683 | 665 | 657 | 657 | 649 | 646 | 646 | 655 | 658 | 656 | 654 | 649 | 646 | 648 | 654 | 657 | 662 | 661 | 659 | 825 | | 20 d | 671 | 663 | 662 | 660 | 669 | 671 | 667 | 665 | 661 | 661 | 633 | 645 | 645 | 659 | 661 | 664 | 660 | 648 | 648 | 642 | 645 | 639 | 638 | 642 | 655 | 719 | | 21 | 642 | 642 | 645 | 662 | 659 | 657 | 664 | 663 | 667 | 664 | 661 | 658 | 658 | 663 | 660 | 661 | 669 | 670 | 667 | 664 | 661 | 659 | 665 | 665 | 660 | 846 | | 22 | 660 | 659 | 659 | 662 | 666 | 669 | 671 | 671 | 666 | 662 | 659 | 658 | 658 | 660 | 662 | 664 | 666 | 665 | 666 | 669 | 667 | 666 | 666 | 668 | 664 | 939 | | 23 <i>q</i> | 666 | 666 | 666 | 666 | 669 | 670 | 670 | 671 | 670 | 664 | 660 | 658 | 661 | 665 | 666 | 667 | 669 | 670 | 670 | 666 | 663 | 666 | 671 | 668 | 667 | 998 | | 24 | 666 | 664 | 663 | 667 | 668 | 669 | 671 | 674 | 674 | 668 | 660 | 658 | 659 | 662 | 669 | 673 | 674 | 675 | 674 | 663 | 666 | 666 | 669 | 667 | 667 | 1019 | | 25 | 666 | 667 | 667 | 670 | 671 | 673 | 673 | 671 | 669 | 664 | 659 | 660 | 662 | 668 | 671 | 670 | 666 | 673 | 675 | 674 | 662 | 664 | 662 | 666 | 668 | 1023 | | 26 | 667 | 666 | 666 | 667 | 670 | 672 | 674 | 672 | 667 | 659 | 657 | 661 | 664 | 667 | 671 | 667 | 666 | 664 | 668 | 669 | 669 | 670 | 668 | 668 | 667 | 1009 | | 27 | 665 | 665 | 668 | 668 | 669 | 671 | 671 | 668 | 667 | 662 | 661 | 661 | 665 | 669 | 670 | 672 | 672 | 665 | 649 | 657 | 663 | 665 | 665 | 665 | 666 | 974 | | 28 <i>q</i> | 664 | 663 | 664 | 665 | 668 | 669 | 670 | 670 | 667 | 661 | 660 | 660 | 664 | 667 | 670 | 671 | 672 | 672 | 672 | 671 | 669 | 669 | 668 | 668 | 667 | 1014 | | 29 | 668 | 668 | 668 | 668 | 668 | 671 | 672 | 672 | 672 | 667 | 664 | 667 | 668 | 669 | 670 | 671 | 669 | 662 | 662 | 665 | 662 | 658 | 662 | 664 | 667 | 1007 | | 30 <i>d</i> | 664 | 665 | 665 | 666 | 669 | 673 | 675 | 678 | 680 | 681 | 681 | 679 | 662 | 6 4 6 | 653 | 661 | 656 | 665 | 650 | 657 | 643 | 641 | 645 | 658 | 663 | 913 | | Mean
Sum
19,000y+ | 663
876 | 663
890 | 663
875 | 971 | 1038 | 670
1092 | 1125 | 670
1096 | 977 | 789 | 654 | 654 | 655
664 | 659
781 | 663
883 | 665
947 | 971 | 982 | 919 | 663
887 | 662
853 | 661
842 | 663
896 | 662
857 | 663 | Grand Total
477,458 | | 2 LE | RWICK (| D) | | | | | | | | | | 9° | + | | | | | | | | | | | | NOVEMB | ER 1965 | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|--------------------------------------|----------------------|----------------------|----------------------|--------------------------------------|--------------------------------------|--|---------------------------------------| | | Hour
0-1 | GMT
1 - 2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 3 13-14 | 14-15 | 15-16 | 16-17 | 7 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
400 · 0 ' + | | | • | • | • | , | , | , | , | , | , | , | , | , | , | | , | , | • | • | , | • | , | • | • | • | .] | , | | 1
2 | | 18·9
17·4 | 19·1
19·7 | 19.2 | 19·3
19·4 | 19·0
19·4 | 18·9
19·6 | 18·9
18·9 | 18.7 | 19.2 | 20.7 | 21·4
22·9 | 22.7 | 25.0 | 22·7
23·7 | 22.4 | 21·6
18·3 | 20.8 | 21·6
20·0 | 19.0 | | 17.0 | | 18·0
18·7 | 20·0
19·9 | 80·1
77·0 | | 3 q
4 | | 20·0
19·5 | 20·2
19·3 | 20·1
17·8 | | 19·7
18·0 | | 18·2
17·6 | | | | 21·3
23·9 | 1 | 21.8 | 21·4
21·9 | 20.8 | 20.3 | 20·1
19·8 | | 20·0
19·5 | | | | | 19.9 | 77·8
75·9 | | 5 d | | | 19.7 | 19.7 | | 19.6 | | 18.3 | | 18.1 | | 23 · 1 | | 24.5 | 23.7 | 24.9 | | 25.8 | | | 17.2 | 12.0 | 5.8 | 1.5 | 19.6 | 69.3 | | 6 <i>d</i>
7 | 6·1
9·6 | 11.2 | 11·0
16·7 | 18.1 | 19.3 | | | 18 · 9 | | 19.2 | 21·9
21·2 | 24 · 7 | 26 · 4 | 24·5
27·7 | 23·1
25·7 | 23.6 | | 20.3 | 17·7
21·5 | 19 · 1 | 18.1 | 19.7 | 19.6 | 22.4 | 17·7
20·1 | 25·6
81·2 | | 8 | 21·0
19·9 | 20.9 | 20·7
18·9 | 20·5
19·6 | 20·1
19·6 | | 19·8
19·0 | 19·1
18·5 | | | 21.1 | 23·1
22·0 | 24.3 | 24·3
23·8 | 23·9
22·7 | 22 · 9 | 20·8
21·8 | | 21·7
20·7 | | | 17·6
19·4 | | | 20.4 | 89·0
88·1 | | 10 q | | 19.8 | 19.8 | | | | | 19 · 1 | | | | 21.9 | | 23.0 | 22.1 | | | 21.2 | | | 20 · 1 | | 19.2 | | 20.4 | 89.7 | | 11
12
13
14
15 | 19·0
19·9
19·9
20·5
15·4 | 19·9
20·3
20·2
20·6
18·6 | 20·1
20·4
20·6
20·6
18·7 | 20·1
20·5
22·2
20·2
19·7 | 20·1
20·5
19·6
19·7
19·5 | 19.5 |
| 19·8
18·9
19·7 | 19.2 | 19·2
19·6
19·7
18·7
18·7 | 20·7
20·3
20·9
20·4
20·3 | 22·2
21·6
22·5
21·8
22·0 | 23·1
23·4
23·7
23·1
23·4 | 23·6
24·3
23·5 | 22·6
23·3
23·4
23·4
22·2 | 22·6
22·2
22·2 | 21·7
22·2
21·5
21·6
20·8 | 21·6
21·2 | 21·8
21·5
21·5
20·5
21·3 | 21·1
20·9
21·4 | 20·5
16·5
18·9 | 1·9
19·0 | 18·4
19·3
15·2
18·6
19·6 | 19·3
18·7
17·7 | 20·4
20·9
19·6
20·5
20·0 | 88.6
101.0
70.6
92.6
79.8 | | 16 q
17
18
19 d
20 d | 19·5
19·6
16·4
19·7
19·7 | | 19·2
20·4
19·1
20·3
16·0 | 20·8
21·7
19·6 | 20·2
21·4
18·6
18·5
19·0 | 21 · 1 | 19.0 | 18·7
20·4 | | 19·7
24·4 | 20·8
21·6 | 21·6
22·6
22·8
23·5
25·5 | 22·9
24·2
24·1
24·9
27·3 | 25.6 | 22·1
22·7
25·3
24·8
23·2 | 22.6 | 23 · 2 | 20·2
22·6 | 16.9 | 20·6
15·0 | 19·5
19·9
15·8 | 19·5
17·4 | 19·4
18·6
19·3 | 17·7
19·5 | 20·1
20·4
20·7
20·6
19·5 | 83·4
90·3
97·2
95·3
69·2 | | 21
22
23 q
24
25 | 19·5
19·4 | 15·4
20·3
20·0
18·6
19·6 | 17·7
21·8
20·3
19·6
19·9 | 19·8
20·8
20·4
19·5
20·3 | 21·5
18·8
20·1
19·0
20·3 | 23·0
18·7
20·0
18·9
20·2 | 18.7 | 18.0 | 19·1
18·8
19·7
18·8
18·9 | 19·6
19·7
20·0 | 20·8
20·8
20·5
20·6
19·6 | 22·0
22·4
21·3
21·7
21·4 | 23·3
23·5
22·2
23·5
22·6 | 22·9
22·9
22·7
23·4
23·5 | 22·4
22·3
22·3
22·5
22·7 | 19·8
21·4
21·4
22·0
22·6 | | 19·9
20·9
21·4 | 20·0
18·7
20·6
21·5
20·8 | 19·7
19·4
20·1 | 19·5
18·2 | 18·0
17·6 | 16·0
17·5
17·9 | 16·9
17·7 | 19·7
19·9
20·1
20·1
19·7 | 71·9
78·8
82·5
81·2
73·3 | | 26
27 .
28 q
29
30 d | 19.4 | 20·2
17·7
20·1
19·8
19·7 | 20·0
17·7
19·7
20·0
19·7 | 20·0
18·8
19·7
20·2
19·7 | 20·2
18·8
19·7
20·4
20·1 | 19·7
18·7
19·5
19·7
20·2 | 19·4
19·7 | 19·7
19·6
19·5
19·2
19·7 | 19·5
19·4 | 19·6
20·0
20:4 | 20·4
20·6
21·5
21·5
20·8 | 22·4
21·6
22·4
22·3
22·2 | 24·1
22·2
22·6
22·6
23·5 | 23·4
21·7
21·7
22·1
26·1 | 23·5
21·5
21·5
21·7
28·1 | 22·9
20·6
21·1
22·0
33·7 | 22.7
20.8
20.7
22.7
28.3 | 20·3
22·5 | 16·9
20·1
21·5 | | 19·2
18·7
18·7 | 18·2
19·4
16·5 | 18·5
18·8
16·4 | 19·1
18·6
18·9
18·6
14·6 | 21 · 0
19 · 6
20 · 2
20 · 3
20 · 5 | 103·7
69·3
84·4
87·0
91·8 | | Mean | 18.3 | 18 · 7 | 19.2 | 19.6 | 19.5 | 19.6 | 19.5 | 19·3 | 19.1 | 19.6 | 20.9 | 22.5 | 23.6 | 23.7 | 23·1 | 22.4 | 21.6 | 21.0 | 20 · 3 | 19.5 | 18.0 | 16 · 9 | 17.5 | 18.0 | 20 · 1 | | | Sum
500·0'+ | 48.2 | 62.1 | 76.9 | 88.8 | 84.7 | 89·1 | 85.9 | 79·1 | 74.5 | 88.9 | 127.5 | 173.8 | 207 • 4 | 209 · 7 | 192•4 | 172.0 | 147 • 0 | 129·8 | 110.5 | 85.3 | 40.0 | 8.5 | 24 · 7 | 38.8 | | Grand Total
14445.6 | 47.000: (0:47 CGS unit) + NOVEMBER 1965 3 LERWICK (Z) Hour CMT 4-5 7-8 3-4 5-6 6-7 8-9 9-10 10-11 11-12 | 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 90007+ 1-2 2-3 Mean 0-1 3 q 4 415 417 4.31 415 407 5 d 44) *d* 7 399 4) 1 4) 3 423 4.26 417 415 965 10 q 413 414 -12 413 416 416 423 433 433 417 413 411 414 14 15 417 413 16 q 17 410 439 430 424 420 419 420 367 4.26 4.26 4 28 4.36 20 d 409 411 412 413 413 23 q 411 411 413 415 25 416 418 931 414 411 416 415 414 415 414 412 28 q 425 441 471 464 443 379 421 30 d 414 414 Mean Grand Total 301 357 409 423 298,092 12,000% GEOMAGNETIC CHARACTER FIGURES (K, $K_{\rm H}$, $K_{\rm D}$, $K_{\rm Z}$, AND C) AND TEMPERATURE IN MAGNETOGRAPH HOUSE | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of
K _D
indices | 3-h range
indices
K _Z | Sum of K _Z indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph house
200°A+ | |------|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------------|--|-------------------------------|--|---| | 1 | 0010 0121 | 5 | 0000 0110 | 2 | 0010 0021 | 4 | 0000 0010 | 1 | 1 | 88-1 | | 2 | 2000 1211 | 7 | 2000 1111 | 6 | 1000 1211 | 6 | 1000 1001 | 3 | 1 | 87.6 | | 3 9 | 0000 0000 | ó | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 87 · 3 | | 4 | 1112 1000 | 6 | 1112 1000 | 6 | 1102 1000 | 5 | 0000 0000 | 0 | 1 1 | 87.0 | | 5 d | 0011 2244 | 14 | 0001 2223 | 10 | 0011 1244 | 13 | 0000 0124 | 7 | 2 | 87 · 4 | | 6 d | 3311 1133 | 16 | 3211 1123 | 14 | 3310 1033 | 14 | 3330 0024 | 15 | 2 | 87.9 | | 7 | 3111 0112 | 10 | 3111 0110 | 8 | 3100 0012 | 7 | 3100 0102 | 7 | 1 1 | 88.0 | | 8 | 1000 0132 | 7 | 0000 0122 | 5 | 1000 0131 | 6 | 1000 0011 | 3 | 1 1 | 88.0 | | 9 | 2000 1000 | 3 | 2000 1000 | 3 | 1000 0000 | 1 | 2000 0000 | 2 | 0 | 88.3 | | 10 q | 0000 0000 | ő | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 88 · 1 | | 11 | 0000 0122 | 5 | 0000 0121 | 4 | 0000 0022 | 4 | 0000 0020 | 2 | 1 | 88.6 | | 12 | 0000 1001 | 2 | 0000 1001 | 2 | 0000 0001 | 1 | 0000 0000 | 0 | 0 | 87 · 7 | | 13 | 1200 1034 | 11 | 0100 1013 | 6 | 1200 0034 | 10 | 0100 0022 | 5 | 1 | 87 · 7 | | 14 | 0000 0121 | 4 | 0000 0100 | 1 | 0000 0121 | 4 | 0000 0000 | 0 | 1 | 87.5 | | 15 | 1100 0010 | 3 | 1000 0010 | 2 | 1100 0010 | 3 | 0000 0000 | 0 | 1 | 86 · 8 | | 16 a | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | . 0 | 0000 0000 | 0 | 0 | 86 • 5 | | 17 | 0110 0001 | 3 | 0110 0000 | 2 | 0100 0001 | 2 | 0000 0000 | 0 | 0 | 87 • 0 | | 18 | 1200 1111 | 7 | 1100 1111 | 6 | 1200 1011 | 6 | 0100 0000 | 1 | 1 | 86.6 | | 19 d | 0122 1322 | 13 | 0121 1221 | 10 | 0112 1322 | 12 | 0010 0120 | 4 | 1 | 87 · 0 | | 20 d | 3212 2331 | 17 | 2112 2231 | 14 | 3211 1331 | 15 | 3020 1122 | 11 | 1 | 87·1 | | 21 | 2221 2222 | 15 | 1110 2212 | 10 | 2221 1121 | 12 | 2220 0101 | 8 | 1 | 86.7 | | 22 | 1100 0001 | 3 | 1000 0001 | 2 | 1100 0001 | 3 | 0000 0000 | 0 | 1 | 86.8 | | 23 7 | 0000 0011 | 2 | 0000 0001 | 1 | 0000 0011 | 2 | 0000 0000 | 0 | 0 | 86 • 5 | | 24 | 1010 0011 | 4 | 0010 0011 | 3 | 1000 0011 | 3 | 0000 0010 | 1 | 1 | 86 · 4 | | 25 | 0010 0123 | 7 | 0000 0111 | 3 | 0010 0023 | 6 | 0000 0011 | 2 | 1 | 86 · 2 | | 26 | 0000 0101 | 2 | 0000 0100 | 1 | 0000 0101 | 2 | 0000 0000 | 0 | 0 | 86 • 2 | | 27 | 1100 0221 | 7 | 0000 0221 | 5 | 1100 0221 | 7 | 0000 0110 | 2 | 1 | 86 · 1 | | 28 7 | 0000 0010 | 1 | 0000 0000 | 0 | 0000 0010 | 1 1 | 0000 0000 | 0 | 0 | 86 · 2 | | 29 | 0100 0111 | 4 | 0000 0001 | 1 | 0100 0111 | 4 | 0000 0000 | 0 | 0 | 85.9 | | 30 d | 0001 2333 | 12 | 0001 2223 | 10 | 0000 2333 | 11 | 0000 2233 | 10 | 1 | 85 · 8 | Mean | 0.73 | 87 · 1 | q denotes an international quiet day and d an international disturbed day. $[\]mathbf{K_{H}}$ For horizontal component. $\mathbf{K_{D}}$ for declination. $\mathbf{K_{Z}}$ For vertical component. (See Introduction). # GEOMAGNETIC FORCE: HORIZONTAL COMPONENT Mean values for periods of sixty minutes ending at exact hours, GMT 1 LERWICK (H) 14,000y (0·14 CGS unit) + DECEMBER 1965 | | | , | | | | | | | | | | ,, | | | , | | | | | | | | | | | | |----------------|-------------|------------|-----|-----|-----|-----|-----|-----|-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
15,000y+ | | | γ | γ | γ | ·y | y | γ | γ | у | - y | γ | γ | γ | - y | y | у , | y | y | y | γ | γ | γ | γ | γ | γ | γ | γ | | 1 d | 666 | 660 | 661 | 665 | 666 | 668 | 668 | 668 | 661 | 664 | 661 | 663 | 665 | 655 | 626 | 643 | 649 | 660 | 653 | 634 | 649 | 645 | 623 | 650 | 655 | 723 | | 2 | 651 | 650 | 651 | 659 | 655 | 666 | 667 | 667 | 661 | 651 | 649 | 649 | 656 | 658 | 664 | 658 | 656 | 657 | 664 | 662 | 660 | 662 | 660 | 662 | 658 | 795 | | 3 | 663 | 661 | 662 | 664 | 665 | 664 | 664 | 663 | 662 | 660 | 659 | 659 | 659 | 664 | 665 | 666 | 666 | 665 | 667 | 666 | 662 | 666 | 663 | 665 | 663 | 920 | | 4 | 669 | 669 | 672 | 664 | 666 | 669 | 673 | 672 | 669 | 665 | 667 | 667 | 663 | 666 | 667 | 676 | 659 | 651 | 655 | 660 | 670 | 657 | 658 | 661 | 665 | 965 | | 5 | 658 | 660 | 663 | 660 | 660 | 666 | 661 | 661 | 661 | 663 | 658 | 659 | 660 | 663 | 667 | 670 | 670 | 671 | 670 | 669 | 668 | 667 | 666 | 666 | 664 | 937 | | 6 | 664 | 665 | 664 | 666 | 669 | 670 | 672 | 670 | 667 | 664 | 658 | 656 | 660 | 664 | 668 | 670 | 671 | 670 | 670 | 667 | 665 | 667 | 666 | 667 | 666 | 990 | | 7 | 660 | 668 | 661 | 663 | 669 | 671 | 675 | 683 | 677 | 669 | 661 | 660 | 662 | 666 | 669 | 669 | 669 | 670 | 670 | 669 | 668 | 663 | 662 | 663 | 667 | 1017 | | 8 | 662 | 662 | 662 | 663 | 666 | 669 | 670 | 673 | 672 | 669 | 666 | 665 | 667 | 670 | 675 | 676 | 674 | 680 | 680 | 675 | 675 | 675 | 673 | 669 | 670 | 1088 | | 9 | 668 | 669 | 669 | 668 | 669 | 672 | 672 | 674 | 672 | 668 | 658 | 659 | 661 | 646 | 664 | 670 | 671 | 670 | 666 | 665 | 665 | 666 | 664 | 669 | 666 | 995 | | 10 | 663 | 664 | 666 | 666 | 667 | 669 | 671 | 671 | 670 | 667 | 665 | 665 | 667 | 670 | 672 | 669 | 673 | 667 | 667 | 664 | 659 | 672 | 650 | 656 | 666 | 990 | | 11 | 662 | 661 | 658 | 660 | 655 | 669 | 677 | 668 | 665 | 662 | 658 | 658 | 658 | 661 | 666 | 659 | 667 | 653 | 666 |
661 | 661 | 665 | 661 | 666 | 662 | 897 | | 12 | 650 | 655 | 658 | 660 | 663 | 665 | 668 | 669 | 669 | 667 | 664 | 664 | 665 | 666 | 657 | 644 | 659 | 664 | 662 | 657 | 663 | 664 | 663 | 664 | 662 | 880 | | 13 | 660 | 661 | 657 | 659 | 662 | 665 | 670 | 671 | 671 | 664 | 660 | 657 | 657 | 660 | 655 | 654 | 662 | 664 | 663 | 664 | 665 | 665 | 664 | 664 | 662 | 894 | | 14 q | 663 | 662 | 662 | 662 | 664 | 667 | 667 | 666 | 664 | 663 | 663 | 663 | 666 | 667 | 668 | 668 | 665 | 666 | 666 | 664 | 663 | 662 | 658 | 652 | 664 | 931 | | 15 q | 658 | 662 | 663 | 664 | 666 | 666 | 666 | 666 | 666 | 665 | 665 | 666 | 665 | 667 | 669 | 669 | 670 | 670 | 669 | 668 | 667 | 667 | 665 | 664 | 666 | 983 | | 16 q | 664 | 664 | 663 | 665 | 669 | 670 | 670 | 669 | 668 | 664 | 665 | 664 | 667 | 672 | 672 | 671 | 671 | 672 | 672 | 671 | 670 | 669 | 667 | 667 | 668 | 1036 | | 17 9 | 667 | 670 | 671 | 672 | 673 | 674 | 675 | 676 | 674 | 672 | 666 | 662 | 663 | 667 | 669 | 668 | 667 | 672 | 671 | 670 | 670 | 669 | 668 | 667 | 670 | 1073 | | 18 d | 667 | 667 | 667 | 670 | 672 | 673 | 679 | 678 | 678 | 675 | 673 | 662 | 657 | 664 | 667 | 671 | 666 | 667 | 657 | 647 | 643 | 651 | 655 | 643 | 665 | 949 | | 19 | 630 | 643 | 651 | 656 | 659 | 659 | 660 | 654 | 654 | 652 | 651 | 652 | 655 | 658 | 659 | 661 | 663 | 664 | 655 | 652 | 639 | 650 | 655 | 661 | 654 | 693 | | 20 | 666 | 655 | 655 | 658 | 662 | 665 | 667 | 665 | 662 | 660 | 659 | 660 | 661 | 664 | 665 | 667 | 669 | 669 | 661 | 656 | 648 | 658 | 657 | 661 | 661 | 870 | | 21 q | 664 | 664 | 664 | 666 | 669 | 673 | 671 | 671 | 667 | 662 | 660 | 659 | 660 | 662 | 663 | 663 | 658 | 668 | 674 | 674 | 673 | 673 | 673 | 673 | 667 | 1004 | | 22 | 673 | 672 | 670 | 673 | 676 | 673 | 672 | 678 | 680 | 676 | 669 | 660 | 660 | 655 | 662 | 667 | 668 | 64 | 666 | 668 | 668 | 666 | 664 | 664 | 669 | 1044 | | 23 | 656 | 655 | 658 | 662 | 666 | 669 | 669 | 668 | 667 | 660 | 658 | 658 | 660 | 666 | 668 | 669 | 668 | 669 | 669 | 669 | 668 | 668 | 667 | 665 | 665 | 952 | | 24 | 665 | 662 | 663 | 665 | 669 | 674 | 675 | 675 | 675 | 676 | 673 | 670 | 667 | 669 | 670 | 675 | 671 | 670 | 663 | 674 | 671 | 658 | 622 | 631 | 666 | 983 | | 25 d | 648 | 654 | 650 | 658 | 669 | 670 | 671 | 675 | 669 | 664 | 661 | 656 | 654 | 657 | 658 | 661 | 657 | 667 | 672 | 671 | 670 | 670 | 665 | 663 | 663 | 910 | | 26 d | 664 | 661 | 664 | 668 | 670 | 675 | 671 | 674 | 656 | 660 | 653 | 636 | 646 | 641 | 639 | 656 | 657 | 653 | 670 | 665 | 667 | 657 | 672 | 664 | 660 | 839 | | 27 | 657 | 662 | 664 | 667 | 669 | 666 | 671 | 674 | 671 | 667 | 653 | 645 | 647 | 659 | 662 | 663 | 664 | 665 | 661 | 643 | 659 | 661 | 657 | 646 | 661 | 853 | | 28 d | 660 | 657 | 654 | 660 | 667 | 666 | 676 | 667 | 656 | 649 | 642 | 640 | 647 | 652 | 652 | 656 | 646 | 654 | 660 | 646 | 660 | 655 | 662 | 664 | 656 | 748 | | 29 | 661 | 661 | 661 | 661 | 663 | 666 | 669 | 665 | 661 | 658 | 661 | 666 | 666 | 660 | 661 | 658 | 649 | 663 | 655 | 657 | 660 | 662 | 679 | 666 | 662 | 889 | | 30 | 658 | 662 | 662 | 665 | 664 | 672 | 674 | 673 | 670 | 665 | 663 | 651 | 650 | 657 | 662 | 662 | 660 | 668 | 666 | 665 | 666 | 668 | 668 | 666 | 664 | 937 | | 31 | 666 | 667 | 667 | 668 | 670 | 672 | 672 | 669 | 666 | 665 | 663 | 665 | 668 | 670 | 670 | 669 | 669 | 667 | 664 | 666 | 665 | 663 | 661 | 663 | 667 | 1005 | | Mean | 661 | 661 | 662 | 664 | 666 | 669 | 670 | 670 | 667 | 664 | 661 | 659 | 660 | 662 | 663 | 665 | 664 | 665 | 665 | 663 | 663 | 663 | 661 | 661 | 664 | | | Sum
0,000y+ | 483 | 505 | 513 | 577 | 649 | 733 | 783 | 773 | 681 | 586 | 482 | 416 | 459 | 516 | 551 | 598 | 584 | 630 | 624 | 539 | 557 | 561 | 488 | 502 | | Grand Total
493,790 | 664 at 0-1h 1 January 1966. GEOMAGNETIC DECLINATION (WEST) Mean values for periods of sixty minutes ending at exact hours, \mbox{GMT} | 2 LEI | RWICK (| D) | | | | | | | | | | XIS OI | 9° + | | | | | | | | | | | | DECE | MBER 1965 | |---------------|--------------|--------------|--------------|--------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------|----------|--------------|--------------|--------------|--------------|--------------|--------------|-------|--------------|--------------|--------|-------------|--------------|----------------------| | 1 55. | Hour | | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-1 | 0 10-11 | 11-12 | <u> </u> | 3 13-14 | 14-15 | 15-16 | 5 16-1 | 7 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
-400·0'+ | | | , | , | , | • | , | , | , | , | | , | , | , | , | | • | , | , | , | , | | , | • | • | , | , | • | | 1 d | 17 - 7 | 17.0 | 18.9 | 19.8 | 20.3 | 20.4 | 19.9 | 20.7 | 21 · 4 | 22.3 | 23.0 | 25 · 1 | 25 · 1 | 25.3 | 23.6 | 27.8 | 26 · 5 | 23 · 1 | 21 · 4 | 13.9 | 4 · 1 | 7.6 | 3.9 | 14 · 2 | 19.3 | 63.0 | | 2 | 16 · 7 | 17.7 | 18 · 9 | 18.4 | 19.5 | | | 20.6 | | | 22.3 | 20.8 | 21.8 | 21 · 2 | 20 · 7 | 20.3 | | 19.0 | | 16.9 | 17.7 | 17.0 | 17.9 | 19 · 1 | 19.3 | 63 · 1 | | 3 | 20.8 | 20.3 | 19.8 | _ | 19.8 | | _ | 19 · 4 | | 19.7 | | 20.8 | 23.0 | _ | 21 · 0 | | 20.5 | | | | 19.8 | | 18 · 1 | | 20 · 1 | 82 · 1 | | 4
5 | 22·0
17·5 | 20·5
17·6 | 19·1
18·9 | | | | 20·2
19·6 | 19.5 | | | 20.2 | | | 25·0
22·2 | | | 20.9 | 25·2
20·5 | | | 10·6
19·7 | | | | 20.8 | 100·0
80·6 | | 6 | 18 8 | 20 · 1 | 19.7 | | 20.5 | | | | | | 20.2 | | | 22 · 2 | 21 · 7 | 21 · 1 | | | | | 17.5 | | | | 20.0 | 79 · 2 | | 7
8 | 19.7 | 21·2
19·1 | | | 19.1 | 18·8
19·7 | | 19·7
19·1 | 20·7
18·9 | | 21.0 | | 21.8 | 22 · 3 | 21·9
22·8 | 21.0 | 20·7
21·7 | | 19.9 | | 19·7
20·1 | | | | 20 1 | 82.5 | | 9 | 18.7 | 18.3 | | | 19.6 | | | | | | 19.9 | | | 21 · 2 | 21 · 2 | | | 21.0 | | | 19.4 | | | | 20·7
19·7 | 95·9
72·6 | | 10 | 16.0 | 18.2 | | | 20.4 | | | | | | 20.3 | | | 22 · 7 | 23.0 | | | 29 · 4 | | | 19.2 | | | | 20.9 | 100.7 | | 11 | 17 · 7 | 18.1 | 20 •1 | | | | | | 18.8 | 18 · 7 | | | | 22.1 | 22.8 | 21 · 7 | 23 · 1 | | | | 19.3 | | 18 · 1 | 7 · 1 | 20.3 | 86 · 1 | | 12 | 12.8 | 14 6 | 18.5 | | 21.7 | | | 20.6 | 20.8 | | | 21.5 | 22.7 | | 24 · 3 | | | 22.5 | | | | | 17.3 | | 20.1 | 83 · 5 | | 13 | 17.8 | 18·4
19·2 | 20·0
19·6 | | 19·6
20·3 | | | 21·0
19·4 | 19.7 | 19·6
20·5 | | | 21.8 | 23·7
21·9 | 22·8
21·5 | 22.5 | | 21·1
21·2 | | 20.0 | 19.3 | 19·1
19·1 | | | 20.5 | 92.4 | | 14 q
15 q | 17.6 | 18.8 | | 19.3 | | | 19.3 | | | | | 20.9 | 21.5 | 21.9 | 21.8 | 21.2 | | | | | | 19.9 | | | 20.1 | 84 · 4
81 · 5 | | 16 q | | 19.3 | 19.9 | | 20.4 | | | 19.7 | | 19.5 | | | | 21-8 | 21 · 2 | 20.6 | | | | | 19.6 | | | | 20.2 | 84 · 3 | | 17 q | 19.6 | 20 · 4 | 20·3 | | 20 · 1 | | | 19•7
20·7 | 20.1 | 19·8
23·2 | | 20.9 | 22.1 | 22.5 | 21 · 5 | 20·6
25·7 | 20·4
27·8 | 20 · 4 | 20·5
25·7 | 20.3 | 19·9
12·6 | 19.2 | | | 20.3 | 88.0 | | 18 d
19 | | 11.5 | 18.1 | | 19.0 | | | | 19.9 | 20.3 | | 21.7 | 21.4 | 20.9 | 20.4 | | 19.9 | 19.9 | 18.7 | 18.6 | | 18.2 | | | 21·3
19·1 | 110·3
57·8 | | 20 | 19.0 | 19.0 | 18.4 | | 19.7 | | | | | | | | 21.9 | | | | | | | 13.4 | | | 17.0 | | 19.4 | 64.9 | | 21 q | 21.5 | 20.9 | 20 · 7 | | | | | 19.9 | 19.8 | 19.8 | | 21 · 3 | 21.6 | 22.2 | 21.8 | 21 · 3 | 20.5 | 21.0 | 20.3 | | | | 20.3 | 20 · 4 | 20.7 | 96 · 5 | | 22 | 20.6 | 20.9 | 21.3 | | 21.4 | 21 · 1 | | 20.5 | 20 · 1 | | | 21 · 2 | 22.3 | 24.4 | 25.0 | 24 · 5 | 23.2 | 21.8 | 19 · 9 | 18.9 | | | | 16.3 | 20.8 | 98 · 1 | | 23 | 14·1
18·5 | 18·8
19·7 | 20.7 | | 20·1
19·6 | | | 19·5
19·8 | 19·7
19·6 | 19.6 | | 20.3 | 21.8 | 21.8 | 20·9
21·5 | 20.6 | 20·3
22·0 | 19.9 | | | 19·3
19·0 | 19·3
19·2 | | | 19.8 | 75.3 | | 24
25 d | 14.0 | 19.7 | 20.1 | | | | | 20.1 | 19.7 | 19.2 | | 20.8 | 23.2 | | 22.0 | 21.2 | | 19.2 | | | 19.5 | | | 1·1
18·4 | 19·0
19·8 | 55·5
74 ·7 | | 26 d | 20.0 | 19.1 | | 20 · 4 | | 20.5 | 20 • 4 | 20.6 | 22.8 | 26 · 7 | | | 20.8 | 25.8 | 21 · 2 | | | 13.3 | | | | 16 · 3 | | | 19.8 | 75.6 | | 27 | 18 · 2 | 19.4 | 20 · 1 | | 19.2 | | | 22.2 | 22.1 | 22.4 | | 22.4 | 23.0 | 23.9 | 21.8 | 21 · 3 | 20.0 | | 19.9 | | | | | 20.3 | 20.4 | 89.6 | | 28 d
29 | 17.8 | 19.4 | 20.6 | | 19.5 | | 23.6 | 22.3 | 22.4 | 22.1 | 21·4
21·1 | 22.2 | 23.0 | 24 · 5 | 18·6
20·4 | 22.7 | 14.9 | 17·6
13·3 | 21·0
18·4 | | 11·4
19·6 | | 20.8 | | 20.0 | 79·4
66·7 | | 30 | 18.9 | 20.2 | 18.9 | | | 19.7 | | 20.8 | 20.7 | 21.4 | | 22.6 | 22.4 | 20.9 | 22 · 2 | 20.8 | 18.7 | 20 · 1 | | | | 19.2 | | | 19·4
20·3 | 86·3 | | 31 | 19.9 | 20.0 | | 20.4 | 20.8 | 20 · 4 | | 19.7 | - | | 22.6 | | 22.8 | | 21 · 1 | 20 · 1 | | | | | 19.6 | | | | 20 4 | 90 1 | | Mean | 18.4 | | | | | | | | | | 21 · 1 | | | 22.8 | | 21.9 | | | | | 17.6 | | | | 20 · 1 | | | Sum
00.0'+ | | | | | | | | | | | | 171.5 | 196 · 7 | 205 · 8 | 180 · 6 | | | | | | | | | | | Grand Total | 19.9 at 0-1h 1 January 1966. | 3 LER | WICK (| Z) | | | | | | | | | 4 | 7,000> | (0.47 | | | | | | | | | | | | DECEMBE | 1965 | |--------------|----------|------------|-----|-----|-----|-----|-----|-----|-----|------|-------|--------------|-------|-----|------|------|------|------|------|------|------|-------|-----|-------|---------|---------------------| | | Hour 0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | | | | | | | | | | 21-22 | | 23-24 | Mean | Sum
9000γ+ | | | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | > |) | , |) | , | > | , | `` |) | , | > |) | > | У | · · | γ | | 1 d | 374 | 394 | 405 | 407 | 409 | 410 | 411 | 412 | 416 | 415 | 417 | 412 | 412 | 423 | 451 | 437 | 452 | 437 | 436 | 456 | 430 | 402 | 392 | 395 | 417 | 1005 | | 2 | 404 | 389 | 379 | 394 | 406 | 414 | 415 | 416 | 419 | 422 | 420 | 422 | 422 | 423 | 424 | 4 26 | 428 | 425 | 423 | 422 | 422 | 420 | 419 | 415 | 415 | 969 | | 3 | 409 | 410 | 413 | 414 | 414 | 414 | 415 | 416 | 418 | 419 | 418 | 416 | 416 | 415 | 417 | 416 | 416 | 417 | 416 | 417 | 420 | 419 | 418 | 416 | 416 | 979 | | 4 | 406 | 393
 393 | 403 | 406 | 408 | 409 | 410 | 412 | 412 | 411 | 411 | 411 | 411 | 411 | 415 | 450 | 447 | 447 | 443 | 434 | 423 | 420 | 419 | 417 | 1005 | | 5 | 419 | 418 | 417 | 418 | 418 | 415 | 415 | 415 | 417 | 415 | 417 | 417 | 416 | 417 | 417 | 417 | 416 | 415 | 415 | 415 | 415 | 416 | 417 | 417 | 416 | 994 | | 6 | 417 | 414 | 414 | 414 | 413 | 411 | 411 | 412 | 413 | 414 | 415 | 419 | 419 | 420 | 420 | 419 | 417 | 415 | 414 | 415 | 417 | 416 | 415 | 415 | 415 | 969 | | 7 | 415 | 410 | 414 | 414 | 413 | 411 | 409 | 405 | 407 | 411 | 412 | 411 | 416 | 417 | 419 | 419 | 419 | 417 | 415 | 415 | 415 | 418 | 420 | 419 | 414 | 941 | | 8 | 419 | 419 | 419 | 417 | 416 | 415 | 411 | 411 | 411 | 408 | 410 | 411 | 413 | 414 | 415 | 417 | 416 | 413 | 411 | 413 | 411 | 410 | 411 | 413 | 413 | 924 | | 9 | 410 | 399 | 404 | 411 | 412 | 411 | 410 | 408 | 408 | 407 | 410 | 411 | 415 | 427 | 419 | 419 | 419 | 420 | 421 | 423 | 421 | 419 | 419 | 417 | 414 | 940 | | 0 | 415 | 415 | 415 | 416 | 416 | 415 | 414 | 412 | 410 | 409 | 406 | 408 | 411 | 413 | 415 | 418 | 418 | 424 | 445 | 450 | 452 | 436 | 388 | 411 | 418 | 1032 | | 1 | 412 | 413 | 413 | 415 | 412 | 399 | 401 | 409 | 411 | 411 | 410 | 410 | 411 | 413 | 418 | 425 | 423 | 433 | 428 | 431 | 433 | 430 | 431 | 427 | 417 | 1019 | | 2 | 419 | 409 | 411 | 416 | 418 | 420 | 420 | 419 | 415 | 411 | 408 | 405 | 407 | 411 | 420 | 431 | 428 | 427 | 431 | 432 | 422 | 421 | 421 | 417 | 418 | 1039 | | 3 | 415 | 408 | 404 | 401 | 407 | 406 | 405 | 412 | 411 | 412 | 413 | 412 | 412 | 415 | 421 | 425 | 423 | 425 | 426 | 424 | 424 | 421 | 419 | 418 | 415 | 959 | | 4 q | 415 | 414 | 414 | 414 | 415 | 415 | 416 | 416 | 416 | 414 | 413 | 413 | 412 | 413 | 414 | 416 | 418 | 419 | 420 | 422 | 424 | 425 | 426 | 429 | 417 | 1013 | | 5 q | 422 | 417 | 415 | 414 | 414 | 415 | 416 | 417 | 417 | 417 | 416 | 415 | 415 | 412 | 414 | 414 | 414 | 414 | 415 | 417 | 417 | 417 | 417 | 417 | 416 | 978 | | 6 q | 415 | 413 | 413 | 411 | 410 | 411 | 412 | 414 | 415 | 416 | 415 | 414 | 411 | 410 | 410 | 411 | 412 | 412 | 412 | 413 | 414 | 415 | 415 | 415 | 413 | 909 | | 7 q | 414 | 411 | 408 | 407 | 407 | 407 | 408 | 409 | 412 | 413 | 414 | 415 | 413 | 412 | 413 | 415 | 416 | 414 | 414 | 415 | 415 | 416 | 416 | 416 | 413 | 900 | | 8 d | 414 | 413 | 411 | 409 | 408 | 408 | 406 | 406 | 405 | 409 | 412 | 417 | 416 | 413 | 418 | 421 | 437 | 505 | 512 | 518 | 480 | 445 | 432 | 411 | 430 | 1326 | | 9 | 350 | 358 | 399 | 411 | 415 | 415 | 415 | 418 | 419 | 420 | 422 | 423 | 423 | 423 | 424 | 423 | 420 | 419 | 424 | 426 | 438 | 432 | 426 | 417 | 415 | 960 | | 0 | 402 | 402 | 414 | 420 | 419 | 416 | 415 | 416 | 417 | 418 | 419 | 421 | 421 | 420 | 420 | 420 | 419 | 418 | 424 | 427 | 422 | 423 | 422 | 419 | 418 | 1034 | | 1 9 | 419 | 419 | 419 | 418 | 415 | 413 | 413 | 413 | 415 | 416 | 416 | 418 | 420 | 421 | 422 | 423 | 428 | 421 | 417 | 415 | 414 | 414 | 414 | 415 | 417 | 1018 | | 2 | 415 | 416 | 416 | 414 | 412 | 413 | 412 | 408 | 406 | 406 | 411 | 413 | 416 | 422 | 423 | 425 | 428 | 433 | 428 | 425 | 421 | 420 | 417 | 411 | 417 | 1011 | | 3 | 407 | 414 | 417 | 418 | 418 | 417 | 416 | 415 | 413 | 414 | 416 | 417 | 418 | 418 | 419 | 421 | 421 | 420 | 418 | 417 | 417 | 415 | 415 | 417 | 417 | 998 | | 4 | 417 | 417 | 414 | 418 | 416 | 414 | 413 | 411 | 409 | 407 | 408 | 409 | 410 | 410 | 414 | 416 | 418 | 420 | 426 | 419 | 421 | 421 | 418 | 380 | 414 | 926 | | 5 d | 392 | 398 | 403 | 389 | 388 | 398 | 405 | 408 | 412 | 412 | 413 | 413 | 413 | 417 | 420 | 422 | 430 | 428 | 420 | 418 | 417 | 414 | 416 | 414 | 411 | 860 | | 5 d | 412 | 414 | 414 | 414 | 414 | 413 | 415 | 413 | 418 | 412 | 416 | 430 | 439 | 442 | 455 | 452 | 440 | 445 | 432 | 426 | 425 | 425 | 403 | 398 | 424 | 1167 | | 7 | 402 | 411 | 413 | 416 | 415 | 416 | 413 | 414 | 415 | 416 | 419 | 424 | 420 | 420 | 421 | 425 | 426 | 428 | 430 | 443 | 434 | 425 | 419 | 406 | 420 | 1071 | | 8 d | 392 | 403 | 412 | 408 | 412 | 412 | 406 | 412 | 418 | 422 | 424 | 428 | 428 | 434 | 447 | 451 | 464 | 465 | 438 | 443 | 430 | 421 | 397 | 409 | 424 | 1176 | | 9 | 415 | 417 | 416 | 413 | 415 | 415 | 415 | 417 | 417 | 418 | 418 | 417 | 417 | 420 | 422 | 425 | 433 | 438 | 434 | 436 | 431 | 428 | 418 | 415 | 421 | 1110 | |) | 419 | 420 | 419 | 418 | 418 | 412 | 414 | 415 | 418 | 418 | 418 | 420 | 420 | 418 | 420 | 423 | 427 | 422 | 423 | 422 | 422 | 420 | 419 | 419 | 419 | 1064 | | 1 | 418 | 416 | 416 | 415 | 414 | 411 | 411 | 412 | 414 | 413 | 414 | 415 | 415 | 415 | 417 | 418 | 419 | 419 | 423 | 421 | 422 | 421 | 421 | 419 | 417 | 999 | | an | 409 | 409 | 411 | 412 | 412 | 412 | 412 | 413 | 414 | 414 | 415 | 416 | 416 | 418 | 421 | 423 | 426 | 428 | 427 | 428 | 425 | 421 | 416 | 414 | 417 | | | um
1007/+ | 674 | 664 | 734 | 767 | 785 | 770 | 767 | 791 | 824 | 827 | 851 | 887 | 908 | 959 | 1060 | 1105 | 1195 | 1255 | 1238 | 1279 | 1180 | 1048 | 901 | 826 | | Grand To
310, 29 | 418 at 0-1h 1 January 1966. ## GEOMAGNETIC CHARACTER FIGURES (K, $K_{\rm H},~K_{\rm D},~K_{\rm Z},~{\rm AND}~{\rm C}$) AND TEMPERATURE IN MAGNETOGRAPH HOUSE | 4 | LERWICK | | | | | | | | DECE | MBER 1965 | |------------|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------|--|-------------------------------------|--|---| | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of K _D indices | 3-h range
indices
K _Z | Sum of
K _Z
indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph house
200°A+ | | 1 d | 1011 3344 | 17 | 1001 3333 | 14 | 1011 3344 | 17 | 2000 3231 | 11 | 2 | 86 · 2 | | 2 | 2101 1231 | ii | 1101 0111 | 6 | 2101 1231 | 11 | 2200 0000 | 4 | 1 | 86.2 | | 3 | 1000 0002 | 3 | 0000 0002 | 2 | 1000 0002 | . 3 | 0000 0000 | 0 | 1 1 | 87.0 | | 4 | 2011 2343 | 16 | 1011 2232 | 12 | 2011 1343 | 15 | 1000 0320 | 6 | 1 | 86 • 9 | | 5 | 1100 0001 | 3 | 1000 0000 | 1 | 1100 0001 | 3 | 0000 0000 | 0 | 0 | 85 · 3 | | 6 | 1000 0011 | 3 | 0000 0001 | 1 | 1000 0011 | 3 | 0000 0000 | 0 | 0 | 86.5 | | 7 | 1010 0000 | 2 | 1010 0000 | 2 | 1010 0000 | 2 | 0000 0000 | 0 | 0 | 86.9 | | 8 | 0000 0110 | 2 | 0000 0110 | 2 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 86.6 | | 9 | 2001 2001 | 6 | 1001 2001 | 5 | 2000 1001 | 4 | 1000 1000 | 2 | 1 | 86 · 9 | | 10 | 1000 0224 | 9 | 0000 0124 | 7 | 1000 0224 | 9 | 0000 0124 | 7 | 1 | 87 · 2 | | 11 | 2221 0223 | 14 | 0221 0222 | 11 | 2211 0123 | 12 | 0110 0111 | 5 | 1 | 87 · 1 | | 12 | 3111 2231 | 14 | 2011 2221 | 11 | 3101 1131 | 11 | 1000 0010 | 2 | 1 | 86.8 | | 13 | 2210 1100 | 7 | 1100 1100 | 4 | 2210 1000 | 6 | 0000 0000 | 0 | 1 | 87 · 1 | | 13
14 q | 0000 0002 | 2 | 0000 0001 | 1 | 0000 0002 | 2 | 0000 0000 | 0 | 0 | 87 · 1 | | 15 q | 0000 0000 | ō | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 87.7 | | 16 a | 1000 0000 | 1 | 0000 0000 | 0 | 1000 0000 | 1 | 0000 0000 | 0 | 0 | 87.9 | | 17 q | 0000 0000 | ō | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 87.9 | | 18 d | 0011 1442 | 13 | 0011 1222 | 9 | 0011 1442 | 13 | 0000 1433 | 11 | 2 | 87 · 9 | | 19 | 4000 0012 | 7 | 3000 0012 | 6 | 4000 0012 | 7 | 4000 0012 | 7 | 1 | 88.0 | | 20 | 2000 0032 | 7 | 1000 0022 | 5 | 2000 0032 | 7 | 2000 0011 | 4 | 1 | 87.5 | | | | 1 | 0000 0100 | 1 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 87 · 1 | | 21 9 | 0000 0100 | 5 | 0000 1102 | 4 | 0001 1101 | 4 | 0000 0001 | 1 | 0 | 87.4 | | 22 | 0001 1102 | 3 | 1000 0000 | 1 | 3000 0000 | 3 | 1000 0000 | 1 | 0 | 87 · 5 | | 23 | 3000 0000
1000 1124 | 9 | 1000 0124 | 8 | 1000 1024 | 8 | 0000 0013 | 4 | 1 | 87 · 2 | | 24
25 d | 4311 1202 | 14 | 1211 1201 | 9 | 4301 1202 | 13 | 2200 0100 | 5 | 1 | 87.3 | | | 1123 3323 | 18 | 0023 2223 | 14 | 1123 3323 | 18 | 0002 2112 | 8 | 1 | 87.2 | | 26 d
27 | 1112 3323 | 11 | 1112 1122 | 11 | 1101 1122 | 9 | 1000 0011 | 3 | 1 | 86.9 | | 27
28 d | 2221 3433 | 20 | 2221 1222 | 14 | 2121 3433 | 19 | 2010 2212 | 10 | 1 | 86.6 | | 28 a
29 | 0101 1412 | 10 | 0001 1312 | 8 | 0100 1412 | 9 | 0000 0111 | 3 | 1 | 86.5 | | 29
30 | 1101 1110 | 6 | 0101 1100 | 4 | 1100 1110 | 5 | 0000 0000 | 0 | 1 | 84.9 | | 31 | 0000 0010 | 1 | 0000 0000 | 0 | 0000 0010 | 1 | 0000 0000 | 0 | 0 | 85.8 | | <u></u> | 1 0000 | L | | L | | | | Mean | 0.68 | 86.9 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. $[\]mathbf{K}_{\mathbf{H}}$ For horizontal component. $\mathbf{K}_{\mathbf{D}}$ For declination. $\mathbf{K}_{\mathbf{Z}}$ For vertical component. (See Introduction). For all, a, quiet, q, and disturbed, d, days for H, D and Z and for all days for X, -Y, I and F MEAN MONTHLY AND ANNUAL VALUES OF GEOMAGNETIC ELEMENTS | 1965 | $\begin{array}{c} {\rm Total} \\ {\rm force} \ (F) \end{array}$ | all days | ٨ | 49606 | 49607 | 49608 | 49611 | 49613 | 49616 | 49619 | 49618 | 49618 | 49626 | 49630 | 49633 | | 496.17 | |---------|---|---------------------------------------|----|-------|---------|-------|-------|-------|---------|-------|-------|-------|---------|-------|-------|-------------|---------| | | $\begin{array}{c} {\rm Inclination} \ (I) \\ {\rm (north)} \end{array}$ | all days | • | | 72 49.8 | | | | 72 48.8 | | | | 72 49.0 | | | | 72 49.2 | | | West component (-Y) | all days | ٨ | 2387 | 2386 | 2385 | 2381 | 2383 | 2382 | 2381 | 2380 | 2375 | 2379 | 2378 | 2378 | | 2381 | | | North component (X) | all days | ٨ | 14454 | 14449 | 14451 | 14454 | 14462 | 14466 | 14468 | 14465 | 14461 | 14466 | 14469 | 14470 | | 14461 | | | (Z)
t | p + | ٨ | 394 | 398 | 391 | 398 | 390 | 392 | 399 | 397 | 395 | 405 | 413 | 421 | | 399 | | | Vertical (Z) component |
9
47,000y + | ^ | 395 | 396 | 397 | 401 | 402 | 403 | 405 | 405 | 406 | 413 | 415 | 415 | | 404 | | | Vert | a
4 | 7 | 394 | 396 | 397 | 399 | 398 | 400 | 403 | 403 | 405 | 411 | 414 | 417 | | 403 | | | (<i>a</i>) | þ | | 23.2 | 22.1 | 22.5 | 21.9 | 21.2 | 21.3 | 21.0 | 20.4 | 18.4 | 19.5 | 19.6 | 20.0 | | 20.9 | | | Declination (D) (west) | 9° + | | 22.9 | 23.0 | 22.4 | 21.5 | 21.5 | 21.0 | 20.5 | 21.0 | 20.0 | 20.5 | 20.1 | 20.3 | | 21.2 | | | Decli | es . | • | 22.8 | 22.6 | 22.3 | 21.3 | 21.4 | 20.9 | 20.7 | 20.6 | 19.6 | 20.4 | 20.1 | 20.1 | | 21.1 | | | (#)
It | + ¢ | `~ | 644 | 639 | 640 | 636 | 651 | 929 | 664 | 655 | 636 | 658 | 658 | 099 | | 650 | | | Horizontal (#)
component | $q + 14,000\gamma +$ | ^ | 647 | 648 | 648 | 650 | 655 | 099 | 099 | 099 | 658 | 099 | 665 | 299 | | 657 | | LERWICK | Hori | a
14 | ۲ | 647 | 645 | 646 | 649 | 657 | 66.1 | 662 | 629 | 654 | 199 | 663 | 664 | | 656 | | 5 | | · · · · · · · · · · · · · · · · · · · | | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | oct. | Nov. | Dec. | | Year | ## DIURNAL INEQUALITIES OF THE GEOMAGNETIC ELEMENTS ALL DAYS Departures from the mean of the 24 hourly values (uncorrected for non-cyclic change) | Hour G 0-1 7 -1·5 -0·8 +4·2 -8·6 -6 -3·0 -12·1 +1·6 -3·7 -0·7 -3·0 +0·2 -1·1 +2·7 -1·0 | 7
-1·7
-0·8
+3·0
+6·6
+3·5
-4·4
+1·0
+2·3
+1·6
-0·1
-2·2
+0·4
-1·2
+1·7
+0·7 | 2-3 7 -1·2 -0·1 +2·3 +3·7 +2·6 -1·1 -0·8 +1·4 +0·7 +1·4 -0·6 -2·0 +0·5 -1·0 +2·0 +0·5 | 3-4 -0·2 +1·6 +4·1 +4·0 +2·5 -1·4 +1·1 +5·0 +2·9 +2·5 +0·1 +1·7 +1·0 +4·0 +0·2 | γ +2·5 +3·9 +5·3 +3·7 +2·3 -3·0 +1·4 +1·5 +7·3 +5·4 +4·8 +2·4 +3·1 +3·4 +5·4 +0·5 | 5-6 +14·4 +5·3 +3·7 +0·9 -0·7 -2·6 -2·7 -0·7 +6·6 +7·0 +6·6 +5·1 +3·6 +7·9 +4·5 -1·7 | 7
+5·5·8
+4·2
-1·9
-7·2
-7·3
-4·7
+4·4
+6·6
+7·6·6
+6·7
+1·2
+6·4
+3·3
-6·0 | +4·4
+2·0
-9·5
-8·8
-14·6 | +1·9 -4·8 -16·4 -15·0 -12·4 -17·3 -18·6 -11·5 -2·6 +2·8 +3·4 | +1·3 -3·1 -11·8 -23·8 -22·4 -29·0 | | 11-12 AL COMPO -4-4-4 -13-1 -17-8 -25-2 -23-5 -22-0 -16-1 -17-2 -9-1 -5-1 | .1 | 13-14
2-7
6-3
7-7
9-6
6-6
+0-2
-7-4
-5-1
-4-7 | 14-15
2-6
1-7
2-1
-0-8
1-0
+14-3
+1-4
+4-1
+1-9 | 15·16
1·3
·2·1
·0·2
·7·1
·5·8
+23·7
+11·5
+9·8 | 10·6
11·1
12·2
19·7
112·7
12·7
12·5 | 9·4
13·3
16·6
113·8
117·7
+28·5
+22·5 | 1·9
·3·3
·5·9
·14·7
·18·9
+29·7
+24·3 | 2·0
·2·1
·6·3
·14·5
·18·8
·21·7 | | y
-1·9
+2·5
+5·9
+11·7
+10·8
+6·5 | y
+1·3
+2·0
+5·4
+10·9
+6·7
+0·8 | y
+1·e
+2·:
+5·e
+10·:
+4·:
-2·:
+4·: | |--|--|---|---|---|---|---|---|--
--|---|--|---|--|--|--|--
---|--|---|--|---
--|--| | -1·5 +0·8 +4·2 +8·6 +3·0 -12·1 +1·6 +3·5 -5·6 +3·7 -0·7 -3·0 +0·2 -1·1 +2·7 | -1·7
-0·8
+3·0
+6·6
+3·5
-4·4
+1·0
+2·8
-4·3
+1·6
-0·1
-2·2
+0·4 | -1·2
-0·1
+2·3
+3·7
+2·6
-1·1
-0·8
+1·4
+0·7
+1·4
-0·6
-2·0
+0·5 | -0·2
+1·6
+4·1
+4·0
+2·5
-1·4
+1·1
+5·0
+2·9
+2·5
+0·1
+1·7
+1·0
+4·0 | +2·5
+3·9
+5·3
+3·7
+2·3
-3·0
+1·4
+1·5
+7·3
+4·8
+2·4
+3·1
+3·4
+5·4 | +14·4
+5·3
+3·7
+0·9
-0·7
-2·6
-2·7
-0·7
+6·6
+7·0
+5·1
+3·6
+7·9
+4·5 | +5.8
+4.2
-1.9
-4.9
-7.2
-7.3
-4.7
+4.4
+6.6
+7.6
+6.7
+1.2
+6.4
+3.3 | +4·4
+2·0
-9·5
-8·8
-14·6
-12·1
-10·7
-2·2
+4·5
+6·4 | -4.6
+1.9
-4.8
-16.4
-15.0
-12.4
-17.3
-18.6
-11.5
-2.6
+2.8
+3.4 | 1:33
-3:1
-11:88
-23:88
-22:4
-29:0
-23:9
-24:1
-15:3
-10:4
-3:6
+0:4 | -2·4
-9·4
-15·8
-27·4
-26·5
-29·4
-25·8
-26·2
-17·6
-16·2
-9·0 | -4·4
-13·1
-17·8
-25·2
-23·5
-23·9
-25·3
-22·0
-16·1
-17·2
-9·1 | -4·2
-11·1
-14·0
-17·8
-15·8
-23·6
-19·8
-14·7
-13·3
-14·7 | 7·7
9·6
6·6
+0·2
-7·4
-5·1 | 1.7
-2.1
-0.8
-1.0
+14.3
+1.4
+4.1 | 12.1
10.2
17.1
15.8
123.7
111.5 | 11·1
12·2
19·7
112·7
129·5
118·1 | 13.3
16.6
113.8
117.7
128.5
+22.5 | 13·3
15·9
+14·7
118·9
+29·7
+24·3 | 12.1
16.3
114.5
118.8
121.7 | +3·2
+7·1
+12·4
+15·1
+12·5
+17·3 | +2·5
+5·9
+11·7
+10·8
+6·5
+11·9 | +2·0
+5·4
+10·9
+6·7
+0·8
+7·4 | +1 ·
+2 ·
+5 ·
+10 ·
+4 ·
-2 · | | -1·5 +0·8 +4·2 +8·6 +3·0 -12·1 +1·6 +3·5 -5·6 +3·7 -0·7 -3·0 +0·2 -1·1 +2·7 | -1·7
-0·8
+3·0
+6·6
+3·5
-4·4
+1·0
+2·8
-4·3
+1·6
-0·1
-2·2
+0·4 | -1·2
-0·1
+2·3
+3·7
+2·6
-1·1
-0·8
+1·4
+0·7
+1·4
-0·6
-2·0
+0·5 | -0·2
+1·6
+4·1
+4·0
+2·5
-1·4
+1·1
+5·0
+2·9
+2·5
+0·1
+1·7
+1·0
+4·0 | +2·5
+3·9
+5·3
+3·7
+2·3
-3·0
+1·4
+1·5
+7·3
+4·8
+2·4
+3·1
+3·4
+5·4 | +14·4
+5·3
+3·7
+0·9
-0·7
-2·6
-2·7
-0·7
+6·6
+7·0
+5·1
+3·6
+7·9
+4·5 | +5.8
+4.2
-1.9
-4.9
-7.2
-7.3
-4.7
+4.4
+6.6
+7.6
+6.7
+1.2
+6.4
+3.3 | +4·4
+2·0
-9·5
-8·8
-14·6
-12·1
-10·7
-2·2
+4·5
+6·4 | -4.6
+1.9
-4.8
-16.4
-15.0
-12.4
-17.3
-18.6
-11.5
-2.6
+2.8
+3.4 | 1:33
-3:1
-11:88
-23:88
-22:4
-29:0
-23:9
-24:1
-15:3
-10:4
-3:6
+0:4 | -2·4
-9·4
-15·8
-27·4
-26·5
-29·4
-25·8
-26·2
-17·6
-16·2
-9·0 | -4·4
-13·1
-17·8
-25·2
-23·5
-23·9
-25·3
-22·0
-16·1
-17·2
-9·1 | -4·2
-11·1
-14·0
-17·8
-15·8
-23·6
-19·8
-14·7
-13·3
-14·7 | 7·7
9·6
6·6
+0·2
-7·4
-5·1 | 1.7
-2.1
-0.8
-1.0
+14.3
+1.4
+4.1 | 12.1
10.2
17.1
15.8
123.7
111.5 | 11·1
12·2
19·7
112·7
129·5
118·1 | 13.3
16.6
113.8
117.7
128.5
+22.5 | 13·3
15·9
+14·7
118·9
+29·7
+24·3 | 12.1
16.3
114.5
118.8
121.7 | +3·2
+7·1
+12·4
+15·1
+12·5
+17·3 | +2·5
+5·9
+11·7
+10·8
+6·5
+11·9 | +2·0
+5·4
+10·9
+6·7
+0·8
+7·4 | +10+2+5+10+44+-2+ | | -12·1
+1·6
+3·5
-5·6
+3·7
-0·7
-3·0
+0·2
-1·1
+2·7 | -4·4 +1·0 +2·8 -4·3 +1·6 -0·1 -2·2 +0·4 -1·2 +1·7 | -1·1 -0·8 +1·4 +0·7 +1·4 -0·6 -2·0 +0·5 -1·0 +2·0 | -1·4 +1·1 +5·0 +2·9 +2·5 +0·1 +1·7 +1·0 +4·0 | -3·0 +1·4 +1·5 +7·3 +5·4 +4·8 +2·4 +3·1 +3·4 +5·4 | -2·6 -2·7 -0·7 +6·6 +7·0 +6·6 +5·1 +3·6 +7·9 +4·5 | -7·2 -7·3 -4·7 +4·4 +6·6 +7·6 +6·7 +1·2 +6·4 +3·3 | -14·6 -12·1 -10·7 -2·2 +4·5 +6·8 +6·4 -2·2 +6·2 | -12·4
-17·3
-18·6
-11·5
-2·6
+2·8
+3·4 | -29·0
-23·9
-24·1
-15·3
-10·4
-3·6
+0·4 | -29 · 4
-25 · 8
-26 · 2
-17 · 6
-16 · 2
-9 · 0 | -23·9
-25·3
-22·0
-16·1
-17·2
-9·1 | -23·6
-19·8
-14·7
-13·3
-14·7 | +0·2
-7·4
-5·1 | +14·3
+1·4
+4·1 | +23·7
+11·5 | +29+5
+18+1 | +28·5
+22·5 | +29·7
+24·3 | +21·7
+21·2 | +12·5
+17·3 | +6·5
+11·9 | +0·8
+7·4 | -2 | | +0·2
-1·1
+2·7 | +0·4
-1·2
+1·7 | +0·5
-1·0
+2·0 | +1·7
+1·0
+4·0 | +3·1
+3·4
+5·4 | +3·6
+7·9
+4·5 | +1·2
+6·4
+3·3 | -2·2
+6·2 | -7·2 | | -3.0 | -5 · 1 | | -8·7
-3·8 | -3·5
-0·3 | +6 · 6
+1 · 2
+1 · 8 | +13·8
+10·8
+3·6
+2·5 | +17 · 2
+15 · 4
+6 · 3
+3 · 0 | +19 · 2
+15 · 1
+7 · 0
+0 · 9 | +17·6
+12·8
+5·9
-0·3 | +15·1
+8·5
+5·5
-1·3 | +10·5
+2·3
+3·1
-1·7 | +6·5
-3·6
+4·3
0·0 | +2
-3
+3
-1 | | -1·1
+2·7 | -1·2
+1·7 | -1·0
+2·0 | +1·0
+4·0 | +3·4
+5·4 | +7·9
+4·5 | +6·4
+3·3 | +6 · 2 | | -13.8 | | | -3.7 | -1 · 9 | -0.8 | +0+8 | 10.3 | +1-8 | +1.6 | -1 · 2 | -0.6 | -0.4 | -2.8 | -2 | | | | | | | | | -11 · 5 | +3·2
-8·8
-15·8 | -1·3
-15·3
-24·9 | -5·9
-19·3 | -16·9
-7·9
-19·1
-23·7 | -13·4
-6·7
-14·9
-18·5 | -5·4
-3·7
-7·7
-4·7 | +0·7
-1·3
-1·1
+4·7 | +5·8
+0·9
+3·8
+12·7 | +8·7
+1·1
+6·6
+18·5 | +10·6
-0·3
+10·5
+21·5 | +11·6
+1·0
+10·7
+23·0 | +9·8
-0·3
+9·9
+19·8 | +7·8
-0·1
+8·4
+15·0 | +5·1
-0·4
+5·7
+9·9 | +3·2
+0·1
+4·3
+5·3 | +2
+0
+3
+2 | | | | | | | | | | | | DECL | .INATION | | | | | | | | | | | | | | -1·91
-1·32
-1·12
-1·14 | -1
· 27 | -2.27 | | -1·07
-2·03
-2·28
-4·19 | +0·05
-0·89
-1·63
-3·00
-4·44
-4·81 | +0·17
-0·35
-1·02
-3·70
-4·60
-5·79 | -0·05
-0·23
-1·44
-3·66
-4·59
-5·48 | -0·52
-0·75
-1·95
-3·61
-3·39
-3·89 | -0·09
-0·71
-1·07
-1·86
-1·13
-1·65 | +0·51
+0·43
+0·57
+0·48
+1·61
+0·79 | +1·69
+2·40
+3·27
+2·88
+4·29
+3·89 | +2·68
+3·65
+4·97
+5·00
+5·96
+5·89 | | +4·05
+5·18
+5·25
+5·09 | +2·60
+3·77
+3·89
+3·89 | +2.59 | +1·03
-0·13
+1·31 | +0·33
+0·07
-0·76
+0·32
+0·92
+1·80 | -0·21
-1·47
-0·05 | -1 · 84
-1 · 88
-0 · 46 | -3·05
-2·62
-0·70 | -0.80 | | | -1 · 41
-2 · 61
-1 · 27
-1 · 80 | -1·54
-3·57
-1·65
-1·32 | -2·43
-3·08
-2·04
-0·83 | -3·40
-3·34
-3·01
-1·56
-0·44
+0·13 | -3·89
-2·89
-1·38
-0·57 | -4·66
-2·50
-1·39
-0·42 | 75·06
74·36
72·41
71·22
70·54
70·10 | -4·71
-4·00
-1·97
-1·72
-0·76
+0·07 | -3·77
-2·76
-1·13
-2·02
-0·91
+0·20 | -2·17
-0·70
+0·20
-1·50
-0·44
-0·58 | +0·05
+1·83
+1·95
·0·41
+0·86
+0·97 | +3·01
+4·69
+4·28
·3·09
+2·39
+1·57 | +5·38
+6·77
+6·16
+4·34
+3·52
+2·39 | +7 · 18
+6 · 19
•5 · 00
+3 · 59 | +6·00
+5·16
•4·51
+3·02 | +4·34
+3·79
•3·04
+2·34 | +2·52
+1·76
+2·02
+1·50 | +0·89
+1·49
+1·47
+0·93 | +1·85
+0·61
+0·45
+0·27
+0·29
-0·02 | -0.83 | -1·85
-1·16
-1·73 | -1·79
-1·43
-2·17 | -2·39
-2·00
-2·58 | -0·
-0·
-2·
-1·
-2·
-2· | | -1 · 59 | -1 · 49 | -1.67 | -1.92 | -2·18 | -2·37 | -2 · 40 | -2·38 | -2 · 04 | -0.88 | +0.87 | +3·12 | +4 · 73 | +5 · 16 | +4 · 52 | +3·42 | +2·18 | +1 · 27 | +0.51 | - 0⋅27 | -1 · 20 | -1.63 | -1.95 | -1 | | 1 · 58 | -1 · 89 | -1.95 | -2 · 17 | -2.15 | -2 · 13 | -0·15
-2·09
-4·95 | -0·24
-2·20
-4·69 | _ | | +0·69
+0·85
+1·07 | +2·01
+3·38
+3·99 | +3·06
+5·12
+6·00 | +5 - 72 | +5.03 | +3.62 | +2.08 | +1 · 03 | +0.07 | -0.69 | -1 · 31 | -1 · 73 | -1.92 | -2·
-1·
-0· | | | | | | | | | | | | VERT IC | AL COMPO | ONENT | | | | | | | | | | | | | -6·7
-6·6
-6·1 | γ
-9·8
-11·2
-8·2
-5·1
-5·7
-19·8 | 7
-7·7
-8·5
-7·5
-5·5
-5·7 | 7
-4·8
-7·6
-7·0
-5·9
-3·1
-9·1 | 7
-4·1
-8·8
-6·8
-7·2
-1·4
-5·4 | 7
-3·8
-10·0
-7·4
-7·2
-0·6
-3·6 | 7
-3·4
-9·4
-7·1
-3·3
-0·7
-1·2 | -4·6
-6·9
-5·6
-1·2
-1·4
-0·4 | -3·5
-4·7
-3·8
-1·0
-4·0 | -2·6
-2·8
-3·4
-1·1
-4·2
-2·9 | -2·1
-0·9
-4·3
-2·7
-5·2
-3·7 | -0.9
-0.5
-4.7
-3.8
-6.8
-3.3 | +0·2
+0·4
-4·5
-4·4
-6·7
-1·2 | +2·0
+2·7
-1·1
-2·2
-1·9
+4·0 | +4·7
+1·2
+2·5 | +10·5
+6·1
+5·3 | 7
+6·1
+16·2
+13·2
+9·4
+8·4
+18·9 | | 7
+9·8
+18·1
+18·1
+11·4
+10·6
+17·0 | γ
+9·3
+12·9
+14·3
+11·0
+10·0
+13·1 | 7
+7·1
+9·4
+6·7
+7·5
+8·8
+8·3 | 7
+5·9
+2·1
+0·7
+4·0
+5·3
+3·4 | γ
+0·6
-4·3
-3·1
+1·3
-1·9
-5·2 | -2
-8
-4
-4
-5
-18 | | ·11 · 2
·17 · 5
·29 · 2 | -8·0
-17·9
-21·7 | -7·2
-13·0
-15·1
-9·6
-7·3
-6·3 | -10·2
-6·9
-8·3
-5·8
-9·0
-5·2 | -6·3
-4·5
-4·9
-4·6
-8·4
-4·7 | -4·0
-2·0
-3·2
-3·8
-6·8
-5·1 | -3·6
-1·6
-1·3
-3·9
-5·7
-5·3 | -2·7
-0·1
-0·1
-2·3
-4·0
-4·4 | -3·4
+0·8
+0·2
+0·3
-2·1
-3·4 | -4·3
-0·9
-0·6
·0·4
-0·4
-3·2 | -4·7
-3·1
-0·7
+0·1
+0·1
-2·6 | -5·4
-5·1
-1·3
-0·8
+0·3
-1·3 | -3·3
-4·3
+0·8
-0·6
+1·3
-0·7 | +0·1
-0·1
+4·0
+0·3
+2·7
+1·0 | +3·2
+3·6
+8·5
+3·3
+4·0
+4·2 | +8 • 6 | +12·9
+19·0
+7·7
+5·7 | +15·5
+21·4
+8·3
+6·4 | +12·9
+15·4
+24·1
+11·1
+9·1
+9·9 | +13·2
+15·2
+19·1
+9·9
+10·3
+11·4 | +10·4
+12·0
+8·9
+7·3
+9·3
+8·1 | +6·4
+5·8
-4·1
+2·2
+6·0
+3·9 | +0·5
-1·0
-12·2
-2·5
+1·0
-0·9 | -!
-1:
-1:
-:
-: | | 11 · 8 | -11.2 | -8 · 9 | -6.9 | -5·6 | -4.8 | -3.9 | -2.8 | -2·1 | -2·2 | -2.5 | -2.8 | -1.9 | +1 • 0 | +4 · 7 | +8.5 | +11.5 | +13·1 | +14 • 0 | +12.5 | +8.7 | +3·5 | -2·3 | | | -8·9
12·6 | | -7·5
-9·4 | -6·7
-6·7 | -6·5
-5·9 | -6·4
-5·4 | -5·9
-3·9 | -5·0
-2·3
-1·1 | -3·4
-1·1
-1·9 | -2·3
-1·2
-3·1 | -1·4
-1·9
-4·2 | -0·6
-2·7
-5·1 | +0·3
-2·2
-3·9 | +2·1
+0·3
+0·5 | +4·9
+4·4
+ 4·7 | | +12.3 | +14 · 2 | +16 · 2 | +13·6 | +8·5
+7·6
+9·9 | +4·5
+0·7
+5·2 | -0·9
-4·1 | -5
-7 | | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 - | . 12
. 14
. 12
. 41
. 61
. 61
. 69
. 59
. 58
. 59
. 58
. 59
. 58
. 65
. 66
. 66
. 66
. 66
. 67
. 68
. 69
. 69
. 69
. 69
. 69
. 69
. 69
. 69 | 112 -1.03 114 -1.27 231 -0.73 21 -0.73 22 -1.79 141 -1.54 161 -3.57 27 -1.65 180 -1.32 169 -1.19 191 -1.25 188 -1.89 192 -1.33 193 -1.33 194 -9.8 195 -1.33 | 112 -1.03 -1.27 114 -1.27 -2.27 114 -1.27 -2.27 113 -0.73 -2.29 122 -1.79 -1.95 11 -1.54 -2.43 161 -3.57 -3.08 127 -1.65 -2.04 180 -1.32 -0.83 169 -1.19 -0.51 159 -1.49 -1.67 191 -1.25 -0.81 158 -1.89 -1.95 179 -1.33 -2.23 179 -1.33 -2.23 179 -1.33 -2.23 179 -1.33 -2.23 179 -1.33 -2.23 179 -1.30 -7.7 179 -1.30 -7.7 179 -1.30 -7.7 179 -1.30 -7.7 179 -1.30 -7.7 179 -1.30 -7.7 179 -1.30 -7.7 179 -1.30 -7.30 | 112 -1.03 -1.27 -2.21 114 -1.27 -2.27 -3.13 31 -0.73 -2.29 -2.89 122 -1.79 -1.95 -3.40 141 -1.54 -2.43 -3.34 161 -3.57 -3.08 -3.01 127 -1.65 -2.04 -1.56 180 -1.32 -0.83 -0.44 169 -1.19 -0.51 +0.13 159 -1.49 -1.67 -1.92 191 -1.25 -0.81 -0.39 158 -1.89 -1.95 -2.17 127 -1.33 -2.23 -3.19 17 -2.2 -2.3 -3.19 18 -1.2 -8.5 -7.6 18 -1.2 -8.5 -7.6 18 -5.7 -5.7 -3.1 18 -2.2 -1.5 -5.8 18 -1.7 -9.6 -5.8 18 -1.7 -9.6 -5.8 18 -1.7 -9.6 -5.8 18 -1.7 -9.6 -5.8 18 -1.7 -9.6 -6.9 18 -1.2 -8.9 -6.9 18 -1.2 -8.9 -6.9 18 -1.2 -8.9 -6.9 18 -1.2 -8.9 -6.9 18 -1.2 -8.9 -6.7 18 -1.2 -8.9 -6.7 18 -1.2 -8.9 -6.9 18 -1.2 -8.9 -6.7 18 -1.2 -8.9 -6.9 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
112 -1-03 -1-27 -2-21 -2-28 -3-00 114 -1-27 -2-27 -3-13 -4-19 -4-44 31 -0-73 -2-29 -2-89 -3-54 -4-81 1-22 -1-79 -1-95 -3-40 -4-35 -4-94 41 -1-54 -2-43 -3-34 -3-89 -4-66 61 -3-57 -3-08 -3-01 -2-89 -2-50 127 -1-65 -2-04 -1-56 -1-38 -1-39 180 -1-32 -0-83 -0-44 -0-57 -0-42 169 -1-19 -0-51 +0-13 +0-17 +0-14 159 -1-49 -1-67 -1-92 -2-18 -2-37 191 -1-25 -0-81 -0-39 -0-39 -0-28 158 -1-89 -1-95 -2-17 -2-15 -2-13 1-27 -1-33 -2-23 -3-19 -3-99 -4-71 17 | 12 | 12 | 112 -1-03 -1-27 -2-21 -2-28 -3-00 -3-70 -3-66 -3-61 -14 -1-27 -2-27 -3-13 -4-19 -4-44 -4-60 -4-59 -3-39 -31 -0-73 -2-29 -2-89 -3-54 -4-81 -5-79 -5-48 -3-89 -3-64 -4-81 -5-79 -5-48 -3-89 -3-64 -4-81 -5-79 -5-48 -3-89 -3-66 -3-61 -3-57 -3-08 -3-01 -2-89 -2-50 -2-41 -1-97 -1-13 -2-76 -1-55 -2-04 -1-56 -1-38 -1-39 -1-22 -1-72 -2-02 -80 -1-32 -0-83 -0-44 -0-57 -0-42 -0-54 -0-76 -0-91 -69 -1-19 -0-51 +0-13 +0-17 +0-14 +0-10 +0-07 +0-20 -2-76 -1-12 -1-2 | 112 -1.03 -1.27 -2.21 -2.28 -3.00 -3.70 -3.66 -3.61 -1.86 -1.14 -1.27 -2.27 -3.13 -4.19 -4.44 -4.60 -4.59 -3.39 -1.13 -3.10 -7.3 -2.29 -2.89 -3.54 -4.81 -5.79 -5.48 -3.89 -1.65 -2.22 -1.79 -1.95 -3.40 -4.35 -4.94 -5.06 -4.71 -3.77 -2.17 -4.1 -1.54 -2.43 -3.34 -3.89 -4.66 -4.36 -4.00 -2.76 -0.70 -6.1 -3.57 -3.08 -3.01 -2.89 -2.50 -2.41 -1.97 -1.13 -0.20 -2.71 -6.5 -2.04 -1.56 -1.38 -1.39 -1.22 -1.72 -2.02 -1.50 -2.02 -1.79 -0.51 +0.13 +0.17 +0.14 +0.10 +0.07 +0.20 -0.58 -1.32 -0.83 -0.44 -0.57 -0.42 -0.54 -0.76 -0.91 -0.44 -6.9 -1.19 -0.51 +0.13 +0.17 +0.14 +0.10 +0.07 +0.20 -0.58 -1.89 -1.95 -2.17 -2.15 -2.13 -2.09 -2.20 -2.18 -1.05 -1.15 -0.24 -0.49 -0.17 -0.58 -1.89 -1.95 -2.17 -2.15 -2.13 -2.09 -2.20 -2.18 -1.06 -2.7 -1.33 -2.23 -3.19 -3.99 -4.71 -4.95 -4.69 -3.45 -1.41 | 112 -1.03 -1-27 -2.21 -2.28 -3.00 -3.70 -3.66 -3.61 -1.86 +0.48 114 -1.27 -2.27 -3.13 -4.19 -4.44 -4.60 -4.59 -3.39 -1.05 +0.79 131 -0.73 -2.29 -2.89 -3.54 -4.81 -5.79 -5.48 -3.89 -1.05 +0.79 122 -1.79 -1.95 -3.40 -4.35 -4.94 -5.06 -4.71 -3.77 -2.17 +0.05 141 -1.54 -2.43 -3.34 -3.89 -4.66 -4.36 -4.00 -2.76 -0.70 +1.83 161 -3.57 -3.08 -3.01 -2.89 -2.50 -2.41 -1.97 -1.13 +0.20 +1.95 172 -1.65 -2.04 -1.55 -1.38 -1.39 -1.22 -1.72 -2.02 1.50 +0.41 180 -1.32 -0.83 -0.44 -0.57 -0.42 -0.54 -0.76 -0.91 -0.44 +0.86 1-3.25 -0.81 -0.39 -0.39 -0.28 -0.15 -0.24 -0.49 -0.17 +0.69 1-1.25 -0.81 -0.39 -0.39 -0.28 -0.15 -0.24 -0.49 -0.17 +0.69 1-1.25 -0.81 -0.39 -0.39 -0.28 -0.15 -0.24 -0.49 -0.17 +0.69 1-1.33 -2.23 -3.19 -3.99 -4.71 -4.95 -4.69 -3.45 -1.41 +1.07 VERTICE **Vertical Column 1 | 112 -1.03 -1.27 -2.21 -2.28 -3.00 -3.70 -3.66 -3.61 -1.86 +0.48 +2.88 | 112 | -12 -103 -1-27 -2-21 -2-28 -3-00 -3-70 -3-66 -3-61 -1-86 +0-48 +2-88 +2-88 +5-90 +6-00 +6-01 +1-27 -2-27 -3-13 -4-19 -4-44 -4-60 -4-59 -3-39 -1-13 +1-61 +4-29 +5-96 +5-90 +3-53 -1-13 -4-19 -4-44 -4-60 -4-59 -3-39 -1-13 +1-61 +4-29 +5-96 +5-90 +3-53 -1-21 +1- | -12 -1.03 -1.27 -2.21 -2.28 -3.00 -3.70 -3.66 -3.61 -1.86 +0.48 +2.88 +5.00 +6.00 +5.25 +1.41 +1.27 -2.27 -3.13 -4.19 -4.44 -4.60 -4.59 -3.39 -1.13 +1.61 +4.29 +3.89 +5.00 +5.09 +5.09 +5.09 +3.10 +3.10 +3.29 +2.89 +3.54 +4.81 -5.79 +5.48 +3.89 +1.65 +0.79 +3.89 +5.89 +6.19 +5.54 +3.10 +3 | -12 -1-03 -1-37 -2-21 -2-28 -3-00 -3-70 -3-66 -3-61 -1-86 +0-48 +2-88 +5-00 +6-00 +5-25 +3-89 +14 -1-27 -2-27 -3-13 -4-19 -4-44 -4-60 -4-59 -3-39 -1-13 +1-16 +4-29 +5-96 +5-90 +5-99 +3-99 +3-13 +0-73 -2-29 -2-89 -3-54 -4-81 -5-79 -5-48 -3-89 -1-65 +0-79 +3-89 +5-89 +6-19 +5-54 +4-80 +3-89 +3-19 +3-243 -3-34 -3-89 -2-66 -3-64 -4-71 -3-77 -2-17 +0-05 +3-01 +5-38 +6-04 +5-54 +8-9 +3-19 +2-43 -3-34 -3-89 -2-56 -3-64 +0-00 -2-76 -0-70 +1-83 +4-69 +6-77 +7-18 +6-00 +3-44 +6-13 +1-3-9 +1-2-7 +1-6-5 +0-79 +1-2-8
+1-2-8 +1- | -12 | -12 - 1-03 - 1-27 - 2-21 - 2-28 - 3-00 - 3-70 - 3-66 - 3-61 - 1-86 - 10-48 - 12-88 - 15-00 - 16-00 - 15-25 - 3-39 - 12-38 - 1-31 - 1-61 - 1-4-27 - 2-27 - 3-13 - 3-19 - 4-48 - 5-79 - 5-48 - 3-39 - 1-65 - 0-79 - 3-89 - 15-50 - 5-90 - 15-90 - 15-90 - 3-39 - 12-31 - 0-73 - 2-29 - 2-89 - 3-54 - 4-81 - 5-79 - 5-48 - 3-39 - 1-65 - 0-79 - 13-89 - 15-59 - 15-90 - 15-90 - 13-89 - 12-55 - 2-29 - 2-29 - 1-79 - 1-95 - 3-40 - 4-35 - 4-94 - 5-50 - 4-71 - 3-77 - 2-17 - 10-05 - 3-01 - 1-89 - 4-66 - 4-35 - 4-94 - 1-54 - 2-29 - 2-29 - 2-29 - 2-39 - 3-54 - 4-94 - 5-50 - 2-41 - 1-56 - 1-38 - 1-39 - 1-22 - 1-72 - 1-3 - 1-29 - 1-37 - 3-08 - 3-01 - 2-89 - 2-50 - 2-41 - 1-97 - 1-13 - 10-20 - 1-95 - 4-28 - 4-16 - 6-138 - 1-39 - 1-22 - 1-72 - 2-13 - 1-92 - 1-34 - 1-37 - 1-30 - 1-38 - 1-39 - 1-22 - 1-72 - 2-13 - 1-30 - 0-14 - 1-30 | -12 - 1-03 - 1-27 - 2-21 - 2-28 - 3-00 - 3-66 - 3-61 - 1-86 - 0-48 - 2-88 5-96 6-90 5-52 3-89 2-38 1-31 10-32 -13 - 1-073 - 2-29 - 2-89 3-54 4-81 5-79 5-48 3-89 1-65 0-79 3-89 5-96 5-96 5-99 3-89 2-59 1-67 0-99 -13 - 0-073 - 2-29 - 2-89 3-54 4-81 5-79 5-48 3-89 1-65 0-79 3-89 5-96 6-90 5-52 3-89 2-38 1-31 0-32 -12 - 1-79 1-95 3-40 3-38 3-66 4-81 5-79 5-48 3-89 1-65 0-79 3-89 1-65 0-79 -14 - 1-54 3-248 3-34 3-89 3-66 3-64 0-276 0-70 1-83 3-69 -14 - 1-54 3-248 3-34 3-89 3-66 3-64 0-276 0-70 1-83 3-69 -14 - 1-54 3-248 3-34 3-89 3-64 3-89 1-65 0-79 1-89 -14 - 1-55 3-204 1-156 1-38 1-39 1-122 1-72 2-20 1-50 0-44 3-99 -14 - 1-55 3-204 1-156 1-38 1-39 1-122 1-72 2-20 1-50 0-44 3-99 -1-19 - 0-51 0-13 0-17 0-14 0-10 0-07 0-20 0-58 0-97 1-57 -1-19 0-51 0-13 0-17 0-14 0-10 0-07 0-20 0-58 0-97 1-57 -1-19 0-51 0-13 0-13 0-13 0-12 0-15 0-24 0-49 0-17 0-69 2-01 -1-12 3-0-81 0-39 0-39 0-28 0-15 0-24 0-49 0-17 0-69 2-01 -1-12 3-0-81 0-39 0-39 0-28 0-15 0-24 0-49 0-17 0-69 2-01 -1-12 3-0-81 0-39 0-39 0-28 0-15 0-24 0-49 0-17 0-69 2-01 -1-12 3-0-81 0-39 0-39 0-39 0-28 0-15 0-24 0-49 0-17 0-69 2-01 -1-12 3-0-91 0-35 0-34 0-39 | -12 - 1-03 - 1-27 - 2-21 - 2-28 - 3-00 - 3-00 - 3-66 - 3-61 - 1-86 - 1-8 | -12 - 1-03 - 1-27 - 2-21 - 2-28 - 3-00 - 3-76 - 3-66 - 3-61 - 1-86 - 0-48 - 2-88 - 5-00 - 6-00 - 5-25 - 3-38 - 2-38 - 1-31 - 10-32 - 0-05 - 0-48 - 3-39 - 1-13 - 1-27 - 3-13 - 3-14 - 3-44 - 3-45 - 3-49 - 3-44 - 4-60 - 4-59 - 3-39 - 1-13 - 1-61 - 1-29 - 3-49 - 3-48 - 3-59 - 1-67 - 0-05 - 0-48 - 3-39 - 1-13 - 1-35 - 3-40 - 4-15 - 3-49 - 3-48 - 3-59 - 1-65 - 0-79 - 3-89 - 1-59 - 1-65 - 0-79 - 1-35 - 3-40 - 1-35 - 3-40 - 4-35 - 4-90 - 4-05 - 0-40 - 3-77 - 2-17 - 0-105 - 3-01 - 1-35 - 3-40 - 1-35 - 3-40 - 4-35 - 4-90 - 4-70 - 2-78 - 0-70 - 1-83 - 4-69 - 6-73 - 3-42 - 2-99 - 2-50 - 0-41 - 1-95 - 3-20 - 3-108 - 3-01 - 2-99 - 2-55 - 2-41 - 1-97 - 1-15 - 1-35 - 3-40 - 1-35 - 1-39 - 1-22 - 1-79 - 1-15 - 1-35 - 3-40 - 1-35 - 1-39 - 1-22 - 1-79 - 1-15 - 1-25 - 2-40 - 1-36 - 1-39 - 1-22 - 1-79 - 1-20 - 1-30 - 1-30 - | -12 - 1-03 - 1-12 - 1-03 - 1-12 - 1-03 - 1-12 - 1-03 - 1-12 - 1-103 - 1-13 -
1-13 - 1-13 - 1-13 - 1- | -12 -1-03 -1-12 -2-21 -2-22 -2-28 -3-00 -3-07 -3-66 -3-61 -1-86 -0-48 -2-88 -3-89 -1-13 -1-16 -1 | [&]quot;Winter" comprises the four months, January, February, November, December; "Equinox" the months March, April, September, October; and "Summer" May to August. # DIURNAL INEQUALITIES OF THE GEOMAGNETIC ELEMENTS INTERNATIONAL QUIET DAYS Departures from the mean of the 24 hourly values (uncorrected for non-cyclic change) | 7 LE | RWICK | 19 | 65 | |-------------|------------------|----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|-------------------------------|-----------------------|-------------------|----------------|------------------|----------------|----------------|----------------|----------------|-----------------| | , | Hour G | MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-2 | | | | | | | , | | | | | | | ~ | L. —, | | | | | | | | | | | | | | γ | γ | γ | γ | 2/ | ~ | 2/ | 2 | ~ | HC | | L COMPO | | 24 | 24 | 24 | • | • | • | • | | | | | | an.
eb. | -2·9
+2·3 | -2·2
+0·4 | -1·7
+0·3 | -1·2
+1·2 | +0·4
+2·2 | γ
+1·5
+4·1 | γ
+3·2
+5·0 | γ
+4·0
+4·2 | γ
+1·5
+0·5 | -1·4
-4·4 | γ
-3⋅5
-10⋅1 | γ
-5·6
-11·0 | 7
-4·9
-10·3 | γ
-2·2
-6·2 | γ
+0·1
- 0·5 | γ
+1·4
+2·2 | γ
+2·0
+2·2 | γ
+2·9 | +3.2 | γ
+2·6 | γ
+1·9 | γ
+0·6 | +1·1 | - 0. | | ır. | +4 • 2 | +2.2 | +1 · 5 | +2.2 | +3.4 | +5 • 2 | +5.8 | +3 · 8 | -1 . 7 | -10.0 | -15.6 | -19 · 2 | -15.8 | -9 ∙6 | -3.7 | -1.8 | +2·2
-0·2 | +2·7
+3·6 | +1·4
+6·0 | +2·4
+6·8 | +2·3
+8·9 | +2·4
+8·6 | +5·1
+7·8 | +1 | | r.
y | +3.8 | +4·7
+2·3 | +4·4
+1·8 | +5·1
+1·4 | +4·7
+0·6 | +4·6
-1·1 | +3·1
-4·2 | -2·7
-8·6 | -11·6
-14·6 | -22·1 | -28·8
-25·6 | -26·9
-25·0 | -20·2
-14·0 | -12·3
-5·1 | -3·8
+0·6 | +4·3
+5·2 | +6 · 3
+9 · 8 | +10·6
+16·5 | +13·7
+16·2 | +13·7
+17·4 | +13·4
+13·8 | +12·5
+11·1 | +11·0
+10·6 | +9
+10 | | ne | +1.7 | +1 • 7 | +2·2 | +2.3 | +2 · 3 | +1 • 1 | -3 · 1 | -10 · 1 | -17 · 2 | | -24.5 | -21.9 | -16.9 | -10.9 | -5.6 | +2.5 | +9•3 | +14 • 5 | | +22 • 7 | +19・4 | +12.7 | +9.9 | +7 | | у | +2·2
+4·7 | +2·0
+2·8 | +4·0
+1·9 | +6·2
+2·7 | +4·4
+1·9 | +0·8
-1·0 | -5·6
-4·9 | -12·0
-9·5 | -18·6
-15·5 | -25·8
-20·8 | -29·6
-26·7 | -28·0
-21·3 | -17·8
-13·5 | -6·0
-5·6 | +3·4
+1·9 | +8·2
+7·5 | +14·0
+8·9 | | +18·6
+14·3 | +16·4
+14·7 | +15·0
+14·7 | +11·6
+11·8 | +10·0
+10·3 | +8 | | t. | +7·4
+2·9 | +6·8
+1·6 | +4·6
+1·9 | +3·8
+2·6 | +4·4
+2·8 | +4·7
+4·1 | +3·6
+2·6 | -1·6
-0·4 | -10·4
-6·1 | -15·8
-10·2 | -18·0
-12·9 | -18·2
-15·0 | -14·0
-14·3 | -9·4
-12·2 | -4·8
-5·9 | -0·2
+0·2 | +3·4
+4·2 | +9·3
+7·3 | +10·6
+8·4 | +8·8
+8·4 | +6·2
+8·1 | +6·2
+8·0 | +6·4
+7·1 | +(| | | +0·1
-3·7 | -0·7
-2·5 | -0·9
-2·3 | -0·3
-1·1 | +1·9
+1·3 | +3·4
+3·2 | +4·3
+2·9 | +3·7
+2·7 | +0·1
+0·9 | -6·9
-1·7 | -10·9
-3·1 | -11·7
-4·1 | -7·7
-2·7 | -2·9
+0·1 | +0·1
+1·3 | +1·9
+0·9 | +3·7
-0·7 | +5·0
+2·8 | +5·3
+3·5 | +4·1
+2·5 | +2·3
+1·7 | +2·1
+1·1 | +2·3 | + | | | , | 2 0 | | | | • | | | • | | • • | • | | • • | | | 0, | | ,5 5 | | .1 , | .1.1 | 0 / | | | r | +2·4 | +1 • 6 | +1.5 | +2·1 | +2.5 | +2.5 | +1 · 1 | -2.2 | | -13.6 | -17 · 4 | | -12:7 | -6.9 | -1 · 4 | +2·7 | +5•2 | | +10 · 2 | +10·Q | +9·0 | +7•4 | +6 • 7 | +5 | | ter
inox | -1·1
+5·3 | -1·3
+3·8 | -1·1
+3·1 | -0·3
+3·4 | +1·5
,+3·8 | +3·1
+4·7 | +3·9
+3·8 | +3·7
-0·2 | +0·7
-7·5 | -3·6
-14·5 | -6·9
-18·8 | -8·1
-19·8 | -6·4
-16·1 | -2·8
-10·9 | +0·3
-4·5 | +1·6
+ 0 ·6 | +1·8
+3·4 | +3·3
+7·7 | +3·3
+9·7 | +2·9
+9·4 | +2·1
+9·1 | +1·5
+8·8 | +1·9
+8·1 | +0 | | ner | +3·1 | +2 · 2 | +2.5 | +3·1 | +2·3 | -0.1 | | -10.1 | -16 · 5 | -22.7 | -26 · 6 | -24 · 1 | -15.5 | -6.9 | +0.1 | | | | +17.7 | | +15.7 | | +10.2 | +8 | , | , | , | , | , | , | , | , | , | DEC | LINATION | , | , | , | , | , | , | | , | | | , | | | | -0·92
-2·57 | -0·31
-0·82 | -0·45
-0·82 | | -0·15
-0·42 | -0·25
-0·64 | -0·44
-1·11 | -0·51
-1·52 | -0·83 | -0·32
-1·45 | | +0·89
+2·06 | +1·90
+3·35 | +2·29
+3·78 | +1·67
+3·14 | +0·88
+2·19 | +0·57
+1·46 | +0·45
+1·18 | | | | -0·78
-0·91 | | ور
ا- | | | -0.83 | -0.71 | -0.55 | -1 · 29 | -1 · 53 | -1.89 | -2 · 29 | -3.05 | -3 · 11 | -2.31 | -0·21 | +2.59 | +4 • 79 | +5 • 41 | +4 · 59 | +3.07 | +1 • 25 | +0.03 | -0.39 | -0.69 | -0.67 | − 0·67 | -0.77 | -(| | | -1 · 20 | | -1.82 | -2.43 | -2·07
-2·97 | -2·57
-3·70 | | -3·95
-4·15 | -3.50 | -2.03 | +0.50 | +2·37
+3·81 | +5 · 88 | +5·51
+5·83 | +4 · 82 | +3 · 81 | +2·17
+2·43 | +1.60 | +0.73 | +0-17 | -0.22 | | | | | į | | -0.72 | | | -3.36 | -4.52 | | -5 · 48 | | | | | | +4.92 | | | +3 · 16 | +1 · 76 | | +1.06 | | | | +(| | İ | -1.06 | -2·15
-1·95 | -2.66 | -2·98
-2·68 | -3·83
-3·20 | -4·99
-4·13 | -5·08
-4·58 | -4·19
-4·64 | -3 - 34 | -1 · 35 | +1 · 56 | +3 - 90 | +5 · 76 | +6 · 33
+6 · 31 | +5·49
+4·82 | +3 · 32 | +2·51
+2·00 | | +0.56 | | +0.48 | +0 · 21 | +0·57
-0·68 | 7 | | · | -1·18
-1·39 | -1·29
-0·96 | -1·36
-0·95 | | -1·92
-0·88 | -2·09
-1·27 | -2·50
-1·42 | -2·94
-1·98 | -2·56
-2·35 | -1·29
-1·94 | +0·70
-0·45 | | | +4·79
+3·98 | | | +0·84
+1·00 | +0·13
+0·41 | | +0·28
-0·22 | | -0·47
-0·32 | -0·50
-0·35 | | | | -0·65
-0·67 | -0·29
-0·57 | -0·30
-0·35 | | -0·13
-0·05 | | -0·69
-0·55 | -1·07
-0·69 | -1·30
-0·59 | -1·05
-0·43 | | +1·55
+0·85 | | +2·23
+1·77 | | +1·19
+0·79 | | | +0·25
+0·27 | | -0·86
-0·31 | -1·05
-0·75 | , | -1·02
-1·20 | | -1·20
-0·48 | , | -1·71
-0·19 | | | -2·85
-0·95 | | -1·58
-0·81 | | +2·42 | | | | +2.60 | | | | +0·18 | ~0·14
~0·53 | | ~0·70
~1·54 | -1
-1 | | ох | -0.90 | -0.96 | -1 .01 | -1 · 29 | -1.60 | -1 - 95 | -2.37 | -2.98 | -2.98 | -2.03 | -0.08 | +2 · 43 | +4 • 47 | +4.92 | +4.07 | +2.68 | +1 · 31 | +0-41 | +0.08 | - 0·10 | -0.23 | -0.41 | -0.58 | -0 | | r | -0.94 | ~1 · 55 | -2·10 | -2.62 | -3 · 34 | -4·33 | -4·85 | -4·61 | -3·70 | -1·91 | +0•68 | +3·50 | +5•47 | +5 · 85 | +4-96 | +3·87 | +2.53 | +1.41 | +0 • 85 | +0·67 | +0•34 | +0・30 | +0•01 | 7 | | | | | | | | | | | | | VERT ICA | AL COMPO | NENT | | | | | | | | | | | | | | γ
-1·5 | γ
-1·4 | γ
-1·5 | γ
-1·4 | γ
-1·6 | $-1 \cdot 7$ | γ
-1·0 | γ
-0·8 | γ
+0·5 | γ
+ 0·2 | γ
+0·3 | 0·0 } | γ
+0·3 | γ
+ 0·4 | γ
+1·5 | γ
+1·2 | γ
+0·8 | γ
+0·7 | γ
+0·8 | γ
+1·4 | γ
+1 · 7 | γ
+1·6 | γ
+0·1 | ·γ
-0 | | | -5·3
-1·9 | -4·6
-1·2 | -2·1
-0·5 | -1·8
-0·7 | -2·4
+1·1 | -2·9
+1·0 | -3·2
+0·9 | -2·8
+1·5 | -2·1
+1·5 | -2·0
-0·6 | -2·1
-2·1 | -1·6
-4·9 | -0·3
-7·3 | +1·4
-6·2 | +1·9
-1·3 | +3·8
+2·5 | +4·8
+3·5 | +5·3
+4·0 | +6 • 4
+3 • 5 | +5·6
+3·3 | +4·3
+2·3 | +3·0
+0·8 | -0·9
+0·7 | -72
+0 | | | -4·9
+0·8 | -2·3
+1·9 | +0·3
+4·2 | +0·9
+4·5 | +1·7
+4·0 | +2·0
+2·5 | +2·1
+2·0 | +1·7
+0·3 | -0·1
-3·6 | -1·7
-3·9 | -3·9
-4·2 | -5·9
-8·3 | -4·7
-11·4 | -3·1
-8·5 | -1·7
-4·0 | +0·7
-0·7 | +3·5
+2·8 |
+4·8
+3·7 | +4·1
+5·6 | +3·1 | +2·1
+5·0 | +0·9
+3·9 | +0.5 | -C | | | -2.2 | -1 · 4 | +1 • 4 | +2.6 | +3 · 2 | +4 • 1 | +4 - 4 | +4 • 0 | +1.8 | -3.2 | -6.0 | -8.0 | -6 ·4 | - 5⋅0 | -4.4 | -2.6 | -0.6 | +1 · 1 | +2.6 | +1.8 | +4.0 | +4.4 | +2.8 | +1 | | | -4·1
-4·5 | -2·5
-1·6 | -0·2
+0·7 | +1·5
+1·2 | +2·9
+2·4 | +4·0
+3·9 | +5·1
+3·6 | +6·1
-0·2 | +3·0
-2·1 | -0·3
-2·2 | -4·8
-5·7 | -8·9
-9·0 | -8·8
-9·5 | -6·7
-4·6 | -4·2
-0·3 | -1·7
+3·2 | +1·9
+6·2 | +4·4
+7·5 | +4·7
+5·6 | +3·7
+3·6 | +3·4
+1·7 | +2·1
+1·8 | +0·3
-0·3 | -0
-1 | | | -6.7 | -3.6 | -0.7 | -0.5 | -1 · 1 | -0.2 | +0.3 | +0.3 | -2.7 | -5 · 4 | -6⋅3 | -6.1 | -7 · 1 | -4.8 | +2.3 | +4.5 | +5.9 | +6.8 | +6.5 | +6.9 | +5.5 | +4 • 2 | +1 · 1 | +(| | | +1 · 3
-1 · 8 | +0·5
-0·3 | +1·5
0·0 | +1 · 1 | +0.7 | +1 · 4 | +1.5 | +3 · 1 | +3·5
-0·2 | +0.3 | +0·3
+0·4 | +0·1 | -1·7
-0·8 | -2·9
-0·5 | -2·5
+1·2 | -1·5
+1·1 | -0·9
+0·8 | -1·2
+0·7 | -1·1
-0·2 | -0·5
+0·9 | -0·9
+1·6 | -0·3
+1·1 | -0·9
+0·4 | 77 | | | +1 •8 | -0.3 | -1·4 | -2·3 | -3.0 | -2.9 | -2.2 | -1·3 | -0.2 | +0·1 | -0·4 | -0.1 | -1.0 | - 1·5 | -0· 6 | +0.7 | +2·4 | +0•9 | +0·4 | +1 · 3 | +1·6 | +2·3 | +2-4 | +3 | | | -2.4 | -1·4 | +0·1 | +0•4 | +0•6 | +0.8 | +1.0 | +0•9 | -0·1 | -1.5 | -2.9 | -4.4 | -4.9 | -3.5 | -1.0 | +0・9 | +2·6 | +3·2 | +3·2 | +3·0 | +2.7 | +2·1 | +0.5 | -0 | | r | -1.7 | -1.7 | -1·3 | -1·3 | -1.9 | -2.2 | -2.0 | -1.5 | -0.5 | -0.3 | -0.5 | -0.3 | -0.5 | -0.1 | +1.0 | +1 · 7 | +2 • 2 | +1 • 9 | +1 • 9 | +2·3 | +2·3 | +2.0 | +0·5 | -0 | | xor | -3·1
-2·5 | -1·7
-0·9 | +0·1
+1·5 | +0·2
+2·5 | +0·6
+3·1 | +1·1
+3·6 | +1·2
+3·8 | +1·7
+2·5 | +0·5
-0·2 | -1·9
-2·4 | -3·0
-5·2 | -4·2
-8·5 | -5·2
-9·0 | -4·3
-6·2 | -0.8 | +1·5
-0·5 | +3·0
+2·6 | +3·6
+4·2 | +3·3
+4·6 | +3·2
+3·5 | +2·3
+3·5 | +1·4
+3·1 | +0·3
+0·7 | -0· | ### DIURNAL INEQUALITIES OF THE GEOMAGNETIC ELEMENTS INTERNATIONAL DISTURBED DAYS Departures from the mean of the 24 hourly values (uncorrected for non-cyclic change) | WICK | <u></u> |---|--|---|---|--|------------------------------------|---|---|--|--|---|--|--|---|---|--|--|---|---|---
--|--|--|---| | Hour GN | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-2 | | | | | | | | | | | но | RIZONTA | L COMPON | ENT | | | | | | | | | | | | | | | γ
-0·2
+2·0
-1·9
+5·9 | γ
+2·5
+4·2
+5·3
+7·4 | γ
+5·1
+8·8
+7·9
+2·5 | 7
+9·3
+9·8
-8·0
-21·7 | +4·6
-4·7
-35·2 | +2·4
-6·9
-48·7 | γ
+8·2
-2·2
-16·7
-38·7 | -9·2
-19·5
-35·0 | -14·2
-14·3
-30·3 | -18·2
-14·1
-19·5 | 7
-1·7
-15·2
-8·3
-9·2 | -5·3
-7·8
-1·5
+0·7 | -2·4
+6·5
+8·3 | | y
-2·1
+3·2
+8·1
+26·7
+17·8 | y
-5·1
+10·8
+19·6
+21·1
+20·8 | | | 7
-3·6
+6·2
+6·5
+20·7
+17·5 | 7
-5·9
+5·8
+3·5
+16·4
+9·4 | | 7
+1:
-0:
+2:
+12:
-15: | | -70.5 | -32.8 | -9.9 | -16.0 | -22·3 | -10.2 | -12.9 | -27 · 0 | -41·9
-13·9 | | -37 · 3 | -17 · 4 | +2·3
-19·6 | +42.4 | +87 · 1 | +100 · 8 | +98.3 | +63 · 8 | | +13·6 | -20·5
+14·5 | -24·8
+10·6 | -31·3
+3·4 | -34
-6 | | -6.0 | -1 · 7 | -0⋅3 | +1 -8 | +7·5
+24·3
+7·6
+11·0 | +12·5
+14·0 | | | -24·3
-7·0
+0·4
+5·0
+4·2 | -27·2
-6·7
-7·3
+1·7
+2·7 | -3 · 2 | +1 · 5 | -13·4
-4·4
-17·0
-5·9
-6·0 | -0·1
+1·9
-7·1
-3·2
-5·9 | +4·5
+16·2
-1·6
+2·2
-11·4 | +14·4
+17·3
-0·1
+4·9
-2·3 | +20·5
+24·5
+3·4
+1·0
-4·7 | +31·3
+28·2
+7·9
+0·4
+0·4 | +29·6
+28·9
+9·2
-6·7
+2·7 | +26·5
+23·7
+5·5
-8·0
-7·1 | +11·7
+5·2
-2·4
-11·6
-2·0 | +11·4
-26·3
-9·5
-12·5
-4·1 | +1·9
-51·2
+2·8
-11·2
-4·4 | -8
-29
-2
-16 | | -8·6 |
-3·4 | -0.5 | +2·1 | +5·5 | +1 · 5 | -1 · 1 | -5-1 | -11.6 | -15.5 | -16 · 8 | -13-9 | -9 ·3 | +1 · 7 | +8 · 5 | +15-4 | +18-5 | +19-1 | +16 · 3 | +10-3 | +3·5 | -2.2 | - 6·6 | -8 | | +3·5
-9·5
-19·7 | +0·9
-5·3
-5·7 | +0·9
-0·5
-1·7 | +5·3
+6·0
-4·9 | +8·5
+10·6
-2·7 | +1 · 4 | +9·5
-1·6
-11·3 | | | | | | -7·2
-9·7
-10·8 | -5·5
-1·5
+12·1 | -5·5
+7·3
+23·7 | | | +1 · 6
+19 · 2
+36 · 6 | -0·8
+18·0
+31·8 | -5·8
+15·9
+20·8 | -2·7
+7·5
+5·8 | -4·2
-4·0
+1·7 | -3·9
-8·3
-7·5 | ~4
~4
-16 | | | | | | | | | | | | DEC | LINATION | , | , | | , | , | , | , | , | , | , | , | | | -1·40
-3·88
-2·24
-1·44 | -1·35
-4·09
-2·62
-0·43 | -1·75
-4·14
-2·54
-4·53 | -1·41
-2·38
-4·79
-5·26
-5·62 | -0·59
-2·53
-4·55
-3·04 | -0·29
-0·96
-3·65
-2·33 | +2·12
+4·23
-3·34
-1·98 | +1·41
+2·79
+4·55
-0·14
-3·61 | +1·67
+2·46
-2·62
-2·35 | +1·50
+1·87
-1·24
-0·14 | +2·29
+1·82
+1·62
+2·31 | +4·29
+4·23
+3·06
+4·93 | +5·30
+5·36
+4·68
+6·72 | +5·99
+6·37
+6·76
+6·83 | +6 · 19
+5 · 82
+6 · 82
+6 · 51 | +4·22
+4·53
+5·56
+5·00 | +1·93
+3·41
+3·58
+3·87 | +0·55
-1·66
+2·69
+2·49 | -1·44
-3·97
+0·02
+1·04 | -0·85
-3·65
-0·24
+0·87 | -6·19
-4·08
-1·98 | -10·36
-4·17
-1·74
-2·40 | 7·29
2 -2·78
3 -1·38
3 -4·35 | -3
-1
-1 | | -1 · 64
-2 · 65
-6 · 79
-1 · 59
-2 · 74 | -3·04
-2·84
-10·51
-3·99
-2·49 | -4·26
-2·65
-5·24
-5·23
-2·25 | -5·64
-4·26
-3·27
-2·25
-1·64 | -4·09
-1·91
-1·95
-1·69 | -3·07
-0·95
-1·18
+0·71 | -0·78
+0·17
-0·97
+0·50 | -2·15
+1·51
-1·07
+0·99 | -2·39
+2·50
-0·87
+1·61 | -1 · 24
+3 · 19
-0 · 57
+1 · 92 | +1 · 71
+3 · 51
+1 · 55
+2 · 69 | +4·74
+6·65
+5·13
+4·01 | +7·03
+8·19
+5·41
+5·38 | +7 · 68
+7 · 53
+6 · 75
+5 · 31 | +7·35
+7·04
+6·71
+4·99 | +6·20
+5·89
+4·39
+5·10 | +4·87
+3·15
+3·93
+3·49 | +1 · 63
+1 · 97
+1 · 80
+0 · 53 | +0.88
-1.55
+0.85
-0.92 | -2·69
-0·35
-2·09
-3·31 | -5·71
-5·36
-3·09
-4·59 | -5·20
-5·75
-6·17
-6·02 | -2·07
-4·75
-3·59
-6·09 | , – ;
, – ; | | -2.92 | -3.06 | -3·37 | -3·36 | -2·78 | -1 · 44 | -0.43 | -0.22 | -0.25 | +0-65 | +1 • 91 | +4 · 22 | +5-63 | +6 · 17 | +5 · 71 | +4 · 97 | +3 · 73 | +1.57 | +0-11 | -1 · 49 | -3.73 | -4-49 | -4.15 | ; -: | | -3 · 63 | -5.30 | -4.29 | -3.89 | -2.86 | -1 · 69 | +0.02 | +1 · 21 | +0.37 | +0.81 | +2 • 13 | +4 · 77 | +5 • 91 | +6 · 85 | +6 · 60 | +5 · 09 | +3.52 | +1 · 20 | -1 · 16 | -1.58 | -3.63 | -4-46 | -3·13 | 3 -: | | | | | | | | | | | | | L COMPON | | 24 | ~ | ~ | ~ | ~ | av. | ~ | ~ | ~ | ~ | - | | -31·9
-8·2
-13·1
-22·6 | -29·8
-22·4
-8·5
-31·5 | -18·6
-27·6
-22·4
-35·6 | -16·1
-32·6
-33·1
-22·1 | -26 · 4
-33 · 6
-43 · 7
-14 · 2 | -32·0
-31·8
-40·5
-8·9 | -29·5
-29·0
-19·1
-9·6 | 7
-14·9
-18·4
-20·8
-9·7
-6·3
-10·6 | γ
-11·7
-9·4
-11·6
-3·8
-6·0
-3·9 | γ
-6·1
-4·1
-3·6
+1·5
-2·5
+1·6 | -3·7
-1·2
-1·6
+1·7
+1·0 | 7
-1·3
+2·4
+2·8
+4·9
+4·3
+15·8 | +1·1
+4·2
+3·4
+5·7 | +6·3
+8·3
+10·2
+9·7
+12·5
+44·0 | +15 · 4
+16 · 8
+17 · 2
+23 · 0
+60 · 5 | +20·3
+22·9
+26·4
+26·9
+22·5
+71·6 | +16·3
+42·0
+32·0
+32·9
+23·8
+79·6 | +20·8
+58·6
+48·8
+29·1
+26·3 | +28·5
+67·1
+47·8
+28·9
+26·4 | +24·3
+43·2
+34·6
+23·9
+22·7 | +12·9
+26·8
+8·8
+15·4
+21·6 | +14·9
-10·1
-6·2
+7·3
+10·3 | +6·9
-32·8
-1·8
+4·5
-18·4 | -3
-1
-2 | | -48·6
-121·2
-17·2
-10·0 | -48·7
-85·1
-30·8
-16·0 | -34·8
-50·8
-21·7
-22·8 | -8·9
-21·9
-11·4
-32·8 | -1·0
-4·3
-10·2
-31·4 | -0·3
+3·0
-11·2
-24·6 | -16 · 8 | -18·9
-2·5
+8·3
-5·6
-9·2
-10·9 | -10·0
+3·8
+12·6
+0·5
-5·4
-7·4 | -3·3
+5·5
+15·9
+3·4
-1·4
-7·1 | +2·8
+5·2
+18·0
+3·2
+0·4
-4·7 | +4·7
+1·7
+16·5
+3·2
+3·2
-1·1 | +8·4
+7·8 | +7·3
+28·3
+10·0
+11·8 | +14·0
+25·0
+14·9
+11·4 | +16·7
+39·3
+23·8
+13·0 | +19·2
+43·3
+22·2
+16·6 | +26·9
+47·2
+17·8
+20·2 | +32·8
+53·7
+16·6
+29·4 | +36 · 5
+44 · 7
+21 · 6
+32 · 4 | +30·0
+10·2
+19·9
+24·2 | +7·9
-22·5
-5·2
+17·8 | -20·4
+0·8 | -4
-2
-1 | | | | | | | | | -9.5 | -3.7 | +0.9 | +3·0 | +5 · 1 | | | | | | | | | | | | | | | -36 · 7 | -30.6 | -24 · 7 | | -20 · 1 | -16·5
-13·2
-16·1 | -12·0
-6·9
-9·6 | -6.5
-0.6
-4.0 | -2·1
+4·3
+0·3 | -0·3
+5·3
+4·0 | +1·9
+6·9
+6·6 | | +14 · 5 | +18-5 | +29-1 | +32.6 | +35.7 | +36 • 7 | +31 · 2 | +13·6 | -6 ·7 | | -2 | | | Hour Ga 0-1 7 +4.9 +4.49 +4.45 +16.2 -3.65 -70.5 +1.2 -8.6 +3.3 +1.2 -8.6 +3.5 -9.5 -19.7 -3.89 -1.40 -3.88 -2.24 -1.44 -4.57 -1.64 -2.65 -6.79 -2.74 -2.20 -2.92 -2.56 -3.63 -2.57 -14.8 -48.6 -121.2 -10.0 -24.3 -33.1 -20.7 | Hour GMT 0-1 1-2 7 | Hour CMT 0-1 1-2 2-3 7 | Hour GMT 0-1 1-2 2-3 3-4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 1-2 2-3 3-4 4-5 | ## Property Company | ## Pour GMT 0-1 | Hour GMT 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | Note Color Note | Hour OMT | Hour CMT | Rour OMT | | | | Rote CMT | Note Off | No. Ott | No. Color | The column | Second S | Section Sect | The color | ### RANGE OF MEAN DIURNAL INEQUALITIES FOR THE MONTHS SEASONS AND YEAR OF 1965 The ranges are derived from the diurnal inequalities printed in Tables 6-8 # Arithmetical average of diurnal inequalities in Tables 6-8 taken regardless of sign AVERAGE DEPARTURE | 9 LER | WICK | | | | | | | 1 | .965 | 10 LE | ERWICK | | | | | | | 196 | 55 | |---------|--------|--------------|--------|--------|----------|-------|--------|---------|---------------|---------|--------|---------|-------------|-------|---------|-------|------|---------|--------| | | | All days | 3 | Q | uiet day | s | Dis | turbed | days | | А | 11 days | | Qu | iet day | s | Dist | urbed d | ays | | | Н | D | Z | Н | D | Z | Н | D | Z | i | H | D | Z | H | D | Z | H | D | Z | | | γ | , | γ | γ | , | γ | γ | , | γ | | γ | , | γ | γ | , | γ | 7 | , | γ | | Jan. | 23.8 | 6.25 | 19.6 | 9.6 | 4 · 36 | 3.4 | 24 · 7 | 9.40 | 56 · 2 | Jan. | 3.3 | 1 · 34 | 5.0 | 2.2 | 0.77 | 1.0 | 4.7 | 2.73 | 13.6 | | Feb. | 18.9 | 7 • 7 7 | 30.7 | 16 · 1 | 6.50 | 11.7 | 29.0 | 16.55 | 99.9 | Feb. | 3.8 | 1.64 | 8 · 1 | 3.5 | 1 · 47 | 3.0 | 6.3 | 3.24 | 24 · 2 | | Mar. | 24.9 | 8.32 | 26 · 3 | 28 · 1 | 8.52 | 11.3 | 39 · 1 | 11 · 16 | 82.4 | Mar. | 6.2 | 2.13 | $7 \cdot 1$ | 6.5 | 1 · 81 | 2 · 2 | 8.0 | 3.72 | 19.3 | | Apr. | 42.1 | 9.70 | 18.6 | 42.5 | 9 • 46 | 10.7 | 73.6 | 12.08 | 76 · 6 | Apr. | 11.0 | 2.29 | 5 · 2 | 10.7 | 2.05 | 2 · 4 | 19.9 | 2.90 | 17.5 | | May | 45.4 | 10.56 | 17.4 | 43.0 | 10.07 | 17.0 | 47 · 2 | 12.86 | 62.0 | May | 10.4 | 2.72 | 5 · 1 | 10.1 | 2 · 47 | 3.8 | 11.9 | 3.38 | 16 · 6 | | June | 59 · 1 | 11 · 98 | 41 · 2 | 47.2 | 10.45 | 12.4 | 171.3 | 12.70 | 157.6 | June | 13.9 | 2.99 | 9 · 1 | 11.0 | 2.54 | 3.3 | 37.9 | 3.77 | 37 · 7 | | July | 50·1 | 11 · 10 | 24 · 4 | 48.2 | 11 · 41 | 15.0 | 58 • 2 | 11.56 | 70.8 | July | 12.0 | 2.86 | 6.6 | 11.9 | 2.73 | 3.6 | 13.7 | 2.95 | 18.4 | | Aug. | 45 · 4 | 11 · 84 | 33.4 | 41 · 4 | 10.95 | 17.0 | 59.6 | 13 · 39 | 85 · 2 | Aug. | 10.6 | 2.90 | 7.5 | 9.9 | 2.56 | 3.5 | 13.4 | 3.51 | 17.5 | | Sept. | 33.0 | 9.76 | 53.3 | 28 · 8 | 8 · 04 | 14.0 | 89 · 7 | 18.70 | 174 ·9 | Sept. | 8 · 1 | 2.62 | 10.1 | 7 . 7 | 1.73 | 3.8 | 19.7 | 4 · 27 | 33.3 | | Oct. | 24.2 | $7 \cdot 17$ | 22.6 | 23 · 4 | 6.33 | 6 • 4 | 30.8 | 12.92 | 54 · 6 | Oct. | 6 · 1 | 2.01 | 4.8 | 6 · 4 | 1 · 34 | 1 · 3 | 6.5 | 3.04 | 13.8 | | Nov. | 16 · 7 | 6.70 | 19.3 | 17.0 | 3.82 | 3 · 4 | 32.3 | 11 · 47 | 65.2 | Nov. | 3.3 | 1 · 54 | 5.1 | 3.5 | 0.91 | 0.8 | 7.3 | 3.10 | 15.7 | | Dec. | 11.8 | 5.50 | 19.9 | 7.6 | 3.12 | 6.3 | 24 · 7 | 11.73 | 59.2 | Dec. | 2.4 | 1 · 20 | 5.3 | 2 · 1 | 0.63 | 1 · 4 | 5.1 | 2.35 | 14 · 1 | | Year | 29.0 | 7.56 | 25.8 | 27.6 | 7 · 28 | 8.1 | 35 · 9 | 10.66 | 70.1 | Year | 6.3 | 2.15 | 6.5 | 6.6 | 1.70 | 1.8 | 8.6 | 2.89 | 19·2 | | Winter | 15.8 | 6 • 26 | 20.8 | 12.0 | 4 · 21 | 4 · 5 | 18.8 | 11 · 24 | 61.5 | Winter | 2.6 | 1.39 | 5.8 | 2.6 | 0.94 | 1.3 | 4.6 | 2.78 | 16 · 2 | | Equinox | 30.0 | $7 \cdot 92$ | 28.8 | 29.5 | 7.90 | 8.8 | 36 · 3 | 12.15 | 76.6 | Equinox | 7. · 3 | 2 · 24 | 6.6 | 7.7 | 1.70 | 2.0 | 9.5 | 3.21 | 19.9 | | Summer | 50.0 | 11.28 | 28.6 | 44 · 4 | 10.70 | 13.6 | 69.9 | 11.59 | 79.8 | Summer | 11.2 | 2.85 | 7.0 | 10.6 | 2.54 | 3.3 | 17.3 | 3.36 | 22 · 1 | #### NON-CYCLIC CHANGE | 11 LER | WICK | | | CDIC (| | | | 19 | 65 | | |---------|--------|----------|--------|--------|----------|--------|----------------|---------|---------|--| | | | All days | | Q | uiet day | s | Disturbed days | | | | | | Н | D | Z | Н | D | Z | Н | D | Z | | | | у | , | γ | γ | , | γ | у | , | γ | | | Jan. | +0.2 | -0.03 | -0.3 | +0.1 | +0.08 | -0.1 | -4.5 | +0.50 | +3.3 | | | Feb. | -0.1 | 0.00 | +0.5 | +0 · 2 | +0.50 | +1 · 1 | -5.4 | -1.10 | -4.0 | | | Mar. | +0.3 | -0.01 | -0.2 | +4.0 | +0.18 | +0.5 | -3.6 | +0.99 | +2.5 | | | Apr. | +0.3 | -0.03 | +0.3 | +3.8 | -1 · 14 | +3.7 | -6.0 | -0.69 | -5.0 | | | May | +0.2 | 0.00 | -0.1 | +4.3 | -0.13 | -1.8 | -12.1 | -1 · 16 | -1.8 | | | June | -0.4 | -0.03 | -2.7 | +4 • 0 | +0.04 | +1.6 | -25.6 | +1.62 | -20.5 | | | July | -0 · 1 | +0.03 | +2.9 | +3.6 | +0.47 | +2.5 | -9.5 | +0.19 | -3.9 | | | Aug. | +0.2 | +0.03 | -0.4 | +5.0 | +0.21 | +1.6 | -3.0 | +2.60 | -12:3 | | | Sept. | -0.1
| -0.03 | +0.6 | -1.5 | +0.64 | +9•9 | +27.9 | +5.70 | +41 · 5 | | | Oct. | 0.0 | -0.06 | 40.2 | +3.0 | +0.30 | -2.6 | -2.7 | +0.31 | -12.8 | | | Nov. | 0.0 | -0.07 | -1.5 | +1 ⋅ 2 | -0.07 | +0.2 | -14 · 4 | -2.48 | -22 · 7 | | | Dec. | 0.0 | +0.11 | +1 • 4 | +2.8 | 0.00 | -1 · 1 | +1 · 2 | +1 · 75 | +3 · 1 | | | Year | 0.0 | -0.01 | +0·1 | +2.5 | +0.09 | +1 · 3 | -4.8 | +0.69 | -2.7 | | | Winter | 0.0 | 0.00 | 0.0 | +1 • 1 | +0.13 | 0.0 | -5.8 | -0.33 | -5 · 1 | | | Equinox | +0 • 1 | -0.03 | +0.2 | +2.3 | -0.01 | +2.9 | +3.9 | +1 · 58 | +6 • 5 | | | Summer | 0.0 | +0.01 | -0.1 | +4 · 2 | +0.15 | +1 • 0 | -12.5 | +0.81 | -9.6 | | ### AVERAGE RANGE OF DIURNAL INEQUALITY 1932-53 WITH 1965 AS PERCENTAGE OF THIS | 12 | LERWICK | | All days | | 1 | ernation | | | ernatio
turbed o | | |---------|---------|------|----------|------|------|----------|------------|-------|---------------------|-------| | | | H | D | Z | Н | D | Z | Н | D | Z | | | | У | , | у | у | , | y | У | , | У | | Year | 1932-53 | 49·4 | 9·36 | 53·3 | 37·4 | 8·68 | 10·3 | 131·6 | 14·22 | 131·1 | | | 1965(%) | 59 | 81 | 48 | 74 | 84 | 79 | 27 | 75 | 53 | | Winter | 1932-53 | 24·4 | 7·87 | 41·1 | 15·1 | 4·65 | 7·7 | 85·0 | 13·84 | 116·6 | | | 1965(%) | 65 | 80 | 51 | 79 | 91 | 5 8 | 22 | 81 | 53 | | Equinox | 1932-53 | 59·2 | 10·94 | 68·8 | 42·3 | 9·54 | 12·9 | 193·4 | 18·89 | 168·9 | | | 1965(%) | 51 | 72 | 42 | 70 | 83 | 68 | 19 | 64 | 45 | | Summer | 1932-53 | 72·6 | 12·72 | 53·0 | 57·5 | 12·77 | 17·0 | 156·9 | 15·61 | 134·0 | | | 1965(%) | 69 | 89 | 54 | 77 | 84 | 80 | 45 | 74 | 60 | "Winter" comprises the four months January, February, November, December: "Equinox" the months March, April, September, October; and "Summer" May to August. RATIO OF RANGE OF INEQUALITY AT LERWICK TO THAT AT ESKDALEMUIR 1965 | Type
of day | Ele-
ment | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | |----------------|--------------|------|------|--------------|------|-----|------|------|------|--------------|------|------|------| | q
d | H
H | | | | | | | | | 1·12
2·55 | | | | | q
d | D
D | | | 1·06
1·18 | | | | | | 1·08
1·30 | | | | | q
d | Z
Z | | | | | | | | | 1·07
2·99 | | | | 14 LERWICK 1965 (a) Disturbances without sudden commencement All times GMT | Serial | From | | То | R | ange (γ |) | | | |--------|----------|------|----------|------|---------|-----|-----|-------| | Number | Date | Hour | Date | Hour | Н | D | Z | Notes | | 1a | 23 Feb. | 09 | 23 Feb. | 24 | 150 | 144 | 324 | | | 2a | 22 Mar. | 17 | 23 Mar. | 22 | 171 | 177 | 224 | | | 3a | 18 Aug. | 13 | 21 Aug. | 19 | 234 | 240 | 264 | | | 4a | 27 Sept. | 09 | 28 Sept. | 22 | 595 | 205 | 594 | | Note: These are the main examples in a very quiet year. Only in this respect are they noteworthy. (b) Disturbances with sudden commencement (ssc) All times GMT | Serial
Number | Date | Time of sudden commence- | End disturb | | | h init | | | gnitud
strok
D | | | of follo
rbance
D | | |------------------|----------|--------------------------|-------------|----|-----|--------|-----|-----|----------------------|---------------------|-----|-------------------------|------| | | | merre | | | | | | -γ- | y | $\overline{\gamma}$ | | | | | 1 b | 20 Jan. | 16 13 | - | - | Yes | No | No | -4 | -2 | -1 | | smal1 | | | 2 b | 6 Feb. | 14 15 | 8 Feb. | 02 | No | Yes | No | +14 | -4 | -2 | 111 | 163 | 287 | | 3 b | 12 Mar. | 12 29 | _ | - | Yes | No | No | +29 | - 16 | -1 | | small | | | 4 b | 17 Apr. | 13 14 | 21 Apr. | 03 | No | No | No | +21 | -12 | -1 | 410 | 181 | 334 | | 5 b | 15 June | 11 00 | 19 June | 02 | Yes | No | No | -17 | +12 | - 5 | 946 | 215 | 575 | | ຺ 6 b | 6 July | 04 52 | | - | No | Yes | No | -23 | -25 | +3 | | small | -, - | | 7b | 18 July | 15 34 | | - | No | No | Yes | +61 | - 8 | -23 | | small | | | *8b | 15 Sept. | 14 53 | 19 Sept. | 22 | No | No | No | +15 | 0 | 0 | 572 | 269 | 431 | | 9b | 5 Oct. | 02 40 | - | - | Yes | Yes | Yes | +15 | - 15 | - 5 | | ry smal | | *ssc not well defined In the case of an ssc*, that is, an ssc preceded, on at least one component, by one or more small oscillations, timing of the sudden commencement has been made from the main stroke. (c) Disturbances due to solar flare (sfe) Nil. 15 LERWICK 1965 | | CLET | | | | | | | | | | | | | | | | 1903 | |-----|-----------------------|----|--------|--------|--------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------| | _ | GMT | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | Notes | | an. | $\frac{1/2}{2/3}$ | X | X
O | 0 | X
X | 0
X | O
X | O
X | X
X | O
X | X
X | 0 | 0 | 0 | 0 | 0 | N(1) 0220 | | | 2/3
7./8 | x | X | X | X | X | X | X | X | X | X | 0 | 0 | 0 | X
X | X
O | N(1) 2330 | | | 8/9 | 0 | 0 | X | X | Ö | X | Ö | 0 | X | X | X | ŏ | X | X | X | | | | 9/10 | | X | X | 0 | X | 0 | 0 | 0 | 0 | 0 | 0 | X | X | X | X | | | | $\frac{10/11}{11/12}$ | | X
O | X
O | X
O | X | X | X | X | X | 0 | 0 | 0 | X | 0 | X | | | | $\frac{11}{12}$ | | X | 0 | X | 0 | 0 | X
X | O
X | X
X | 0 | O
X | 0 | 0 | 0 | X | | | | 15/16 | | X | ŏ | Ö | ŏ | ŏ | ő | ō | X | X | X | X | ŏ | ŏ | | | | | 17/18 | | X | X | X | X | X | X | X | X | X | X | X | X | 0 | | | | | 18/19
19/20 | | X
O | X
O | X
X | X
X | X | 0 | X | X | 0 | 0 | X | 0 | X | | | | | $\frac{19}{20}$ | | X. | X | X | X | O
X | 0 | O
X | | | | 22/23 | | X | X | X | Ö | X | X | X | X | X | X | X | X | X | | | | | 24/25 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | X | X | | | | | 25/26
26/27 | | O
X | 0 | X
O | X
X | X
X | O
X | O
X | 0 | X | X
X | 0 | 0 | 0 | | | | | $\frac{20}{27}$ | | X | X | X | ô | X | X | X | O
X | 0 | Ô | O
X | O
X | O
X | | | | | 29/30 | l | X | 0 | X | 0 | Ο | Ō | X | 0 | ō | ō | 0 | Ö | Ö | | | | | 30/31 | Ì | X | X | X | X | X | X | X | Х | X | X | X | 0 | 0 | CMT | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | Notes | | eb. | 3/4
4/5 | | X | X
X | Х
О | X
X | X
X | X
X | X
X | X
X | O
X | O
X | X
X | X
X | X
O | | | | | 5/6 | | | X | X | X | X | x | ô | X | Ô | X | X | X | X | | | | | 6/7 | | | X | X | X | 0 | 0 | 0 | 0 | L | L | L | L | X | | N(1) | | | 7/8 | | | X | X | X | X | L | L | L | L | X | X | X | 0 | | N(1) | | | 10/11
13/14 | | | X
O | X
X | X
X | X
X | X
X | X
X | O
X | X
X | X
X | X
X | X
X | X
X | | | | | 22/23 | | | X | X | X | X | X | ô | ô | X | X | X | X | ^ | | | | | 23/24 | | | X | 0 | L | X | X | L | L | X | X | х | X | | | N(1) | | | 24/25 | | | 0 | X | 0 | X | X | X | X | X | X | X | X | | | | | | 25/26
27/28 | | | O
X | X
X | L
O | L
X | L
X | L
X | Х
О | X
X | X
O | X
X | X
X | | | N(1) | | | 28/1 | | | X | ô | X | X | ô | ô | ŏ | X | X | X | X | 1 | | | | | | | | | | | | | | | | | "In order to save space all nights during which the sky was overcast throughout have been omitted from the table; otherwise a symbol is given for each hourly observation during the hours of darkness according to the following code;" L = aurora is observed O = observing conditions are good aurora is clearly absent X = observing conditions made a decision about the presence of aurora impossible ^{? =} aurora is suspected but observing conditions are not good enough for a firm decision. | 15 | LERWICK | | | | | | | | | | ··· | | | | | | | 1965 | |----|--|----|----|--------------|--|---|--|--|---|---|---|---|--|------------------------|----|----|------------------------------------|------| | • | GMT 3/4 4/5 5/6 6/7 18/19 19/20 22/23 23/24 24/25 25/26 26/27 28/29 29/30 | 17 | 18 | 19
X
O | 20
x
0
0
0
0
0
0
0
0
0 | 21
X
O
O
X
X
O
X
X
L
L
X
O
O | 22
L
O
O
X
O
X
X
X
L
X
O
O
O
O
O
O
O
O
O
O | 23
X
0
0
0
0
0
0
X
L
X
0
0 | 24
L
X
O
X
O
O
X
L
O
L
X
X
O | 01
L
X
O
X
O
X
O
L
O
L
X | 02
L
X
O
X
X
X
O
O
L
O
L
X | 03
L
O
O
X
X
X
X
X
X
O
O
O
X | 04
L
O
O
X
X
X
X
X
X
O
O
X | 05
L
O
O
X | 06 | 07 | Notes N,B(1) R,N,A(1) N(1) N,A(1) | | | | GMT 2/3 3/4 10/11 12/13 13/14 15/16 17/18 18/19 20/21 21/22 23/24 24/25 26/27 27/28 29/30 | 17 | 18 | 19 | 20 | 21
0
0
0
x
x
0 | 22
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 23
0
0
0
x
x
0
0
0
0
L
0
0
x
x | 24
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 01
X
O
X
X
O
X
X
O
L
O
X
X
X
O
X |
02
X
0
X
0
0
X
X
0
0
0
X
0
0
0
X | 03
X
O
O
X
O
X
X | 04 | 05 | 06 | 07 | Notes N(1) N,P(1 to 2) | | When aurora was observed a brief note has been added describing the structure, form and brightness according to the following code:- Structure. H = homogeneous S = striated R = rayed Form. A = arc B = band P = patch V = veil R = rays N = not identifiable Brightness 1 = comparable with Milky Way Index. 2 = comparable with moonlight cirrus cloud 3 = comparable with brightly moonlit cirrus cloud or moonlit cumulus cloud 4 = much brighter than 3 Complete definitions of these terms are given in the International Auroral Atlas (1963). 15 LERWICK (contd) 1965 | | DERWICK | (001 | | | | | | | | | | | | | | | 1965 | |-----|----------------------------------|-------|-------------|--------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|------------------|-------------|----|----------------------| | ug. | GMT
7/8
9/10
10/11 | 17 | 18 | 19 | 20 | 21 | 22
0
0
X | 23
0
0
X | 24
0
0
X | 01
X
0
0 | 02
X
O
O | 03 | 04 | 05 | 06 | 07 | Notes | | | 11/12
18/19
19/20
23/24 | | | | | | X
X
X
O | X
X
X
L | X
X
X
L | X
L
O
L | 0
X
X
X | | | | | | A(1)
B(1) | | | 25/26
26/27
28/29 | | | | | v | 0
0
0 | L
0
0 | L
0
0 | L
O
X | 0
0
X | 0 | | | | | B(1) | | | 29/30
30/31
31/1 | | | | | X
X
X | O
X
L | L
L
L | L
X
X | X
O
L | X
O
X | 0
0
0 | | | | | B(1)
N(1)
B(1) | | | GMT | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | Notes | | pt. | 1/2
2/3
10/11
16/17 | | | | х
х
х
о | Х
Х
О
Х | х
о
х
х | X
O
X
O | 0
0
0
X | х
о
х
х | X
O
O
O | X
O
X
O | O
X | | | | | | | 22/23
25/26
27/28
28/29 | | | | х
о
х
х | х
о
х
х | х
о
х
х | X
O
X
X | X
O
X
X | X
X
X
X | х
х
о | X
X
O
O | O
X
O
O | t. | GMT
8/9
14/15 | 17 | 18 | 19
X
X | 20
X
X | 21
X
X | 22
X
X | 23
X
X | 24
X
X | 01
X
X | 02
X
X | 03
X
X | 04
O
X | 05
0
0 | 06 | 07 | Notes | | | 15/16
17/18
18/19 | | | 0
0
X | X
X
X | X
X
X | X
X
X | X
X
X | X
X
O | X
X
X | X
X
X | X
X
X | X
X
X | X
X
X | | | | | | 19/20
23/24
24/25
27/28 | | X
X
X | O
X
X
X | O
X
X
O | 0
X
X
0 | O
X
X
L | X
X
O
L | X
X
O
X | X
X
X
X | X
X
X
X | X
O
O
X | X
X
X
X | X
X
O
X | X
X
X | | B,N(1 to 3) | | | 29/30
30/31 | | X
X | 0 | 0 | X
O | X
X | | | | | 1 | | | | | | | | | | | | | | | | [&]quot;In order to save space all nights during which the sky was overcast throughout have been omitted from the table; otherwise a symbol is given for each hourly observation during the hours of darkness according to the following code;" L = aurora is observed O = observing conditions are good and aurora is clearly absent X = observing conditions made a decision about the presence of aurora impossible ^{? =} aurora is suspected but observing conditions are not good enough for a firm decision. 59 | 15 | LERWICK | (con | td) | | | | | | | | | | | | | | 1 | 965 | |------|---|---|---|---|---|--|--|---|--|---|--|---|--|--|--|---|-------------------------------------|-----| | | GMT | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | Notes | | | Nov. | 1/2
8/9
11/12
12/13
13/14
14/15
15/16
17/18
18/19
19/20
20/21
21/22
22/23
23/24
24/25
25/26
26/27
27/28
28/29
30/1 | x x x 0 x x x 0 x x 0 x x x 0 x x x 0 x x x 0 x x x 0 x x x 0 x x x 0 x x x 0 x x x 0 x x x 0 x x x 0 x x x 0 x x x 0 x x 0 x x 0 x x 0 x x 0 x x 0 x x 0 x x 0 x x 0
x 0 | x 0 0 0 0 x 0 x x x L 0 0 x x 0 x x 0 x | x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | x
x
x
0
0
0
0
0
x
x
x
x
0
0
0
x
x
x
x
x | X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X | x
x
x
0
x
0
x
0
x
0
x
0
x
0
x
0
0
x
0
0
0
x | x
x
x
0
0
0
0
0
0
x
x
0
0
0
x
x
0
0
1
1 | x
x
x
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x | x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x | X
X
X
X
X
O
O
X
X
X
O
O
O
X
X
X
O
O
O
X
X
X
O
O
O
X
X
O
O
O
X
O
O
X
X
O
O
X
X
O
O
X
X
O
O
X
X
O
O
X
X
O
O
X
X
O
O
X
X
O
O
X
X
O
O
O
X
X
O
O
X
X
O
O
X
X
O
O
X
X
O
O
X
X
O
O
O
X
X
O
O
X
X
O
O
O
X
X
O
O
X
X
O
O
X
X
X
O
O
X
X
O
O
X
X
O
O
X
X
X
O
O
X
X
X
O
O
O
X
X
X
O
O
O
X
X
X
O
O
O
X
X
X
O
O
O
X
X
X
X
O
O
O
X
X
X
O
O
O
O
X
X
X
O
O
O
X
X
X
O
O
O
X
X
X
X
O
O
O
X
X
X
X
O
O
O
X
X
X
X
O
O
X
X
X
O
O
X
X
X
X
X
O
O
O
X
X
X
O
O
X
X
X
O
O
X
X
X
X
X
O
O
O
X
X
X
O
O
X
X
X
O
O
X
X
X
O
O
X
X
X
O
O
X
X
X
X
O
O
X
X
X
X
X
O
O
X
X
X
X
O
O
X
X
X
X
X
X
O
O
X
X
X
X
X
X
X
X
O
O
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X | X
X
X
X
X
X
X
L
L
C
O
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X | X
X
X
X
X
X
X
X
X
O
X
L
L
O
O
X
X
X
X
X | 0
x
x
x
0
x
x
0
0
0
0
x
x | x
x
x
x
x
x
x
0
x
x
x
0
x
0
0
0
0
0
0
0 | O | A,B(1) N(1) N(1) B(1) B,N(1 to 2) | | | Dec. | GMT 2/3 3/4 9/10 10/11 11/12 12/13 13/14 16/17 17/18 18/19 19/20 20/21 21/22 25/26 26/27 27/28 28/29 30/31 | 17 X O X X X O O X X X O O O X X X X X O O O X X X X O O O O X X X X O O O O X X X X O O O O X X X X O O O O X X X X O O O O X X X X O O O O O X X X X O O O O X X X X O O O O X X X X O O O O X X X X O O O O X X X X O O O O X X X X O O O O X X X X O O O O X X X X O O O O X X X X O O O O X X X X O O O O X X X X O O O O X X X X O O O O O X X X X O O O O O X X X X O O O O O X X X X O O O O O X X X X O O O O O O X X X X O O O O O O X X X X O | 18
X
O
X
X
O
O
X
X
O
O
X
X
O
O
O
X
X | 19
X
O
X
X
O
O
X
X
X
O
O
X
X
X
O
O
X
X
X
O
O
X
X
X
O
O
O
X
O
O
O
O
O
O
O
O
O
O
O
O
O | 20
X
O
X
X
O
O
X
X
X
X
O
O
X
X
X
X
X
X
X
X
X
X
X
X
X | 21
X
O
O
O
X
X
X
X
C
O
O
X
X
X
X
X
X
X
X
X
X
X
X
X | 22
X
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O | 23
X
O
O
X
O
O
X
X
X
O
O
O
X
X
O
O
O
X
O
O
O
O
O
O
O
O
O
O
O
O
O | 24
X
O
X
X
O
O
X
X
D
O
O
X
X
X
O
O
X
X
O
O
O
X
X
O
O
O
O
O
O
O
O
O
O
O
O
O | 01
X
0
0
0
0
X
X
0
0
0
0
0
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0 | 02
X
O
X
X
X
X
X
X
X
C
O
O
X
X
X
X
X
X
O
O
O
O | 03
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 04
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 05
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 06
0 0 0 X
0 0 0 X
0 0 0 X
0 0 0 X
0 0 X X X X | 07
0 0 0 0 0 X 0 X X X X X X X O X X X O O O | Notes N,A(1 to 2) N(1) | | When aurora was observed a brief note has been added describing the structure, form and brightness according to the following code:- Structure. H = homogeneous S = striated R = rayed Form. A = arc B = band P = patch V = veil R = rays N = not identifiable Brightness 1 = comparable with Milky Way Index. 2 = comparable with moonlit cirrus cloud 3 = comparable with brightly moonlit cirrus cloud or moonlit cumulus cloud 4 = much brighter than 3 Complete definitions of these terms are given in the International Auroral Atlas (1963). | DATE | Φ, | FORMS | TIME | Φ, | DATE | Φ | FORMS | TIME | Φ, | DATE | Φ, | FORMS | TIME | Φ, | |----------|-----|--------------------|-----------|----------|----------------|------|--------------------|-----------|----|--------------------|-----|-----------------|-----------|-----| | JANUARY | | | | П | APRIL (contd.) | 1 | | | | SEPTEMBER (contd.) | Т | | | T | | 2-3 | 61 | N,R | 2250-2400 | | 19-20 | 56 | HA,N,P | 2215-2245 | 61 | 16-17 | 59 | HA | 2000-2315 | 66 | | 7-8 | 60 | | 0050-0100 | | | | | and | | 18-19 | | N,R | 1930-2250 | | | 12-13 | 61 | | 0350 | | | | | 0050-0200 | | 20-21 | | HB | 2200 | | | | " | | 1 0000 | | 24-25 | 63 | N | 2230-2250 | | 26-27 | | N | 2250-2400 | | | | 1 | | 1 | | 2. 25 | " | 7" | 1230 2230 | | 27-28 | | HA, RA, RB, P | 1830-0350 | | | | | | | | | | | | | 27 20 | " | , IM, KA, KO, I | 1630-0330 | 103 | | FEBRUARY | | | į | | MA Y | | | | | OCTOBER | | | | | | 3-4 | 61 | на | 2200 | 1 | 17-18 | 61 | N | 2350-2400 | | | | | - | | | 6-7 | 59 | | 0130-0530 | 1 1 | 2. 25 | 1. | | 2000 2100 | | 2-3 | 60 | N,R | 2100-2150 | | | 7-8 | 59 | НА | 1820-0025 | 65 | | | | 1 | | 22-23 | | HA | 2115-0200 | | | 19-20 | 61 | | 2000 | "" | JUNE | | | | | 23-24 | 61 | HA | 2145-0100 | 66 | | 20-21 | 55 | | 0145 | | JUNE | | | i | | 27-28 | | HB, RB | 2220-2400 | | | 23-24 | | HA, RA | 1900-0115 | 64 | 16-17 | 57 | Not identifiable | 2400-0200 | | 28-29 | | N N | 2145 | | | 24-25 | 60 | | 1845-2350 | " | 10 17 | 1 " | in bright twilight | 2400-0200 | | 20-29 | 100 | 714 | 2145 | | | 24-23 | 100 | | 1043-2330 | 1 1 | 30-1 | = 0 | Not identifiable | 2245-0200 | | NOVEMBER | 1 | | | | | | | | | | 30-1 | 36 | in bright twilight | 2245-0200 | | NOVEMBER | | | | | | | 1 1 | | i | | | | | 1 | | 5-6 | 57 | N | 1810-1900 | | | | 1 1 | | | | | | | | | 6-7 | | N | 2015-0300 | | | | | | | | JULY | | 1 | | | 13-14 | | HA, HB, R | 2040-2155 | | | | 1 1 | | 1 | | • | - | i | | | 19-20 | | N | 0250-0330 | | | MARCH | 1 1 | | | | 22-23 | 61 | HA | 2330 | | 20-21 | 60 | N | 1740-0400 | | | MDTNC11 | 1 1 | | | | 22 23 | 10. | 1 | 2550 | | 24-25 | 60 | N | 0050-0400 | | | 2-3 | 59 | N | 2400-0100 | 1 | | 1 | | 1 | | 30-1 | 50 | HB | | | | 3-4 | | HA, HB, P | 2115-0500 | 65 | AUGUST | | | 1 | | 30-1 | 139 | 120 | 1850-0415 | | | 22-23 | 60 | | 2120-2400 | 55 | AUGUSI | | | | | | 1 | | | 1 | | 23-24 | | RA, RB | 2020-2215 | 1 | 18-19 | 50 | RA | 0100 | 66 | | 1 | 1 | | 1 | | 24-25 | 62 | | 2110-0200 | | 23-24 | | HB | 2240-0050 | 68 | | | 1 | | | | | | RA,N | 2050-0150 | 66 | | 62 | | | 08 | | | 1 | | | | 25-26 | 61 | KA, N | 0130-0250 | 00 | 24-25
25-26 | 62 | HB | 2200-0200 | | DECEMBER | İ | } | | | | 27 - 28 | 01 | IN . | 0130-0230 | | | 60 | | 2030-0045 | 04 | | | 1 | | | | | | | | | 29-30 | | | 2310-2350 | | | ١ | | ĺ | | | | 1 1 | | | | 30-31 | 63 | | 2140-2335 | | 18-19 | 59 | HA | 1715-0100 | 65 | | | | | | | 31-1 | 63 | HB | 2130-0200 | | 19-20 | 61 | N | 2020-2050 | İ | | APRIL | 1 1 | | | | | | | | | 22-23 | 61 | | 2350 | 1 | | | | | | | | 1 | | | | 24 - 25 | | HA,
RA, RB | 2250-2330 | 65 | | 4-5 | 60 | | 0245-0410 | | SEPTEMBER | i i | l | | - | 26-27 | 58 | N | 0015 | | | 17-18 | | Concealed by cloud | 2150-0035 | | | | | | | 27-28 | 61 | N | 2025-0100 | 1 | | 18-19 | 63 | N | 2150-2300 | | 15-16 | 1.59 | HA | 2350-0200 | 64 | 29-30 | 61 | l NI | 2250 | 1 | The above table was compiled in the Balfour Stewart Auroral Laboratory of the University of Edinburgh from all data available for the sector between geomagnetic longitudes 70° and 90°E., using mainly observations made at British Meteorological Office stations and by British voluntary observers on land and in ships and aircraft, but including also data from Iceland, Faroes, Ireland and France. Acknowledgment is made to the authorities in these countries responsible for the organization and collection of observations. In the table, Φ , is the lowest geomagnetic latitude from which aurora was seen in the longitudes considered. On any night, if more than a glow on the northern horizon was seen from the British Isles, the other forms reported are listed and the period of time (GMT) during which the display was observed from the British Isles is stated. The standard abbreviations used are those defined in the International Auroral Atlas, (1963). The system of reporting defined therein came into operation on 1 January 1964. N = denotes an aurora, the form of which is not identifiable because of adverse observing conditions. It includes the glow on the horizon, since this is the upper part of a display, the identifiable portion of which is below the horizon. HA = homogeneous arc; RA = rayed arc; HB = homogeneous band; RB = rayed band; R = isolated rays; P = patch of diffuse luminosity. The two types of pulsing of auroral forms described as pulsation and flaming are designated by the symbols p_1 and p_2 respectively. Under Φ_0 is given the lowest geomagnetic latitude in which aurora was situated overhead in the longitudes considered. In the absence of direct visual observations Φ_0 is deduced from measurements of elevation made in other latitudes, assuming a height of 100 km for the lower edges of arcs and bands. Because of varying observing conditions, these data are in some cases incomplete; aurora may have been overhead in latitudes lower than those listed and other forms may have occurred. Fuller details may be obtained from the laboratory on request. 17 LERWICK Factor 2.66 TANUARY 1965 | 17 I | LERWICK | | | | | | | | | | | Facto | r 2.66 | | | | | | | | | | | JANUARY | 1965 | | |------|-------------------------|------------------|-----------------------|-----------|------------------|------------------------|--------------------------------------|-------------------------|--------------------------------------|--------------------------------------|-------------------------|-------------------------|------------------------|------------------|-------------------------|------------------|------------------|-------------------------|-------------------------|------------------|--------------------------------------|-----------------|-------------------------|-------------------------|------|---| | | Hour C | MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-10 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | | | | 1 | | | | | | | | | | | ts per | L | | | 15-10- | | | | | | 21-22 | 22-23 | 23-24 | mean | | | | | | | 110 | 50 | 115 | | | | | 701 | ta per | | 130+ | 170 ⁺ | 175 ⁺ | | | 205+ | | 170 | 160 | | | | | | | | | | | 120+ | | 145 | 150 | | | | | 1 | 130 ⁺ | 125 | 110 | 130 | 110 | 120 | 145 | 180 | 160 | 145 | 115 | | | | | i | 130 ⁺ | | | 120 | 95 ⁺ | 95+ | 115+ | 110+ | | | | | 150 | 123 | 110 | 130 | 110 | 120 | 143 | 100 | 100 | 143 | 113 | | | | | 1 | 1 | | | | | | | | | 110+ | 110 ⁺ | 130 ⁺ | 140+ | | | | | | | | | | | | | | | | 1 | 90 ⁺ | 100 ⁺ | 115+ | 115+ | | | | | 130 | 110 | | 1 | | 155 | | | 150 ⁺ | | | | | 120+ | 130 ⁺ | | | | | 170 | 160 ⁺ | 155 ⁺ | 130 | + | | | | 115 ⁺
120 ⁺ | 120 ⁺
110 ⁺ | | 155 ⁺ | 145+ | 145+ | 140 ⁺ | 140 ⁺ | 125+ | 120+ | | | 145 | 150 | 170 ⁺ | 140 | | | | | 115 | | | | | + 130 ⁻ | 130+ | 185+ | | | 230+ | 170 ⁺ | ĺ | | | | | 145 ⁺ | 125+ | 125+ | 125+ | | 170 | 140 | | | | | 113 | 100 | 85 | 85 | | 95
90 | | 130 | 215 ⁺ | | 230 ⁺ | | | | | | | | 145 | 130 | 120 | 125 | | İ | | | | | 1 | | 80 ⁺ | - | | 90 | • | | | | | 110+ | 115 [†] | 115 | 1201 | . 120+ | 130 ⁺ | 205 | 120 | 125 | | | | | | | | | | 95 ⁺ | | | 155 | + | 95 | | | | 95 ⁺ | 100 ⁺ | 100 | | | 120 | 130 | 130 | | 135 | | | | | | | | | | | | | 130 | 90 | + | 95 | 100 | 110 | 130+ | 115+ | | | | | | | | | | | | | | | | | 1701 | • | | 85 | ⁺ 155 | + | | | 90 ⁺ | 95 ⁺ | 85 ⁺ | 90 | 145 ⁺
95 | 110 ⁺ | 95 [†]
95 | 100 | 125+ | 140 ⁺
120 | 150
155 | 100+ | | | | | | | | | l . | | 110 | | | 85 | | 90 | 90 | 90 | 90 | 95 | 100 | 100 | 95
95 | | | 185 | 230 | 100 | 110 | 115 | 90 | 130 | | | | | 115 | 95+ | 95Ť | 60 | 55 | [†] 60 | | 85 ⁺ | 110+ | 170+ | | | | | | | | | | | | 130 | 130 | 100 | | | | | 115 | 110 | 95 | 85
140 | 100 | 360 | 110 ⁺
150 ⁺ | 110+ | | | 160 ⁺ | 190 ⁺ | | | | | | | | | 1301 | 155 | | | | | | | ł | 120+ | | 140 | 110 | + | 150 | | | | | | | | | | 260 ⁺ | 250 ⁺ | 260 [†] | 240+ | 205 | 155+ | 155+ | | | | | | 90 | 90 | 80 | 85 | 85 | 80 | 65 | 80 | 85 | 130 ⁺
180 | 120 | 290 ⁺
115 | 395
110 | 110 | 300 ⁺
110 | 300 ¹ | 165
125 | 155
120 | 130
155 | 130
130 | 120
95 | 110 | 155
160 ⁺ | 120 | | | | _ | | | | | | | | | | | | | | 175+ | | | | | | | | + | 100 | | | | | 0а | 145
110 ⁺ | 140
100 | 110
95 | 100
90 | 110
100 | 110 ¹
95 | 120 ⁺
110 | 130 ⁺
140 | 150 ⁺
150 | 170 ⁺
175 | 145 ⁺
170 | 170 ⁺
100 | 190 ⁺
90 | 175 | 200+ | 205 | 150 ⁺ | 240 ⁺
170 | 210 [†]
180 | | 170 [†]
160 [†] | | 110+ | 130 ⁺
100 | 161 | (| | | 95 | | | 85 | 90 | | | 60 | | 80 | | 125 | 150 | 145 | 125 | 115 | | | | 130 ⁺ | 35 | 95 | 90 | | | | | | 25 | 60 | 70
85 ⁺ | 85
90 | 95 | 90 | 95 | 115
110 ⁺ | | | | | | | | 120 ¹ | | 90 ⁺ | | 100 | 110 | 95 | 70 | | | | | | | | | | 85 | 95 | 85 | 80 | 80 | 80 | 115 | | | | | 115 | 120 | 120 | 110 | | | 95 ⁺ | | | | | | | 115 | 107 | 98 | 98 | 103 | 113 | 105 | 112 | 129 | 136 | 140 | 140 | 148 | 126 | 144 | 142 | 153 | 153 | 164 | 141 | 134 | 133 | 127 | 125 | 129 | _ | | | (10) | (12) | (13) | (15 | (17 | (14) | (14) | (15) | (13) | (16) | (12) | (14) | (12) | (10) | (12) | (12) | (10) | (16) | (14) | (12) | (14) | (14) | (11) | (10) | | | | her | 107 | 100 | 89 | 91 | 87 | 133 | 101 | 104 | 101 | 119 | 121 | 109 | 157 | 114 | 110 | 107 | 135 | 146 | 149 | 128 | 121 | 127 | 113 | 122 | 116 | | | 1161 | (6) | (5) | (6) | (8) |) (9 | (7) | (8) | (9) | (5) | (6) | (5) | (6) | (6) | (4) | (5) | (6) | (4) | (9) | (9) | (7) | (9) | (9) | (6) | (7) | 1 | Moon | of Oa | deve | [161 | | POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | 17 LE | RWICK | | | | | | | | | | | Facto | r 2.65 | | | | | | | | | | 1 | EBRUARY | 1965 | | |----------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|------------------------|-------------------------------------|------------|-------------------------|-----------|------------------|-------------------------|-------------------------|------------------------|------------------|------------------------|-----------------------|-----------|-----| | | Hour C
0-1 | MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | 1 | | | | | | | | | | | | | | ts per | | | | | | | | | | | | | | | | 1 0a
2 | 90
70 | 85
60 | 65 | | 70
70 | 70 | 65 | | | 95 | 95
110 ⁺ | 115 | 120 | 120
155 ⁺ | 125
145 | 110 | 100 | 100 | 100 | 100
130 ⁺ | 95 | 85 | 95 | 85
85 ⁺ | 97 | (18 | | з | 90† | 70 | 40 | 50 ⁺ | 35+ | | | 95 | 70 ⁺ | 80+ | 80 [†] | 85 | 95 ⁺ | 95 | 90+ | | | | | | | | 140 ⁺ | 115+ | | | | 4
5 | 100+ | 110 | 95 | 90
70 ⁺ | 85
65 ⁺ | 80
70 ⁺ | 80
90 ⁺ | 110 ⁺
85 ⁺ | 85 ⁺
85 ⁺ | 70 ⁺
100 ⁺ | 85 ⁺
100 ⁺ | 140 ⁺
100 ⁺ | 100+ | 145 [†]
95 [†] | 90+ | | | 115+ | 130 ⁺ | 155+ | | 85 ⁺ | | | | | | 5 | | 85 ⁺ | 80 ⁺ | | ••• | , , | ,,, | 90 ⁺ | 00 | | | | | | | | | 110 ⁺ | | | | 115 | 110 | 100 | | | | 7 0a | 85 | 85 | 70 | 70 | 80 | 95 | 95 | 110+ | 100 ⁺ | 100+ | 110+ | 120+ | 130 ⁺ | | | | | 95 T | 100 ⁺ | 115+ | 95 ⁺ | 85 | 95 | 95 | 103 | (2 | | 8 | 95
90 | 85 | 70 | 70
85 ⁺ | 70 | 85 | 85 | 80 | 80 | 60 | 85 | 110 | 120
85 ⁺ | 115 | 95 | 140
110 ⁺ | 120+ | | | 100 | | 95 | 90 | | | | | 0 | 80 ⁺ | 65 | | 03 | | 60 | 65 ⁺ | 65 ⁺ | 65 ⁺ | | | | 63 | | 95+ | 110 | | | | 100 | | 33 | 90 | 95+ | | | | 1 | 80+ | 85 | | | 85 ⁺ | 70 ⁺ | 95 ⁺
95 ⁺ | | | | | 95 ⁺ | | | | | | 130 ⁺ | | | | | | } | | | | 2 | 85+ | 85+ | | 80 ⁺ | | 85 ⁺ | 95+ | 110+ | | 120+ | 115+ | | | | | | | | 125+ | | | | | | | | | 4 | | | | | | | | 60 ⁺ | | | | |] | 95 ⁺
90 | | | | | 123 | 90 ⁺ | 85 ⁺ | | | 95 | | | | 5 0a | 70 ⁺ | | 70 ⁺ | 60 ⁺ | 60 ⁺ | 60 | 65 | 80 | 70 | 80 | 70 | 85 | 80 | 90 | 90 | 110 | 100 | 115 | 95 | 95 | 110 | 100 | | | 84 | (21 | | 6 0a
7 | | | | | | | | | | | 55 ⁺ | 50 ⁺ | 55+ | 95 ⁺ | 110+ | 120+ | | | 140 ⁺ | 140+ | 110 ⁺ | 100 | | 70 | - | ((| | /
8 0a | 60 | 50 | 55 | 60 | 55 | 55 | 55 | 60 | 65 | 70 | 80 | 85 | | 93 | 110 | 120 | 95 * | 110 |
100 | 100 | | | | 85 ⁺ | 73 | (1 | | 9 0a
0 0a | 85 | 85 | 70 ⁺
85 | 70 | 65 | 70 [†]
60 | 80 ⁺ | 60 ⁺ | 110 ⁺
70 | | | 90 ⁺ | 115 | | | | 115
60 | 125 ⁺ | 140 ⁺
100 | 145 [†]
80 | 110 ⁺
80 | 110 ⁺ | 110 ⁺
65 | 85 [†] | 102
71 | (1: | | 1 | | | | 70 | 03 | 00 | 00 | 80 ⁺ | 70 ⁺ | 65 ⁺ | 70+ | 70 ⁺ | 70+ | | | | 00 | 00 | 100 | 00 | 80 | 95 ⁺ | 90 ⁺ | 80 | | (17 | | 1 0a
2 | 65
60 | 60
65 | 55
70 | 60 | 55 | 55 | 60 | 80 | 70 | | 70 ⁺
65 ⁺ | 65+ | /0 | | | | | | | | | 95 | 55 | | 73 | (12 | | 3 | 80 | 90 | 70 | 55 | 40 | 55
35 | 65
50 ⁺ | 60
50 ⁺ | 70
55 ⁺ | 80 ⁺ | | | | | | | | | . 130+ | 145+ | 155 | 145 | 115+ | 110+ | | | | 5 | 100
60 ⁺ | 80
60 ⁺ | 70 | 33 | 40 | 33 | 50 | 50 | 50 | 50 | | | | | | | | | 95 ⁺ | | | 100 | 100 | 95 | | | | 5 | 90 | 85 | 70 | 55 | 55 | | 50 | | | | | | | | | | | 110+ | | | | | | | | | | 7 | 70+ | 60 | 35 | 55 | | | | | | | | | 95 ⁺ | | | 110+ | ın. | 80 | 75 | 67 | 66 | 64 | 67 | 71 | 77 | 75 | 81 | 86 | 93 | 97 | 112 | 105 | 117 | 98 | 107 | 114 | 116 | 105 | 98 | 97 | 90 | 90 | | | u 1 | (20) | (18) | (15) | (14) | (14) | (15) | (17) | (17) | (14) | (12) | (13) | (13) | (11) | (9) | (8) | (6) | (6) | (10) | (11) | (12) | (8) | (12) | (11) | (14) | | | | r
ther
n | 81
(12) | 75
(15) | 65
(12) | 65
(9) | 65
(10) | 65
(11) | 66
(11) | 65
(6) | 68
(7) | 70
(6) | 83
(4) | 99
(4) | 109
(4) | 108 | 114
(4) | 120
(3) | 94
(4) | 92
(3) | 98
(3) | 94
(4) | 110
(4) | 99
(9) | 87
(7) | 86
(8) | 87 | | | | | | | | | | | | | | | | L | | | | | | | | | M | of Oa | | [86 | (| The potential gradient is reckoned as positive when the potential increases upwards. The small [†] denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for Oa days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. 17 LERWICK Factor 2:67 MARCH 1965 Hour GMT 0-1 1-2 7-8 2-3 3-4 4-5 5-6 6-7 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 Mean volts 180[†] 1 265[†] 155+ 205+ 2 3 4 5 180⁺ 200⁺ 210+ 235+ 180⁺ 170⁺ 170⁺ 180⁴ 150+ 65 70 95 155 155 70 170⁺ 60⁺ 115⁺ 170⁺ 7 8 9 90 85 ٩n ลก 120+ 140+ 275 10 Oa (24) 155⁺ 275⁺ 215⁺ 205⁺ 11 0a 170⁺ 145+ 230⁺ 235⁺ 250+ 300+ 310+ 310⁴ 360¹ 11 0a 12 0a 13 0a 14 15 230+ 275+ 455⁺ 205⁺ 420[†] 370⁺ 325⁺ (24) (24) 445 ⁺ 325[†] 400⁺ 370¹ 400+ 205+ 215+ 130⁺ 17 18 19 300° 110[†] 130⁺ 115[†] 180[†] 125[†] 170[†] 140⁺ 110⁺ 95 85[†] 120⁺ 20 Oa (11) 21 Oa 22 23 24 25 Oa 70[†] (9) 65 70 65 65⁺ 85⁺ 85 ¹ (23) 26 0a 27 115 Qn QΩ (24) 110[†] 29 120⁺ 60⁺ 100⁺ 160⁺ 160⁴ 85 55,+ 30 0a (21) 31 Oa 110⁺ 85⁺ 85¹ (24) (20) (20) (21) (19)(18)(18)(17)(22) (18)(17)(17)(15)(15)(12)(14)(19)(18)(16) (19) (19)(20) (20) (18) (19) Fair Weather (10) (10) (10) (9) (9) (8) (5) (7) (10) (7) (8) (9) (11) (14) (11) (12) (11) (12) (10) (11) (11) (12) (11) Mean Mean of Oa days [167 (10)] POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | 17 LI | RWICK | | | | | | | | | | | Factor | 2.72 | | | | | | | | | | | APRIL | 1965 | | |-------------------|------------------------|------------------------|-------------------------------------|------------------------|--------------------------------------|--------------------------------------|-------------------------|--|------------------------|--------------------------------------|---|--|--|--|---|---|--|---|--------------------------------------|--------------------------------------|---|--|---|---|------|--------------| | | Hour (| MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21 - 22 | 22-23 | 23-24 | Mean | | | 1 0a
2
3 | 95 ⁺ | 115+ | | 110 ⁺ | 95 ⁺ | 125 ⁺ | 145 ⁺ | 190 ⁺ | 215 ⁺ | 190 ⁺ | 230 ⁺
130 ⁺
90 ⁺ | 265 ⁺ | 230 [†]
385 [†]
160 [†] | 220 ⁺ | 265 ⁺ | 325 ⁺ | 325 [†] | 310 ⁺ | 265 ⁺ | 265 ⁺ | 160 | 130 | 110
120 | 120
115 | 208 | (24) | | 5 | 70 | 85 | 70 | 70 | 95 | 145 | 130
145 ⁺ | 205
155 ⁺ | 140
205+ | 130
190* | 215 ⁺ | 140 ⁺ | 130 ⁺ | 60 ⁺
105 ⁺ | 70 ⁺
85 ⁺ | 145 [†]
110 [†] | 115 ⁺
70 ⁺ | 180+ | 130 ⁺
110 ⁺ | 160 ⁺ | 100 | 150 | 120 | | | | | 6
7
8 | | 70 ⁺ | 70 ⁺ | 105 [†] | 155+ | 150 ⁺ | 105+ | 205+ | 210 ⁺ | 215+ | 60 ⁺
85 ⁺ | 120 ⁺ | 115+ | 50 [†]
110 [†] | 70 ⁺
110 ⁺ | 95 [†] | 120+ | 180* | 155† | 150 ⁺
155 ⁺ | 190 [†]
130 [†] | 90 ⁺
170 ⁺
125 ⁺
85 ⁺ | 65 ⁺
155 ⁺
130 ⁺ | 65 ⁺
155 ⁺
130 ⁺ | | | | 9
10 | 115+ | 90⁺ | 110+ | | | 150 | | | | | | 400 ⁺ | 505 ⁺ | 565 ⁺ | 530 ⁺ | | | | | 275 ⁺ | 215+ | 130 ⁺ | | | | | | 11
12
13 | 85 ⁺ | 100 ⁺ | 95 ⁺
125 ⁺ | 95 ⁺ | 100 ⁺
120 ⁺ | 110 ⁺
130 ⁺ | 190⁺ | 115 [†]
145 [†]
115 [†] | 150 ⁺ | 115 ⁺
145 ⁺ | 120 ⁺
125 ⁺ | 125 ⁺
155 ⁺
140 ⁺ | 120 ⁺
170 ⁺
160 ⁺ | 140 ⁺
180 ⁺ | 150 ⁺
175 ⁺ | 160 [†]
185 [†] | 220 ⁺
140 ⁺ | 290 ⁺
130 ⁺ | 275 ⁺
115 | 100 | 90 | 90 | 80 | 110
70 | | | | 14
15 | 60 | 60 | 60 | 50 | 70 | 70 | 95 | 115 | 120 ⁺ | 130+ | 125 | 140 | 160 | 130 | | | 130+ | | 145 | 140 | | 160 ⁺ | 145+ | | | | | 16
17
18 | 110 | 95 ⁺ | | | 90 | | 140 ⁺ | 110 ⁺ | | 110+ | | 145 ⁺ | 140 ⁺ | 100+ | 150 ⁺ | 140 ⁺ | | 130
120 ⁺
115 ⁺ | 125 | 120 | 120
140 ⁺
125 | 130
115 + | 130
100 | 120
110 | | | | 19
20 0a | 95 ⁺
85 | 190 ⁺
80 | 95
85 | 90
70 | 85
65 | 85 [†]
65 | | | 110 | 130 ⁺
100 | 85 | 120 | 120 ⁺ | 110 [†]
125 [†] | 130 | 150 | 120 [†]
145 | 120 [†]
140 | 115 ⁺
140 | 120 ⁺
120 | 110
100 | 95
110 | 80
95 | 80
70 | 105 | (22) | | 21 0a
22 | 70
95 | 70
90 | 70
110 | 70
110 | 70
100 | 90
120 | 115
120 | 115
95 | 95
100 | 100
95 | 120
85 | 115
90 | 120
70 | 120
90
145 ⁺ | 120
100
130 ⁺ | 140
110
130 | 110
115
170 | 115
180 | 110
190 | 100
170 | 115 | 100 | 90 | 90 | 101 | (24) | | 23
24
25 | 120
130 | 95
115 | 90
125 ⁺ | 100
95 | 95
120 | 95
130 | 115
160 | 185 | 160 | 145 ⁺
155 ⁺ | 125 ⁺
115 ⁺ | 110 | 150 ⁺ | 190 ⁺ | 155 ⁺ | 150 ⁺ | 145
155 ⁺ | 150
170 ⁺ | | 175 ⁺
185 ⁺ | 140 | 140 | 115 | 125 | | | | 26
27
28 0a | 110
70 | 110
70 | 100
85 | 100
85 | 110 ⁺ | 115 ⁺ | 120 ⁺
90 | 95 [†]
115 | 90 [†]
120 | 130 | 170 ⁺ | 155 [†]
155 [†]
120 | 95 [†]
170 [†]
125 | 95 ⁺
215 ⁺
120 | 155 ⁺
230 ⁺
140 | 190 ⁺
175 ⁺
120 | 240 ⁺
175 ⁺
95 | 155 ⁺
180 ⁺
100 | 180 ⁺
115 | 185 ⁺ | 155 ⁺
115 ⁺
110 | 125 ⁺
145
115 | 110
110 | 85 ⁺
90
80 | 103 | (24) | | 29 0a
30 0a | 65
170 ⁺ | 95
145 [†] | 95
150 ⁺ | 95
120 ⁺ | 95
115 ⁺ | 70
125 ⁺ | 100
130 ⁺ | 130
145 | 130
130 | 150
130 | 175
120 | 145
155 ⁺ | 160
190 ⁺ | 160
190 [†] | 155
205 ⁺ | 180
180 | 175
230 ⁺ | 180
190 ⁺ | 145
185 ⁺ | 150
155 ⁺ | 175
145 ⁺ | 190 | 175 | 170 | 140 | (24)
(24) | | ean | 98
(19) | 98
(20) | 96
(16) | 92
(15) | 97
(18) | 106
(17) | 132
(18) | 139
(17) | 142
(16) | 139
(18) | 131
(19) | 161
(20) | 171
(20) | 154
(22) | 161
(21) | 158
(19) | 157
(20) | 162
(21) | 159
(19) | 157
(19) | 137
(17) | 125
(18) | 113
(16) | 105
(17) | 133 | | | ir
ather
an | 90
(11) | 88
(11) | 86
(10) | 85
(11) | 86
(11) | 95
(9) | 116
(8) | 141
(7) | 123
(8) | 119
(7) | 118
(6) | 117
(6) | 119
(4) | 123
(4) | 129
(5) | 138
(6) | 136
(7) | 142
(7) | 137
(9) | 128
(9) | 125
(10) | 125
(10) | 110
(12) | 104
(13) | 116 | | The potential gradient is reckoned as positive when the potential increases upwards. The small [†] denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for 0a days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. 17 LERWICK Factor 2.73 MAY 1965 | GM |----|--|---|---|---|---|---|---|--
--|---|---|---|---|--|---|--|---|--|---|--|---|--|--|--|--| | | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mea | n | | • | 85 ⁺ | 300 ⁺ | 145 ⁺ | | | 110+ | 110+ | 110+ | 110 ⁺
120 ⁺ | | lts per
90 | metre
95 | 100 | 115 | 120 | 140 | 120 ⁺ | 95+ | 120 ⁺ | 115 | 95 ⁺ | 85 ⁺ | 65 [†]
100 [†] | 177
111 | (24
(24 | | | | | | | 100 ⁺ | 85 ⁺ | 90 ⁺ | 100 ⁺ | 95 [†]
145 [†] | 155 ⁺ | 170 ⁺ | 110 ⁺
240 ⁺ | 110 ⁺
240 ⁺ | 395 | 360 ⁺ | 470 ⁺ | 420 ⁺ | 190 ⁺ | 190 ⁺ | | | | | | | | ٠ | 35 ⁺ | 120 ⁺
35 ⁺ | 35 ⁺ | | | 60 | 50 | 40 ⁺ | 35 ⁺ | 265 ⁺
55 | 50 ⁺ | 65 ⁺ | 70 ⁺ | | 90 ⁺ | 85 ⁺ | 85 ⁺ | | 145 | 140 | 90 ⁺
95 | 70 | 80
60 | | | | | 65
80
60 | 60
70
65 | 55
85
65 | 70
65
55 | 55
5+ | 110 | 130
95 ⁺ | 115
95 ⁺ | 120
110 | 120
110 | 120
120
80 | 115
125
50 ⁺
90 | 130
160
25 ⁺
100 | 120
145
100
35 | 130
125
110 ⁺
100
40 ⁺ | 115
110 ⁺
100
55 ⁺ | 115
85 ⁺
100
50 ⁺ | 100
95 ⁺
90
65 ⁺ | 85
100 ⁺
80
90 ⁺ | 100
100 ⁺
80
70 ⁺ | 85
95 ⁺
80
55 ⁺ | 95
85
65 ⁺ | 100
65
50 ⁺ | | | | | 35 ⁺
95
80
110 | 25 ⁺
85
95 | 0 ⁺
85 | 90 | 85
160 ⁺ | 95 | 110 | 90 | | | | 85 ⁺
80 ⁺ | 85 | 130+ | 50 ⁺ | 155 ⁺ | | 80 ⁺ | 85 ⁺ | 85 [†]
110 | 150 ⁺
90
145
100 ⁺ | 100
80
85 ⁺ | 95
80
150 ⁺ | | | | | 95
300 ⁺
130 ⁺ | 110
300 ⁺
145 ⁺ | 110
270 ⁺
130 ⁺ | 110
275 ⁺
140 ⁺ | 90
275 [†]
145 [†] | 70
290 ⁺
115 ⁺ | 65
275 [†]
145 [†] | 95
70
250 ⁺
145 ⁺ | 90
235 ⁺
145 ⁺ | 90
245 ⁺
125 ⁺ | 85
100
235 ⁺
120 ⁺ | 95
145 ⁺
420 ⁺
220 ⁺
110 ⁺ | 115
250 ⁺
515 ⁺
235 ⁺
110 ⁺ | 250 ⁺
385 ⁺
250 ⁺
100 ⁺ | 350 ⁺
350
275 ⁺
110 ⁺ | 125
410 ⁺
360
275 ⁺ | 350 ⁺
360
275 ⁺ | 360 ⁺
350
240 ⁺ | 130
350 ⁺
325
215 ⁺ | 350 ⁺
240 ⁺
200 ⁺ | 100
290 ⁺
325 ⁺
160 ⁺ | 120
250 ⁺
310 ⁺
160 ⁺ | 85
155 ⁺
250 ⁺
150 ⁺ | 110
196
330
246 | (10
(2)
(1)
(2) | | | 85 ⁺
50
70 ⁺ | 65 [†]
35
85 [†] | 70 ⁺ | 70 ⁺
80
70 ⁺ | 85 ⁺
65 ⁺
90
65 ⁺ | 65 ⁺
55 ⁺
60
70 ⁺ | 55 ⁺
60 ⁺
80
25 ⁺ | 60 ⁺
90 ⁺
70 | 55 ⁺
90 ⁺
65
60 ⁺ | 50 ⁺
90 ⁺
70
60 ⁺ | 55
95 ⁺
80
60 ⁺ | 40
95 ⁺
70
55 ⁺ | 55 ⁺
110
70 | 90 ⁺
120
55 | 90 ⁺
145
60 | 110 ⁺
160 ⁺
70 | 100 ⁺
125 ⁺
70 | 95 ⁺
100 ⁺
80 | 80 ⁺
70
120
125 | 65
95 | 70
80
110 | 60
70 ⁺ | 85 ⁺
85 ⁺
40
40 ⁺ | 87 | (24 | | | | | | 60 | 60 | 60 | 70 | 90 | 100.+ | 95 ⁺ | 110 ⁺ | 110 | 120 | 125 | 130 | 65 | 55 | 100 | 90 | 80 | 60 | 55 | 60 | 85 | (20 | | (| 92
(15) | 106
(15) | 96
(12) | 99
(11) | 96
(14) | 96
(13) | 97
(14) | 101
(14) | 105
(15) | 114
(15) | 105
(15) | 121
(20) | 144
(18) | 159
(16) | 153
(18) | 175
(16·) | 163
(15) | 142
(16) | 139
(18) | 131
(15) | 120
(19) | 113
(15) | 94
(19) | 119 | | | | 79
(8) | 74
(7) | 80
(5) | 76
(7) | 74
(6·) | 76
(6·) | 84
(6) | 88
(6·) | 96
(4) | 87
(6) | 91
(8) | 93
(8) | 110
(9) | 144
(9) | 143
(9) | 139
(7) | 138
(6) | 136
(7) | 127
(10) | 102
(9) | 91
(10) | 83
(8) | 74
(9) | 98 | | | | (1
7 | 5)
9 | 5) (15)
9 74 | 5) (15) (12)
9 74 80 | 5) (15) (12) (11)
9 74 80 76 | 5) (15) (12) (11) (14)
9 74 80 76 74 | 5) (15) (12) (11) (14) (13)
9 74 80 76 74 76 | 5) (15) (12) (11) (14) (13) (14) 9 74 80 76 74 76 84 | 5) (15) (12) (11) (14) (13) (14) (14) 9 74 80 76 74 76 84 88 | 5) (15) (12) (11) (14) (13) (14) (14) (15)
9 74 80 76 74 76 84 88 96 | 5) (15) (12) (11) (14) (13) (14) (14) (15) (15)
9 74 80 76 74 76 84 88 96 87 | 5) (15) (12) (11) (14) (13) (14) (14) (15) (15) (15)
9 74 80 76 74 76 84 88 96 87 91 | 5) (15) (12) (11) (14) (13) (14) (14) (15) (15) (15) (20)
9 74 80 76 74 76 84 88 96 87 91 93 | 5) (15) (12) (11) (14) (13) (14) (14) (15) (15) (15) (20) (18)
9 74 80 76 74 76 84 88 96 87 91 93 110 | 5) (15) (12) (11) (14) (13) (14) (14) (15) (15) (15) (20) (18) (16)
9 74 80 76 74 76 84 88 96 87 91 93 110 144 | 5) (15) (12) (11) (14) (13) (14) (14) (15) (15) (15) (20) (18) (16) (18)
9 74 80 76 74 76 84 88 96 87 91 93 110 144 143 | 5) (15) (12) (11) (14) (13) (14) (14) (15) (15) (15) (20) (18) (16) (18) (16)
9 74 80 76 74 76 84 88 96 87 91 93 110 144 143 139 | 5) (15) (12) (11) (14) (13) (14) (14) (15) (15) (15) (20) (18) (16) (18) (16) (15)
9 74 80 76 74 76 84 88 96 87 91 93 110 144 143 139 138 | 5) (15) (12) (11) (14) (13) (14) (14) (15) (15) (15) (20) (18) (16) (18) (16) (15) (16)
9 74 80 76 74 76 84 88 96 87 91 93 110 144 143 139 138 136 | 5) (15) (12) (11) (14) (13) (14) (14) (15) (15) (15) (20) (18) (16) (18) (16) (15) (16) (18)
9 74 80 76 74 76 84 88 96 87 91 93 110 144 143 139 138 136 127 | 5) (15) (12) (11) (14) (13) (14) (14) (15) (15) (15) (20) (18) (16) (18) (16) (15) (16) (18) (15) (15) (17) (18) (19) (19) (19) (19) (19) (19) (19) (19 | 5) (15) (12) (11) (14) (13) (14) (15) (15) (15) (15) (20) (18) (16) (18) (16) (15) (16) (18) (15) (19) (19) (19) (19) (19) (19) (19) (19 | 5) (15) (12) (11) (14) (13) (14) (15) (15) (15) (15) (20) (18) (16) (18) (16) (15) (16) (18) (15) (19) (15) (19) (15) (19) (15) (19) (19) (19) (19) (19) (19) (19) (19 | 5) (15) (12) (11) (14) (13) (14) (14) (15) (15) (15) (20) (18) (16) (18) (16) (15) (16) (18) (15) (19) (15) (19) (19) (19) (19) (19) (19) (19) (19 | 5) (15) (12) (11) (14) (13) (14) (15) (15) (15) (15) (20) (18) (16) (18) (16) (15) (16) (18) (15) (19) (15) (19) (15) (19) (19) (19) (19) (19) (19) (19) (19 | POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | 17 | LERWICK | | | | | | | | | | | Factor | 2.76 | | | | | | | | | | | JUN | E 1965 | | |----------------------------------|--|--|---|---|---|---|---|--|--|---|---|--|---|---|---|---|---|--|-------------------------------------|--|--|-------------------------------------|--|--------------------------------------|----------|--------------| | | Hour (| MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23.24 | Mea | n | | | | | | | | | | <u> </u> | | | | ts per | | | | | | | | 13 10 | | | | 20 24 | | | | 1
2 | 50
65 | 60
65 ⁺ | 55
60 ⁺ | 55
50 ⁺ | 80 | 70 | 80 | 65 | 35 ⁺ | | | 35 | 50+ | 70 ⁺ | 30 ⁺ | 35 ⁺ | 70 ⁺ | 85 | 90 | 60
⁺ | 125 ⁺
70 ⁺ | 90 ⁺
80 ⁺ | 90 ⁺ | 85 | | | | 3
4 0a
5 | 70 ⁺
155 ⁺ | 65
190 ⁺ | 65
145 ⁺ | 80 ⁺
80
110 ⁺ | 70 ⁺
90
110 ⁺ | 60 ⁺
125
5 ⁺ | 50
155 ⁺
-130 ⁺ | 60
265 ⁺
-10 ⁺ | 10
420 ⁺
-70 ⁺ | 30
515 ⁺ | 85
515 | 95
540 ⁺ | 95 | 110 | 120 | 115 | 95 | 85 ⁺ | 85 ⁺ | 120 ⁺ | 90+ | 90 ⁺
395 ⁺ | 85 ⁺
310 ⁺ | 80 ⁺
170 ⁺ | 359 | (24) | | 6
7 0a
8 | 110 | 95 | 60_ | 50_ | 90 | 90 [†]
85 | 85
95 | 90
85 | 110 ⁺
120
80 | 80 ⁺
155
65 | 180 ⁺
145 | 210 ⁺
155 | 110 ⁺
120 | 70 ⁺
125
85 | 100 ⁺
140
100 | 140 ⁺
160
95 | 205
170
95 | 275 ⁺
190
120 | 275 ⁺
185
0 | 335 ⁺
170
65 | 360 ⁺
215 | 395 ⁺
170 | 385 ⁺
115 | 360 ⁺
100 | 161 | (24) | | 9
10 | 40 ⁺ | 65 ⁺
50 ⁺ | 70 ⁺
40 ⁺ | 100 ⁺
55 ⁺ | 55 | 60 | 60 | 70 | 55 | 50 | 55 | 60 | 55 | | | 145 | 110 | 70 | | | | 110 ⁺ | 70 ⁺ | 55 ⁺ | | | | 11 0a
12 0a
13
14
15 | 70
90 | 65
60 | 65
60 | 30 ⁺
60
50 | 65
65 | 40 ⁺
70
60 | 55 ⁺
70
85 | 65 ⁺
85
80 | 70 ⁺
85
95 | 80 ⁺
80
110 | 60 ⁺
85
95 | 65 ⁺
85
100 | 70
80
90 | 80
85
70 | 90
90
50 | 85 ⁺
85
80 | 95
90
80 | 115
90
35 ⁺ | 130
125 | 120
95 | 125
125 | 110 [†]
110 | 100 ⁺
100 | 85
85 | 83
85 | (20)
(24) | | 16
17 0a
18
19 | 115+ | 70 ⁺ | 80 ⁺ | | 135 | 205 | 205+ | | | | | 130+ | | | | 125+ | 115+ | 130 ⁺ | 100 ⁺ | 170 ⁺
130 ⁺ | 140 ⁺ | 140+ | 125 ⁺ 155 ⁺ 115 ⁺ | 130 ⁺ | 227 | (15) | | 21
22 0a
23
24 | 110 ⁺
60 ⁺
110
350 ⁺ | 95 ⁺
100
335 ⁺ | 70 ⁺
90
370 ⁺ | 70
95 | 85 ⁺
70
110 | 80 ⁺
65
185 ⁺ | 85 ⁺
85 ⁺
120 | | 95 ⁺
85 ⁺
145 ⁺
170 ⁺ | 140 ⁺
85 ⁺
145 ⁺
145 ⁺ | 70 '
145 ⁺
140 ⁺ | 160 ⁺
85
130 ⁺
145 ⁺ | 180 ⁺
85
95 ⁺ | 170 ⁺
80 | 160 ⁺
95
155 ⁺ | 150 ⁺
90
140 ⁺ | 145 ⁺
100
115 ⁺ | 125 ⁺
90
120 ⁺ | 85 ⁺
95 | 100 ⁺
95
150 ⁺ | 85 ⁺
130
150 ⁺ | 80 ⁺
155
145 | 70 ⁺
120
470 ⁺
140 | 65 ⁺
110
420
140 | 90 | (23) | | 25 | 130 | 110 | 100 | 100 | 95 | 130 | 155 | 180 | 275 | 310 | 300 | 410 ⁺ | | | | | | | | 160 ⁺ | 190+ | 190+ | 175+ | 160 ⁺ | | | | 26
27
28 | 155 | 120 | 110 | 110 | 110
95 ⁺ | 145
35 ⁺ | 145
55 ⁺ | 125+ | 230 ⁺ | 215
95 ⁺
125 ⁺ | 180
110 ⁺
150 ⁺
140 ⁺ | 145
115 ⁺
150 ⁺ | 155
125 ⁺
145 ⁺ | 130 ⁺ | 130 ⁺
125 ⁺
60 ⁺ | 180 ⁺
95 ⁺
130 ⁺ | 120 ⁺
70 ⁺
140 ⁺ | 100 [†]
100 [†]
130 [†] | 95 ⁺
150 ⁺ | 150+ | 145+ | 140 [†] | 125+ | 130+ | | | | 29
30 | 120 ⁺
130 ⁺ | 100
110 ⁺ | 95
120 ⁺ | 70
140 | 95 | 110 ⁺
85 | 150 ⁺ | 140+ | 150 ⁺
130 ⁺ | 120+ | 140 | 140 ⁺
145 ⁺ | 130+ | 135+ | 130 ⁺ | 130+ | 140 | 145 | 140 | 125 | 125 [†]
120 | 130 ⁺
100 | 125+ | 145+ | | | | Mean | 113
(17) | 103
(17) | 97
(17) | 77
(17) | 88
(15) | 90
(19) | 89
(18) | 100
(16) | 122
(20) | 141
(18) | 154
(17) | 155
(20) | 106
(15) | 103
(13) | 105
(15) | 116
(17) | 115
(17) | 118
(18) | 120
(15) | 136
(15) | 145
(16) | 150
(19) | 160
(18) | 143
(17) | 119 | | | Fair
Weather
Mean | 97
(8) | 86·
(9) | 78
(9) | 80
(11) | 88
(11) | 100
(11) | 95
(10) | 93
(9) | 103
(7) | 127
(8) | 183 | 104
(7) | 94
(8) | 91
(7) | 98
(7) | 110
(7) | 118
(10) | 113 | 109
(7) | 112
(6) | 143
(5) | 136
(5) | 119
(4) | 146
(7) | 109 | Mean | of Oa | davs | 168 | (6) | The potential gradient is reckoned as positive when the potential increases upwards. The small [†] denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for Oa days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. #### Mean values for hours without hydrometeors and for fair weather hou 17 LERWICK Factor 2.83 | 17 | LERWICK | | | | | | | | | | | Facto | or 2.83 | | | | | | | | | | | JULY | 1965 | | |--|-------------------------|---|----------------------------|-----------------------------------|--|---|---|--|---|---|---|---|---|---|---|--|------------------------------------|---|---------------------------------|---|---|---|--------------------------------------|-------------------------|---------------------------------|--------------------------------------| | | Hour
0-1 | CMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mea | n | | 1
2
3
4 0a
5 | 90 ⁺ | 70 ⁺
70 | 95 | 90
85 | 85 ⁺ | 95 ⁺
85 | 80 ⁺
90 ⁺
60 | 115 ⁺
95 ⁺
60 ⁺
80 | 60 ⁺ | 100 ⁺ | vo | Its per | metre
65 ⁺ | 95* | 85 ⁺
90
120 ⁺ | 85 ⁺ | 85 ⁺
95 ⁺ | 95
100 ⁺ | 95 ⁺ | 120 ⁺
110 ⁺
125 | 145 ⁺
90 ⁺
130 | 155 ⁺
90
95 | 145 ⁺
85
100
110 | 95 ⁺ | 92 | (12) | | 6
7
8 Oa
9 | 90
80
100 | 50
90
50 ⁺
110 | 90
110 | 90
110 | 100
130 | 95 [†]
115 | 120
55 ⁺
130 ⁺ | 125 ⁺
110 | 145 ⁺
85 ⁺ | 140
60 ⁺ | 95 [†]
120 [†] | 100 ⁺ | 125
85 ⁺ | 115
65 ⁺
85 ⁺ | 125
85 ⁺
80 ⁺
110 ⁺ | 140
90 +
150 | 145
95 | 95
85 ⁺
110 ⁺ | 85
95 [†] | 110
130 | 80 [†]
110 | 100
100
95+ | 95
100
70 ⁺
185 | 70
90
125
170 | 89 | (18) | | 1 0a
2 0a
3 (0a)
4 (0a)
5 (0a) | 185
100
100
90 | 125
110
50 ⁺
85
85 | 100
90
-
80
80 | 90
85 ⁺
85
80 | 130
-
70
90 | 80 ⁺
85 | 80
80
145 | 110
130 ⁺
80
130 ⁺ | 130
140 ⁺
100 ⁺
85
125 ⁺ | 150
140 ⁺
110 ⁺
130
120 | 155 [†]
160 [†]
100
125
120 | 180 ⁺
170 ⁺
115 ⁺
- | 200 ⁺
160 ⁺
115
- | 175 ⁺
160 ⁺
125
-
145 | 130 [†]
160 [†]
150
145
170 | 145
160 ⁺
145
120
155 | 140
160
155
130
160 | 160
160
130 | 125
155
140
125
155 | 170
145
130
120
155 | 190
130
125
115
170 | 200
110
145
100
185 | 170
110
95
125 | 95
-
- | 147
138
114
104
131 | (24)
(19)
(20)
(18)
(19) | | 5 (0a)
7 0a
3 0a
9 0a | 70
155
100 | 80
145
80 | 70
90 | 60
80 | 65
70
80 ⁺ | 85
120 ⁺ | 110
95
110 ⁺ | 150
110 | 110
190 | 150
120
230 ⁺ | 140
130
230 | 140
125
240 ⁺
335 ⁺
130 | 125
130
250 ⁺
250 ⁺
115 | 140
125
205 ⁺
290 ⁺
95 ⁺ | 140
150 | 145
150 | 115
145 | 130
150 | 125
130 | 95
120 | 85
125 | 85
115 ⁺ | 145
110 ⁺ | 180
100 ⁺ | 116
119
220
392 | (22)
(24)
(24)
(24) | | 1
2
3
4
5 Oa | 125 | 145 ⁺
120 | 115 | 100 | 90 | 160
115 | 130
95
70 ⁺ | 130
95 ⁺
60 ⁺ | 100
115 ⁺ | 130
120
70 ⁺ | 140
130
70 ⁺ | 125
140 | 160
155
70 ⁺ | 170
150 | 180
150 | 50
175 ⁺ | 60
170 ⁺ | 80
180 ⁺ | 90
155 ⁺
65 | 70 | 95 ⁺
150 ⁺
80 | 130 ⁺
175 ⁺ | 150 ⁺ | 150
70 | 70 | (15) | | 7
3 Oa
9 Oa
) Oa | 60
100
90
90 | 55
80
90
80 | 60
85
80
80 | 60
85
70
70 | 60
120 ⁺
150
100
85 | 35
120 ⁺
190
170
110 | 60
120 ⁺
190
170
130 | 85
100
170
155 ⁺
125 ⁺ | 90 ⁺
85 ⁺
150 | 90 ⁺ 130 130 ⁺ 125 ⁺ | 95 ⁺ 130 130 ⁺ 110 ⁺ | 110 ⁺ 125 130 ⁺ 115 ⁺ | 85
125
125
110 | 70
125
125 ⁺
115 ⁺ | 130
130 ⁺ | 130
130 ⁺
125 ⁺ | 130
130*
130 | 130
130 ⁺
125 | 150
125 ⁺
115 | 170
130
100 | 130 ⁺
100 ⁺
190
115
115 | 140 ⁺
120
175
95
100 | 100
170
95
95 | 95
115
90
150 | 139
119
110 | (24)
(23)
(23) | | L | | | 85 | | | | | | | | | | 80+ | 85 ⁺ | 180+ | 170 ⁺ | 120+ | | 140 ⁺ | 110+ | 110 ⁺ | 110+ | 120+ | 95 ⁺ | | () | | ın | 101
(17) | 89
(20) | 87
(15) | 83
(15) | 94
(16) | 112
(17) | 109
(22) | 115
(21) | 108
(18) | 125
(20) | 121
(21) | 143
(17) | 133
(19) | 130
(21) | 131
(20) | 131
(18) | 123
(18) | 120
(16) | 119
(19) | 124
(17) | 123
(22) | 120
(24) | 117
(21) | 114
(16) | 115 | | | r
ther
n | 102
(15) | 91
(16) | 87
(15) | 83
(14) | 94
(13) | 117
(12) | 117
(15) | 119
(11) | 115
(7) | 130
(11) | 134
(11) | 121
(7) | 126
(9) | 129
(9) | 143
(10) | 133 (10) | 125
(13) | 119
(11) | 120
(13) | 126
(14) | 129
(14) | 116
(17) | 117
(16) | 118
(13) | 117 | | | | | | |
| | | | | | | | | | | | | | | | | | Mean | of Oa | days | [140 | (15) | #### POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | 17 | LERWICK | | | | | | | | | | | Fact | or 2·79 | | | | | | | | | | | AUGUS | т 1965 | | |-------------------------|-------------------------------|------------------------|--------------------------------|--|---|------------------------------|--------------------------------|------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|--------------------------------|--------------------------------|--|-------------------|----------------------| | | Hour 0 | MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Меа | n | | 1 | 70 ⁺ | 90+ | 85 | + | 80+ | 90 | 95 | | | 110 | | 130 ⁺ | metre | 160 | 150 ⁺ | 155+ | 155+ | 160 ⁺ | | | | | 215+ | 150 ⁺ | | | | 2
3
4 0a
5 | 95 | 110 ⁺ | 95 ⁺
85 | 95 ⁺
110 ⁺
80 ⁺
80 | 85 ⁺ | 125
85 ⁺
70 | 155
100 ⁺ | 90 [†]
95 [†] | 85 [†]
120 [†] | 120 ⁺
125 | 110 | 110 | 90 ⁺
130 | 90 ⁺
140 | 100 ⁺
115 | 100 | 85 ⁺
125 | 120 ⁺
145 | 120 [†]
125 | 85 ⁺
120 | 95 ⁺
120 | 70 ⁺
110 | 70 ⁺
100 | 120 | 114 | (20) | | 6 | " | 05 | 03 | 00 | ,, | , 0 | | | 240 ⁺ | | | | | | | | | | | | | | | | | | | 7
8
9 0a
10 0a | 100
65
215 ⁺ | 40
140 ⁺ | 35
125 ⁺ | 70
65 ⁺
140 ⁺ | 65
80 ⁺
120 ⁺ | 70
70 ⁺ | 85
50 ⁺ | 95 ⁺
65 ⁺ | 90 ⁺
170 ⁺ | 110 ⁺
200 | 120
180 | 125 ⁺
205 | 140
190 | 145
240 | 125 ⁺
145
245 | 150 ⁺
145
240 | 150 [†]
155 [†]
220 | 150 ⁺
150 ⁺
240 | 150
155 ⁺
250 | 160
145 ⁺
220 | 190
125+ | 125
190
130 ⁺ | 115
175
145 | 110
130 ⁺
155
140 ⁺ | 110
204 | (24)
(24) | | 11 0a
12 0a
13 0a | 125
260 | 155
210 | 170
220 ⁺
190 | 140
230 ⁺
200 | 130
220 ⁺
215 | 130
230
230 | 155
250 ⁺
250 | 170
215 ⁺
290 | 175 ⁺
250
265 ⁺ | 155 [†]
220
215 [†] | 180 ⁺
190
190 ⁺ | 205 ⁺
190
175 ⁺ | 190 ⁺
205
180 ⁺ | 240 ⁺
220
205 ⁺ | 215 ⁺
240
215 ⁺ | 190 ⁺
230 ⁺
215 | 190 ⁺
205 ⁺
215 | 205 ⁺
230 ⁺
240 | 180 ⁺
240
290 ⁺ | 175 ⁺
300
310 ⁺ | 200 ⁺
275
360 ⁺ | 190 ⁺
265 | 265 | 250
350 ⁺ | 176
231
248 | (24)
(24)
(24) | | 14 0a
15 0a | 360 ⁺
350 | 350
310 | 310
350 | 335
310 | 335
335 | 395 ⁺
300 | 410 ⁺
275 | 410
325 | 445
420 | 420
430 | 410
350 | 565
385 | 480
480 | 360
455 ⁺ | 325 | 370 | 420 | 370 | 275 | 205 | 190 | 250 | 335 | 325
95 ⁺ | 360
313 | (24)
(24) | | 16
17 Oa
18
19 | 65 ⁺ | 60 ⁺ | 80 ⁺ | 625 ⁺
40 ⁺ | 540 ⁺
35 ⁺ | 565 ⁺ | 65 ⁺ | 70 ⁺ | 25 ⁺ | 10 ⁺ | 40 ⁺ | 100 ⁺ | 60 ⁺ | 110+ | 130 ⁺ | | 120 ⁺ | 100 ⁺ | 215 | 145 ⁺
230 | 200 | 120
220 | 95 ⁺
215 | 85 ⁺ | 378 | (24) | | 20 | 100 | 90 | 95 | 110 | | | | | | •• | | | 95+ | 70 ⁺ | | 80 ⁺ | 120+ | 190 ⁺ | 395 | 455 | 200 | 420 | 213 | | | | | 21
22
23 | | | | | 240 ⁺ | 230 ⁺ | 230 ⁺ | 230 ⁺ | | | | | | | | | | | | | | 95 ⁺ | 85 | 100 | | | | 24
25 | 130 | 120 | 155
95 ⁺ | 110 ⁺ | | 100 ⁺ | 155 | 155 | 150 | 130 ⁺ | 140 ⁺ | 120 | 120+ | 110+ | 120+ | 120 ⁺ | 125+ | 115+ | 95 ⁺ | 90 ⁺ | 90 ⁺ | 85 | 80 | 70 | | | | 26
27
28 | 80
90 | 85 | 60
85 | 65
85
155 ⁺ | 80
100
190 ⁺ | 70
125 ⁺ | 145
90 ⁺ | .110 ⁺ | 130
145 ⁺ | 95 | 100 | 110 | 85
120 ⁺ | 110
85 ⁺ | 90
110 ⁺ | 145 [†]
115
85 [†] | 215
85 ⁺ | 205 ⁺
110 ⁺ | 175 ⁺
125 ⁺ | 145 ⁺
155 ⁺ | 115
130 ⁺
155 | 115
155 ⁺
155 | 110
180 ⁺
130 | 110
90 | | | | 29
30 | 70
70 | 65 | 90
70 | 133 | 95+ | 95 ⁺
65 | 90
85 | 90
90 | 80 ⁺ | 85 [†]
85 [†] | 110 [†]
95 [†] | 100 ⁺ | | | | | | 90
190 ⁺ | 90 ⁺
120 ⁺ | | 110 | 110 | 95 | 30 | | | | 31 | 90 ⁺ | 95 ⁺ | 65 ⁺ | | | | | | | | | | | | | | 65 ⁺ | 90 ⁺ | | 90 ⁺ | | | 95 | | | | | lean | 134
(19) | 128
(16) | 125
(20) | 160
(19) | 167
(19) | 163
(19) | 158
(17) | 163
(16) | 179
(16) | 167
(15) | 167
(14) | 194
(13) | 181
(15) | 183
(15) | 166
(14) | 167
(14) | 166
(16) | 171
(19) | 187
(16) | 189
(16) | 168
(14) | 149
(16) | 147
(17) | 152
(15) | 164 | | | air
eather
ean | 128
(12) | 151
(10) | 137 | 155 | 166 | 138
(10) | 149
(10) | 219
(7) | 246
(6) | 248
(6) | 209 (7) | 241
(7) | 232
(8) | 196
(7) | 193
(6) | 197
(6) | 239
(5) | 205
(6) | 236
(7) | 241
(7) | 169
(8) | 159
(11) | 150
(13) | 148 | 190 | Mean | of Oa | days | [237 | (9)] | The potential gradient is reckoned as positive when the potential increases upwards. The small ⁺ denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for Oa days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. | 17 | LERWICK | | | | | | | | | | | Facto | r 2.70 | | | | | | | | | | | EPTEMBI | R 196 | 5 | |----------------------|--|---|--|--|---|---|---|---|------------------------------|-----------------------|-------------------------------------|--|---|---|--------------------------------------|---|---|--|---|-------------------------------------|-------------------------------------|-------------------------------------|---|-------------------------|-------|------| | | Hour 0 | MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mea | n | | 1 2 3 | 80 ⁺
110
145 ⁺ | 80
110
130 | 80
95
115 | 80
110
120 | 70
110
175 ⁺ | 80
100 | 125 | 110
215 ⁺ | 85
85
155 ⁺ | 80
110 | 120
145 ⁺ | 130
230 ⁺ | 140
240 ⁺ | 170
275 ⁺ | 145
215 ⁺ | 190
175 | 190
130 | 170
155 ⁺ | 140
180 ⁺ | 110
310 ⁺ | 110 | 100 | 110 | 95 | | _ | | 4
5
6 | | | | 60 ⁺ | | | | | 180+ | 170 ⁺ | 125+ | 155 ⁺ | 120+ | 125 ⁺ | 130 ⁺ | 95 ⁺
125 ⁺
85 ⁺ | 90 ⁺ | 130 ⁺ | 70 ⁺ | 90 | 90 | 85 | 70 | 85 ⁺
65 | | | | 7
8
9 | 55 | 60 ⁺ | 50 ⁺ | 50 ⁺ | 40 ⁺ | 50 ⁺ | 215+ | | 145 | 140 | 115 | - | | 180+ | 130 | 120 | | 85 | 63 | 30 | 90 | 0,5 | 70 | 03 | | | | 10
11 0a | 115 ⁺ | 70 ⁺
115 | 90 | 95 | 95 ⁺ | 110 | 115+ | 130+ | 110 | 85 ⁺ | 90 ⁺ | 95 ⁺
110 | 100 ⁺ | 95 ⁺ | 110 ⁺ | 120 ⁺ | 120 | 110 ⁺ | 125 ⁺ | 95 ⁺ | 65 ⁺ | 95
60 | 115 ⁺
65 | 100 ⁺
95 | 105 | (24) | | 12
13 | 60 | | | | 33 | 55* | 70 ⁺
110 ⁺ | 95+ | 70 ⁺ | 95 ⁺ | 95 ⁺
65 ⁺ | 110 ⁺
115 ⁺ | 85 ⁺
110 ⁺ | 60 ⁺ | 70 ⁺ | 100 ⁺ | 70 ⁺ | | 80 ⁺ | 85 ⁺
35 ⁺ | 40 ⁺ | | | | 103 | (24) | | 14
15 | 600 ⁺ | 65 ⁺ | 65 ⁺ | 60 ⁺ | + | + | + | | 90 | 90 ⁺ | 95+ | 110+ | 95+ | 140+ | 140 ⁺
125 ⁺ | 155
110 ⁺ | 200
100 ⁺ | 205 ⁺
115 ⁺ | 220 [†]
95 [†] | 90+ | 250 [†]
115 | 310
115 | 290
100 | 480 ⁺
90 | | | | 16
17
18
19 | 70
95 ⁺
160
80 | 65
95 ⁺
120 ⁺
85 | 55
85 ⁺
90 ⁺
80 | 80 ⁺
90 ⁺
85 | 95 ⁺
100 ⁺
80 | 85 ⁺
110 ⁺
70 | 85 ⁺
120 ⁺
120 ⁺
70 | 95 ⁺
120 ⁺
95 | 115 | 95 | 110 ⁺
95
115 | 115 ⁺
95
110 ⁺ | 145 [†]
110 [†]
60 [†]
125 [†]
130 [†] | 145 ⁺
160 ⁺
70 ⁺
140 ⁺
145 ⁺ | 150 ⁺ | 110 ⁺
160 ⁺
85 ⁺ | 130
95 ⁺ | 125 ⁺
155 | 155
155 ⁺ | 130 ⁺
210 | 240
150 ⁺ | 275
150 ⁺ | 115 ⁺
240
140 ⁺ | 115 ⁺
175 | | | | 1
2
3
4 | 95+ | 80 ⁺
110 ⁺ | 95 ⁺ | | 110+ | 130 ⁺ | 120 ⁺ | 155 ⁺ | 230 ⁺ | 150+ | 170 ⁺ | 100 ⁺
175 ⁺
115 ⁺ | 100 ⁺ | | 110
130 ⁺ | 100
180 ⁺
140 ⁺ | 130
240 ⁺
120 ⁺ | 155 ⁺
395 ⁺
130 ⁺ | 190 ⁺ | 155 ⁺ | 130 ⁺ | | | 240 ⁺ | | | | 5
6 0a
7 | 265 ⁺
85 ⁺ | 260 ⁺
80 ⁺ | 250 ⁺ | 240 ⁺ | 240 ⁺ | 250 ⁺ | 290 ⁺ | 290 ⁺ | 290 ⁺ | 250 ⁺ | 300 ⁺ | 300 ⁺
205 ⁺
-5 ⁺ | 290 ⁺
205 ⁺
-60 ⁺ | 275+ | 275 ⁺
215 ⁺ |
265 ⁺
150 ⁺ | 120 ⁺ | 480 ⁺ | 455 ⁺
275 ⁺
70 ⁺ | 445 ⁺ | 455 ⁺ | 410 ⁺ | 370 ⁺ | 310 ⁺
100 | 261 | (18 | | 28
29
30 | | | | | 65 ⁺ | 25 [†]
25 [†] | 25 ⁺
5 | 35 ⁺
0 | 30 ⁺
25 | 35 ⁺
25 | 30 ⁺
-20 ⁺ | 25 ⁺
-5 ⁺ | 10 ⁺ | -40
5 ⁺ | 20 ⁺ | 30 ⁺ | 60 ⁺ | 130 [†]
90 [†]
95 [†] | 145 [†]
95 [†]
110 [†] | 65 ⁺
100 ⁺ | 60 ⁺
110 ⁺ | 60 ⁺
110 ⁺ | 40 ⁺
95 ⁺ | | | | | an | 144
(14) | 102
(15) | 96
(12) | 97
(11) | 107
(11) | 92
(13) | 113
(13) | 122
(11) | 124
(13) | 110
(14) | 105
(17) | 119
(20) | 119
(19) | 136
(20) | 132
(19) | 131
(20) | 116
(18) | 158
(20) | 154
(18) | 147
(14) | 151
(12) | 161
(11) | 146
(12) | 158
(13) | 127 | | | r
ither
in | 89
(6·) | 97
(6⋅) | 86
(6) | 98
(5) | 87
(3) | 83
(3) | 67
(3) | 68
(3) | 94
(7) | 93
(6) | 115
(4) | 120
(2) | 127
(2) | 150
(2) | 127
(4) | 148
(5) | 156
(5) | 137
(3) | 127
(3) | 137
(3) | 139
(4) | 149
(7) | 146
(6) | 103
(6·) | 114 | Mean | of Oa | days | [183 | (2 | POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | 17 L | ERWICK | | | | | | | | | | | Facto | r 2.60 | | | | | | | | | | | ОСТОВЕК | 1965 | | |--------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|--|---|---|--|--|--|---------------------------------|--------------------------------------| | | Hour (| MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | | | 1
2 0a | ! | | | 120 ⁺ | 120 ⁺
275 ⁺ | 115 ⁺
340 ⁺ | 330 ⁺ | 440 ⁺ | | 195+ | 150 ⁺ | 120+ | metre
110 [†] | 110+ | 100+ | | | | | 185 ⁺ | 165+ | | | | 336 | (19) | | 3
4
5 | | | | | 585 ⁺ | 560 ⁺ | 515 ⁺ | | 220 ⁺ | 310 [†]
395 [†]
185 [†] | 375 ⁺
420 ⁺
145 ⁺ | 330 ⁺
375 ⁺
120 ⁺ | 240 ⁺
420 ⁺
105 ⁺ | 350 ⁺ | 330 ⁺
95 ⁺ | 275 ⁺ | 275 ⁺ | 475 ⁺ | 125 ⁺ | 135 ⁺ | 145 ⁺ | 145 ⁺ | 125+ | 120 ⁺ | | | | 6 0a
7 0a
8 0a
9 | 120 ⁺
65 ⁺
60
100
40 | 115 ⁺
50 ⁺
60
95
30 | 120 ⁺
40 ⁺
55
60
30 | 115
75 ⁺
45
45
60 | 110
55 ⁺
45
50
35 | 100
90 ⁺
55
55
40 | 90 [†]
100 [†]
80
65
35 | 90 ⁺
130 ⁺
80
70
20 | 90 ⁺
135
110
100
20 | 130 ⁺
125
110
100
30 | 155 ⁺
130
100
90
40 | 180 ⁺
130
100
75
45 | 145 ⁺
130
110
85
40 | 135 ⁺
120
105
75
45 ⁺ | 130 ⁺
150
105
75
55 ⁺ | 130 ⁺
145
125
75
90 ⁺ | 105 ⁺
145
160
75
85 ⁺ | 85 ⁺
175
145
75
105 ⁺ | 110
185
155
95
110 ⁺ | 145
155
90
120 ⁺ | 125
200
85
120 ⁺ | 85
95
210
75
85 ⁺ | 55
65
130
60
100 ⁺ | 90
65
115
30
100 ⁺ | 113
111
109 | (22
(24
(24 | | 1
2
3
4
5 | 105 ⁺
110 ⁺
160 ⁺
100 ⁺ | 75 ⁺
100 ⁺
130 ⁺
95 | 100 ⁺ | 105 ⁺ | 100
100 ⁺ | 105
100 ⁺ | 100 | 130 | 130 | 155 | 130 ⁺ | 145 ⁺ | 175+ | 170 ⁺ | 170
95 ⁺ | 120 ⁺
145 | 180 ⁺
125 | 240 ⁺
145 | 210 ⁺
90 | 145 [†]
200
120 [†] | 120 ⁺
130
155 ⁺ | 105 ⁺
120
145 ⁺ | 110 ⁺
145 ⁺
220 ⁺
75 | 110 ⁺
115 ⁺
210
110 ⁺ |
 | | | 6
7
8
9 0a
0 0a | 70 ⁺
105 ⁺
90
225 | 65 ⁺
90 ⁺
105 ⁺
85
210 | 60 ⁺ 100 ⁺ 90 175 | 55 ⁺
85
130 | 60 ⁺
95 ⁺
75
145 | 65
100 ⁺
120
165 | 60
90 ⁺
145
145 | 60
85 ⁺
165
130 | 95
120 ⁺
75 ⁺
185
140 | 105
125 ⁺
85 ⁺
220
145 | 90
110 ⁺
90 ⁺
165
160 | 85 ⁺
105 ⁺
100 ⁺
145
185 | 105 [†]
115 [†]
120
200 [†] | 85 ⁺
105 ⁺
120 ⁺
125
200 ⁺ | 95
125 ⁺
135
200 ⁺ | 90
130 ⁺
175
240 ⁺ | 90
155 ⁺
210
220 ⁺ | 100
165
200
240 ⁺ | 125
160
175
240 ⁺ | 120
155
155
230 ⁺ | 130
150
200
240 | 185 ⁺
125
145
215
240 ⁺ | 120 ⁺
115
120
215
230 ⁺ | 110 ⁺
105
240
230 ⁺ | 156
194 | (24)
(24) | | 1 0a
2 0a
3 0a
4 0a
5 0a | 240 ⁺
375 ⁺
385 ⁺
310 ⁺
255 ⁺ | 240 ⁺
360 ⁺
375 ⁺
310 ⁺
265 ⁺ | 265 ⁺
340 ⁺
385 ⁺
330 ⁺
265 ⁺ | 285 ⁺
330 ⁺
350 ⁺
350 ⁺ | 285 ⁺
330 ⁺
310 ⁺
365 ⁺ | 285 ⁺
310 ⁺
330 ⁺
420 ⁺ | 285 ⁺
265 ⁺
360 ⁺
340 ⁺
350 ⁺ | 275 ⁺
285 ⁺
360 ⁺
330 ⁺
375 ⁺ | 250 ⁺
220 ⁺
360 ⁺
330 ⁺
330 ⁺ | 230 ⁺
220 ⁺
350 ⁺
310 ⁺
255 ⁺ | 250 ⁺
230 ⁺
320 ⁺
285 ⁺
230 ⁺ | 265 ⁺
240 ⁺
295 ⁺
275 ⁺
220 ⁺ | 240 ⁺
240 ⁺
320 ⁺
295 ⁺
230 ⁺ | 285 ⁺
240 ⁺
350 ⁺
310 ⁺
265 ⁺ | 275 ⁺
275 ⁺
360 ⁺
295 ⁺
330 ⁺ | 285 ⁺
310 ⁺
340 ⁺
320 ⁺
375 ⁺ | 330 ⁺
385 ⁺
375 ⁺
240 ⁺
395 ⁺ | 375 ⁺ 420 ⁺ 265 ⁺ 430 ⁺ | 430 ⁺
460 ⁺
275 ⁺
395 ⁺ | 450 ⁺ 475 ⁺ 285 ⁺ 330 ⁺ | 475 ⁺ 440 ⁺ 320 ⁺ 340 ⁺ | 475 ⁺
440 ⁺
395 ⁺
310 ⁺
320 ⁺ | 450 ⁺
420 ⁺
340 ⁺
285 ⁺
320 ⁺ | 395 ⁺
420 ⁺
320 ⁺
265 ⁺
295 ⁺ | 317
336
376
303
321 | (24)
(24)
(24)
(24)
(24) | | 6.
7
8
9 | 285 ⁺ | 310 ⁺
90 | 220 ⁺
75
85 ⁺ | | | | | 100 ⁺ | 100+ | 100 ⁺ | 95 ⁺
120 ⁺
105 ⁺ | 90 ⁺ | 100 ⁺ | 95 [†]
105 [†]
120 [†] | 80 ⁺
110 ⁺ | 110+ | 120 ⁺ | 125+ | 375 ⁺
130 ⁺ | 200 ⁺
125 ⁺
145 ⁺ | 120 ⁺ | 120 ⁺
110 | 110+ | 105+ | | | | 1 | | | | | | | | | | | | | | | | 90 ⁺ | | | 95 | | | 105 | 100 | 90 | | | | an | 165
(20) | 155
(21) | 154
(19) | 152
(15) | 174
(18) | 186
(18) | 197
(17) | 184
(17) | 167
(18) | 185
(21) | 173
(23) | 173
(21) | 175
(21) | 165
(22) | 171
(21) | 184
(20) | 199
(19) | 216
(18) | 207
(19) | 198
(20) | 199
(19) | 193
(22) | 178
(22) | 173
(21) | 180 | | | ir
ither
in | 103
(6) | 95
(7) | 81
(6) | 80
(6) | 80
(7) | 88
(8) | 90
(7) | 93
(7) | 114 (8) | 124 (8) | 111 (7) | 113
(6) | 97
(5) | 106-(4) | 122
(6) | 126
(6) | 134
(6) | 144
(7) | 132
(9) | 146
(7) | 142
(8) | 129
(10) | 104.
(9) | 118 (8) | 111 | Mean | of Oa | days | [242 | (11) | The potential gradient is reckoned as positive when the potential increases upwards. The small [†] denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for 0a days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. | | Mean values for hours without hydrometeors and for fair weather hours | |------------|---| | 17 LERWICK | Factor 2.54 | | 17 L | ERWICK | | | | | | | | | | | Facto | г 2·54 | | | | | | | | | | NO | VEMBER | 1965 | | |-------------------|------------------|---|-------------------------------|------------------|------------------------|---|-------------------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------
--------------------------------------|--------------------------------------|--------------------------------------|---|-------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|------------------------|------------|--------------| | | Hour (| MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | | | | | | | | | | | | | | vo | lts per | metre | | | | | | | | | | | | | - | | 1
2
3 | 90 ⁺ | | | | | | | | | | | | | | | | | | | 105+ | | | | 95 [†] | | | | 4 0a
5 0a | 90 ⁺ | 75 ⁺
75 ⁺ | 70
70 ⁺ | 65 | 65 | 70
100 ⁺ | 75 | 90 | 110 | 90 | | 145+ | 145 ⁺ | 125 | 135 [†]
130 [†] | 120 ⁺
115 ⁺ | 125 ⁺
110 | 140 ⁺
115 | 140 ⁺
120 | 130 ⁺
120 | 140 ⁺
105 | 125 ⁺
90 | 90 | 90 | 104
108 | (17)
(17) | | 6 0a
7 0a
8 | 70
130
185 | 65
120
175 | 70
130
155 | 70
120
135 | 65
130 | 65
90 | 65
75 | 70
75 | 75
75 | 65
75 | 110
80 | 95
105 | 90
95 | 90
110
310 | 75
105
375 | 90
110
385 | 120
125
195* | 125
110
240 | 125
120
230 | 110
145
260 ⁺ | 90
145
230 ⁺ | 115
130 | 110
155 | 130
185 | 90
114 | (24)
(24) | | 9 0a
10 0a | 165 ⁺ | 175+ | 135+ | 135 | 155 | 130 ⁺ | 70 ⁺ | 115+ | 175+ | 145 ⁺ | 360 ⁺
125 ⁺ | 100 ⁺ | 110+ | 430 ⁺
175 ⁺ | 430 [†]
130 [†] | 395 ⁺
100 ⁺ | 340 ⁺
105 ⁺ | 120+ | 55 | 140 | 330 ⁺
150 | 320 ⁺
100 | 265 ⁺
105 | 210 ⁺
80 | 369
125 | (24)
(24) | | 11
12 | 55 | 40 | 90
100 | 20 ⁺ | 10 ⁺ | 4 | | | + | | | 100 | 125
165 | 150
155+ | 155
155+ | 140 | | 155 | 170 ⁺
150 | 165 ⁺
155 | 155 ⁺
140 | 150 ⁺
150 | 130 ⁺
135 | 130 | | | | 13
14
15 | 120
200
90 | 125
110
115 ⁺ | 75 | 100 | 115 ⁺
95 | 130 ⁺
70
75 ⁺ | 95
100 | 130 ⁺
120 | 135 [†]
220 [†] | 130 | 120+ | 110 [†]
115 [†] | 110+ | | | 130 [†] | 160 ⁺ | 135
100 | 135
115 | 130
155
110 | 125
130 | 125
250 ⁺
140 | 105
130
120 | 230
100
100 | | | | .6
.7 | 70 | 125 | 120 | 440 | 385 | 145
220 ⁺ | 255
100 ⁺ | 155
100 ⁺ | 115
100 ⁺ | 125 | 125 | 120 | 125 | 130 ⁺ | 110 ⁺
145 ⁺ | 110 ⁺
155 ⁺ | 165 [†] | 160 ⁺ | 125 [†]
160 [†] | 135 | 105 ⁺ | 110 [†]
130 [†] | 110 ⁺
135 ⁺ | 125 | | | | .8
.9 | 125 | 105 | 110
90 ⁺ | 105 | 65 | | 130 ⁺ | 110 | 110 | 125 | 120
210 ⁺ | 125
150 ⁺ | 120+ | 145 ⁺
155 ⁺ | 185 [†]
135 | 125 | 145 | 200 | 145 | 210 | 200 ⁺
185 | 275 | 285 | 275 | | | | 1
2
3
4 | 100
120 | 135 ⁺
130 ⁺
95
115 | 255 ⁺
95
105 | 115
95
90 | 105
95
85 | 110
145
90 | 90
220 ⁺
100 | 100 ⁺
165 ⁺
95 | 110 ⁺
115 ⁺
95 | 155 ⁺
110 ⁺
140 ₋ | 125 ⁺
115 | 140 ⁺ | 175 ⁺
130 ⁺ | | | 100 | 115 | 165 | 175
175 | 160
165
165 | 175 ⁺
130
155
190 | 175 [†]
125
125 | 125
135 | 100
130 | | | | 5
6
7 | 100 ⁺ | 100
275 ⁺ | 100 | | | | 120
60 ⁺ | 95 ⁺ | 110 ⁺
120 ⁺ | 120 ⁺
175 ⁺
120 ⁺ | 130 ⁺ | | 165* | 240 ⁺
170 | 185 | 240 [†]
200 | 220 ⁺
185
185 ⁺ | 175 | 200* | 220 ⁺ | 210* | 175 [†] | 120+ | 110 ⁺ | | | | 9 | | | 65 ⁺ | 240 ⁺ | | | | | | 175 ⁺ | 175 ⁺
240 ⁺ | 255 ⁺
55 ⁺ | 130 ⁺ | 220 ⁺ | 230 ⁺ | 255 ⁺ | | | | 230 ⁺
200 ⁺ | 195* | | 185 ⁺ | | | | | an | 114
(15) | 120
(18) | 108
(17) | 133
(13) | 114
(12) | 111
(13) | 111
(14) | 109
(13) | 119
(14) | 125
(14) | 157
(14) | 124
(13) | 130
(13) | 186
(14) | 179
(15) | 173
(16) | 164 (14) | 149
(13) | 146
(16) | 161
(21) | 164
(21) | 159
(19) | 144
(17) | 134
(16·) | 139 | | | ir
ather
an | 115
(11) | 107
(11) | 102
(12) | 134
(11) | 125
(10) | 98
(8) | 108
(9) | 102
(7) | 97
(6) | 107 | 110
(5) | 109
(5) | 109
(4) | 129
(5) | 131 (5) | 127
(6) | 133 | 142
(9) | 140
(11) | 147
(12) | 140
(11) | 137
(10) | 136
(11) | 140
(12) | 122 | Mean | of Oa | days | [152 | (6)] | #### POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | | | | | | | | | Mean | values | for h | ours w | i thout | hydrom | et eor s | and to | or fai | r west | her ho | 11.8 | | | | | | | | |----------------|--|-------------------------------|--------------------------------------|-------------------------------|------------------|-------------------------|--------------------------------|-------------------|-------------------------|-------------------------------------|-------------------------|-------------------------|---|---|--------------------------------------|---|--|------------------|--------------------------------------|--------------------------------------|---|------------------|---|-------------------------|------------|--------------| | 17 I | ERWICK | | | | | | | | | | | Fac | tor 2. | 53 | | | | | | | | | DE | CEMBER | 1965 | | | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | | | 1 | | | | | 115 ⁺ | 115 ⁺ | 125+ | 120 | 115+ | | | lts per
140 | 140 | 140 | | 125 | 120 | 150 | 140 | 185 | 145 | 150 | 120 | 105 | | | | 2
3
4 | 105
125 | 90
120 ⁺
115 | 125
125 ⁺
80 | 150
110 ⁺
85 | 105 ⁺ | 130 ⁺
105 | 125
150 ⁺
105 | 125
160
120 | 105
160
115 | 100
200
150 | 105
205
265 | 115
265 ⁺ | 105 ⁺ | 230 ⁺ | 120 ⁺ | 105 ⁺ | | 220 ⁺ | 150 | 160 [†]
150 [†] | 160
120 ⁺ | 155
195 | 170 | 105 | | | | 5
6 | | | | | 140+ | | | | | | | | | 205 ⁺
160 ⁺ | | | | | | | 355+ | 115+ | | 140 | | | | 7
8
9 | 90
80 | 80
55 | 85
70 | 80
90
80 | 100
80 | 105 | 105 | 90
115 | 185 | 155 ⁺
35 ⁺ | | | 160⁺ | 150 ⁺ | 125* | 120+ | 120 | 125 | 125 | 125 | 115 | 120 | 125 ⁺
110
110 ⁺ | 90
115 | | | |)
L | 110 ⁺ | 105 ⁺ | 115 ⁺
85 ⁺ | 110 ⁺
80 | 80 | 85 | 100 | 140 ⁺ | 80 | 90 | 80 | 90 | 100 | 150 ⁺
105
150 ⁺ | 105
190 ⁺ | 140 ⁺
100
285 ⁺ | 105
285 ⁺ | 285 ⁺ | 310 | 150
250 | 145 | 115 | 145 | 115 | 170 | (04) | | 0a
3
0a | 90
110 | 100
125 | 90
105 | 90
110 | 150 | 170
110 | 150
115 | 125
100 | 125
125 ⁺ | 115
150 ⁺ | 125
115 ⁺ | 140
155 ⁺ | 145
170 ⁺ | 195 ⁺ | | 185 ⁺ | 205
140 ⁺ | 200
145 | 195 ⁺
205 ⁺ | 390 ⁺ | 195
190 [†]
380 [†] | | | 185
220 ⁺ | 178
190 | (24)
(21) | | 0a | 165+ | 240 ⁺ | 290 ⁺ | 300 ⁺ | 330 ⁺ | + | 100 [†] | 205+ | 505 ⁺ | 205+ | 220+ | 235+ | 195+ | 165 ⁺ | 150+ | | | | | 450 ⁺ | 575 ⁺ | 480 ⁺ | 355 ⁺ | 265 ⁺ | 347 | (10) | | | 220 ⁺
105 ⁺
230 ⁺ | 230
115 ⁺ | 185 ⁺
125 ⁺ | 210+ | 275 ⁺ | | 180 ⁺ | 205 | 195 | 203 | 150 ⁺ | 110+ | 110 | 105 | 130 ⁺ | 130 ⁺ | 205+ | | | | 105 | 160 ⁺ | | | | | | | 105 | 70
90 | 75 ⁺
80 | 80 ⁺ | 90
105 | 90
85
125 | 115
110 | 115
85 | 125
90 | 105 | 145 | 195 | 140
105 | 115 | 170 | 130 | 105
140 | 115 | 115 | 115
120 | 100
105 | 120
105 | 110
100 | 90 | | | | | 75 | 65
70 ⁺ | 70 | 70 | 105 | 80+ | 110 | 45 ⁺ | 30 | | 55 ⁺ | | 200 | | 190 ⁺ | 150 | | 115+ | 105 ⁺ | 150 | 145+ | 125+ | | 105 | | | | | | | | | 85 ⁺ | 85 ⁺ | 0E+ | 95+ | 85 ⁺ | | | | | 125 | 130 | 130 | | | | 80 ⁺ | 143 | 123 | | 103 | | | | | 70 ⁺ | | | 100+ | 75 ⁺ | 80 ⁺ | 170 ⁺ | 150 ⁺ | 220 | 290 | 105 | 105 | 160 ⁺
125
100 ⁺ | 120 ⁺ | 120 ⁺
125 ⁺ | 100 ⁺
125 ⁺ | 130 ⁺
125 ⁺
135 ⁺ | 155 ⁺ | | 155 ⁺ | 130 ⁺ | | | 115+ | | | | | 90 ⁺ | 85 ⁺ | 90 ⁺ | | | | 110+ | 110 | 125 | 120 | 115 | 125 | 140 ⁺ | 125+ | | | | 160 ⁺ | 185+ | | 100 | | | 113 | | | | n | 115
(17) | 109
(17) | 112
(16) | 115
(16·) | 126
(16) | 113
(14) | 125
(14) | 116
(17) | 159
(16) | 143
(12) | 140
(12) | 152
(11) | 144
(15) | 145
(17) | 151
(14) | 139
(15) | 153
(13) | 166
(11) | 169
(13) | 187
(15) | 195
(16) | 173
(16·) | 168
(13) | 128
(16) | 143 | | | r
ther
n | 96
(9) | 102
(10) | 88
(8) | 93
(10) | 100
(9) | 109
(8) | 116
(8) | 113
(12) | 139
(11) | 146
(8) | 143
(8) | 130
(7) | 123
(6) | 121
(4) | 133
(3) | 122
(5) | 133
(6) | 147
(4) | 170
(5) | 156
(7) | 134
(8) | 144
(9) | 144
(7) | 112
(8) | 126 | \Box | Mean | of 0a | dave | [238 | (3) | The potential gradient is reckoned as positive when the potential increases upwards. The small [†] denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for 0a days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. 18 LERWICK | | Hour | CMT |---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------
------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | | | | | | | | | | | | | vo | lts per | metre | | | | | | | | | | | | | | | ĺ | | | | | | | | | | No | hydron | neteors | | | | | | | | | | | | 1 | | Jan. | 115 | 107 | 98 | 98 | 103 | 113 | 105 | 112 | 129 | 136 | 140 | 140 | 148 | 126 | 144 | 142 | 153 | 153 | 164 | 141 | 134 | 133 | 127 | 125 | 129 | | Feb.
Mar. | 80
137 | 75
126 | 67
110 | 66
110 | 64
106 | 67
110 | 71
122 | 77
150 | 75
150 | 81
129 | 86
123 | 93
138 | 97
151 | 112
169 | 105
168 | 117
174 | 98
161 | 107
170 | 114
169 | 116
151 | 105
141 | 98
143 | 97
129 | 90
136 | 90 | | Apr. | 98 | 98 | 96 | 92 | 97 | 106 | 132 | 139 | 142 | 139 | 131 | 161 | 171 | 154 | 161 | 158 | 157 | 162 | 159 | 157 | 137 | 125 | 113 | 105 | 133 | | May
Tune | 94
113 | 92
103 | 106
97 | 96
77 | 99
88 | 96
90 | 96
89 | 97
100 | 101
122 | 105
141 | 114
154 | 105
155 | 121
106 | 144
103 | 159
105 | 153
116 | 175
115 | 163
118 | 142
120 | 139
136 | 131
145 | 120
150 | 113
160 | 94
143 | 119
119 | | June | 113 | 103 | 9/ | // | 00 | 90 | 69 | 100 | 122 | 141 | 134 | 155 | 100 | 103 | 103 | 110 | 113 | 110 | 120 | 130 | 143 | 150 | 100 | 143 | 119 | | July | 101 | 89 | 87 | 83 | 94
167 | 112
163 | 109
158 | 115
163 | 108
179 | 125
167 | 121
167 | 143
194 | 133
181 | 130
183 | 131
166 | 131
167 | 123
166 | 120
171 | 119
187 | 124
189 | 123
168 | 120
149 | 117
147 | 114
152 | 115 | | Aug.
Sept. | 134
144 | 128
102 | 125
96 | 160
97 | 107 | 92 | 113 | 122 | 124 | 110 | 105 | 119 | 119 | 136 | 132 | 131 | 116 | 158 | 154 | 147 | 151 | 161 | 146 | 152 | 164
127 | | Oct. | 165 | 155 | 154 | 152 | 174 | 186 | 197 | 184 | 167 | 185 | 173 | 173 | 175 | 165 | 171 | 184 | 199 | 216 | 207 | 198 | 199 | 193 | 178 | 173 | 180 | | Nov.
Dec. | 114 | 120
109 | 108
112 | 133
115 | 114
126 | 111
113 | 111
125 | 109
116 | 119
159 | 125
143 | 157
140 | 124
152 | 130 | 186
145 | 179
151 | 173
139 | 164
153 | 149
166 | 146
169 | 161
187 | 164
195 | 159
173 | 144
168 | 134
128 | 139
143 | | | | 100 | Year | 117 | 109 | 105 | 107 | 112 | 113 | 119 | 124 | 131 | 132 | 134 | 141 | 140 | 146 | 148 | 149 | 148 | 154 | 154 | 154 | 149 | 144 | 137 | 129 | 133 | | Winter | 106 | 103 | 96 | 103 | 102 | 101 | 103 | 103 | 121 | 121 | 131 | 127 | 130 | 142 | 145 | 143 | 142 | 144 | 148 | 151 | 149 | 141 | 134 | 119 | 125 | | Equinox | 136 | 120 | 114 | 113 | 121 | 123 | 141 | 149 | 146 | 141 | 133 | 148 | 154 | 156 | 158 | 162 | 158 | 177 | 172 | 163 | 157 | 155 | 141 | 143 | 145 | | Summer | 111 | 103 | 104 | 104 | 112 | 115 | 113 | 119 | 127 | 135 | 139 | 149 | 135 | 140 | 140 | 142 | 145 | 143 | 142 | 147 | 142 | 135 | 134 | 126 | 129 | F | air wea | ther | | | | | | | | | | | | i | | Jan. | 107 | 100 | 89 | 91 | 87 | 133 | 101 | 104 | 101 | 119 | 121 | 109 | 157 | 114 | 110 | 107 | 135 | 146 | 149 | 128 | 121 | 127 | 113 | 122 | 116 | | Feb.
Mar. | 81
97 | 75
91 | 65
87 | 65
91 | 65
71 | 65
68 | 66
72 | 65
76 | 68
94 | 70
99 | 83
96 | 99
107 | 109
122 | 108
150 | 114
143 | 120
127 | 94
136 | 92
136 | 98
127 | 94
130 | 110
95 | 99
122 | 87
115 | 86
91 | 87
106 | | Apr. | 90 | 88 | 86 | 85 | 86 | 95 | 116 | 141 | 123 | 119 | 118 | 117 | 119 | 123 | 129 | 138 | 136 | 142 | 137 | 128 | 125 | 125 | 110 | 104 | 116 | | May | 71
97 | 79
86 | 74
78 | 80
80 | 76
88 | 74
100 | 76
95 | 84
93 | 88
103 | 96
127 | 87
183 | 91
104 | 93
94 | 110
91 | 144
98 | 143
110 | 139
118 | 138
113 | 136
109 | 127
112 | 102
143 | 91
136 | 83
119 | 74
146 | 98
109 | | June | 9/ | 80 | 70 | 80 | | 100 | 33 | | | | | | | | | | | | | | | | 119 | 140 | 109 | | July | 102 | 91
151 | 87 | 83
155 | 94
166 | 117
138 | 117
149 | 119
219 | 115
246 | 130
248 | 134
209 | 121
241 | 126
232 | 129
196 | 143
193 | 133
197 | 125
239 | 119
205 | 120
236 | 126
241 | 129
169 | 116
159 | 117
150 | 118
148 | 117
190 | | Aug.
Sept. | 128
89 | 97 | 137
86 | 98 | 87 | 83 | 67 | 68 | 94 | 93 | 115 | 120 | 127 | 150 | 127 | 148 | 156 | 137 | 127 | 137 | 139 | 149 | 146 | 103 | 114 | | Oct. | 103 | 95 | 81 | 80 | 80 | 88 | 90 | 93 | 114 | 124 | 111 | 113 | 97 | 106 | 122 | 126 | 134 | 144 | 132 | 146 | 142 | 129 | 104 | 118 | 111 | | Nov.
Dec. | 115
96 | 107
102 | 102
88 | 134
93 | 125
100 | 98
109 | 108
116 | 102
113 | 97
139 | 107
146 | 110
143 | 109
130 | 109
123 | 129
121 | 131
133 | 127
122 | 133
133 | 142
147 | 140
170 | 147
156 | 140
134 | 137
144 | 136
144 | 140
112 | 122
126 | | 2001 | | | 00 | | | | | | | | | | | | | | | | * | | | | | | | | Year | 98 | 97 | 88 | 95 | 94 | 97 | 98 | 106 | 115 | 123 | 126 | 122 | 126 | 127 | 132 | 133 | 140 | 138 | 140 | 139 | 129 | 128 | 119 | 113 | 118 | | Winter | 100 | 96 | 86 | 96 | 94 | 101 | 98 | 96 | 101 | 111 | 114 | 112 | 125 | 118 | 122 | 119 | 124 | 132 | 139 | 131 | 126 | 127 | 120 | 115 | 113 | | Equinox | 95 | 93 | 85 | 89 | 81 | 83 | 86 | 95 | 106 | 109 | 110 | 114 | 116 | 132 | 130 | 135 | 141 | 140 | 131 | 135 | 125 | 131 | 119 | 104 | 112 | | Summe r | 99 | 102 | 94 | 99 | 106 | 107 | 109 | 129 | 138 | 150 | 153 | 139 | 136 | 131 | 145 | 146 | 155 | 144 | 150 | 151 | 136 | 125 | 117 | 121 | 128 | "Winter" comprises the four months January, February, November, December; "Equinox" the months March, April, September, October; and "Summer" May to August. Mean Sum 27,000y+ $\label{eq:GEOMAGNETIC FORCE: HORIZONTAL COMPONENT} \\ \text{Mean values for periods of sixty minutes ending at exact hours, GMT}$ | 19 ESI | KDALEMU | IR (H) | | | | | | | | | | 16,000 | (0.16 | CGS u | nit) + | | | | | | | | | | JANUA | RY 1965 | |-------------------------|------------|--------------------------------------|--------------------------------------|--------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|--------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------------------|--------------------------------------| | | Hour 0 | CMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
21,0007 | | 1
2 d
3
4
5 | 902
903 | 9
897
896
896
897
899 | 9
898
899
893
899
898 | 902
897
896
900 | 903
894
897
901
903 | γ
907
909
897
904
904 | 910
909
900
905
903 | 911
909
898
906
902 | 905
907
894
904
899 | 904
891
900
897 | 94
894
896
891
899 | 96
896
890
891
895
893 | 9
895
895
889
895
894 | 98
898
882
892
893
895 | 901
878
897
900
895 | 904
882
890
900
888 | 903
893
884
901
888 | 900
878
893
899
895 | 90
876
898
888
887 | 992
889
897
884
897 | γ
893
896
898
883
896 | 9
896
893
897
888
895 | 9
895
889
896
892
897 | 901
897
900
897 | 9
899
894
894
897
897 | 7
579
452
458
535
529 | | 6 q | 896 | 897 | 897 | 897 | 900 | 902 | 904 | 905 | 901 | 899 | 893 | 893 | 895 | 898 | 900 | 900 | 900 | 900 | 900 | 899 | 898 | 897 | 897 | 897 | 899 | 565 | | 7 | 899 | 899 | 900 | 904 | 906 | 907 | 910 | 909 | 908 | 904 | 904 | 902 | 900 | 898 | 893 | 888 | 900 | 901 | 896 | 898 | 900 | 900 | 900 | 902 | 901 | 628 | | 8 d | 904 | 900 | 893 | 895 | 897 | 899 | 895 | 893 | 881 | 882 | 886 | 889 | 887 | 885 | 871 | 865 | 882 | 885 | 878 | 882 | 877 | 880 | 896 | 886 | 887 | 288 | | 9 | 890 | 888 | 888 | 894 | 900 | 896 | 899 | 899 | 896 | 895 | 893 | 889 | 889 | 899 | 899 | 896 | 898 | 899 | 888 | 888 | 884 | 892 | 903 | 900 | 894 | 462 | | 10 | 887 | 887 | 890 | 893 | 895 | 895 | 900 | 897 | 895 | 894 | 892 | 893 | 895 | 900 | 902 | 903 | 895 | 885 | 884 | 891 | 894 | 893 | 890 | 899 | 894 | 449 | | 11 q | 890 | 892 | 893 | 893 | 895 | 896 | 898 | 898 | 895 | 893 | 892 | 892 | 893 | 897 | 897 | 897 | 898 | 899 | 899 | 900 | 899 | 900 | 899 | 897 | 896 | 502 | | 12 d | 898 | 895 | 893 | 893 | 893 | 904 | 909 | 911 | 909 | 906 | 893 | 900 | 892 | 879 | 879 | 885 | 890 | 888 | 894 | 893 | 881 | 878 | 887 | 897 | 894 | 447 | | 13 d | 913 | 897 | 885 | 886 | 897 | 895 | 902 | 899 | 893 | 893 | 892 | 883 | 885 | 890 | 891 | 893 | 893 | 891 | 891 | 883 | 882 | 890 | 890 | 895 | 892 | 409 | | 14 | 898 | 893 | 895 | 896 | 896 | 899 | 904 | 906 | 903 | 893 | 888 | 886 | 895 |
891 | 890 | 893 | 895 | 896 | 898 | 899 | 896 | 901 | 895 | 899 | 896 | 505 | | 15 | 900 | 902 | 897 | 902 | 903 | 905 | 905 | 902 | 903 | 900 | 897 | 890 | 889 | 892 | 895 | 895 | 895 | 894 | 889 | 889 | 894 | 895 | 895 | 895 | 897 | 523 | | 16 q | 897 | 895 | 895 | 897 | 897 | 897 | 900 | 900 | 895 | 894 | 894 | 890 | 890 | 894 | 892 | 897 | 897 | 895 | 895 | 895 | 894 | 889 | 892 | 881 | 894 | 462 | | 17 | 890 | 894 | 895 | 897 | 898 | 898 | 902 | 902 | 903 | 898 | 892 | 892 | 892 | 889 | 863 | 879 | 894 | 885 | 881 | 877 | 879 | 892 | 894 | 894 | 891 | 380 | | 18 | 891 | 891 | 893 | 897 | 897 | 902 | 906 | 902 | 901 | 894 | 889 | 888 | 888 | 893 | 896 | 896 | 896 | 896 | 895 | 889 | 891 | 894 | 899 | 890 | 895 | 474 | | 19 | 893 | 890 | 894 | 894 | 897 | 901 | 904 | 900 | 894 | 892 | 891 | 894 | 896 | 900 | 903 | 904 | 903 | 903 | 901 | 899 | 896 | 892 | 892 | 894 | 897 | 527 | | 20 | 894 | 894 | 896 | 901 | 901 | 902 | 904 | 904 | 899 | 893 | 886 | 886 | 889 | 894 | 896 | 896 | 906 | 902 | 884 | 896 | 905 | 900 | 919 | 919 | 897 | 566 | | 21 | 881 | 884 | 881 | 880 | 887 | 895 | 900 | 898 | 896 | 894 | 889 | 887 | 889 | 896 | 897 | 898 | 898 | 898 | 898 | 893 | 889 | 890 | 896 | 902 | 892 | 416 | | 22 d | 909 | 898 | 902 | 908 | 903 | 911 | 889 | 925 | 909 | 902 | 890 | 892 | 882 | 881 | 877 | 881 | 886 | 882 | 875 | 877 | 894 | 882 | 886 | 888 | 893 | 429 | | 23 | 896 | 892 | 889 | 889 | 891 | 896 | 899 | 905 | 899 | 893 | 888 | 889 | 885 | 882 | 884 | 887 | 890 | 892 | 893 | 893 | 893 | 892 | 898 | 890 | 892 | 405 | | 24 q | 891 | 891 | 891 | 893 | 895 | 898 | 900 | 896 | 896 | 893 | 888 | 887 | 888 | 890 | 896 | 899 | 898 | 899 | 900 | 899 | 901 | 899 | 901 | 899 | 895 | 488 | | 25 q | 897 | 896 | 897 | 897 | 899 | 900 | 902 | 903 | 901 | 896 | 892 | 892 | 893 | 894 | 897 | 898 | 899 | 901 | 903 | 904 | 902 | 901 | 899 | 902 | 899 | 565 | | 26 | 900 | 898 | 900 | 900 | 903 | 904 | 905 | 911 | 914 | 913 | 903 | 900 | 893 | 890 | 894 | 901 | 902 | 900 | 897 | 898 | 900 | 899 | 901 | 899 | 901 | 625 | | 27 | 905 | 903 | 901 | 901 | 902 | 906 | 905 | 907 | 903 | 900 | 894 | 889 | 891 | 896 | 900 | 901 | 900 | 896 | 898 | 898 | 894 | 891 | 898 | 899 | 899 | 578 | | 28 | 895 | 901 | 896 | 900 | 903 | 904 | 910 | 911 | 911 | 908 | 897 | 886 | 887 | 890 | 895 | 895 | 898 | 900 | 900 | 896 | 891 | 889 | 891 | 894 | 898 | 548 | | 29 | 897 | 901 | 900 | 897 | 900 | 900 | 901 | 901 | 899 | 894 | 893 | 892 | 889 | 887 | 885 | 891 | 897 | 900 | 899 | 901 | 901 | 900 | 897 | 899 | 897 | 521 | | 30 | 893 | 895 | 897 | 897 | 899 | 901 | 904 | 908 | 906 | 901 | 892 | 886 | 889 | 890 | 894 | 894 | 896 | 898 | 900 | 899 | 899 | 897 | 897 | 900 | 897 | 532 | #### $\label{eq:GEOMAGNETIC DECLINATION (WEST)} \\ \text{Mean values for periods of sixty minutes ending at exact hours, GMT}$ Grand Total 666,399 986 1021 | 20 ESK | DALEMU | JIR (D) |) | | | | | | | | | 9° | + | | | | | | | | | | | | JAN | JARY 1965 | |---------------|--------|--------------|--------|--------|--------|--------|---------|-------|---------|--------|-------|--------|----------|---------|---------|--------|--------|---------|---------|---------|--------------|--------------|--------|--------|--------------|------------------------| | | Hour | GMT | Sum | | | 0-1 | 1-2 | 2-3 | 3-4 | | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | | . | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | | 1400.0 | | 1 | 60.0 | 62.0 | ,
, | 64.3 | 62.0 | 62.5 | 62.0 | 60.5 | 60.1 | 62.1 | 63·3 | 64.0 | 65.0 | 65.6 | 64·7 | 64.0 | 64·4 | 64 • 4 | 64.1 | 64.7 | 62.2 | 60.4 | | | | | | 1
2 d | | 63·2
63·1 | | 64·3 | | 64.2 | | | | | 63.7 | | 67.9 | | | | | 66.0 | 64 · 1 | | 63·3
58·0 | 62·4
61·4 | 62·1 | 57.0 | 63·5
63·4 | 124·9
122·2 | | 3 | | 62.4 | | | | 63.1 | | | | | | | | 65.9 | | 64.7 | | | 63.7 | | | | 62.4 | | 63.2 | 115.9 | | 4 | | | | | | 63.6 | | | | | 63.9 | | | 65.5 | | 64.8 | | 64.0 | | | | | 61.3 | | 63.3 | 120.2 | | 5 | | | | | | | | | | | 62.9 | | | | | | | 64.3 | | | | | 62.2 | | 63.5 | 125.0 | | 6 q | 62.6 | 63 · 1 | 63.5 | 63.7 | 63.5 | 63.3 | 63 · 1 | 62.7 | 62.5 | 63:2 | 63.1 | 63.9 | 65.3 | 65.6 | 64.9 | 63.9 | 63.7 | 63.6 | 63 · 2 | 62.9 | 62.9 | 62 · 4 | 62.4 | 62.5 | 63.4 | 121.5 | | 7 | 63.0 | 63.3 | 63.6 | 64.3 | 63 · 2 | 63 · 1 | 63.1 | 62.9 | 62.6 | 62.9 | 64.0 | 64.3 | 64.6 | 65.2 | 65.0 | 65 · 1 | 64.7 | 63.9 | 63.9 | 62.9 | 62.6 | 62.6 | 62.4 | 61.4 | 63.5 | 124.6 | | 8 d | 55.0 | 56.8 | 61.5 | 62.8 | 62.6 | 62.1 | 63.3 | 63.9 | 63 • 4 | 65 · 2 | 64.3 | 66 • 1 | 67.8 | 67.8 | 67.9 | 63.9 | 65.2 | 62.5 | 64.8 | 63.3 | 60.7 | 60.9 | 58.6 | 59 · 4 | 62.9 | 109.8 | | 9 | | | | | | 61 • 4 | | | | | | 65.5 | | | | | | 63.9 | | | | | 57 · 8 | 59 • 4 | 62.7 | 104 · 7 | | 10 | 62.0 | 62.2 | 63.0 | 62.5 | 62.6 | 63.1 | 62.9 | 62.5 | 62.6 | 63.1 | 63.9 | 64 · 5 | 65.6 | 65 · 4 | 65 · 1 | 63.9 | 65 · 1 | 64.3 | 65 · 2 | 63.5 | 62.4 | 62.2 | 60.5 | 58 · 7 | 63.2 | 116 · 8 | | 11 q | 62.0 | 62.6 | 61.7 | 62.0 | 62.6 | 62.7 | 62.8 | 62.9 | 62.9 | 63.3 | 63.9 | 64 · 2 | 64.8 | 65.1 | 64.3 | 63.4 | 63.2 | 63.2 | 63.3 | 63.2 | 62.9 | 62.7 | 62.6 | 62.2 | 63.1 | 114.5 | | 12 d | 61.5 | 61.4 | 61.3 | 61.2 | 61.5 | 62.7 | 62.9 | 62.5 | 62.9 | 63.4 | 63.5 | 65 · 2 | 65.9 | 66 · 2 | 67.6 | 68 · 1 | 67.9 | 64.5 | 64.3 | 63.3 | 61.3 | 58.9 | 59.6 | 61.3 | 63.3 | 118.9 | | 13 d | 60.8 | 56 · 8 | 53.8 | 61.2 | 63.0 | 63 · 1 | 63.4 | 63.8 | 62.8 | 63.2 | 65.4 | 65.6 | 65.9 | 66 • 2 | 65 · 1 | 62 · 4 | 63.9 | 63 · 4 | 62.8 | 60.0 | 57.0 | 60.3 | 61 · 4 | 62.1 | 62.2 | 93 · 4 | | 14 | 61.5 | 62.7 | 62.9 | 63.2 | 64.0 | 62.9 | 62.8 | 62.5 | 62.4 | 62.9 | 63.2 | 64 · 7 | 64.6 | 65.5 | 64 • 0 | 63.2 | 63 · 4 | 63 · 4 | 63 · 4 | 63.3 | 62.5 | 62.7 | 62.3 | 62.9 | 63.2 | 116 9 | | 15 | 63.1 | 63.6 | 63.8 | 64 • 2 | 63.6 | 62.7 | 62.9 | 62.5 | 62.1 | 61.8 | 62.5 | 63.2 | 64.6 | 65 5 | 64 · 8 | 64 • 0 | 63.4 | 62.5 | 60.3 | 62.4 | 62.6 | 62.6 | 62.5 | 62.7 | 63.1 | 113.9 | | 16 q | | | | | | 62.8 | | | | | 63.1 | | | 65 · 8 | - | | | 63.2 | | 62.6 | 61.9 | | 60 • 4 | | 62.9 | 109.6 | | 17 | | 62.8 | | | | | | | | 62 · 2 | | 63.9 | | | | | | 65 • 4 | | | | 60 · 1 | | | 63.3 | 118 · 4 | | 18 | | | | | | | | | | 62.1 | | 64 · 2 | | | | | | 63.0 | | | | 60.9 | | | 63.0 | 112.4 | | 19 | | | | | | | | | | 61.9 | | 64.7 | | | | | | 63.6 | | | | | 60.5 | | 62.9 | 110 · 2 | | 20 | 61.0 | 62.9 | 63.5 | 63.6 | 63.5 | 63.5 | 62.7 | 62.4 | 61.7 | 62.0 | 63.0 | 64.2 | 65.6 | 65.9 | 62.1 | 04.0 | 64.0 | 63.6 | 61.7 | 63.3 | 63.7 | 62.2 | 56.3 | 54.6 | 62.7 | 104 · 0 | | 21 | | | | | | | | | | 62.1 | | 63.7 | | 66.5 | | | 63.9 | | | | | | | 59 · 7 | 61.7 | 81 · 4 | | 22 d | | | | | | | | | | 64 · 3 | | 66 • 7 | | | | | | 69 • 4 | | | | | | | 65 • 1 | 163.6 | | 23 | | | | | | | | | | 64.0 | | 65.7 | | | | | | 63.9 | | | | | | | 63.6 | 125 · 4 | | 24 q | | | | | | | | | | 61.4 | | 63.8 | | | | | | 64 · 2 | | | | | | | 63.1 | 115.5 | | 25 q | 62.4 | 62.8 | 62.9 | 63.1 | 63.3 | 63.6 | 63.0 | 62.9 | 62.3 | 62.4 | 63.0 | 63.8 | 64.4 | 65.2 | 64.9 | 63.9 | 63.8 | 63.8 | 63.7 | 63.5 | 63.0 | 62.8 | 62 · 4 | 62.4 | 63.3 | 119.3 | | 26 | | | | | | | | | | | 62.7 | | | 65 • 4 | | | | 64 6 | | | | 62.5 | | | 63 · 4 | 121.8 | | 27 | | | | | | | | | | 61.4 | | 63.5 | 64 · 4 | | | | | 64 · 8 | | | | | | | 63.3 | 119.0 | | 28 | | | | | | | | | | | 62.7 | | 64.8 | | | | | 63 · 7 | | | | 61 · 7 | | | 63 · 1 | 114 · 3 | | 29 | | | | | | | | | | 61.0 | | 63.8 | | | | | | 63.9 | | | | | | | 63.0 | 113.0 | | 30 | 57 • 4 | 61.1 | 62.2 | 63.9 | 63.6 | 63.7 | 63.3 | 62.9 | 62.7 | 62.5 | 62.6 | 63.5 | i | | | | | 63.9 | | | | | | | 63.2 | 116.6 | | 31 | 61.8 | 62.8 | 63.3 | 63.6 | 63 · 7 | 63.3 | 62.8 | 62.4 | 61.6 | 61.3 | 61.8 | 63.9 | 65.7 | 67.0 | 65.9 | 64 · 9 | 64.6 | 64 · 5 | 64 · 1 | 63.6 | 61.5 | 60.9 | 60.6 | 61.2 | 63 • 2 | 116 · 8 | | lean | 61.2 | 61.9 | 62.3 | 63 · 1 | 63.3 | 63.3 | 63.3 | 62.9 | 62.4 | 62.6 | 63.2 | 64 • 4 | 65.5 | 66 · 1 | 65.7 | 64 · 9 | 64.5 | 64 · 1 | 63 · 4 | 62.8 | 61.8 | 61 · 7 | 61 2 | 60.8 | 63 • 2 | | | Sum
00·0'+ | 96 • 1 | 117.9 | 131.9 | 157.0 | 161.6 | 162.4 | 161 · 4 | 150-2 | 134 · 4 | 139.7 | 159-1 | 195·9 | 231 · 9 | 248 · 5 | 237 • 4 | 210.7 | 200.3 | 186 · 6 | 165 · 4 | 146 · 3 | 117-1 | 111.1 | 97.4 | 84.2 | | Grand Tot
47004 · 5 | 21 ESEMALEMUIR (Z) 45,000y (0.45 CQS unit) + JANUARY 1965 | 21 ES | KDALEMU | IR (Z) | | | | | | | | | 45 | ,0009 (| 0.45 C | un i | t) + | | | | | | | | | | JANUA | K1 1905 | |-----------------|------------|------------|------------|-----|-----|-----|-----|-----|-----|------|-------|---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------| | | Hour | CIMIT | | | | | | | | | | | | | | | - | | | | | | | | | Sum | | _ | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | 10,000γ+ | | | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | У | y | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | | 1 | 431 | 432 | 429 | 428 | 428 | 427 | 427 | 426 | 427 | 427 | 428 | 426 | 425 | 429 | 432 | 432 | 431 | 432 | 434 | 434 | 435 | 436 | 437 | 436 | 430 | 329 | | 2 d | 434 | 432 | 430 | 430 | 428 | 426 | 427 | 428 | 429 | 428 | 427 | 427 | 428 | 433 | 439 | 439 | 436 | 438 | 445 | 443 | 436 | 432 | 432 | 432 | 432 | 379 | | 3 | 421 | 420 | 424 | 427 | 431 | 431 | 430 | 432 | 432 | 431 | 429 | 426 | 426 | 428 | 432 | 433 | 437 | 435 | 433 | 432 | 432 | 432 | 432 | 432 | 430 | 318 | | 4 | 429 | 431 | 431 | 432 | 431 | 431 | 429 | 429 | 428 | 428 | 428 | 428 | 429 | 432 | 433 | 433 | 433 | 433 | 435 | 439 | 440 | 438 | 437 | 433 | 432 | 370 | | 5 | 425 | 426 | 428 | 429 | 429 | 429 | 429 | 429 | 430 | 429 | 430 | 430 | 426 | 428 | 436 | 437 | 437 | 437 | 436 | 435 | 433 | 433 | 432 | 432 | 431 | 345 | | 6 q | 431 | 431 | 431 | 432 | 431 |
431 | 431 | 430 | 430 | 431 | 432 | 431 | 430 | 431 | 433 | 432 | 432 | 432 | 432 | 432 | 432 | 432 | 432 | 432 | 431 | 354 | | 7 | 431 | 430 | 429 | 428 | 428 | 428 | 427 | 428 | 428 | 427 | 426 | 426 | 426 | 428 | 433 | 435 | 435 | 434 | 433 | 433 | 432 | 432 | 431 | 427 | 430 | 315 | | 8 d | 422 | 415 | 421 | 425 | 428 | 429 | 429 | 429 | 432 | 428 | 426 | 425 | 428 | 435 | 440 | 451 | 447 | 447 | 447 | 450 | 448 | 446 | 440 | 439 | 434 | 427 | | 9 | 436 | 436 | 436 | 432 | 428 | 430 | 430 | 431 | 431 | 432 | 431 | 431 | 429 | 431 | 433 | 434 | 436 | 437 | 439 | 442 | 442 | 443 | 433 | 427 | 434 | 410 | | 10 | 428 | 432 | 433 | 433 | 433 | 433 | 433 | 433 | 432 | 432 | 432 | 429 | 430 | 432 | 435 | 435 | 437 | 439 | 440 | 439 | 439 | 438 | 438 | 437 | 434 | 422 | | 11 q | 433 | 433 | 433 | 432 | 432 | 431 | 432 | 433 | 434 | 433 | 433 | 431 | 427 | 430 | 433 | 433 | 433 | 434 | 435 | 434 | 434 | 434 | 433 | 433 | 433 | 383 | | 12 d | 432 | 432 | 433 | 432 | 432 | 432 | 431 | 429 | 429 | 427 | 428 | 429 | 430 | 436 | 442 | 439 | 440 | 442 | 443 | 442 | 444 | 448 | 443 | 436 | 435 | 451 | | 13 d | 411 | 408 | 404 | 412 | 419 | 426 | 428 | 431 | 432 | 432 | 432 | 433 | 433 | 434 | 436 | 438 | 438 | 438 | 437 | 438 | 439 | 436 | 433 | 432 | 429 | 300 | | 14 | 431 | 430 | 429 | 429 | 429 | 430 | 431 | 431 | 432 | 431 | 430 | 432 | 433 | 437 | 439 | 439 | 438 | 437 | 435 | 434 | 435 | 436 | 434 | 433 | 433 | 395 | | 15 | 432 | 432 | 431 | 429 | 429 | 429 | 429 | 430 | 430 | 431 | 430 | 432 | 431 | 432 | 433 | 433 | 434 | 432 | 435 | 438 | 435 | 433 | 433 | 435 | 432 | 368 | | 16 <i>q</i> | 433 | 433 | 431 | 431 | 431 | 431 | 431 | 431 | 431 | 431 | 430 | 431 | 432 | 432 | 433 | 433 | 433 | 433 | 432 | 432 | 432 | 433 | 433 | 433 | 432 | 366 | | 17 | 435 | 433 | 433 | 432 | 432 | 431 | 431 | 431 | 432 | 432 | 431 | 430 | 432 | 434 | 442 | 442 | 440 | 442 | 443 | 443 | 444 | 436 | 433 | 433 | 435 | 447 | | 18 | 435 | 436 | 435 | 433 | 432 | 430 | 431 | 432 | 432 | 433 | 433 | 430 | 430 | 431 | 437 | 438 | 437 | 437 | 437 | 438 | 438 | 438 | 433 | 434 | 434 | 420 | | 19 | 433 | 434 | 433 | 433 | 433 | 434 | 433 | 433 | 433 | 433 | 430 | 429 | 430 | 430 | 434 | 435 | 435 | 434 | 434 | 434 | 434 | 436 | 436 | 434 | 433 | 397 | | 20 | 431 | 431 | 432 | 432 | 433 | 432 | 432 | 431 | 431 | 430 | 429 | 427 | 428 | 431 | 433 | 435 | 433 | 433 | 439 | 436 | 432 | 434 | 428 | 418 | 431 | 351 | | 21 | 423 | 417 | 420 | 427 | 431 | 434 | 434 | 434 | 434 | 433 | 432 | 428 | 427 | 428 | 431 | 434 | 434 | 434 | 434 | 435 | 435 | 435 | 434 | 430 | 431 | 338 | | 22 d | 421 | 422 | 421 | 418 | 418 | 416 | 412 | 401 | 411 | 417 | 423 | 425 | 431 | 438 | 442 | 445 | 446 | 450 | 459 | 457 | 445 | 447 | 446 | 442 | 431 | 353 | | 23 | 424 | 430 | 431 | 433 | 434 | 433 | 434 | 435 | 434 | 432 | 431 | 432 | 432 | 435 | 438 | 440 | 440 | 440 | 441 | 440 | 439 | 438 | 435 | 434 | 435 | 435 | | 23
24 q | 434 | 434 | 434 | 435 | 434 | 434 | 434 | 435 | 435 | 434 | 432 | 433 | 435 | 435 | 438 | 440 | 438 | 438 | 437 | 436 | 435 | 435 | 435 | 435 | 435 | 445 | | 24 q
25 q | 434 | 433 | 432 | 432 | 434 | 432 | 434 | 434 | 434 | 434 | 434 | 435 | 434 | 431 | 434 | 434 | 434 | 434 | 434 | 434 | 434 | 434 | 434 | 432 | 434 | 405 | | 26 | 431 | 430 | 430 | 430 | 430 | 430 | 431 | 430 | 429 | 428 | 428 | 429 | 430 | 429 | 432 | 434 | 434 | 434 | 435 | 435 | 435 | 434 | 434 | 433 | 431 | 355 | | 27 | 429 | 428 | 428 | 429 | 430 | 428 | 428 | 429 | 430 | 430 | 430 | 430 | 430 | 431 | 434 | 435 | 435 | 435 | 435 | 435 | 436 | 438 | 435 | 434 | 432 | 362 | | | | | | 429 | 429 | 430 | 429 | 428 | 428 | 428 | 428 | 430 | 427 | 424 | 431 | 435 | 436 | 435 | 436 | 439 | 441 | 441 | 440 | 438 | 432 | 371 | | 28 | 432 | 428 | 429 | 431 | 432 | 433 | 434 | 434 | 435 | 434 | 431 | 430 | 432 | 432 | 437 | 441 | 438 | 437 | 436 | 436 | 435 | 435 | 436 | 438 | 434 | 423 | | 29
30 | 436
438 | 430
435 | 430
432 | 432 | 432 | 431 | 432 | 431 | 431 | 430 | 434 | 435 | 435 | 435 | 437 | 439 | 438 | 437 | 435 | 435 | 436 | 437 | 437 | 435 | 435 | 429 | | | | | | | | | | | | | | 434 | 431 | 434 | 439 | 440 | 437 | 436 | 436 | 438 | 441 | 441 | 437 | 431 | 435 | 449 | | 31 | 436 | 434 | 434 | 434 | 434 | 433 | 433 | 434 | 433 | 434 | 435 | | | | | | | | | | | | | | | 777 | | Mean | 430 | 429 | 429 | 430 | 430 | 430 | 430 | 430 | 431 | 430 | 430 | 430 | 430 | 432 | 435 | 437 | 437 | 437 | 437 | 438 | 437 | 437 | 435 | 433 | 433 | | | Sum
13,000γ+ | 332 | 308 | 307 | 321 | 335 | 335 | 336 | 332 | 349 | 340 | 333 | 324 | 327 | 386 | 501 | 543 | 532 | 536 | 562 | 568 | 548 | 541 | 486 | 430 | | Grand Total
321,912 | #### GEOMAGNETIC CHARACTER FIGURES (K, K_H , K_D , K_Z , AND C) AND TEMPERATURE IN MAGNETOGRAPH CHAMBER | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of
K _D
indices | 3-h range
indices
K _Z | Sum of
K _Z
indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph chamber
200°A+ | |-------------|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------------|--|-------------------------------------|--|---| | 1 | 0110 0222 | 8 | 0000 0222 | 6 | 0110 0011 | 4 | 0000 0000 | 0 | 0 | 84.6 | | 2 d | 2211 3333 | 18 | 1201 3333 | 16 | 2111 2233 | 15 | 0000 1111 | 4 | 1 | 84.6 | | 3 | 4011 1311 | 12 | 2010 1301 | 8 | 4011 0111 | 9 | 2000 0000 | 2 | 1 | 84.5 | | 4 | 2001 1123 | 10 | 2000 1123 | 9 | 1001 1022 | 7 | 0000 0010 | 1 | 0 | 84 · 5 | | 5 | 2000 0201 | 5 | 2000 0201 | 5 | 0000 0101 | 2 | 0000 0000 | 0 | 0 | 84.6 | | 6 9 | 1000 1000 | 2 | 0000 1000 | 1 | 1000 0000 | 1 | 0000 0000 | 0 | 0 | 84.6 | | 7 | 0100 2212 | 8 | 0000 2212 | 7 | 0100 1101 | 4 | 0000 0000 | 0 | 0 | 84 · 6 | | 8 d | 4112 3323 | 19 | 3112 3323 | 18 | 4112 2322 | 17 | 2000 1101 | 5 | 1 | 84 · 6 | | 9 | 1200 1124 | 11 | 1200 1123 | 10 | 1100 1124 | 10 | 0100 0002 | 3 | 1 | 84 • 6 | | ιō | 0111 1223 | 11 | 0011 0222 | 8 | 0100 1113 | 7 | 0000 0000 | 0 | 0 | 84.5 | | l1 q | 1000 0100 | 2 | 0000 0100 | 1 | 1000 0000 | 1 | 0000 0000 | 0 | 0 | 84.5 | | 2 d | 1102 3334 | 17 | 1002 3334 | 16 | 1102 3223 | 14 | 0000 0112 | 4 | 1 | 84 • 5 | | 3 d | 4322 2232 | 20 | 4222 2122 | 17 | 4312 2232 | 19 | 2100 0000 | 3 | 1 | 84 · 5 | | 14 | 1112 2101 | 9 | 1012 2101 | 8 | 1101 2100 | 6 | 0000 0000 | 0 | 0 | 84 · 4 | | 15 | 1202 1220 | 10 | 1202 1210 | 9 | 1201 1220 | 9 | 0000 0000 | 0 | 1 | 84 · 5 | | l6 <i>q</i> | 0000 0002 | 2 | 0000 0001 | 1 | 0000 0002 | 2 | 0000 0000 | 0 | 0 | 84.5 | | 7 | 2002 3233 | 15 | 1002 3223 | 13 | 2001 2232 | 12 | 0000 1102 | 4 | 1 | 84 · 5 | | 8 | 1211 0012 | 8 | 0111 0012 | 6 | 1200 0002 | 5 | 0000 0000 | 0 | 0 | 84 · 4 | | 9 | 1110 0013 | 7 | 1100 0002 | 4 | 1110 0013 | 7 | 0000 0000 | 0 | 0 | 84 • 4 | | 20 | 0000 0234 | 9 | 0000 0233 | 8 | 0000 0024 | 6 | 0000 0012 | 3 | 1 | 84 • 4 | | 21 | 3310 2012 | 12 | 2310 2002 | 10 | 3300 0011 | 8 | 1100 0000 | 2 | 1 | 84 · 4 | | 22 d | 3342 2342 | 23 | 2342 2342 | 22 | 3342 1232 | 20 | 0121 0120 | 7 | 1 | 84 • 4 | | 23 | 2221 1122 | 13 | 2121 1022 | 11 | 2201 0122 | 10 | 1000 0000 | 1 1 | 1 | 84 • 4 | | 24 q | 1000 0000 | 1 | 0000 0000 | 0 | 1000 0000 | 1 | 0000 0000 | 0 | 0 | 84 • 4 | | 25 q | 0100 0001 | 2 | 0100 0001 | 2 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 84 · 4 | | 26 | 1011 0100 | 4 | 1011 0100 | 4 | 1000 0000 | 1 | 0000 0000 | 0 | 0 | 84 • 4 | | 27 | 1110 2212 | 10 | 1110 2202 | 9 | 1110 1111 | 7 | 0000 0000 | 0 | 0 | 84 · 3 | | 28 | 2000 2022 | 8 | 1000 2022 | 7 | 2000 1021 | 6 | 0000 0000 | 0 | 0 | 84.1 | | 9 | 2111 1112 | 10 | 2101 1111 | 8 | 2010 1102 | 7 | 1000 0000 | 1 | 1 | 84 • 4 | | 30 | 2101 0001 | 5 | 1001 0001 | 3 | 2100 0001 | 4 | 0000 0000 | 0 | 0 | 84 • 4 | | 31 | 0100 0012 | 4 | 0000 0012 | 3 | 0100 0011 | 3 | 0000 0001 | 1 | 0 | 84 • 4 | | | | | | | | | | Mean | 0.42 | 84 • 4 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. $[\]mathbf{K_H}$ For horizontal component. $\mathbf{K_D}$ For declination. $\mathbf{K_Z}$ For vertical component. (See Introduction). | 19 ES | KDALEM | UIR (H |) | | | | | | | | 1 | l6,000γ | (0.16 | CGS un | it) + | | | | | | | | | | FEBRU. | ARY 1965 | |-------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|--------------------------------------|--------------------------------------|----------------------------------|---------------------------------------|--------------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|---| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
20,000y+ | | 1
2 q
3
4
5 | 900
899
900
898
899 | 901
901
902
901
894 | 903
900
901
909
890 | 907
904
907
900
892 | 907
904
910
901
894 | 909
905
911
911
899 | 910
908
911
911
903 |
908
909
914
911
903 | 906
904
911
903
901 | 901
904
904
894 | γ
888
898
896
894
888 | 9
886
895
896
898
883 | 891.
894
893
899
880 | 95
895
897
898
895
887 | 98
990
899
897
896 | 900
900
899
893
901 | 904
903
885
898 | 901
908
904
894
899 | 903
909
905
902
900 | 902
906
904
886
905 | 901
904
902
889
900 | 901
903
900
895
899 | 99
903
888
896
897 | γ
899
903
885
901
896 | 900
902
902
902
899
896 | 7
1611
1659
1643
1573
1498 | | 6 | 895 | 908 | 896 | 896 | 899 | 900 | 901 | 903 | 903 | 900 | 893 | 887 | 884 | 881 | 896 | 877 | 862 | 881 | 901 | 902 | 897 | 899 | 901 | 896 | 894 | 1458 | | 7 d | 893 | 903 | 877 | 892 | 902 | 903 | 879 | 869 | 847 | 834 | 830 | 835 | 841 | 844 | 853 | 871 | 841 | 841 | 849 | 844 | 846 | 869 | 875 | 884 | 863 | 722 | | 8 d | 884 | 885 | 886 | 888 | 891 | 893 | 896 | 895 | 896 | 899 | 900 | 894 | 891 | 887 | 888 | 892 | 893 | 898 | 892 | 887 | 896 | 895 | 867 | 886 | 891 | 1379 | | 9 | 886 | 884 | 886 | 888 | 889 | 889 | 896 | 897 | 898 | 897 | 888 | 886 | 884 | 882 | 897 | 898 | 890 | 871 | 896 | 896 | 893 | 890 | 887 | 890 | 890 | 1358 | | 10 | 892 | 891 | 893 | 900 | 903 | 893 | 899 | 906 | 898 | 886 | 873 | 876 | 871 | 873 | 876 | 892 | 896 | 896 | 898 | 892 | 881 | 887 | 893 | 896 | 890 | 1361 | | 11 | 900 | 901 | 897 | 904 | 905 | 897 | 901 | 892 | 902 | 899 | 890 | 884 | 882 | 886 | 894 | 898 | 898 | 895 | 885 | 894 | 900 | 901 | 900 | 896 | 896 | 1501 | | 12 q | 896 | 895 | 896 | 896 | 898 | 899 | 899 | 898 | 893 | 886 | 881 | 882 | 882 | 885 | 892 | 894 | 896 | 897 | 898 | 899 | 898 | 899 | 901 | 900 | 894 | 1460 | | 13 q | 901 | 902 | 901 | 901 | 901 | 903 | 904 | 904 | 901 | 897 | 894 | 892 | 897 | 905 | 910 | 906 | 903 | 899 | 889 | 900 | 898 | 899 | 907 | 894 | 900 | 1608 | | 14 | 900 | 901 | 900 | 901 | 900 | 900 | 916 | 911 | 911 | 901 | 891 | 870 | 889 | 892 | 894 | 897 | 898 | 901 | 894 | 899 | 904 | 902 | 901 | 910 | 899 | 1583 | | 15 | 889 | 897 | 896 | 897 | 903 | 903 | 901 | 903 | 899 | 891 | 888 | 885 | 889 | 879 | 872 | 872 | 881 | 896 | 891 | 890 | 898 | 891 | 898 | 905 | 892 | 1414 | | 16 | 895 | 896 | 891 | 896 | 898 | 902 | 901 | 896 | 896 | 887 | 882 | 874 | 875 | 880 | 879 | 887 | 890 | 894 | 896 | 898 | 898 | 896 | 895 | 900 | 892 | 1402 | | 17 q | 899 | 896 | 896 | 899 | 902 | 902 | 903 | 903 | 897 | 886 | 880 | 877 | 872 | 870 | 987 | 897 | 898 | 899 | 901 | 900 | 899 | 901 | 898 | 898 | 894 | 1460 | | 18 | 898 | 899 | 899 | 899 | 900 | 900 | 899 | 898 | 894 | 888 | 885 | 884 | 889 | 893 | 901 | 904 | 901 | 900 | 902 | 904 | 898 | 890 | 898 | 899 | 897 | 1522 | | 19 q | 902 | 901 | 901 | 900 | 899 | 904 | 905 | 902 | 898 | 894 | 887 | 884 | 891 | 899 | 899 | 899 | 895 | 894 | 898 | 898 | 900 | 898 | 906 | 900 | 898 | 1554 | | 20 | 904 | 903 | 906 | 903 | 906 | 906 | 902 | 901 | 901 | 896 | 890 | 891 | 898 | 897 | 898 | 906 | 905 | 903 | 901 | 905 | 905 | 899 | 905 | 911 | 902 | 1642 | | 21 d | 906 | 907 | 906 | 896 | 911 | 909 | 913 | 913 | 908 | 898 | 880 | 869 | 871 | 875 | 884 | 882 | 879 | 887 | 891 | 896 | 912 | 910 | 894 | 896 | 896 | 1493 | | 22 | 896 | 895 | 901 | 896 | 898 | 899 | 903 | 902 | 900 | 894 | 887 | 881 | 879 | 886 | 889 | 897 | 899 | 902 | 907 | 909 | 904 | 897 | 898 | 905 | 897 | 1524 | | 23 d | 900 | 902 | 902 | 906 | 908 | 912 | 914 | 913 | 912 | 899 | 885 | 872 | 879 | 891 | 889 | 884 | 867 | 862 | 846 | 872 | 895 | 898 | 923 | 896 | 893 | 1427 | | 24 | 884 | 884 | 887 | 890 | 891 | 893 | 893 | 894 | 890 | 886 | 883 | 869 | 877 | 886 | 887 | 898 | 898 | 896 | 894 | 898 | 903 | 902 | 901 | 901 | 891 | 1385 | | 25 d | 911 | 866 | 889 | 891 | 894 | 899 | 906 | 901 | 903 | 893 | 889 | 881 | 877 | 881 | 891 | 893 | 899 | 903 | 899 | 898 | 899 | 913 | 906 | 897 | 895 | 1481 | | 26 | 893 | 895 | 898 | 896 | 898 | 899 | 903 | 898 | 895 | 894 | 883 | 881 | 886 | 894 | 893 | 887 | 901 | 904 | 896 | 896 | 894 | 898 | 898 | 899 | 895 | 1479 | | 27 | 899 | 896 | 897 | 898 | 900 | 902 | 904 | 906 | 904 | 891 | 891 | 882 | 890 | 896 | 887 | 894 | 897 | 898 | 899 | 898 | 899 | 900 | 904 | 917 | 898 | 1549 | | 28 | 895 | 895 | 891 | 897 | 901 | 902 | 903 | 901 | 897 | 890 | 886 | 886 | 893 | 898 | 899 | 890 | 897 | 901 | 902 | 901 | 899 | 903 | 902 | 903 | 897 | 1532 | | Mean | 897 | 897 | 896 | 898 | 901 | 902 | 903 | 902 | 899 | 892 | 886 | 881 | 884 | 887 | 891 | 893 | 892 | 894 | 894 | 896 | 897 | 898 | 898 | 899 | 895 | | | Sum
24,0009/+ | 1114 | 1101 | 1095 | 1140 | 1213 | 1244 | 1284 | 1251 | 1168 | 986 | 800 | 680 | 746 | 832 | 945 | 1008 | 973 | 1024 | 1044 | 1079 | 1112 | 1135 | 1141 | 1163 | | Grand Total
601,278 | | 20 E | SKDALEN | UIR (D |) | | | | | | | | | | 9° | + | | | | | | | | | | | | FEBR | UARY 1965 | |------------|-------------|--------------|--------|-----|------|------------|--------|--------------|--------------|--------------|--------------|--------------|--------------|--------|--------|--------------|---------|--------------|--------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------| | | Hour
0-1 | GMT
1-2 | 2- | 3 3 | .4 4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-1 | 0 10-11 | 11-12 | 12-13 | 13-1 | 4 14-1 | 5 15-16 | 16-17 | 7 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
1400·0' | | | , | | , | | | | | '- | , | , , | , | , | | , , | ٠. | | | _ ' _ | | | | | ' | | | ′ | | | 1
2 q | 62.4 | | | | | 3·1
3·2 | 63·2 | | 63·0
62·4 | 62·7
61·8 | | | 64·5
63·7 | 65.7 | 66·4 | 65·5
65·7 | | 63·9
64·3 | 63·7
64·0 | 63·5
63·7 | 63·1 | | 62·6 | 62·5 | 62·6
62·4 | 63.6 | 125·3
122·0 | | 3 | 62.8 | | | | 0 62 | | | 63.0 | | | | | 63.4 | 64.8 | 66 1 | | | | 64.6 | 64 • 6 | 63.8 | 63.7 | 62.7 | 57.5 | 58 · 4 | 63.4 | 111.0 | | 4 | 1 | 62.9 | | | | 0.5 | | 61.7 | 63.3 | | | | 63 . 7 | 66.1 | | | | 68.3 | 65.0 | 64 • 4 | 62.2 | 62.4 | 61.6 | 61.8 | 59.5 | 63.2 | 115.8 | | 5 | 58.4 | 60.0 | 61 · | 62 | 1 63 | 3.0 | 62.8 | 62.3 | 62.2 | 62.0 | 61.6 | 61.9 | 63.0 | 65.1 | 66 · 4 | 66 · 1 | 65 · 4 | 64 · 1 | 63.5 | 61.9 | 62.4 | 62.4 | 62.3 | 60.5 | 60.1 | 62.5 | 100.8 | | 6 | 62.1 | 60.5 | 60.9 | 61 | 7 6 | 1.8 | 61.9 | 62 · 2 | 62.0 | 61 · 1 | 61.6 | 62.2 | 64.0 | 65.7 | 67 · 1 | 68.6 | 65.6 | 56.5 | 67.7 | 66 · 7 | 65 · 7 | 63 · 1 | 62.3 | 62.3 | 61.8 | 63-1 | 115-1 | | 7 d | 61.0 | | | | | 2.0 | 60.5 | | 72.1 | 70.6 | | | 70.6 | 69.6 | 71.0 | 72.0 | | 65.7 | 64 0 | 60.7 | 57 · 3 | 53 · 1 | 56 · 6 | 58 · 4 | | 63.3 | 120 · 2 | | 8 d | | 62.5 | | | 4 62 | | 62.4 | | | | | | 63 · 7 | 64.1 | | | | | 64 · 5 | 64 · 6 | | | | | | 61 · 1 | 66.9 | | 9 | | 62.4 | | | 4 62 | | | 62·5
63·2 | | | | 62·2
63·2 | 63·0
64·0 | 65.7 | 66·4 | | | 64·0
64·1 | 62·3 | 63.5 | 63·1 | 62·4
58·2 | 62.0 | 60.0 | | 63.0 | 111.0 | | 10 | 61.0 | 63.0 | 61.7 | 62 | 1 62 | 2.4 | 03.1 | 03.2 | 62.0 | 02.0 | 02.4 | 03.7 | 04.0 | 63.7 | 67.4 | 00.1 | 04.2 | 04.1 | 03.8 | 03.3 | 62.7 | 38.7 | 61.0 | 62.0 | 01.4 | 63.0 | 112-2 | | 11 | | 61.9 | | | 2 63 | | | 61.7 | | 61.7 | | 62.9 | 65.8 | 66 · 2 | | 65.6 | | 63.9 | | | | 62.8 | 62.7 | 62.5 | | 62.8 | 107 - 2 | | 12 q | | 62.3 | | | | 3.0 | 62.8 | | | 61.3 | | | 64 • 4 | 65.6 | 66 • 4 | 65 · 7 | | | 62.7 | | 62.6 | | | 62.3 | | 62.8 | 107 · 4 | | 13 q | | 62·8
63·2 | | | 0 62 | 2.8 | 62.7 | | | | 62·3
63·6 | | 65·3
65·4 | 65.0 | 67·0 | | 64.5 | | 63·6
63·7 | 62.5 | | | 61·7
61·9 | 58 · 7 | | 63·1
63·6 | 114·0 | | L4
L5 | | 64.6 | | | | | | 61.8 | | | 61.5 | | 64.9 | 66.8 | | 67.7 | | 63.2 | 64 · 0 | 63.4 | 62.7 | | 60.6 | 59.9 | | 62.8 | 108 - 2 | | 16 | 61.5 | 61.4 | 62.2 | 63 | 2 65 | 5.6 | 62 · 1 | 61.4 | 61 · 1 | 60.9 | 60.5 | 61.9 | 63 · 7 | 66 - 4 | 68.0 | 67.1 | 66 · 0 | 64 · 8 | 63.8 | 62.9 | 62.5 | 61.9 | 61.6 | 60.9 | 60 · 1 | 63.0 | 111-5 | | 17 q | 59.8 | 61.8 | 62.3 | 62 | 7 62 | 2 · 7 | 62.4 | 62.0 | 61.3 | 60.5 | 60.1 | 62.2 | 65.3 | 66 · 2 | 67 · 1 | 66 · 7 | 64 · 8 | 63 · 4 | 62.9 | 62.7 | 62.6 | 62.4 | 62.3 | 61.9 | 61.7 | 62.8 | 107 - 8 | | 18 | | 62・4 | | | | | | 61.6 | | | 61 · 4 | | 64.8 | | 67.4 | | | 66 · 5 | 65 · 1 | 64 • 4 | 64 · 2 | 63 · 7 | 59 · 1 | 58 • 4 | | 63 · 2 | 117.7 | | 19 q | | 61.9 | | | | | | 61.2 | | | 61.4 | 63.2 | 65 · 5 | 67.7 | | | | _ | 67.2 | | 64 · 1 | | | 59.5 | 60.9 | 63.6 | 125 · 9 | | 20 | 60.0 | 60.4 | 61 · 1 | 60. | 9 61 | 1 · 4 | 60.9 | 61.0 | 61.4 | 60.9 | 61.0 | 61.6 | 63.5 | 66.2 | 67.1 | 67.0 | 66 · 1 | 65.5 | 64 · 2 | 65.1 | 63.5 | 62.8 | 62.3 | 61.3 | 61.9 | 62.8 | 107 · 1 | | 21 d | 62.2 | 62 · 4 | 62 · 1 | 64 | 4 63 | 3.9 | 63.9 | | | 62.3 | | 63.2 | 65.5 | 68.5 | 67 · 9 | 66 · 3 | | 57 · 7 | | 62.7 | 62 · 1 | 59.5 | 59.6 | 61 • 9 | 62.0 | 62.8 | 106 · 5 | | 22 | 62.0 | | | | | 2 · 1 | 61.9 | | | 60.6 | | 60.8 | 63 · 4 | 65.0 | 66 · 1 | 65 · 4 | | 63.1 | 63.0 | 63.0 | 62.9 | | 60.7 | 60.7 | 61.9 | 62.5 | 99 · 6 | | 23 d | 61.9 | | 63.2 | | | | | 63·0 | | 60·4
59·5 | | 61·8
62·7 | 64·3
64·0 | 64.7 | | | | 70·2
62·7 | | 55 · 7
62 · 2 | | | 57 · 2 | | 57.1 | 62.7 | 105 · 7 | | 24
25 d | 54.7 | 60·0
59·4 | | | | | | 61.8 | | 61.8 | | | 63.6 | | 65 • 4 | | | | | | 62·9
62·7 | | 62·8
58·6 | 59·7
58·4 | 58·3
60·0 | 61·9
61·7 | 86 · 0
81 · 8 | | 6 | 62.2 | 62.8 | 63 · 4 | 61. | 2 61 | ١٠1 | 60.9 | 61.0 | 61 · 4 | 62.6 | 62 · 2 | 62.4 | 64 · 3 | 65.6 | 66 · 3 | 65.9 | 63.6 | 63.0 | 63 · 2 | 63 · 1 | 62.3 | 59·4 | 62 · 2 | 62 · 2 | 62.2 | 62.7 | 104 · 5 | | 27 | 62.8 | 61.7 | | | | | 61 · 4 | | 61 · 1 | | 61.4 | 64 · 1 | 64.9 | 64.9 | 66.3 | 66.8 | 63.6 | 63.5 | 63 · 1 | 62.8 | 62.2 | 61.7 | 60.9 | 60.9 | 59.2 | 62.6 | 102.5 | | 28 | 60.7 | 62·4 | 63.8 | 63・ | 2 61 | [∙9 | 61 · 4 | 61.3 | 60.5 | 59.5 | 59·6 | 62·3 | 64 • 4 | 66.6 | 66 • 4 | 65.6 | 64 · 4 | 61.7 | 63 · 1 | 62.8 | 62·4 | 59・9 | 60.3 | 61.9 |
62.0 | 62-4 | 98 • 1 | | an | 61.1 | 61.9 | 62.2 | 62. | 1 62 | 2 · 1 | 62.2 | 62 · 4 | 62·4 | 61.8 | 61.7 | 62.8 | 64 · 5 | 66.0 | 66 · 9 | 66.6 | 65.3 | 63.9 | 63.7 | 62.9 | 62.6 | 61.2 | 60.6 | 60.3 | 60.6 | 62.8 | | | um | | | | | | | | | | | | | | 247.9 | | | | | | | | | | | | | Grand To | 21 ESEDALEMUIR (Z) 45,000y (0.45 CGS unit) + FEBRUARY 1965 Hour CMT 2-3 3-4 4-5 5-6 6-7 7-8 9-10 10-11 11-12 | 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 0-1 8-9 10,000γ 2 q 3 4 5 437 435 436 435 435 434 434 434 429 433 437 438 438 438 436 435 7 d 8 d 440 440 440 452 444 439 428 432 436 438 441 10 433 449 446 441 440 4.39 12 q 13 q 434 434 435 434 434 436 435 434 433 434 434 437 438 438 437 435 431 433 434 434 434 435 434 435 435 442 453 461 461 444 444 444 439 429 443 434 434 17 q 436 432 436 434 444 444 434 434 433 430 437 19 q 21 d 457 444 432 430 431 430 425 469 486 479 23 d 432 440 430 432 434 428 438 427 431 25 d 4.30 4.38 27 429 GEOMAGNETIC CHARACTER FIGURES (K, KH, KD, KZ, AND C) AND TEMPERATURE IN MAGNETOGRAPH CHAMBER 438 443 269 399 444 443 391 362 Grand Total 292,641 431 434 75 145 | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
E _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of
K _D
indices | 3-h range
indices
K _Z | Sum of K _Z indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph chamber
200°A+ | |-----|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------------|--|-------------------------------|--|---| | 1 | 2100 0000 | 3 | 1100 0000 | 2 | 2100 0000 | 3 | 0000 0000 | 0 | 0 | 84 · 4 | | 2 q | 1100 0010 | 3 | 0000 0010 | 1 | 1100 0000 | 2 | 0000 0000 | 0 | 0 | 84 · 4 | | 3 | 1110 2003 | 8 | 0010 2002 | 5 | 1110 1003 | 7 | 0000 0000 | 0 | 0 | 84 • 4 | | 4 | 3222 2232 | 18 | 2222 1232 | 16 | 3211 2222 | 15 | 1000 0010 | 2 | 1 1 | 84 · 3 | | 5 | 2110 2222 | 12 | 2110 2222 | 12 | 2100 1112 | 8 | 0000 0000 | 0 | 1 | 84 · 3 | | 6 | 3110 3432 | 17 | 2000 3432 | 14 | 3110 1421 | 13 | 1000 0210 | 4 | 1 | 84.3 | | 7 d | 4442 3433 | 27 | 4432 3433 | 26 | 3441 3232 | 22 | 1221 1322 | 14 | 2 | 84 · 3 | | 8 d | 2001 1265 | 17 | 1001 1255 | 15 | 2001 0165 | 15 | 0000 0022 | 4 | 1 | 84.3 | | 9 | 2112 3322 | 16 | 2112 3321 | 15 | 2111 2212 | 12 | 0000 0100 | 1 | 1 | 84 · 3 | | 10 | 2223 2132 | 17 | 1223 2122 | 15 | 2212 2132 | 15 | 0000 1100 | 2 | 1 1 | 84 · 3 | | 1 | 2331 1232 | 17 | 1231 1231 | 14 | 2311 1222 | 14 | 0100 0000 | 1 | 1 1 | 84.3 | | 2 9 | 3101 1000 | 6 | 2001 1000 | 4 | 3100 0000 | 4 | 0000 0000 | 0 | 0 | 84 · 3 | | 3 9 | 1011 1222 | 10 | 0010 1222 | 8 | 1011,1122 | 9 | 0000 0000 | 0 | 1 | 84 • 2 | | 4 | 1233 2232 | 18 | 0223 2222 | 15 | 1232 1032 | 14 | 0000 0000 | 0 | 1 1 | 84 • 2 | | .5 | 3212 3423 | 20 | 2212 3423 | 19 | 3111 2312 | 14 | 1000 1201 | 5 | 1 | 84 · 2 | | .6 | 2211 1102 | 10 | 2211 1102 | 10 | 1211 1001 | 7 | 0000 0000 | 0 | 0 | 84.3 | | 7 9 | 2000 1001 | 4 | 2000 1001 | 4 | 2000 1000 | 3 | 0000 0000 | 0 | 0 | 84 · 2 | | 8 | 0000 2123 | 8 | 0000 2122 | 7 | 0000 1103 | 5 | 0000 0001 | 1 | 1 | 84 · 3 | | 9 q | 0100 1112 | 6 | 0100 1112 | 6 | 0100 0012 | 4 | 0000 0000 | 0 | 0 | 84 · 3 | | 0 | 1011 2212 | 10 | 1011 2212 | 10 | 1001 1111 | 6 | 0000 0100 | 1 | 0 | 84 · 3 | | 1 d | 2322 3333 | 21 | 2322 3333 | 21 | 1322 2332 | 18 | 0210 0110 | 5 | 1 1 | 84 · 2 | | 2 | 2001 1122 | 9 | 1001 1122 | 8 | 2000 0002 | 4 | 0000 0000 | 0 | 0 | 84.3 | | 3 d | 2112 3444 | 21 | 1112 3444 | 20 | 2111 3343 | 18 | 0001 1443 | 13 | 1 1 | 84 · 3 | | 4 | 2222 2223 | 17 | 1122 2223 | 15 | 2212 1013 | 12 | 2000 0002 | 4 | 1 1 | 84 · 2 | | 5 d | 5222 2213 | 19 | 5222 2213 | 19 | 4112 1113 | 14 | 3110 0002 | 7 | 1 1 | 84 • 2 | | 6 | 2121 2322 | 15 | 1120 2322 | 13 | 2121 2221 | 13 | 0000 0000 | 0 | 1 | 84 · 3 | | 7 | 2113 3203 | 15 | 1013 3203 | 13 | 2112 3202 | 13 | 0000 0101 | 2 | 1 | 84.3 | | 8 | 2111 2221 | 12 | 2101 2220 | 10 | 2111 1121 | 10 | 0000 0000 | 0 | 1 | 84.3 | Mean | 0.71 | 84 · 3 | q denotes an international quiet day and d an international disturbed day. 99 88 430 431 47 64 99 117 433 432 Mean 12,0007 431 432 80 94 K_{H} For horizontal component. K_{D} For declination. K_{Z} For vertical component. (See Introduction). | | | | | | | | | | | | | ,, | (| | nit) + | | | | | | | | | | | CH 1965 | |----------------------| | | Hour (| Sum | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | 21,000γ+ | | . 1 | γ | | 2 | 903
902 | 901
900 | 902
900 | 900
901 | 903
903 | 906 | 910 | 910 | 904 | 892 | 882 | 880 | 881 | 887 | 896 | 888 | 883 | 892 | 883 | 893 | 897 | 901 | 903 | 903 | 896 | 500 | | - , | 902 | 900 | 913 | 901 | 903 | 910
907 | 907
908 | 904 | 897
907 | 891 | 882
890 | 877 | 882 | 891 | 897 | 900 | 896 | 880 | 884 | 900 | 903 | 908 | 907 | 904 | 897 | 526 | | 3 d
1 d | | | 890 | 909 | 903 | | | 906 | | 892 | | 898 | 895 | 893 | 909 | 901 | 885 | 876 | 876 | 883 | 887 | 917 | 862 | 869 | 896 | 493 | | 1 d | 871
893 | 878
894 | 895 | 898 | 899 | 875
903 | 886
904 | 878
901 | 877
899 | 871
896 | 877
872 | 869
874 | 878
886 | 880
891 | 875
898 | 882
899 | 881
900 | 879
896 | 889
898 | 887
903 | 887
904 | 890
903 | 894
901 | 892
909 | 883
897 | 195
516 | | , | 902 | 903 | 901 | 898 | 898 | 901 | 901 | 903 | 905 | 895 | 894 | 887 | 886 | 891 | 897 | 894 | 898 | 897 | 899 | 893 | 893 | 895 | 899 | 894 | 897 | 524 | | , | 908 | 896 | 897 | 897 | 900 | 901 | 908 | 918 | 912 | 917 | 908 | 905 | 876 | 883 | 882 | 880 | 891 | 895 | 898 | 897 | 898 | 898 | 897 | 899 | 898 | 561 | | 3 a | 899 | 898 | 898 | 899 | 902 | 904 | 906 | 906 | 906 | 900 | 891 | 882 | 886 | 889 | 897 | 901 | 903 | 903 | 904 | 905 | 906 | 906 | 904 | 903 | 900 | 598 | | á l | 901 | 906 | 909 | 913 | 915 | 917 | 916 | 910 | 903 | 898 | 892 | 890 | 893 | 893 | 894 | 896 | 898 | 903 | 905 | 906 | 905 | 903 | 902 | 901 | 903 | 669 | | o q | 909 | 902 | 903 | 903 | 905 | 906 | 908 | 908 | 905 | 898 | 895 | 898 | 899 | 898 | 899 | 895 | 898 | 901 | 905 | 908 | 909 | 910 | 909 | 908 | 903 | 679 | | L q | 906 | 903 | 903 | 903 | 903 | 904 | 906 | 906 | 906 | 899 | 896 | 890 | 892 | 894 | 895 | 896 | 897 | 902 | 903 | 906 | 907 | 908 | 906 | 907 | 902 | 638 | | 2 | 906 | 905 | 904 | 904 | 905 | 907 | 906 | 906 | 903 | 896 | 892 | 891 | 898 | 896 | 900 | 906 | 909 | 904 | 899 | 880 | 883 | 900 | 913 | 906 | 901 | 619 | | 3 | 902 | 904 | 903 | 903 | 903 | 909 | 913 | 903 | 905 | 899 | 882 | 883 | 879 | 883 | 865 | 891 | 903 | 908 | 906 | 903 | 907 | 906 | 905 | 904 | 899 | 569 | | . | 903 | 904 | 902 | 902 | 901 | 905 | 908 | 909 | 903 | 898 | 894 | 894 | 896 | 900 | 894 | 898 | 891 | 901 | 902 | 900 | 908 | 886 | 884 | 905 | 899 | 588 | | 5 | 923 | 900 | 898 | 902 | 911 | 911 | 903 | 915 | 901 | 892 | 899 | 896 | 891 | 889 | 890 | 897 | 898 | 896 | 885 | 907 | 911 | 901 | 904 | 902 | 901 | 622 | | 5 | 900 | 902 | 901 | 900 | 901 | 900 | 901 | 898 | 892 | 885 | 879 | 880 | 886 | 894 | 897 | 897 | 897 | 896 | 901 | 905 | 907 | 905 | 921 | 907 | 898 | 552 | | 7 | 904 | 904 | 904 | 908 | 910 | 911 | 913 | 908 | 898 | 890 | 884 | 887 | 890 | 894 | 905 | 900 | 894 | 890 | 888 | 895 | 905 | 905 | 905 | 904 | 900 | 596 | | 3 q | 904 | 904 | 905 | 905 | 905 | 906 | 907 | 901 | 892 | 883 | 878 | 880 | 889 | 895 | 895 | 900 | 902 | 904 | 906 | 909 | 909 | 910 | 910 | 909 | 900 | 608 | | • | 909 | 909 | 909 | 911 | 911 | 913 | 914 | 911 | 897 | 886 | 886 | 886 | 891 | 895 | 897 | 901 | 904 | 908 | 911 | 913 | 913 | 913 | 909 | 911 | 905 | 708 | |) | 908 | 907 | 909 | 907 | 908 | 909 | 909 | 908 | 900 | 889 | 884 | 892 | 897 | 892 | 898 | 909 | 909 | 913 | 917 | 914 | 912 | 911 | 911 | 908 | 905 | 721 | | ι | 917 | 905 | 906 | 908 | 908 | 912 | 915 | 915 | 910 | 904 | 897 | 890 | 894 | 885 | 892 | 889 | 892 | 896 | 901 | 904 | 905 | 918 | 909 | 904 | 903 | 676 | | 2 | 906 | 905 | 904 | 906 | 909 | 910 | 912 | 912 | 906 | 897 | 904 | 879 | 885 | 889 | 899 | 909 | 905 | 911 | 906 | 906 | 905 | 886 | 902 | 901 | 902 | 654 | | 3 d | 907 | 908 | 905 | 904 | 899 | 898 | 915 | 908 | 881 | 879 | 875 | 878 | 893 | 891 | 896 | 868 | 887 | 874 | 897 | 896 | 925 | 897 | 898 | 899 | 895 | 478 | | + | 903 | 900 | 900 | 898 | 904 | 903 | 905 | 904 | 898 | 889 | 889 | 877 | 884 | 894 | 903 | 897 | 892 | 893 | 901 | 903 | 904 | 924 | 916 | 910 | 900 | 591 | | d | 908 | 907 | 903 | 905 | 906 | 897 | 903 | 902 | 862 | 874 | 892 | 885 | 885 | 892 | 897 | 901 | 902 | 913 | 906 | 912 | 909 | 899 | 902 | 909 | 899 | 571 | | d | 905 | 912 | 889 | 903 | 906 | 897 | 904 | 898 | 877 | 885 | 880 | 873 | 880 | 887 | 887 | 892 | 906 | 909 | 907 | 908 | 904 | 909 | 914 | 912 | 898 | 544 | | 7 | 903 | 901 | 904 | 904 | 902 | 898 | 901 | 898 | 892 | 890 | 884 | 882 | 883 | 892 | 892 | 892 | 903 | 910 | 908 | 902 | 917 | 909 | 906 | 904 | 899 | 577 | | 3 | 903 | 905 | 903 | 905 | 905 | 904 | 907 | 895 | 889 | 889 | 882 | 881 | 885 | 886 | 892 | 900 | 904 | 901 | 909 | 911 | 909
 908 | 906 | 905 | 899 | 584 | | • | 904 | 903 | 906 | 906 | 906 | 910 | 906 | 901 | 896 | 892 | 890 | 892 | 889 | 895 | 895 | 886 | 889 | 900 | 901 | 904 | 907 | 903 | 904 | 903 | 899 | 588 | |) q | 904 | 903 | 903 | 904 | 904 | 907 | 909 | 908 | 900 | 891 | 884 | 883 | 891 | 897 | 900 | 904 | 903 | 907 | 912 | 912 | 913 | 911 | 910 | 910 | 903 | 670 | | ι | 910 | 912 | 910 | 906 | 906 | 914 | 911 | 906 | 893 | 880 | 874 | 874 | 881 | 888 | 892 | 897 | 901 | 907 | 911 | 912 | 914 | 913 | 911 | 911 | 901 | 634 | | an | 904 | 903 | 903 | 904 | 905 | 905 | 907 | 905 | 897 | 891 | 887 | 885 | 888 | 891 | 894 | 896 | 897 | 899 | 901 | 903 | 905 | 905 | 904 | 904 | 899 | | | m
00γ+ | 1029 | 982 | 979 | 1013 | 1049 | 1055 | 1122 | 1056 | 816 | 637 | 508 | 433 | 521 | 624 | 725 | 766 | 821 | 865 | 918 | 977 | 1063 | 1053 | 1024 | 1013 | | Grand Tot
669,049 | ## $\label{eq:GEOMAGNETIC DECLINATION (WEST)} \\ \text{Mean values for periods of sixty minutes ending at exact hours, GMT}$ | 20 ES | KDALEMU | JIR (D |) | | | | | | | | | 9° | + | | | | | | | | | | | | M/ | RCH 1965 | |----------------|-------------|---------|--------|--------|--------|---------|---------------|--------|--------|--------|--------|--------|---------|---------|---------|---------|--------|---------|---------|---------|--------|--------|--------|--------|--------|------------------------| | | Hour
0-1 | | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 3 13-14 | 14-15 | 5 15-16 | 5 16-1 | 7 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
1400·0'+ | | | | , | , | -,- | , | , | • | • | - | • | • | , | , | , | • | , | , | , | , | , | • | , | • | • | • | | | 1 | 62.3 | 62.4 | 62.8 | 62.4 | 62.3 | 62.1 | 61.4 | 61.0 | 60.1 | 59.9 | 61.6 | 64.5 | 67.5 | 67.5 | 67.5 | 66.8 | 65.3 | 60.4 | 63.6 | 62.7 | 62.3 | 61.0 | 61.6 | 61.9 | 63.0 | 110.9 | | 2 | 62.5 | 62.4 | 62.5 | 62.5 | 62.3 | 61.9 | 60.9 | 60.9 | 59.6 | 60.7 | 61.6 | 63.6 | 65.3 | 67 • 1 | 67 · 2 | 65.9 | 66 • 2 | 63 · 1 | 65.2 | 60.0 | 62.8 | 62.1 | 61.9 | 61.8 | 62.9 | 110.0 | | 3 d | 61 · 1 | 61 • 4 | 66 • 4 | 62.3 | | 60.3 | | | | | 60-1 | 64 · 7 | | 68.9 | | | | 59.4 | | | | | | | 62.8 | 107.9 | | 4 d | 51.0 | | | | | | 71 · 4 | | 67 · 4 | | | 65.5 | 1 | 67.9 | | | | 61-3 | | | | | | | 61.9 | 85.5 | | 5 | 61.8 | 61.9 | 61.9 | 62.2 | 62.0 | 61.9 | 62.3 | 61.6 | 60.6 | 62.3 | 62.9 | 65 · 1 | 64.9 | 65 • 4 | 65.2 | 64.9 | 64 · 4 | 63.4 | 60.5 | 61.6 | 62.7 | 61.8 | 61.6 | 60.7 | 62.7 | 103.6 | | 6 | 60.9 | 61.7 | 61.3 | 61 · 1 | 61.6 | 61.3 | 61 • 4 | 61.2 | 60.8 | 60.6 | 62.4 | 64 · 6 | 65.4 | 66-2 | 66.3 | 65.3 | 65.0 | 64 · 1 | 63.6 | 63 · 4 | 61 · 4 | 59.6 | 60.4 | 60.6 | 62.5 | 100-2 | | 7 | 64.5 | 59.9 | 60.8 | 61.8 | 61.3 | 61.0 | 61.6 | 61 · 1 | 60.4 | 60.5 | 60.8 | 63.3 | 64.9 | 67 • 4 | 68.9 | | | 63 · 4 | | | | | | | 62.8 | 106 · 8 | | 8 q | 61.0 | 61.3 | 62.1 | 62.2 | 62.3 | 62.3 | 61 · 7 | 60 · 7 | 59.3 | | 60.9 | 63.5 | | 66.3 | | | | 62.8 | | | | | | | 62.5 | 99.0 | | 9 | 61.9 | 62.3 | 62.3 | 62.3 | | | 62 · 1 | | | | | 64 · 3 | 1 | | | | | 63.5 | | | | | | | 63.0 | 112.4 | | 10 q | 61.6 | 62.2 | 61.9 | 61.9 | 62.1 | 61.9 | 61.6 | 61.0 | 60 · 4 | 60 • 4 | 61.8 | 64 · 6 | 66.5 | 66.6 | 66.6 | 64 • 9 | 63.8 | 63.3 | 63 · 1 | 62.8 | 62.5 | 62 · 4 | 62.3 | 62.3 | 62.9 | 108 · 5 | | 11 a | 62.1 | 61.9 | 62.8 | 60.3 | 60.7 | 60.5 | 60.9 | 60.7 | 61.3 | 61.4 | 63.3 | 65 · 1 | 67.3 | 68.3 | 68.2 | 67 · 1 | 64.3 | 62.6 | 62.3 | 61.4 | 61.9 | 61.9 | 61.8 | 61.8 | 62.9 | 109.9 | | 12 | 61.8 | 62.1 | 61.9 | 61.7 | 61.8 | 61.9 | 61 · 4 | 60.7 | 59.8 | 59.8 | 61.6 | 64.2 | 67.2 | 67・9 | 67.6 | 66.3 | 64 · 7 | 64 · 2 | 64 · 7 | 61.3 | 62.2 | 60.6 | 62.3 | 62.6 | 62.9 | 110.3 | | 13 | 62.6 | 62.0 | 61.5 | 60.8 | 61.1 | 61.5 | 59 • 9 | 59 · 1 | 58.9 | 59 • 9 | 61 · 7 | 66 · 1 | 68.5 | | | | | 62.7 | | | | | | | 62.9 | 110.7 | | 14 | 62.3 | 62.2 | 61.8 | 62.0 | 62.8 | | 60.8 | 59.8 | 59 · 1 | 59 · 8 | 62 • 4 | 64.6 | | | | | | 63.6 | | | | | | | 62.2 | 92.7 | | 15 | 58.6 | 60.9 | 62.0 | 61.7 | 60.7 | 60.5 | 61.9 | 62.3 | 62.2 | 62.0 | 63.6 | 64 · 8 | 65.9 | 67・4 | 66 • 4 | 65 · 2 | 63 · 7 | 63.2 | 60.6 | 59 · 3 | 57 · 1 | 61.8 | 66 • 9 | 62 · 2 | 62.5 | 100.9 | | 16 | 62 · 2 | 62.5 | 62.5 | 62.7 | 60.8 | 60.4 | 60 · 1 | 58.9 | 58 · 2 | 58.6 | 60.8 | 64.0 | 66.3 | 67.3 | 66.8 | 64 • 9 | 63.2 | 62.3 | 62.3 | 62.0 | 62 · 1 | 61.2 | 59.8 | 60.9 | 62.1 | 90.8 | | 17 | 62 · 3 | 62.1 | 61.7 | 61.6 | 61.5 | 61.4 | 61.3 | 59.5 | 58.8 | 59 · 4 | 61 · 1 | 63.8 | 65.5 | 66 · 2 | 66.9 | 66.0 | 64 · 7 | 59.8 | 61 · 4 | 61 · 2 | 61.8 | 62.3 | 62.4 | 62.3 | 62.3 | 95.0 | | 18 q | 62.2 | 62.2 | 62.1 | 61.9 | 61.7 | 61.4 | 60 • 6 | 58 · 9 | 58.5 | 59.0 | 61.6 | 64 • 5 | 67.2 | 67.5 | 66.6 | 64.6 | 63 · 1 | 62.5 | 62·6 | 62.5 | 62 · 4 | 62.4 | 62.2 | 62.3 | 62.5 | 100.5 | | 19 | 62 • 2 | 61.8 | 61.7 | | 61.3 | | 61.0 | | 59.8 | 61.7 | 64 • 6 | 67.9 | 68.8 | | | | | 63.0 | | | | | | 62.0 | 63 · 1 | 115.3 | | 20 | 60.3 | 62 · 1 | 60.7 | 60.7 | 60.6 | 60.7 | 60.7 | 59・8 | 58.8 | 59.3 | 62.0 | 65 · 1 | 68.7 | 68 • 4 | 67.8 | 65 · 7 | 63.9 | 63.3 | 63.7 | 63.0 | 62.6 | 61.7 | 61.3 | 59.0 | 62.5 | 99.9 | | 21 | 59 - 8 | 60.9 | 60.8 | 60.9 | 60.9 | 60.7 | 61.3 | 60.6 | 59.4 | 59.8 | 61.5 | 64 · 2 | 67.5 | 68.5 | 67.2 | 67 • 4 | 64 · 9 | 63.8 | 62.2 | 61.8 | 61.3 | 57.0 | 61.3 | 61 · 1 | 62.3 | 94.8 | | 22 | 61 · 2 | 61.3 | 61.3 | 61.6 | 61.5 | 61.6 | 61.3 | 60.0 | 58.7 | 58 • 4 | 59.8 | 62.6 | 65-2 | 66.9 | 67.0 | 65.8 | 64.3 | 64 · 2 | 64.3 | 62.6 | 63.6 | 52.6 | 50.3 | 58 · 7 | 61.5 | 74 · 8 | | 23 d | 60 · 8 | 60.8 | 60.7 | | | | 66 • 1 | | | | | 64 • 4 | 67.0 | 68 • 7 | 69.6 | 68.0 | 66.0 | 59.4 | 55 · 1 | 57 • 7 | 53 · 1 | 55.7 | 60.8 | 61.8 | 62.3 | 94 · 2 | | 24 | 61.6 | 61.0 | 60.7 | | | | 61 · 3 | | | | | 66 · 3 | | | | | | 62.8 | | | | | | 60.8 | 62.6 | 101.8 | | 25 d | 61.7 | 62.4 | 62.0 | 60 • 1 | 60.5 | 60.1 | 63 • 4 | 62.7 | 61 • 4 | 63 • 4 | 62.8 | 66 · 1 | 66.3 | 66 • 9 | 65.8 | 64 • 4 | 63 · 4 | 63·1 | 62.3 | 54 · 6 | 57.8 | 61 · 1 | 62.0 | 61.5 | 62.3 | 95.8 | | 26 d | 61.6 | 60.5 | 59.2 | 59.4 | 59 · 4 | 59.6 | 62 · 1 | 61.7 | 61.2 | 62.0 | 63.0 | 65 · 7 | 67.1 | 68 · 1 | 67.2 | 65.0 | 63 • 4 | 62.8 | 62.3 | 61.8 | 61.4 | 59.8 | 61.0 | 62.7 | 62.4 | 98.0 | | 27 | | 62.4 | | | | | 62.8 | | | | | 64 · 7 | 65.5 | 66 · 5 | 66.0 | 64.8 | 63.2 | 62.5 | 61.5 | 59-4 | 59.1 | 61.5 | 61.7 | 61.5 | 62.2 | 93.1 | | 28 | | 61 1 | | | | | 60.8 | | | | | | 66.0 | 66.8 | 66.5 | 64 • 9 | 63.3 | 61.5 | 61 • 4 | 61.6 | 61.5 | 61.5 | 61 · 7 | 61.7 | 62.1 | 89 · 9 | | 29 | | | | | | | 60.1 | | | | | | 66.6 | 68.2 | 66.6 | 65 • 1 | 63.3 | 62.7 | 61 • 4 | 60.3 | 57.8 | 60.5 | 61.1 | 61.7 | 61.8 | 83 53 | | 30 q | | | | | | | | | | | 59 • 9 | | 66.9 | 68.6 | 67.8 | 66 · 1 | 64 · 6 | 63.1 | 62.3 | 61.9 | 61 · 7 | 61.8 | 61 · 9 | 61.7 | 62.3 | 95.3 | | 31 | 62.0 | 61.5 | 61.2 | 61.0 | 61.9 | 61.2 | 59 • 7 | 58 · 2 | 56.9 | 58 · 5 | 59 · 7 | 63 · 1 | 66.0 | 67·7 | 67.6 | 65 · 7 | 64 · 5 | 62.8 | 61.6 | 62 · 1 | 61.9 | 61 · 7 | 61 · 5 | 61.3 | 62.1 | 89·3 | | Mean | 61.3 | 61.3 | 61.3 | 61 · 1 | 61 · 1 | 61.3 | 61.8 | 61.0 | 60.5 | 60.5 | 62.0 | 64.6 | 66.6 | 67 · 6 | 67:3 | 66.0 | 64.5 | 62.6 | 62.1 | 61.5 | 61 · 1 | 60.5 | 61.0 | 61.2 | 62.5 | | | Sum
800·0'+ | 100.3 | 101 · 9 | 100.7 | 93·1 | 93·8 | 100 · 1 | 115.0 | 90.4 | 61.4 | 75 · 8 | 121.6 | 203.0 | 265 · 6 | 295 · 5 | 286 · 5 | 245 · 4 | 199·3 | 140-6 | 126 · 7 | 106 · 0 | 93·3 | 76 · 1 | 91 · 7 | 97.3 | | Grand Total
46481·1 | Grand Total 323,314 | 21 ESE | KDALEMU | IR (Z) | | | | | | | | | 45 | ,000γ (| 0·45 O | GS uni | t) + | | | | | | | | | | MAR | сн 1965 | |----------|------------|------------|------------|------------|------------|-----|-----------------| | | Hour (| 3MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
10,000y+ | | | γ | | 1 | 434 | 433
436 | 433
436 | 433
435 | 432
434 | 432 | 432
432 | 432 | 433 | 433 | 430 | 427 | 425 | 432 | 436 | 444 | 452 | 457 | 452 | 446 | 442 | 439 | 437 | 435 | 437 | 481 | | 2
3 d | 435
437 | 437 | 427 | 421 | 426 | 429 | 432 | 434
422 | 436
421 | 434
425 | 434
419 | 429
418 | 428
421 | 430
428 | 433
433 | 437
444 | 448
456 | 458
489 | 431
491 | 454
465 | 444
451 | 443
447 | 439
443 | 439
444 | 437
438 | 492
520 | | 4 d | 440 | 432 | 411 | 396 | 377 | 371 | 377 | 390 | 400 | 410 | 420 | 427 | 431 | 436 | 443 | 447 | 450 | 455 | 453 | 449 | 449 | 446 | 443 | 442 | 425 | 195 | | 5 | 443 | 442 | 442 | 440 | 439 | 439 | 437 | 437 | 434 | 432 | 432 | 431 | 432 | 436 | 440 | 443 | 443 | 443 | 444 | 442 | 439 | 439 | 438 | 436 | 438 | 523 | | 6 | 432 | 433 | 434 | 435 | 436 | 435 | 434 | 435 | 434 | 431 | 426 | 425 | 426 | 430 | 435 | 439 | 443 | 444 | 443 | 446 | 448 | 447 | 440 | 440 | 436 | 471 | | 7 | 432 | 431 | 435 | 437 | 437 | 437 | 433 | 431 | 430 | 431 | 429 | 426 | 426 | 432 | 439 | 443 | 443 | 444 | 444 | 444 | 443 | 442 | 440 | 439 | 436 | 468 | | 8 q | 437 | 437 | 437 | 437 | 438 | 438 | 437 | 437 | 435 | 432 | 429 | 424 | 422 | 426 | 432 | 436 | 439 | 439 | 438 | 438 | 437 | 437 | 437 | 436 | 435 | 435 | | 9 | 436 | 435 | 434 | 433 | 432 | 432 | 432 | 434 | 434 | 431 | 427 | 420 | 418 | 422 | 432 | 439 | 439 | 439 | 438 | 437 | 437 | 437 | 437 | 436 | 433 | 391 | | 10 q | 431 | 431 | 433 | 434 | 435 | 435 | 434 | 436 | 436 | 432 | 428 | 422 | 422 | 425 | 431 | 437 | 439 | 437 | 436 | 435 | 435 | 435 | 434 | 434 | 433 | 387 | | 11 q | 433 | 433 | 431 | 432 | 432 | 433 | 433 | 434 | 431 |
431 | 427 | 425 | 422 | 424 | 431 | 436 | 439 | 440 | 440 | 440 | 438 | 436 | 436 | 435 | 433 | 392 | | 12 | 435 | 433 | 434 | 435 | 435 | 434 | 435 | 436 | 436 | 434 | 430 | 424 | 421 | 422 | 427 | 432 | 438 | 442 | 445 | 456 | 460 | 452 | 443 | 440 | 437 | 479 | | 13 | 439 | 437 | 437 | 436 | 435 | 433 | 432 | 433 | 432 | 428 | 428 | 420 | 421 | 425 | 437 | 443 | 443 | 443 | 442 | 442 | 440 | 439 | 438 | 438 | 435 | 441 | | 14 | 437 | 437 | 436 | 435 | 433 | 433 | 433 | 433 | 433 | 431 | 426 | 418 | 417 | 421 | 432 | 439 | 440 | 439 | 439 | 440 | 442 | 443 | 443 | 435 | 434 | 415 | | 15 | 420 | 418 | 425 | 430 | 431 | 431 | 430 | 426 | 426 | 426 | 419 | 415 | 417 | 424 | 430 | 437 | 442 | 443 | 449 | 442 | 435 | 434 | 435 | 435 | 430 | 320 | | 16 | 436 | 435 | 433 | 432 | 432 | 433 | 435 | 437 | 437 | 435 | 431 | 425 | 422 | 426 | 431 | 436 | 441 | 438 | 436 | 436 | 436 | 436 | 431 | 430 | 433 | 400 | | 17 | 432 | 435 | 436 | 436 | 435 | 433 | 432 | 434 | 434 | 434 | 430 | 426 | 427 | 430 | 432 | 439 | 444 | 453 | 453 | 450 | 443 | 440 | 438 | 437 | 437 | 483 | | 18 q | 439 | 438 | 438 | 438 | 437 | 437 | 438 | 440 | 438 | 436 | 431. | 425 | 424 | 430 | 436 | 438 | 438 | 438 | 436 | 434 | 434 | 434 | 434 | 435 | 435 | 446 | | 19 | 435 | 436 | 436 | 435 | 435 | 434 | 433 | 435 | 435 | 431 | 427 | 425 | 427 | 429 | 435 | 436 | 438 | 435 | 433 | 435 | 435 | 433 | 435 | 434 | 433 | 402 | | 20 | 432 | 432 | 430 | 431 | 432 | 432 | 433 | 435 | 435 | 430 | 423 | 418 | 418 | 425 | 430 | 434 | 437 | 436 | 432 | 434 | 435 | 435 | 435 | 436 | 431 | 350 | | 21 | 425 | 425 | 430 | 432 | 432 | 431 | 431 | 431 | 431 | 429 | 425 | 424 | 424 | 428 | 435 | 440 | 443 | 448 | 448 | 443 | 441 | 435 | 428 | 431 | 433 | 390 | | 22 | 433 | 435 | 435 | 435 | 435 | 434 | 432 | 433 | 432 | 426 | 421 | 421 | 424 | 425 | 430 | 435 | 436 | 437 | 440 | 442 | 442 | 454 | 438 | 432 | 434 | 407 | | 23 d | 432 | 436 | 436 | 436 | 436 | 427 | 412 | 414 | 420 | 419 | 420 | 421 | 420 | 425 | 433 | 451
440 | 453 | 462
449 | 463
449 | 457
445 | 430 | 411
432 | 428 | 434
425 | 432
435 | 376 | | 24 | 436 | 436 | 436 | 436 | 436 | 436 | 436 | 434
431 | 431
436 | 429
434 | 421
428 | 423
426 | 427
429 | 428
436 | 434
443 | 446 | 448
443 | 442 | 443 | 447 | 442
442 | 440 | 425
439 | 425 | 435 | 434
463 | | 25 d | 430 | 428 | 430 | 433 | 434 | 436 | 431 | 431 | 430 | 434 | 420 | 420 | 429 | | | | | | | | | | | | | | | 26 d | 428 | 407 | 417 | 422 | 427 | 430 | 432 | 434 | 438 | 436 | 430 | 426 | 427 | 432 | 438 | 442 | 446 | 443 | 442 | 442 | 443 | 441 | 432 | 428 | 433 | 383 | | 27 | 431 | 432 | 432 | 434 | 434 | 433 | 433 | 434 | 435 | 432 | 429 | 431 | 432 | 434 | 441 | 446 | 444 | 444 | 446 | 447 | 444 | 438 | 438 | 438 | 437 | 482 | | 28 | 439 | 437 | 438 | 437 | 437 | 435 | 437 | 439 | 438 | 433 | 431 | 426 | 422 | 428 | 432 | 437 | 442 | 444 | 442 | 439 | 439 | 439 | 439 | 439 | 436 | 469 | | 29 | 439 | 438 | 436 | 436 | 436 | 437 | 438 | 438 | 437 | 433
433 | 430
429 | 428
422 | 430
421 | 434
425 | 438
428 | 445
432 | 445
434 | 445
437 | 443
437 | 444
437 | 444
437 | 442
436 | 440
438 | 440
438 | 438
435 | 516
432 | | 30 q | 439 | 439 | 439 | 438 | 438 | 437 | 439 | 440 | 437 | | | | | | | | | | | | | | | | | | | 31 | 437 | 436 | 436 | 437 | 435 | 433 | 435 | 439 | 439 | 437 | 436 | 433 | 431 | 431 | 433 | 437 | 439 | 439 | 438 | 439 | 438 | 437 | 438 | 438 | 436 | 471 | | Mean | 434 | 433 | 433 | 433 | 432 | 432 | 431 | 432 | 432 | 431 | 427 | 424 | 424 | 428 | 434 | 440 | 443 | 445 | 444 | 443 | 441 | 439 | 437 | 436 | 435 | | #### GEOMAGNETIC CHARACTER FIGURES (K, K_H , K_D , K_Z , AND C) AND TEMPERATURE IN MAGNETOGRAPH CHAMBER 460 630 725 802 747 601 539 154 279 | 2 | 2 ESKDALEMUI | R | | | | | | | | MARCH 1965 | |----------|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------------|--|-------------------------------|--|---| | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of
K _D
indices | 3-h range
indices
K _Z | Sum of K _Z indices | Geomagnetic
character
of day, C
(2-0) | Temperature
in magneto-
graph chamber
200°A+ | | 1 | 0101 3322 | 12 | 0101 3322
0011 2332 | 12
12 | 0000 2312
0111 1231 | 8
10 | 0000 0110
0000 0110 | 2 2 | 1 | 84·3
84·3 | | 2 | 0111 2332 | 13 | 2223 3445 | 25 | 3333 2543 | 26 | 1110 0442 | 13 | 2 | 84 · 3 | | 3 d | 3333 3545 | 29 | 3432 2211 | 18 | 3532 1110 | 16 | 2331 0100 | 10 | i | 84.0 | | 4 d
5 | 3532 2211
0022 2223 | 19
13 | 0022 2213 | 12 | 0011 1122 | 8 | 0000 0000 | 0 | i | 84 · 1 | | 6 | 1100 1122 | 8 | 1000 1122 | 7 | 1100 0122 | 7 | 0000 0001 | 1 | 1 | 84.1 | | 7 | 3111 2210 | 11 | 2011 2210 | 9 | 3110 1000 | 6 | 2000 0000 | 2 | 1 | 84 · 1 | | 8 9 | 0001 0000 | 1 | 0001 0000 | 1 | 0001 0000 | 1 | 0000 0000 | 0 | 0 | 84.0 | | 9 7 | 1021 2102 | 9 | 1020 2102 | 8 | 0001 1001 | 3 | 0000 0000 | 0 | 0 | 84.0 | | 10 q | 2001 2000 | 5 | 2001 2000 | 5 | 1000 1000 | 2 | 0000 0000 | 0 | 0 | 84 · 1 | | 11 9 | 1101 0111 | 6 | 1000 0111 | 4 | 1101 0010 | 4 | 0000 0000 | 0 | 0 | 84 · 1 | | 12 | 0000 3132 | 9 | 0000 3132 | 9 | 0000 2021 | 5 | 0000 0021 | 3 | 1 1 | 84.0 | | 13 | 1223 3320 | 16 | 1223 3320 | 16 | 1121 1110 | 8 | 0000 0000 | 0 | 1 | 84.0 | | 14 | 1101 2233 | 13 | 0101 2233 | 12 | 1101 1132 | 10 | 0000 0002 | 2 | 1 | 84 · 0 | | 15 | 3122 2341 | 18 | 3122 2341 | 18 | 2121 1131 | 12 | 2000 0120 | 5 | 1 | 84 · 2 | | 16 | 1201 1003 | 8 | 0101 1003 | 6 | 1201 0002 | 6 | 0000 0001 | 1 | 1 | 84.0 | | 17 | 0010 2220 | 7 | 0010 2220 | 7 | 0010 1210 | 5 | 0000 0010 | 1 | 0 | 84.0 | | 18 9 | 0000 1000 | 1 | 0000 1000 | 1 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 84.0 | | 19 | 0012 2112 | 9 | 0002 2112 | 8 | 0011 1001 | 4 | 0000 0000 | 0 | 1 | 84.0 | | 20 | 2003 3122 | 13 | 2003 3122 | 13 | 2001 1012 | 7 | 0000 0000 | 0 | 1 | 84.2 | | 21 | 2012 2213 | 13 | 2002 2213 | 12 | 2011 2113 | 11 | 1000 0001 | ·2 | 1 1 | 84.3 | | 22 | 0000 1224 | 9 | 0000 1223 | 8 | 0000 0124 | 7 | 0000 0002 | 2 | 1 1 | 84 • 2 | | 23 d | 2332 3454 | 26 | 2232 3454 | 25 | 1332 1454 | 23 | 0110 0233 | 10 | 2 | 84 · 3 | | 24 | 1123 4223 | 18 | 1123 4223 | 18 | 1113 2122 | 13 | 0000 0002 | 2 | 1 1 | 84 · 2 | | 25 d | 2344 2242 | 23 | 2344 2232 | 22 | 1233 1041 | 15 | 0010 0010 | 2 | 1 | 84.3 | | 26 d | 4232 2223 | 20 | 4232 2223 | 20 | 4222 1113 | 16 | 2100 0001 | 4 | 1 | 84.2 | | 27 | 2221 2232 | 16 | 2221 2232 | 16 | 2121 1132 | 13 | 0000 0011 | 2 | 1 | 84.1 | | 28 | 1122 1210 | 10 | 1122 1210 | 10 | 0111 0000 | 3 | 0000 0000 | 0 | 1 | 84 · 1 | | 29 | 2111 3222 | 14 | 1111 3221 | 12 | 2010 2122 | 10 | 0000 0000 | 0 | 1 | 84 · 1 | | 30 q | 0000 2110 | 4 | 0000 2110 | 4 | 0000 1000 | 1 | 0000 0000 | 0 | 0 | 84 • 1 | | 31 | 1222 0101 | 9 | 1222 0101 | 9 | 1111 0001 | 5 | 0000 0000 | 0 | 0 | 84 · 2 | | | L | | | • | | | | Mean | 0.81 | 84.1 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. Sum 13,000γ+ 464 430 423 417 403 383 364 398 404 246 151 $K_{\!\!\!H}$ For horizontal component. $K_{\!\!\!D}$ For declination. $K_{\!\!\!Z}$ For vertical component. (see Introduction). 19 ESKDALEMUIR (H) 16,000γ (0·16 CQS unit) + APRIL 1965 | 19 60 | MUNTEMO | JIK (II, | , | | | | | | | | 1 | 0,0007 | (0.10 | Cus un | 11) 1 | | | | | | | | | | AP | CIL 1902 | |-----------------|-------------|------------|------|------|------|------|------|-----|-------|------|-------|--------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
20,000y+ | | | γ | | 1 | 913 | 918 | 909 | 909 | 911 | 912 | 911 | 905 | 896 | 884 | 878 | 879 | 883 | 893 | 900 | 899 | 906 | 911 | 913 | 912 | 912 | 911 | 909 | 911 | 904 | 1685 | | 2 q | 911 | 909 | 910 | 909 | 908 | 909 | 907 | 904 | 897 | 883 | 880 | 886 | 889 | 894 | 902 | 907 | 909 | 909 | 909 | 909 | 909 | 909 | 909 | 912 | 903 | 1680 | | $\frac{1}{3}$ | 911 | 910 | 913 | 912 | 913 | 913 | 915 | 913 | 904 | 896 | 888 | 886 | 891 | 894 | 902 | 907 | 913 | 916 | 915 | 915 | 916 | 915 | 912 | 914 | 908 | 1784 | | 4 | 913 | 915 | 918 | 917 | 914 | 920 | 919 | 908 | 888 | 887 | 887 | 893 | 902 | 909 | 901 | 892 | 901 | 909 | 914 | 913 | 910 | 910 | 911 | 910 | 907 | 1761 | | 5 | 914 | 912 | 912 | 908 | 912 | 907 | 909 | 903 | 891 | 883 | 877 | 878 | 884 | 891 | 899 | 907 | 907 | 907 | 907 | 907 | 909 | 901 | 902 | 907 | 901 | 1634 | | 6 | 907 | 905 | 904 | 905 | 910 | 914 | 915 | 913 | 900 | 888 | 882 | 882 | 892 | 891 | 906 | 901 | 902 | 910 | 915 | 923 | 922 | 920 | 923 | 930 | 907 | 1760 | | 7 | 924 | 904 | 902 | 896 | 898 | 911 | 918 | 916 | 904 | 891 | 879 | 877 | 883 | 888 | 900 | 907 | 901 | 903 | 902 | 900 | 906 | 912 | 915 | 914 | 902 | 1651 | | 8 q | 914 | 907 | 908 | 910 | 911 | 910 | 907 | 903 | 894 | 880 | 874 | 879 | 883 | 891 | 900 | 913 | 911 | 915 | 920 | 923 | 924 | 924 | 918 | 914 | 906 | 1733 | | 9 d | 915 | 919 | 908 | 915 | 915 | 910 | 910 | 895 | 896 | 887 | 878 | 878 | 883 | 893 | 900 | 907 | 905 | 910 | 911 | 914 | 920 | 916 | 911 | 929 | 905 | 1725 | | 10 | 904 | 903 | 902 | 905 | 912 | 912 | 910 | 900 | 889 | 872 | 873 | 880 | 890 | 896 | 904 | 908 | 909 | 914 | 915 | 914 | 914 | 913 | 914 | 912 | 903 | 1665 | | 11 | 911 | 911 |
909 | 910 | 910 | 911 | 910 | 904 | 899 | 893 | 891 | 893 | 896 | 907 | 913 | 923 | 912 | 927 | 908 | 884 | 889 | 899 | 900 | 902 | 905 | 1712 | | 12 | 899 | 904 | 899 | 898 | 899 | 905 | 905 | 902 | 898 | 887 | 885 | 884 | 890 | 895 | 911 | 918 | 922 | 920 | 914 | 910 | 913 | 913 | 911 | 908 | 904 | 1690 | | 13 | 906 | 906 | 909 | 904 | 907 | 905 | 903 | 896 | 887 | 886 | 885 | 890 | 898 | 903 | 912 | 914 | 911 | 914 | 911 | 912 | 913 | 914 | 914 | 917 | 905 | 1717 | | 14 | 913 | 912 | 908 | 909 | 911 | 915 | 915 | 908 | 899 | 887 | 889 | 892 | 900 | 907 | 912 | 913 | 917 | 918 | 917 | 917 | 917 | 913 | 915 | 913 | 909 | 1817 | | 15 | 915 | 909 | 905 | 905 | 914 | 915 | 908 | 902 | 889 | 876 | 871 | 869 | 878 | 891 | 902 | 907 | 914 | 913 | 912 | 911 | 912 | 914 | 914 | 913 | 902 | 1659 | | 16 | 917 | 908 | 910 | 911 | 911 | 915 | 913 | 906 | 896 | 890 | 888 | 888 | 893 | 896 | 907 | 911 | 913 | 910 | 909 | 915 | 915 | 916 | 915 | 915 | 907 | 1768 | | 17 d | 915 | 914 | 913 | 912 | 913 | 914 | 915 | 910 | 902 | 891 | 881 | 880 | 889 | 914 | 924 | 927 | 920 | 911 | 911 | 925 | 925 | 924 | 923 | 923 | 911 | 1876 | | 18 d | 919 | 912 | 939 | 924 | 930 | 823 | 747 | 733 | 766 | 783 | 819 | 837 | 860 | 862 | 829 | 858 | 871 | 880 | 869 | 883 | 881 | 872 | 873 | 859 | 855 | 529 | | 19 d | 871 | 876 | 870 | 877 | 880 | 883 | 880 | 874 | 864 | 854 | 843 | 851 | 852 | 860 | 878 | 899 | 907 | 902 | 901 | 896 | 893 | 886 | 893 | 889 | 878 | 1079 | | 20 d | 887 | 886 | 878 | 878 | 887 | 890 | 888 | 885 | 874 | 856 | 854 | 862 | 864 | 854 | 871 | 885 | 889 | 900 | 900 | 897 | 895 | 897 | 896 | 891 | 882 | 1164 | | 21 q | 891 | 891 | 889 | 891 | 889 | 890 | 886 | 883 | 876 | 863 | 855 | 853 | 857 | 871 | 882 | 891 | 890 | 904 | 904 | 899 | 899 | 899 | 899 | 899 | 885 | 1251 | | 22 | 897 | 896 | 895 | 895 | 895 | 895 | 896 | 895 | 888 | 880 | 872 | 878 | 878 | 882 | 890 | 894 | 899 | 903 | 908 | 906 | 903 | 907 | 912 | 904 | 895 | 1468 | | 23 | 901 | 902 | 904 | 905 | 900 | 900 | 901 | 900 | 898 | 890 | 882 | 876 | 876 | 875 | 884 | 889 | 896 | 910 | 905 | 912 | 909 | 907 | 913 | 909 | 898 | 1544 | | 24 | 908 | 906 | 904 | 903 | 903 | 904 | 905 | 903 | 895 | 884 | 872 | 869 | 874 | 888 | 899 | 898 | 903 | 914 | 912 | 914 | 909 | 907 | 905 | 905 | 899 | 1584 | | 25 | 907 | 906 | 903 | 903 | 903 | 903 | 902 | 896 | 886 | 879 | 874 | 872 | 876 | 883 | 892 | 898 | 905 | 915 | 911 | 914 | 910 | 915 | 916 | 911 | 899 | 1580 | | 26 | 917 | 921 | 903 | 904 | 905 | 907 | 904 | 898 | 884 | 874 | 870 | 869 | 871 | 879 | 890 | 895 | 912 | 907 | 914 | 918 | 915 | 915 | 912 | 911 | 900 | 1595 | | 27 | 912 | 910 | 907 | 907 | 905 | 902 | 900 | 895 | 888 | 881 | 871 | 870 | 884 | 894 | 907 | 911 | 908 | 912 | 913 | 907 | 908 | 908 | 910 | 907 | 901 | 1617 | | 28 q | 909 | 904 | 904 | 907 | 907 | 903 | 899 | 893 | 886 | 877 | 875 | 881 | 886 | 895 | 903 | 904 | 910 | 910 | 914 | 917 | 912 | 912 | 911 | 911 | 901 | 1630 | | 29 | 910 | 910 | 910 | 910 | 909 | 908 | 907 | 903 | 897 | 887 | 880 | 883 | 895 | 904 | 909 | 916 | 922 | 927 | 924 | 917 | 917 | 918 | 920 | 920 | 908 | 1803 | | 30 | 918 | 916 | 911 | 908 | 907 | 910 | 902 | 900 | 903 | 899 | 893 | 890 | 892 | 895 | 900 | 898 | 904 | 908 | 910 | 912 | 911 | 914 | 914 | 915 | 905 | 1730 | | | 000 | 007 | 005 | 005 | 906 | 904 | 900 | 895 | 888 | 879 | 87.5 | 877 | 883 | 890 | 898 | 903 | 906 | 910 | 910 | 910 | 910 | 909 | 910 | 909 | 900 | | | Mean | 908 | 907 | 905 | 905 | 906 | 904 | 900 | | - 008 | 0/9 | 0/3 | 011 | 003 | | 096 | 903 | 900 | 910 | 910 | 910 | 910 | 909 | 910 | 909 | 900 | | | Sum
26,000γ+ | 1249 | 1202 | 1156 | 1147 | 1189 | 1116 | 1007 | 846 | 634 | 368 | 246 | 305 | 489 | 695 | 929 | 1097 | 1189 | 1309 | 1288 | 1296 | 1288 | 1281 | 1290 | 1275 | | Grand Total
647,891 | 20 ES | KDALEM | UIR (D |) | | | | | | | | | 9° | + | | | | | | | | | | | | AF | RIL 1965 | |-----------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|------|------------------------| | | Hour
0-1 | | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 3 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
1400·0'+ | | | , | , | • | • | , | | , | | | , | , | , | , | | , | , | | , | | | | , | , | , | 7 | | | 1 | 61.2 | 61.6 | 62.6 | 61.5 | 62.0 | 60.6 | 59.7 | 58.0 | 56 · 8 | 57.8 | 60.8 | 64 · 7 | 68-1 | 68.9 | 67.8 | 64 - 7 | 63.3 | 62.5 | 62 · 2 | 62.0 | 61 · 7 | 61.6 | 61.6 | 61.6 | 62.2 | 93.3 | | 2 q | 60.7 | | | 60.7 | 61.2 | 60.6 | 60.0 | 58 · 2 | 57.3 | 58.3 | 60.6 | 64.0 | 66 · 2 | 67.4 | 66 · 7 | 65.3 | 63.6 | 62.1 | 61 · 1 | 61.3 | 61.4 | 61.6 | 61.6 | 61.5 | 61.8 | 84 · 1 | | 3 q | 61.3 | 61.3 | 61.6 | 61.1 | 61.0 | 61.0 | 59.7 | 58 • 4 | 57.3 | 57.9 | 59.8 | 63.1 | 66.0 | 67 • 2 | 67 • 4 | 65.8 | 64.6 | 63.4 | 62.2 | | 62.2 | 62.0 | 61.4 | 61.5 | 62.1 | 89.3 | | 4 | 61.4 | 61.6 | 61.6 | 61 · 1 | 61.2 | 61.0 | 59.2 | 57.8 | 58 • 5 | 62 · 1 | 63.7 | 65 • 4 | 67.8 | 69.6 | 68 · 1 | | 64 · 3 | 63 · 2 | 62 · 1 | | | 61.7 | 61 · 4 | 61.3 | 62.7 | 103.7 | | 5 | 61.9 | 61 · 7 | 62.0 | 61 · 1 | 62.1 | 60 · 4 | 59.3 | 57.7 | 56 · 7 | 57 · 7 | 59.6 | 62.8 | 64.8 | 65.8 | 65 · 2 | 63.9 | 62.6 | 62.0 | 61.3 | 61 · 6 | 61 · 2 | 61 · 1 | 59 · 7 | 61.4 | 61.4 | 73 · 6 | | 6 | 61.5 | 61.0 | 61 · 4 | 61.5 | 61.1 | 60.8 | 59 · 7 | 59.0 | 57.5 | 57.5 | 59.0 | 62.4 | 66.9 | 67.7 | 68.0 | 66.9 | 64.5 | 62.6 | 62.1 | 62.4 | 62.4 | 62.3 | 60.6 | 57.6 | 61.9 | 86 • 4 | | 7 | 57.4 | 57 · 4 | 56.8 | 58.3 | 58.3 | 60.4 | 59.4 | 58 · 1 | 57.6 | 58.0 | 60.4 | 63 · 7 | 67.8 | 69.5 | 69 · 7 | 69.0 | 66 · 1 | 64 • 9 | 63.3 | 62:5 | 61.9 | 60.6 | 61.3 | 63.0 | 61.9 | 85 · 4 | | 8 9 | 61.5 | 61.1 | 61.2 | 61.2 | 60.5 | 60.2 | 59.5 | 58 • 5 | 58.0 | 59 · 1 | 61 · 4 | 64 · 1 | 67.7 | 69.0 | 67.7 | 66.9 | 65.2 | 64 · 3 | 63.3 | 63 · 1 | 62.5 | 62.0 | 61.3 | 60.1 | 62.5 | 99 · 4 | | 9 d | 58.5 | 59 · 8 | 56.6 | 56 · 3 | 56.6 | 58 • 4 | 58 · 1 | 56 • 9 | 58.6 | 59.5 | 61.2 | 63 · 7 | 67.0 | 68.0 | 67.5 | 67.1 | 66.3 | 64.7 | 63.0 | 62.5 | 60.1 | | 61.0 | 56 · 8 | 61.2 | 68.6 | | 10 | 56 · 8 | 59・3 | 60.0 | 60.3 | 60.7 | 60.0 | 59.6 | 58.8 | 58 • 4 | 59 · 2 | 61 · 1 | 63 • 9 | 66 · 1 | 66 · 8 | 66 · 4 | 64 · 7 | 63.5 | 62.8 | 62.3 | 62 · 1 | 62.0 | 62.0 | 61.5 | 61 · 4 | 61.7 | 79 - 7 | | 11 | 60.6 | 60.9 | 61.6 | 60.9 | 60.6 | 60 · 1 | 59.0 | 58.0 | 57.8 | 58 · 7 | 60.7 | 63.9 | 65.9 | 66.3 | 66.5 | 66.8 | 64 · 7 | 63.3 | 62.3 | 56 · 8 | 59.3 | 59.3 | 60 · 1 | 59.6 | 61.4 | 73 · 7 | | 12 | 62.7 | 61.7 | 60.0 | 58.8 | 60.1 | 58.8 | 57.5 | 56 · 7 | 57 · 0 | 58.6 | 60.6 | 63.3 | 65 · 4 | 66 · 2 | 64 · 2 | 62.3 | 61.8 | 62.0 | 62 · 1 | 60.0 | 58 · 1 | 60.2 | 60.0 | 60.5 | 60.8 | 58.6 | | 13 | 61.4 | | 62-8 | 60.4 | 58.7 | 58 • 4 | 57 • 4 | 56.8 | 57.9 | 59.5 | 61.2 | 63.7 | 66.0 | 66 · 5 | 65.0 | 63.3 | 61 · 4 | 60.6 | 61 · 1 | 61.8 | 62.1 | 62·0 | 61.8 | 61.9 | 61.4 | 74 • 1 | | 14 | 61.9 | 61.1 | 61.0 | 61.5 | 59.5 | 58.6 | 58 · 1 | 58.0 | 58.3 | 60 · 4 | 63.3 | 64 • 9 | 66.3 | 65.8 | 65 · 1 | 64 · 1 | 62.1 | 61 · 4 | 61 · 4 | 61.9 | 62.2 | | 59.8 | 59.9 | 61.6 | 78 · 5 | | 15 | 59.3 | 59・4 | 59.6 | 59.6 | 60.5 | 58.9 | 57.5 | 56.0 | 56 · 6 | 58 · 4 | 61 · 4 | 65.0 | 68.0 | 69 • 4 | 68.6 | 67 · 1 | 65 · 1 | 62 · 7 | 61 · 4 | 60.7 | 60.9 | 61 · 1 | 61 · 4 | 61.2 | 61.7 | 79·8 | | 16 | 61.2 | 61.0 | 61.2 | 60.4 | 60.0 | 59.9 | 57.9 | 56 · 9 | 57 · 4 | 59.0 | 61.9 | 64.6 | 67.8 | 68.6 | 67 · 8 | 66.0 | 64.3 | 62.8 | 60.6 | 60.5 | 60.9 | 60.7 | 61 · 4 | 61 · 4 | 61.8 | 84 · 2 | | 17 d | 61.5 | 61.5 | 61.4 | 61.3 | 60.7 | 59.6 | 58 · 5 | 56 · 9 | 56.0 | 57 • 4 | 59.8 | 63.5 | 66.9 | 70 • 4 | 71 - 7 | 73.5 | 72.6 | 67.8 | 62.3 | 63 · 1 | 62.7 | 62 · 1 | | 61.6 | 63.1 | 114 · 4 | | 18 d | 60.5 | 56.0 | 59.3 | 52.6 | 60.5 | 62 · 4 | 67.5 | 78.6 | 67 · 8 | 63.8 | 67.6 | 65.8 | 64 · 0 | | | | 65 · 2 | | 62.4 | 58 · 1 | 61 · 1 | 60.6 | | 61.2 | 63.3 | 120 · 1 | | 19 d | 60.2 | | | 58.9 | | | 56.6 | 56 · 4 | 57.6 | 58.9 | 60.3 | 63 · 2 | | | | 67.4 | | | 61.6 | 60.6 | 56 · 9 | 58 • 4 | | 57.5 | 60.7 | 57 • 4 | | 20 d | 58.5 | 57 • 4 | 58.3 | 60.1 | 58.0 | 57.9 | 56.9 | 56 · 4 | 56 · 8 | 59 · 7 | 62.0 | 63.8 | 66.8 | 68.5 | 66.0 | 64 • 4 | 63.3 | 62.3 | 61.3 | 61 · 3 | 60.6 | 60.0 | 60.5 | 60.4 | 60.9 | 61 · 2 | | 21 q | 60.4 | 60.1 | 59.9 | 59.8 | 58.9 | 58 · 4 | 57 • 4 | 56.8 | 56.6 | 57.0 | 58 · 7 | 61.3 | 63.9 | 64.9 | 64 • 9 | 63.9 | 62.9 | 62.6 | 62.0 | 61.9 | 61 · 4 | 61.3 | 61.2 | 60.7 | 60.7 | 56 · 9 | | 22 | 60.4 | 60.1 | 59.6 | 59.8 | 59 · 7 | 59.2 | 58.6 | 58.0 | 58.0 | 58.9 | 60.6 | 61.8 | 63.2 | 64 · 2 | 64 · 6 | 63.7 | 63.6 | 63 · 4 | | | | 61.6 | | | 60.9 | 62 · 2 | | 23 | 60.0 | 60.4 | 60.4 | 60.5 | | 60.0 | 58.8 | 58 · 2 | 57.6 | 58.3 | 59.8 | 62.2 | 64.6 | 65 · 6 | 65.8 | 65 · 7 | 64.9 | | | 61.5 | | 61.1 | | | 61.5 | 75.6 | | 24 | 59 · 7 | 61 · 1 | | 59.8 | 59.3 | 58 • 9 | 58.6 | 57.9 | | | 59 · 7 | 62.4 | 65.4 | 66 · 1 | | | | | | | | 61.2 | | | 61.2 | 67.8 | | 25 | 60.6 | 60.6 | 60-4 | 60.3 | 59.3 | 58.5 | 57.1 | 56.3 | 56 · 1 | 57 · 1 | 59 · 4 | 62.8 | 64 · 7 | 66 · 3 | 66 • 4 | 65.0 | 63.3 | 62.3 | 61.3 | 60.6 | 61 · 4 | 61.6 | 61 · 1 | 60.0 | 60.9 | 62.5 | | 26 | 60-1 | 61.7 | 59.6 | 59.6 | 58.5 | 56.9 | 55 · 1 | 54 · 2 | 54 · 8 | 57.0 | 59.6 | 62.4 | 64 • 4 | 65.8 | 65.3 | 64 • 1 | 63.9 | | 61.9 | 62 · 1 | | | 61.3 | | 60.6 | 54.6 | | 27 | 60.6 | 60.6 | 60.4 | 60.2 | 59.6 | 58.8 | 57.6 | 56 · 5 | 56 • 4 | 57.8 | 60.5 | 63.6 | 66.6 | 66.9 | 66 · 1 | 64 · 1 | 63 · 1 | 61 · 4 | 61.2 | | | | | 61.3 | 61.3 | 70.1 | | 28 q | 62.0 | 60.9 | 60.5 | | 59.5 | 59 · 1 | | 58 • 5 | 58 · 2 | 58 · 7 | 60.6 | 64.3 | | 66 · 7 | 65 · 4 | 64.3 | 63.7 | 63.0 | 62.4 | 62.2 | 62.0 | : | 61.5 | | 62.0 | 87.2 | | 29 | 61.0 | 60.9 | 61.0 | | | 58.5 | 57.5 | 56 · 9 | 57 · 3 | 58 · 4 | 60.6 | 62.5 | 64 · 4 | 65.8 | 65.3 | 64
· 5 | 63.8 | 63.8 | | 62.4 | | | 61.5 | | 61.5 | 74·9
64·7 | | 30 | 61.2 | 61.5 | 61.6 | 61 · 1 | 59•4 | 59.0 | 57 · 4 | 56 · 9 | 57.5 | 57.8 | 59.5 | 62.3 | 64.9 | 02.8 | 05 . 2 | 02.7 | 01.9 | 02.0 | 02.0 | 91.8 | 91.0 | 61.0 | 29.2 | 91.1 | 61.0 | 04.7 | | Mean | 60.5 | 60.6 | 60.5 | 60.0 | 59 · 8 | 50.4 | 58.6 | 58 · 1 | 57 · 7 | 58 · 7 | 60.9 | 63.5 | 66.0 | 67 · 2 | 66 · 7 | 65 · 4 | 64 · 0 | 63.0 | 62.0 | 61.5 | 61.3 | 61.2 | 60.8 | 60.7 | 61.6 | | | Sum
1700·0'+ | | | | | | | | | | | | 205 · 1 | | | | | | | | | | | | | | Grand Total
44342.0 | APRIL 1965 445 443 443 443 441 440 579 Grand Total 313,630 21 ESEDALEMUIR (Z) 440 441 441 440 440 21 q Mean 12.0007 444 440 1063 1057 1020 1023 1065 1068 1019 440 443 439 440 10,000y+ 3-4 4-5 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21-21-22 22-23 23-24 5-6 6-7 7-8 8-9 Mean 0-1 1-2 2-3 436 **3**7 436 434 437 2 q 3 q 4 5 431 437 437 435 4.36 307 433 435 433 435 432 433 435 429 421 428 436 435 437 439 440 434 437 440 422 434 434 437 437 427 418 431 433 434 4.30 434 434 434 426 427 435 436 434 432 425 412 434 437 440 438 13 14 15 337 432 434 434 434 435 434 431 428 423 416 433 440 441 440 439 17 a 435 485 470 453 446 18 d 19 d 20 d 444 430 445 450 450 447 441 441 447 451 441 434 443 436 430 421 421 433 424 420 434 424 430 429 435 428 434 440 430 436 437 440 446 440 443 834 1003 1147 1238 1274 1311 1308 1258 1214 1170 1119 447 447 444 GEOMAGNETIC CHARACTER FIGURES (K, KH, KD, KZ, AND C) AND TEMPERATURE IN MAGNETOGRAPH CHAMBER | 22 | 2 ESKDALEMUIF
3-h range
indices
K | Sum of K indices | 3-h range
indices
K _H | Sum of K _H indices | 3-h range
indices
K _D | Sum of K _D indices | 3-h range
indices
K _Z | Sum of K _Z indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph chamber
200°A+ | |-----------|--|------------------|--|-------------------------------|--|-------------------------------|--|-------------------------------|--|---| | | | | 2110 1110 | 7 | 2110 0000 | 4 | 1000 0000 | 1 | 0 | 84 · 2 | | 1 | 2110 1110 | 7 | 0010 0001 | 2 | 0000 0000 | ò | 0000 0000 | l o | Ó | 84.3 | | 2 q | 0010 0001 | 2 | 0010 0001 | 5 | 0000 1001 | 2 | 0000 0000 | 0 | 0 | 84 · 4 | | 3 q | 0000 2111 | 5 | 0121 3211 | 11 | 1112 2000 | 7 | 0000 0000 | 0 | 1 | 84 · 4 | | 5 | 1122 3211
0200 0112 | 13
6 | 0200 0110 | 4 | 0200 0002 | 4 | 0100 0000 | 1 | 0 | 84.3 | | _ | 1110 3323 | 14 | 1110 3323 | 14 | 1110 2103 | 9 | 0000 0101 | 2. | 1 | 84 · 4 | | 6 | 3211 3212 | 15 | 3201 3210 | 12 | 2210 1012 | 9 | 1100 0000 | 2 | 1 | 84 · 4 | | 7 | 2001 2212 | 10 | 2001 2212 | 10 | 0000 0001 | 1 | 0000 0000 | 0 | 0 | 84 • 4 | | 8 q | 3320 1323 | 17 | 3320 1323 | 17 | 2210 0123 | 11 | 2100 0001 | 4 | 1 | 84.4 | | 9 d
10 | 3101 1011 | 8 | 2101 1011 | 7 | 3100 0001 | 5 | 1000 0000 | 1 | 0 | 84.5 | | | 1111 1431 | 13 | 1101 1431 | 12 | 1010 1231 | 9 | 0000 0021 | 3 | 1 | 84.5 | | 12 | 2111 1132 | 12 | 1111 1122 | 10 | 2110 1132 | 11 | 1000 0001 | 2 | 1 | 84 · 4 | | 13 | 2110 2201 | 9 | 1010 2201 | 7 | 2100 0000 | 3 | 1000 0000 | 1 | 0 | 84 · 5 | | 14 | 2101 2202 | 10 | 2001 2201 | 8 | 1100 1002 | 5 | 0000 0000 | 0 | 0 | 84.5 | | 15 | 1200 1212 | ğ | 1100 1212 | 8 | 1200 0011 | 5 | 0000 0000 | 0 | 0 | 84.5 | | 16 | 2100 2120 | 8 | 2100 2120 | 8 | 1100 0010 | 3 | 0000 0000 | 0 | 0 | 84.5 | | 17 d | 0000 3442 | 13 | 0000 3442 | 13 | 0000 1221 | 6 | 0000 0210 | 3 | 1 | 84 · 5 | | 18 d | 3655 4342 | 32 | 3655 4342 | 32 | 3554 3232 | 27 | 3434 2221 | 21 | 2 | 84 · 5 | | 19 d | 3212 2324 | 19 | 2112 2324 | 17 | 3211 2323 | 17 | 1000 1302 | 7 | 1 | 84.5 | | 20 d | 3223 4122 | 19 | 3223 4122 | 19 | 1221 2011 | 10 | 1000 0001 | 2 | 1 | 84.5 | | | 1001 2220 | 8 | 1001 2220 | 8 | 1000 1100 | 3 | 0000 0000 | 0 | 0 | 84 · 5 | | 21 q | 1112 2103 | 11 | 1002 2103 | 9 | 0111 0003 | 6 | 0000 0001 | 1 | 1 | 84.5 | | 22 | | ii | 0111 2212 | 10 | 1100 0012 | 5 | 0000 0000 | 0 | 0 | 84 · 5 | | 23 | 1111 2212 | 12 | 2002 3210 | 10 | 2111 1100 | 7 | 0000 0000 | 0 | 1 | 84 · 5 | | 24
25 | 2112 3210
1110 2322 | 12 | 1100 2322 | 11 | 0110 0111 | 5 | 0000 0000 | 0 | 1 | 84.5 | | | 2011 222 | 15 | 3001 2332 | 14 | 3010 0111 | 7 | 1000 0000 | 1 | 1 | 84.6 | | 26 | 3011 2332
1111 2221 | 11 | 1101 2221 | 10 | 1110 1000 | 4 | 0000 0000 | 0 | 0 | 84.6 | | 27 | 2010 2210 | 8 | 2010 2210 | 8 | 2010 0000 | 3 | 0000 0000 | 0 | 0 | 84.6 | | 28 q | 0101 1331 | 10 | 0101 1331 | 10 | 0000 0110 | 2 | 0000 0000 | 0 | 1 | 84 • 6 | | 29
30 | 2210 1211 | 10 | 2210 1211 | 10 | 2110 0011 | 6 | 0000 0000 | 0 | 0 | 84 · 6 | | | | | | | | | <u> </u> | Nean | 0.53 | 84.5 | q denotes an international quiet day and d an international disturbed day. $K_{\overline{R}}$ For horizontal component. $K_{\overline{D}}$ For declination. $K_{\overline{Z}}$ For vertical component. (See Introduction). Mean values for periods of sixty minutes ending at exact hours, 0 19 ESKDALEMUIR (H) 16,000γ (0·16 CGS unit) + | 19 ESF | DALEMU | IR (H |) | | | | | | | | | 16,000> | (0.16 | CGS 'u | nit) + | | | | | | | | | | , | MY 1965 | |-----------------|-------------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
21,000y+ | | | γ | | 1 | 916 | 911 | 910 | 907 | 907 | 904 | 903 | 899 | 899 | 893 | 889 | 896 | 899 | 901 | 906 | 909 | 909 | 913 | 918 | 916 | 914 | 913 | 913 | 911 | 907 | 756 | | 2 q | 913
912 | 911
912 | 910
913 | 910
909 | 909
909 | 906
907 | 901
906 | 897
906 | 892 | 885 | 880 | 887 | 895 | 906 | 911 | 913 | 913 | 914 | 913 | 911 | 911 | 914 | 914 | 909 | 905 | 725 | | 3
4 | | 917 | 915 | 913 | | | | 909 | 901 | 897 | 889 | 884
874 | 891 | 903 | 914 | 922 | 923 | 923 | 920 | 917 | 916 | 917 | 915 | 914 | 909 | 820 | | 4
5 d | 916
936 | 941 | 897 | 901 | 913
890 | 911
886 | 913
890 | 898 | 903
891 | 892
879 | 879
863 | 874
875 | 880
880 | 895
879 | 906
890 | 915
893 | 923
918 | 921
911 | 924
916 | 932
914 | 925
907 | 925
916 | 925
911 | 937
897 | 911
899 | 864
579 | | 6 | 903 | 894 | 899 | 899 | 899 | 901 | 897 | 889 | 882 | 883 | 883 | 887 | 883 | 892 | 908 | 914 | 913 | 911 | 923 | 919 | 917 | 915 | 916 | 918 | 902 | 645 | | 7 | 911 | 905 | 903 | 901 | 898 | 903 | 901 | 895 | 890 | 889 | 885 | 882 | 883 | 899 | 907 | 909 | 916 | 911 | 905 | 913 | 910 | 910 | 909 | 907 | 902 | 642 | | 8 d | 907 | 909 | 905 | 907 | 906 | 909 | 907 | 901 | 888 | 880 | 882 | 880 | 890 | 895 | 913 | 909 | 910 | 914 | 921 | 931 | 903 | 905 | 895 | 871 | 902 | 638 | | 9 d | 870 | 916 | 928 | 891 | 889 | 882 | 887 | 885 | 885 | 885 | 890 | 895 | 896 | 895 | 904 | 902 | 911 | 914 | 913 | 914 | 919 | 905 | 902 | 892 | 899 | 570 | | 10 d | 914 | 907 | 901 | 902 | 913 | 907 | 892 | 888 | 890 | 890 | 879 | 883 | 890 | 895 | 898 | 909 | 913 | 915 | 921 | 916 | 913 | 913 | 907 | 905 | 903 | 661 | | 11 q | 904 | 905 | 902 | 902 | 902 | 901 | 901 | 895 | 889 | 883 | 882 | 886 | 897 | 897 | 898 | 901 | 907 | 912 | 915 | 916 | 911 | 911 | 914 | 913 | 902 | 644 | | 12 | 912 | 914 | 910 | 910 | 909 | 904 | 898 | 895 | 893 | 894 | 886 | 888 | 891 | 896 | 906 | 913 | 918 | 919 | 918 | 915 | 913 | 914 | 911 | 911 | 906 | 738 | | 13 q | 908 | 906 | 905 | 905 | 907 | 904 | 897 | 894 | 894 | 892 | 889 | 892 | 906 | 913 | 917 | 913 | 913 | 918 | 918 | 919 | 918 | 914 | 914 | 913 | 907 | 769 | | 14 q | 916 | 910 | 908 | 907 | 906 | 906 | 905 | 904 | 902 | 896 | 894 | 892 | 895 | 895 | 906 | 918 | 925 | 931 | 924 | 928 | 919 | 918 | 918 | 919 | 910 | 842 | | 15 | 919 | 926 | 920 | 919 | 916 | 916 | 915 | 916 | 912 | 903 | 890 | 882 | 882 | 887 | 900 | 916 | 923 | 930 | 925 | 921 | 926 | 924 | 925 | 933 | 914 | 926 | | 16 d | 930 | 926 | 923 | 930 | 936 | 927 | 901 | 894 | 905 | 902 | 885 | 874 | 887 | 907 | 859 | 898 | 906 | 918 | 918 | 918 | 920 | 925 | 925 | 907 | 909 | 821 | | 17 | 910 | 909 | 902 | 899 | 895 | 898 | 898 | 896 | 894 | 885 | 885 | 887 | 889 | 897 | 901 | 911 | 910 | 921 | 918 | 918 | 915 | 913 | 914 | 913 | 903 | 678 | | 18 | 913 | 913 | 913 | 909 | 914 | 910 | 907 | 902 | 890 | 879 | 880 | 884 | 893 | 901 | 907 | 913 | 922 | 922 | 918 | 912 | 916 | 913 | 914 | 913 | 907 | 758 | | 19 q | 910 | 909 | 908 | 910 | 911 | 909 | 904 | 897 | 888 | 882 | 881 | 880 | 889 | 904 | 907 | 914 | 915 | 921 | 921 | 920 | 919 | 918 | 919 | 918 | 906 | 754 | | 20 | 919 | 917 | 916 | 915 | 914 | 914 | 911 | 902 | 897 | 893 | 886 | 889 | 899 | 908 | 915 | 923 | 933 | 930 | 932 | 936 | 933 | 927 | 925 | 926 | 915 | 960 | | 21 | 922 | 914 | 917 | 919 | 921 | 917 | 910 | 901 | 892 | 883 | 886 | 894 | 903 | 911 | 916 | 928 | 921 | 934 | 927 | 925 | 923 | 906 | 911 | 911 | 912 | 892 | | 22 | 904 | 908 | 916 | 908 | 907 | 907 | 906 | 904 | 900 | 890 | 889 | 887 | 894 | 895 | 905 | 921 | 914 | 935 | 944 | 931 | 926 | 923 | 921 | 917 | 911 | 852 | | 23 | 918 | 918 | 915 | 911 | 911 | 909 | 906 | 896 | 890 | 885 | 883 | 885 | 887 | 884 | 888 | 894 | 909 | 920 | 926 | 927 | 921 | 918 | 918 | 926 | 906 | 745 | | 24 | 923 | 915 | 916 | 916 | 916 | 914 | 906 | 916 | 916 | 908 | 901 | 900 | 898 | 901 | 906 | 913 | 917 | 924 | 923 | 923 | 915 | 917 | 914 | 911 | 913 |
909 | | 25 | 915 | 915 | 914 | 916 | 918 | 917 | 914 | 907 | 898 | 890 | 887 | 892 | 900 | 908 | 908 | 919 | 929 | 928 | 930 | 925 | 920 | 917 | 915 | 916 | 912 | 898 | | 26 | 917 | 915 | 919 | 921 | 921 | 918 | 913 | 902 | 896 | 896 | 900 | 908 | 918 | 928
899 | 936
898 | 936 | 937 | 929 | 924 | 928 | 930 | 930 | 928 | 927 | 920 | 1077 | | 27 | 920 | 921 | 913 | 921 | 925 | 919 | 912 | 902 | 898 | 894 | 891 | 895 | 896 | | 916 | 906 | 911 | 931
921 | 930 | 929 | 928 | 927 | 928 | 925 | 913 | 919 | | 28 | 921 | 917 | 918 | 923 | 921 | 921 | 915
909 | 906 | 896
899 | 888 | 884
894 | 894
894 | 897 | 900
905 | 915 | 909 | 911
912 | 921 | 929 | 922
930 | 921 | 921 | 921 | 920 | 912 | 892 | | 29
30 | 921
919 | 917
918 | 915
914 | 919
914 | 918
916 | 913
914 | 913 | 899
912 | 909 | 898
906 | 902 | 902 | 905
911 | 914 | 918 | 916
923 | 912 | 922 | 926
925 | 930 | 926
927 | 925
926 | 923
926 | 919
925 | 913
917 | 920
1001 | | | _ | | 921 | 923 | 924 | 922 | 917 | 915 | 913 | 906 | 902 | 908 | 903 | 904 | 916 | 925 | 931 | 928 | 930 | 929 | 930 | 930 | 928 | 928 | 920 | | | 31 | 925 | 921 | | | | | | | | | | | | | 906 | | | | | | | | | | | 1079 | | Mean | 914 | 914 | 912 | 911 | 911 | 909 | 905 | 901 | 897 | 891 | 887 | 889 | 894 | 901 | 906 | 913 | 917 | 921 | 922 | 922 | 919 | 918 | 917 | 915 | 909 | | | Sum
27,000y+ | 1344 | 1337 | 1267 | 1237 | 1241 | 1176 | 1055 | 922 | 792 | 626 | 496 | 556 | 727 | 914 | 1095 | 1305 | 1431 | 1562 | 1595 | 1583 | 1492 | 1450 | 1419 | 1352 | | Grand Total
675,974 | | ZU ES | KDALEMU | | <u></u> | Γ | MAY 1965 | |---------------|-------------|------------|---------|-----|-----------|-----------|-----------|-----------|--------------|--------|-----------|--------|--------|--------|-----------|-------------|---------|-------|---------|---------|--------|--------------|-----------|---------|-------------|------|-------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3 | -4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | - | Sum
1400 · 0 | | 1 | 60.7 | ,
60·8 | 60.6 | 60 | ,
.4 6 | ,
50·1 | ,
59·0 | ,
58·1 | ,
57·4 | 57·2 | ,
58·8 | 61·7 | 64.5 | 66.3 | ,
66·4 | ,
66 · 0 | 64 · 5 | 63·4 | 63·1 | 62:5 | 62·1 | 61·6 | ,
61·4 | 61.2 | ,
60 · 7 | 61.6 | 78·5 | | 2 q | 60.8 | 60.7 | 60.7 | | .5 5 | | 58.6 | | 56.6 | 56 . 7 | 58.4 | 61.3 | 64.6 | | 68.7 | | | | | | | 61.7 | | | 60.1 | 61.7 | 81.2 | | 3 | 59.8 | 60.5 | | | | | | 56.3 | | 56 · 4 | 58 · 2 | 61.4 | 63.6 | | | | | | | | | 62.1 | | | 61.3 | 61.3 | 71.7 | | 4 | 61.3 | 61.1 | | | | 8.5 | 58.0 | | 55.6 | 55 · 7 | 57 · 5 | 61.2 | 64.3 | 66.3 | 67.4 | 67.1 | 66.8 | 65.9 | 64.3 | 62.6 | 62 · 4 | 62.7 | 62.2 | 62.1 | 62.6 | 61.8 | 82 - 4 | | 5 d | 61.8 | 59.8 | 50.8 | 52 | 1 5 | 3 · 1 | 62.2 | 61.7 | 54.5 | 54.6 | 58 · 1 | 61.3 | 64 • 2 | 66.1 | 68.0 | 68.9 | 68.5 | 67.8 | 65.4 | 63.2 | 61.3 | 59 • 9 | 58.7 | 56 · 7 | 57.5 | 60.7 | 56 - : | | 6 | 58.2 | 58.6 | 60.8 | 60 | .3 5 | 9 • 4 | 58.6 | 57 · 8 | 56 · 9 | 57 · 7 | 59 · 4 | 61 · 1 | 64 • 4 | 67.9 | 68 · 1 | 66.9 | 66 · 1 | 64.6 | 63.0 | 61.9 | 61 · 2 | 61 · 4 | 60.4 | 60.3 | 61.9 | 61.5 | 76・ | | 7 | 60.3 | 58 • 4 | 58 • 6 | 58 | ·1 5 | 9 · 8 | 59 • 4 | 57.9 | 57.6 | 57 · 2 | | 62.4 | 65 • 4 | | | | | | | | | 61.5 | | 61 · 2 | 61.2 | 61.4 | 73 - 5 | | 8 d | 60.7 | 61.0 | 60.0 | 60 | •3 5 | 8.6 | 57 · 7 | | | | | 62.3 | | | 67.1 | | | | | | | .61.7 | | | | 61.1 | 65 - | | 9 d | 55.6 | 60.7 | | | | 55 · 8 | 58 · 3 | | | 57 · 6 | | | | | 64.6 | | | | | | | 58.9 | | | | 59.6 | 30 · | | 0 d | 58.6 | 58 • 4 | 56.6 | 56 | •7 5 | 6 · 7 | 57 • 4 | 58.0 | 58 · 1 | 57.8 | 59.5 | 61.4 | 63.2 | 65.0 | 65.1 | 64 · 1 | 63.3 | 62.6 | 61.6 | 60.1 | 61 · 1 | 61 · 1 | 58.6 | 61.0 | 60.7 | 60.3 | 46 · | | 1 q | 60.5 | 60.4 | 60.3 | 59 | .9 5 | 9 · 4 | 58 · 2 | 57.8 | 57.8 | 57.8 | 58.9 | 61.1 | 63.0 | 66.0 | 66.8 | 66 • 1 | 64.9 | 64.0 | 62.9 | 62.6 | 62.0 | 61.7 | 61.6 | 61 · 4 | 61 · 1 | 61.5 | 76・ | | 2 | 60.8 | 60.1 | 60.9 | 60 | • 7 5 | 6 · 8 | 55 · 7 | 56 · 1 | 57.3 | 59.3 | 60.5 | 64:0 | 65 • 2 | | 65 • 4 | 64 • 7 | | | | | | 61 · 2 | | | 60.2 | 61.1 | 67 - | | 3 q | 60.4 | 60.1 | 59.6 | 59 | •4 5 | 9 • 1 | | 58 · 1 | | 57 · 7 | | 62.1 | 64 • 4 | | | | | | | | | 61 · 2 | | | | 61.2 | 69. | | 4 q | 58.8 | 58 · 7 | 59.0 | | | 8.5 | | | 57 · 2 | | | | | | | | | | | | | 59 · 8 | | | | 61.2 | 69・ | | 5 | 60.8 | 61.3 | 60.5 | 59 | •9 5 | 8.5 | 57 · 2 | 56 · 1 | 55 · 1 | 55 · 6 | 58 · 1 | 61.3 | 64 • 4 | 68.0 | 68.9 | 68.5 | 66.5 | 66.0 | 64 · 4 | 62.2 | 61.6 | 61.6 | 61.0 | 58.7 | 60.1 | 61.5 | 76 · | | 5 d | 60.2 | 59.5 | 59.6 | •59 | | 7.8 | 58 · 1 | 57 · 1 | | 61.0 | | 62.5 | | | 72.7 | | | | | | | 61.5 | | | | 62.3 | 94・ | | 7 | 60.5 | 61.5 | 62.3 | | | | | 57 · 1 | | | 58.5 | | | | 67.9 | | | | | | | 61.6 | | | | 61.5 | 76 · | | .8 | | 60.8 | 61.5 | | •3 6 | | 56 · 9 | 56.0 | | 58 · 4 | | 62.6 | - 1 | | | | | | | | | 61 · 4 | | | | 61.7 | 81 · | | 9 q | | 60.9 | 60.6 | | .1 2 | | | | 57.5 | | | 62.6 | | | 67.7 | | | | | | | 61·5
63·4 | | | | 61.6 | 79 · : | | 0 | 61.1 | 60.7 | 60.7 | 60 | •7 5 | 9 · 4 | 57.0 | 55 · 1 | 54 · 7 | 56 • 6 | 28.8 | 61 · 4 | 63.2 | 65.7 | 00.0 | 65.2 | 04.7 | 03.4 | 63.6 | 63.3 | 63.6 | 03.4 | 62.9 | 02.1 | 61.7 | 91.2 | | | 1 | 58.5 | 58.8 | 59.3 | 59 | ·0 5 | 8 · 1 | 56 · 9 | 56 · 1 | | | | | | | 66 · 1 | 64 · 7 | | | | | | 59 • 4 | 58 · 0 | | | 60.1 | 43. | | 2 | 57.2 | 57.8 | 56.0 | 53 | | 4 · 1 | 53.8 | 55.0 | | 58 · 7 | | 61.7 | | | 66 · 5 | | | | | | | 62.2 | | | | 60.4 | 50 · | | 3 | 61.1 | 60.4 | 59.5 | | | | | 54 · 1 | | 57 · 7 | | 63.1 | | | 65.8 | | 64 · 7 | 64.0 | | | | | 61.2 | | | 60.8 | 59・ | | 4 | 60.7 | 60.7 | 60.7 | | | 7.8 | 55.9 | | 57.2 | | | 60.8 | | | | | | | | | | 61.6 | | | | 60.8 | 59. | | 5 | 60.1 | 59 · 7 | 59.6 | 59 | •5 5 | 8 · 6 | 57.3 | 56 · 1 | 56.0 | 56 · 1 | 57.9 | 90.1 | 91.6 | 63.7 | 04.8 | 02.8 | 02.9 | 65.0 | 03.4 | 02.8 | 02.1 | 61.6 | 01.3 | 01.3 | 91.0 | 60.9 | 61. | | 6 | 60.7 | 60・4 | 60.2 | | | 7 · 2 | | 57.0 | | | 57.3 | | | | 65.8 | | | | | | | 62.9 | | | | 61.0 | 63. | | 7 | 59.8 | 57.8 | 55 · 1 | | - | 7.5 | | 57.2 | 57 • 4 | 58 · 7 | | 65.3 | | | | | | | | | | 63.1 | | | | 61.5 | 76 · | | 8 | | 60.4 | 60.7 | | | 8.7 | 58 • 4 | 58.0 | | | 57 7 | 64.5 | | | 67·1 | | | | | | | 62·0
61·1 | | | | 60.7 | 56 . | | 9 | | 60.5 | 60.3 | | | | 56 · 1 | | 55·7
57·7 | | | | | | 64.8 | | | | | | | 61.6 | | | | 61.5 | 75. | | 0 | 60.7 | 60.3 | 59.9 | | - | | | | | | | | ł | | | | | | | | | | | | | | | | 1 | | 60.7 | 60.4 | | 9 5 | | | | 58.6 | | | | | 66.9 | 67.4 | 67.2 | | | | | | 61 · 7 | | | | 62.1 | 89. | | an | 60.2 | 60 · 1 | 59.5 | 59 | 0 5 | 8.2 | 57.5 | 56 · 9 | 56 · 8 | 57 • 4 | 59 · 1 | 61.8 | 64 5 | 66 · 4 | 66 · 8 | 66 · 2 | 65.1 | 63.9 | 63.0 | 62.2 | 61.7 | 61.5 | 60.9 | 60.6 | 60.2 | 61.2 | | | ım
• 0 ′ + | 166 · 1 | 161.5 | 142.8 | 129 | 5 10 | 3.0 | 83.9 | 65.4 | 60 · 1 | 79 • 7 | 132 · 2 | 214·8 | 298.7 | 358.8 | 372 · 1 | 352.3 | 318 · 7 | 282.6 | 253 · 2 | 228 • 4 | 213.0 | 206 · 1 | 189 • 4 | 178 • 0 | 165 · 2 | - 1 | Grand To
45555 | #### $\label{eq:GEOMAGNETIC FORCE: VERTICAL COMPONENT} \\ \text{Mean values for periods of sixty minutes ending at exact hours, GMT}$ 21 ESKDALEMUIR (Z) 45,000y (0.45 CGS unit) + MAY 1965 | | | | | | | | | | | | | -,, | (| - COD U | , | | | | | | | | | | | M1 1905 | |----------------|-------------|------------|----------|----------|----------|----------|----------|----------|----------|-----------------|-----------------|------------------|-------|------------------|----------|----------|----------|-------|-------------|-----------------|------------------|----------|----------|----------------------|--------------|-----------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 3 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
10,000γ+ | | | 2/ | ~ | ~ | ~ | ~ | ~ | ~~ | 24 | | | | | · . | | | | | | | | | | | | | | | 1 | 440 | γ
440 | γ
440 | γ
440 | γ
440 | γ
443 | γ
443 | γ
440 | γ
433 | γ
429 | γ
423 | γ
42 0 | 421 | у
42 6 | γ
432 | у
434 | γ
437 | 438 | γ
438 | γ
438 | γ
43 8 | γ
439 | γ
439 | $\frac{\gamma}{440}$ | γ
435 | γ
451 | | 2 9 | 410 | 410 | 410 | 409 | | 410 | 409 | 406 | 400 | 393 | 389 | 386 | 416 | 423 | 429 | 434 | 437 | 440 | 440 | 440 | 439 | 439 | 438 | 438 | 419 | 53 | | 3 | 438 | 437 | 434 | 434 | | 436 | 434 | 430 | 426 | 422 | 423 | 424 | 425 | 430 | 433 | 434 | 436 | 438 | 439 | 439 | 438 | 437 | 438 | 438 | 433 | 399 | | 4 | 437 | 437 | 437 | 437 | 438 | 438 | 437 | 433 | 433 | 428 | 427 | 426 | 426 | 429 | 436 | 439 | 441 | 444 | 444 | 442 | 440 | 439 | 438 | 434 | 436 | 460 | | 5 d | 433 | 420 | 415 | 418 | | 422 | 412 | 413 | 41£ | 417 | 426 | 423 | 425 | 431 | 439 | 444 | 452 | 463 | 464 | 457 | 451 | 443 | 432 | 429 | 432 | 368 | | 6 | 430 | 436 | 438 | 439 | | 444 | 445 | 444 | 440 | 433 | 428 | 427 | 424 | 430 | 434 | 439 | 446 | 450 | 449 | 446 | 444 | 443 | 437 | 430 | 438 | 518 | | 7 | 420 | 428 | 436 | 438 | | 438 | 438 | 436 | 430 | 422 | 422 | 422 | 423 | 427 | 433 | 439 | 445 | 446 | 446 | 446 | 443 | 440 | 440 | 439 | 435 | 435 | | 8 d | 440 | 438 | 440 | 438 | 438 | 437 | 434 | 434 | 432 | 423 | 421 | 422 | 422 | 423 | 429 | 434 | 437 | 440 | 440 | 443 | 452 | 446 | 432 | 421 | 434 | 416 | | 9 d | 412 | 405 | 394 | 414 | | 430 | 430 | 434 | 431 | 426 | 420 | 420 | 425 | 431 | 436 | 441 | 445 | 447 | 448 | 448 | 446 | 444 | 434 | 434 | 430 | 322 | | 10 d | 424 | 420 | 422 | 422 | 419 | 419 | 425 | 428 | 432 | 429 | 429 | 430 | 429 | 433 | 437 | 442 | 444 | 445 | 449 | 448 | 447 | 444 | 441 | 441 | 433 | 399 |
| 11 q | 441 | 440 | 440 | 440 | | 440 | 440 | 439 | 436 | 434 | 432 | 422 | 416 | 425 | 429 | 437 | 442 | 443 | 443 | 443 | 441 | 441 | 440 | 439 | 437 | 483 | | 12 | 439 | 438 | 434 | 432 | 430 | 430 | 431 | 431 | 427 | 425 | 422 | 421 | 425 | 432 | 438 | 443 | 445 | 446 | 445 | 443 | 443 | 441 | 441 | 440 | 435 | 442 | | 13 q | 438 | 438 | 439 | 440 | 440 | 439 | 439 | 437 | 433 | 429 | 425 | 418 | 419 | 423 | 430 | 436 | 441 | 443 | 444 | 445 | 444 | 444 | 441 | 439 | 436 | 464 | | 14 q | 440 | 439 | 440 | 440 | 440 | 439 | 437 | 433 | 434 | 432 | 426 | 422 | 426 | 429 | 438 | 430 | 434 | 438 | 443 | 444 | 445 | 444 | 440 | 439 | 436 | 472 | | 15 | 439 | 434 | 434 | 435 | 437 | 438 | 436 | 436 | 433 | 427 | 422 | 417 | 421 | 427 | 431 | 433 | 438 | 440 | 444 | 443 | 440 | 440 | 437 | 433 | 434 | 415 | | 16 d | 431 | 433 | 434 | 434 | 434 | 437 | 437 | 433 | 427 | 419 | 417 | 417 | 416 | 438 | 451 | 454 | 457 | 454 | 452 | 449 | 444 | 440 | 433 | 434 | 436 | 475 | | 17 | 439 | 439 | 438 | 438 | 438 | 438 | 439 | 440 | 438 | 433 | 425 | 419 | 425 | 434 | 440 | 450 | 452 | 451 | 450 | 445 | 444 | 441 | 439 | 440 | 439 | 535 | | 18 | 441 | 441 | 442 | 443 | 443 | 446 | 446 | 446 | 443 | 437 | 429 | 426 | 432 | 436 | 440 | 443 | 445 | 450 | 446 | 444 | 441 | 441 | 440 | 440 | 441 | 581 | | 19 q | 441 | 441 | 443 | 443 | 444 | 444 | 443 | 443 | 440 | 434 | 427 | 420 | 421 | 429 | 433 | 438 | 444 | 444 | 443 | 441 | 440 | 438 | 438 | 439 | 438 | 511 | | 20 | 439 | 439 | 440 | 440 | 443 | 443 | 441 | 435 | 427 | 422 | 412 | 408 | 413 | 423 | 428 | 433 | 436 | 440 | 44 0 | 438 | 437 | 437 | 437 | 436 | 433 | 387 | | 21 | 437 | 438 | 438 | 438 | 438 | 438 | 438 | 438 | 435 | 426 | 416 | 414 | 422 | 432 | 437 | 442 | 445 | 447 | 449 | 447 | 446 | 446 | 440 | 440 | 437 | 487 | | 22 | 439 | 437 | 433 | 433 | 433 | 433 | 429 | 428 | 424 | 415 | 415 | 415 | 415 | 421 | 427 | 432 | 438 | 440 | 444 | 450 | 447 | 441 | 440 | 439 | 432 | 368 | | 23 | 438 | 437 | 434 | 434 | 437 | 436 | 433 | 433 | 432 | 427 | 423 | 422 | 426 | 429 | 433 | 436 | 440 | 444 | 443 | 443 | 441 | 440 | 437 | 427 | 434 | 425 | | 24 | 426 | 427 | 428 | 430 | 433 | 434 | 430 | 425 | 427 | 428 | 426 | 423 | 422 | 426 | 429 | 430 | 432 | 437 | 441 | 444 | 444 | 440 | 440 | 439 | 432 | 361 | | 25 | 438 | 438 | 438 | 438 | 438 | 434 | 437 | 438 | 434 | 428 | 420 | 412 | 412 | 416 | 422 | 427 | 434 | 441 | 444 | 444 | 443 | 441 | 440 | 440 | 433 | 397 | | 26 | 438 | 437 | 434 | 436 | 438 | 437 | 436 | 437 | 436 | 433 | 428 | 427 | 421 | 420 | 425 | 432 | 436 | 437 | 438 | 437 | 436 | 436 | 435 | 434 | 433 | 404 | | 27 | 437 | 436 | 437 | 438 | 438 | 439 | 435 | 433 | 428 | 419 | 414 | 415 | 416 | 423 | 430 | 436 | 441 | 444 | 440 | 439 | 439 | 438 | 438 | 438 | 433 | 391 | | 28 | 438 | 439 | 440 | 440 | 440 | 439 | 438 | 438 | 436 | 428 | 423 | 420 | 429 | 437 | 440 | 446 | 451 | 451 | 448 | 445 | 443 | 441 | 440 | 440 | 439 | 530 | | 29 | 440 | 441 | 441 | 442 | 443 | 443 | 439 | 440 | 437 | 431 | 432 | 429 | 427 | 433 | 433 | 435 | 441 | 440 | 440 | 440 | 439 | 438 | 438 | 439 | 438 | 501 | | 30 | 438 | 438 | 438 | 438 | 439 | 440 | 439 | 435 | 433 | 429 | 419 | 413 | 419 | 427 | 429 | 429 | 431 | 434 | 435 | 436 | 436 | 437 | 437 | 437 | 433 | 386 | | 31 | 437 | 437 | 437 | 437 | 437 | 436 | 434 | 433 | 429 | 421 | 416 | 412 | 415 | 425 | 427 | 429 | 435 | 441 | 440 | 438 | 437 | 436 | 436 | 436 | 432 | 361 | | Mean | 435 | 434 | 434 | 435 | 436 | 436 | 435 | 434 | 431 | 426 | 422 | 419 | 422 | 428 | 433 | 437 | 441 | 444 | 444 | 443 | 442 | 441 | 438 | 437 | 434 | | | Sum
2,000y+ | 1478 | 1458 | 1448 | 1478 | 1513 | 1520 | 1484 | 1449 | 1362 | 1199 | 1077 | 992 | 1074 | 1 268 | 1428 | 1551 | 1678 | 1756 | 1769 | 1745 | 1708 | 1654 | 1576 | 1532 | | Grand Tota
323,197 | #### GEOMAGNETIC CHARACTER FIGURES (K, K_H , K_D , K_Z , AND C) AND TEMPERATURE IN MAGNETOGRAPH CHAMBER | 2 | 2 ESKDALEMUI | R | | | | | | | | MAY 1965 | |-----|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------|--|-------------------------------|--|---| | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of K _D indices | 3-h range
indices
K _Z | Sum of K _Z indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph chamber
200°A+ | | 1 | 2112 2111 | 11 | 2002 2111 | 9 | 1110 0000 | 3 | 0000 0000 | 0 | 1 | 84 · 7 | | 2 q | 0000 1101 | 3 | 0000 1101 | 3 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 84.7 | | 3 | 1000 2200 | 5 | 1000 2200 | 5 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 84 · 7 | | í | 0111 0222 | 9 | 0101 0222 | 8 | 0110 0010 | 3 | 0000 0000 | 0 | 1 | 84 · 7 | | 5 d | 4443 3423 | 27 | 4333 3423 | 25 | 4442 1123 | 21 | 2211 1222 | 13 | 1 | 84 · 8 | | 5 | 2111 3222 | 14 | 2011 3222 | 13 | 2111 1012 | 9 | 0000 0002 | 2 | 1 1 | 84 · 8 | | í | 2211 2120 | 11 | 2201 2120 | 10 | 2111 0020 | 7 | 2010 0000 | 3 | 1 | 84 · 8 | | 3 d | 2112 2334 | 18 | 2112 2334 | 18 | 1111 1214 | 12 | 0000 0123 | 6 | 1 | 84 · 8 | | d | 4322 2233 | 21 | 4312 2233 | 20 | 3221 0032 | 13 | 2200 0001 | 5 | 1 | 84 · 8 | | , d | 3221 1222 | 15 | 3221 1222 | 15 | 2110 0012 | 7 | 1000 0000 | 1 | 1 | 84.8 | | l q | 0000 1112 | 5 | 0000 1112 | 5 | 0000 0001 | 1 | 0000 0000 | 0 | 0 | 84 · 8 | | - | 2211 1111 | 10 | 2201 1111 | 9 | 1210 0001 | 5 | 0000 0000 | 0 | 0 | 84 · 8 | | q | 0011 2211 | 8 | 0011 2211 | 8 | 0000 0001 | 1 | 0000 0000 | 0 | 0 | 84 · 8 | | q | 1100 1120 | 6 | 1100 1120 | 6 | 1000 0010 | 2 | 0000 0000 | 0 | 0 | 84 · 8 | | • | 2000 2222 | 10 | 2009 2222 | 10 | 1000 0012 | 4 | 1000 0001 | 2 | 1 | 84 · 8 | | i d | 2333 5323 | 24 | 2333 5323 | 24 | 1232 2112 | 14 | 0011 2101 | 6 | 1 | 84 · 8 | | , | 2222 1220 | 13 | 2112 1220 | 11 | 2221 1000 | 8 | 0000 0000 | 0 | 1 | 84 · 9 | | 3 | 1211 1221 | 11 | 1101 1221 | 9 | 0210 0000 | 3 | 0000 0000 | 0 | 1 | 84 · 8 | | q | 1111 1001 | 6 | 1011 1001 | 5 | 0100 0000 | 1 | 0000 0000 | 0 | 0 | 84 · 7 | |) _ | 1000 2212 | 8 | 1000 2212 | 8 | 0000 0112 | 4 | 0000 0000 | 0 | 0 | 84 · 7 | | | 2101 2222 | 12 | 2101 2222 | 12 | 1100 1122 | 8 | 0000 0000 | 0 | 1 1 | 84 · 8 | | | 2211 1331 | 14 | 2201 1331 | 13 | 2111 0121 | 9 | 1000 0010 | 2 | 1 1 | 84 · 8 | | 3 | 1011 2112 | 9 | 1011 2112 | 9 | 0010 1002 | 4 | 0000 0002 | 2 | 0. | 84 • 7 | | ļ | 2120 1332 | 14 | 2020 1332 | 13 | 1110 0100 | 4 | 0000 0000 | 0 | 1 | 84 · 8 | | ; | 1111 2221 | 11 | 1001 2221 | 9 | 0110 0000 | 2 | 0000 0000 | 0 | 0 | 84.8 | | i | 1111 0222 | 10 | 0001 0222 | 7 | 1110 0012 | 6 | 0000 0000 | 0 | 0 | 84.8 | | í | 2212 2322 | 16 | 2112 2322 | 15 | 2210 0011 | 7 | 0000 0000 | 0 | 1 | 84.9 | | 3 | 1102 3321 | 13 | 1002 3321 | 12 | 0101 1210 | 6 | 0000 0000 | 0 | 1 | 84.9 | | , | 1111 2201 | 9 | 1011 2201 | 8 | 0100 0000 | 1 | 0000 0000 | 0 | 0 | 84.9 | |) | 1101 2110 | 7 | 1001 2110 | 6 | 1100 1000 | 3 | 0000 0000 | 0 | 0 | 84.9 | | | 1112 2211 | 11 | 1102 2211 | 10 | 1110 0001 | 4 | 0000 0000 | 0 | 1 | 84+9 | | _ | | | | | | | | Mean | 0.58 | 84 · 8 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. K_{H} For horizontal component. K_{D} For declination. K_{Z} For vertical component. (See Introduction). 19 ESKDALEMUIR (H) 16,000γ (0·16 COS unit) + JUNE 1965 | 1, 20 | 11011110140 | | , | | | | | | | | - | 0,000/ | (0 10 | CCD UII | 11, | | | | | | | | | | ,,, | NE 1905 | |-----------------|-------------|------------|-------|------|------|------|------|-----|-----|----------|----------|----------|-------|----------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
21,000y+ | | | γ | γ | γ | γ | γ | γ | γ | γ | γ | ~ | ~ | ~ | γ | ~ | ~ | γ | γ | γ | γ | γ | γ | γ | γ | γ | ~ | γ | | 1 | 919 | 920 | 921 | 923 | 923 | 921 | 919 | 914 | 911 | γ
903 | γ
892 | γ
896 | 904 | γ
914 | γ
926 | 930 | 931 | 931 | 933 | 931 | 928 | 925 | 921 | 920 | 919 | 1056 | | 2 | 918 | 918 | 917 | 916 | 916 | 916 | 915 | 912 | 906 | 898 | 896 | 898 | 908 | 910 | 904 | 926 | 929 | 934 | 925 | 925 | 918 | 917 | 918 | 916 | 915 | 966 | | 3 | 917 | 918 | 916 | 914 | 913 | 909 | 902 | 896 | 885 | 879 | 878 | 883 | 894 | 916 | 928 | 923 | 929 | 945 | 941 | 929 | 930 | 931 | 921 | 910 | 913 | 907 | | 4 | 913 | 915 | 916 | 923 | 924 | 918 | 908 | 899 | 899 | 889 | 880 | 880 | 901 | 918 | 913 | 910 | 937 | 932 | 933 | 922 | 925 | 921 | 911 | 913 | 913 | 900 | | 5 | 912 | 922 | 898 | 898 | 894 | 896 | 898 | 897 | 890 | 886 | 882 | 882 | 890 | 897 | 904 | 912 | 916 | 921 | 924 | 921 | 916 | 916 | 917 | 917 | 904 | 706 | | 6 | 916 | 913 | 910 | 909 | 912 | 909 | 904 | 901 | 893 | 905 | 906 | 907 | 904 | 912 | 918 | 929 | 928 | 928 | 928 | 931 | 921 | 916 | 913 | 913 | 914 | 926 | | 7 | 911 | 913 | 906 | 910 | 909 | 907 | 902 | 894 | 887 | 887 | 885 | 884 | 890 | 895 | 910 | 918 | 919 | 912 | 918 | 921 | 918 | 914 | 914 | 912 | 906 | 736 | | 8 | 911 | 914 | 911 | 912 | 910 | 904 | 899 | 900 | 900 | 901 | 895 | 899 | 905 | 902 | 911 | 912 | 936 | 949 | 952 | 930 | 944 | 929 | 918 | 918 | 915 | 962 | | 9 d | 909 | 913 | 917 | 908 | 911 | 915 | 883 | 885 | 882 | 885 | 894 | 904 | 907 | 907 | 913 | 896 | 897 | 904 | 926 | 933 | 928 | 920 | 917 | 917 | 907 | 771 | | 10 q | 913 | 911 | 907 | 906 | 906 | 910 | 903 | 898 | 897 | 901 | 899 | 898 | 895 | 901 | 902 | 903 | 909 | 919 | 926 | 925 | 919 | 915 | 914 | 914 |
908 | 791 | | 11 | 911 | 912 | 913 | 914 | 912 | 910 | 902 | 898 | 897 | 894 | 892 | 892 | 899 | 909 | 916 | 911 | 919 | 921 | 921 | 940 | 942 | 935 | 926 | 927 | 913 | 913 | | 12 | 925 | 923 | 919 | 922 | 919 | 921 | 916 | 906 | 894 | 888 | 891 | 902 | 894 | 902 | 914 | 921 | 926 | 927 | 926 | 930 | 930 | 926 | 926 | 926 | 916 | 974 | | 13 q | 921 | 920 | 921 | 925 | 924 | 919 | 911 | 902 | 894 | 892 | 894 | 896 | 903 | 908 | 912 | 920 | 927 | 935 | 938 | 940 | 934 | 937 | 932 | 930 | 918 | 1035 | | 14 | 929 | 926 | 926 | 921 | 918 | 916 | 915 | 915 | 907 | 899 | 898 | 898 | 905 | 912 | 930 | 929 | 931 | 938 | 937 | 947 | 930 | 921 | 918 | 915 | 920 | 1081 | | 15 d | 921 | 923 | 920 | 919 | 918 | 909 | 906 | 899 | 896 | 893 | 894 | 899 | 911 | 938 | 925 | 931 | 940 | 961 | 962 | 940 | 931 | 926 | 930 | 919 | 921 | 1111 | | 16 d | 919 | 926 | , 913 | 903 | 898 | 922 | 884 | 866 | 820 | 794 | 816 | 847 | 874 | 915 | 952 | 958 | 980 | 932 | 931 | 892 | 840 | 841 | 853 | 863 | 889 | 339 | | 17 d | 848 | 895 | 902 | 881 | 877 | 877 | 900 | 866 | 870 | 861 | 862 | 863 | 878 | 890 | 916 | 930 | 935 | 925 | 925 | 920 | 915 | 925 | 918 | 887 | 894 | 466 | | 18 | 899 | 913 | 907 | 912 | 902 | 904 | 900 | 889 | 876 | 868 | 866 | 873 | 884 | 893 | 902 | 912 | 915 | 922 | 948 | 930 | 940 | 922 | 916 | 919 | 905 | 712 | | 19 | 912 | 908 | 902 | 906 | 907 | 907 | 899 | 890 | 880 | 875 | 872 | 875 | 880 | 889 | 897 | 906 | 915 | 919 | 918 | 918 | 917 | 916 | 916 | 914 | 902 | 638 | | 20 q | 912 | 912 | 910 | 910 | 910 | 909 | 906 | 902 | 897 | 890 | 883 | 882 | 883 | 893 | 906 | 912 | 916 | 918 | 928 | 925 | 924 | 918 | 916 | 914 | 907 | 776 | | 21 q | 915 | 916 | 914 | 914 | 914 | 915 | 913 | 908 | 899 | 887 | 880 | 882 | 891 | 902 | 911 | 912 | 916 | 918 | 925 | 926 | 927 | 922 | 923 | 919 | 910 | 849 | | 22 | 919 | 920 | 914 | 913 | 916 | 917 | 911 | 906 | 899 | 891 | 889 | 885 | 893 | 897 | 909 | 917 | 919 | 924 | 930 | 928 | 926 | 925 | 924 | 923 | 912 | 895 | | 23 | 914 | 910 | 913 | 914 | 916 | 912 | 911 | 908 | 902 | 896 | 883 | 882 | 883 | 890 | 902 | 919 | 919 | 925 | 923 | 926 | 923 | 923 | 919 | 914 | 909 | 827 | | 24 q | 919 | 916 | 916 | 916 | 914 | 911 | 905 | 900 | 900 | 902 | 901 | 900 | 897 | 897 | 896 | 912 | 929 | 928 | 938 | 938 | 930 | 926 | 926 | 924 | 914 | 941 | | 25 | 919 | 920 | 918 | 919 | 921 | 920 | 918 | 911 | 902 | 899 | 899 | 898 | 888 | 900 | 929 | 954 | 927 | 931 | 949 | 925 | 935 | 926 | 926 | 929 | 919 | 1063 | | 26 | 929 | 926 | 927 | 928 | 931 | 926 | 923 | 916 | 914 | 906 | 900 | 900 | 900 | 904 | 914 | 921 | 929 | 931 | 944 | 930 | 931 | 928 | 927 | 932 | 922 | 1117 | | 27 | 935 | 918 | 914 | 910 | 903 | 897 | 894 | 892 | 892 | 886 | 890 | 896 | 907 | 900 | 902 | 905 | 909 | 916 | 924 | 924 | 921 | 914 | 918 | 918 | 908 | 785 | | 28 | 916 | 914 | 913 | 911 | 911 | 909 | 904 | 903 | 900 | 894 | 890 | 892 | 906 | 912 | 918 | 920 | 919 | 924 | 925 | 925 | 921 | 922 | 915 | 916 | 912 | 880 | | 29 | 922 | 925 | 932 | 939 | 928 | 927 | 896 | 887 | 898 | 893 | 892 | 892 | 897 | 891 | 901 | 911 | 932 | 934 | 947 | 946 | 941 | 928 | 936 | 927 | 918 | 1022 | | 30 d | 919 | 915 | 914 | 911 | 906 | 909 | 914 | 905 | 887 | 883 | 877 | 881 | 889 | 885 | 914 | 919 | 921 | 926 | 934 | 932 | 927 | 947 | 916 | 943 | 911 | 874 | | Mean | 915 | 917 | 914 | 914 | 912 | 911 | 905 | 899 | 893 | 887 | 886 | 889 | 895 | 903 | 913 | 919 | 925 | 928 | 933 | 928 | 924 | 921 | 918 | 917 | 911 | | | Sum
26,000γ+ | 1443 | 1495 | 1427 | 1407 | 1363 | 1342 | 1161 | 965 | 774 | 625 | 576 | 666 | 860 | 1099 | 1395 | 1579 | 1755 | 1830 | 1989 | 1850 | 1732 | 1632 | 1545 | 1509 | | Grand Total
656,019 | | 20 ES | KDALEM | UIR (D |) | | | | | | | | | 9° | + | | | | | | | | | | | | : | UNE 1965 | |------------------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|--------|-----------------------| | | Hour
0-1 | | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 5 15-16 | 16-17 | 7 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
1400·0′+ | | | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | • | • | • | | • | • | , | , | | | | 1 | 59.7 | 59.9 | 59 · 8 | 59 · 1 | 57 • 4 | 56 · 7 | 55.6 | 55 · 1 | 56.0 | 58.0 | 61 · 2 | 64.2 | 65.8 | 66 · 1 | 66.5 | 66.6 | 65.9 | 63.3 | 63 · 1 | 62.9 | 62.0 | 60.2 | 58.3 | 60.1 | 61.0 | 63.5 | | 2 | 59.8 | 60.7 | 61.1 | 59.9 | 59 • 4 | 57 • 4 | 56 · 7 | 56 · 4 | 57.3 | 59 · 1 | 62.8 | 66.0 | 69.1 | | 68.5 | | | | 62 · 1 | | | | 59.9 | 59.9 | 61.8 | 83 · 2 | | 3 | 60.7 | 60.8 | 60.6 | 59 · 4 | | | 56 • 2 | 56 · 9 | 57 · 7 | 58 · 8 | 62.1 | 65.8 | 68.6 | 69.8 | 69.5 | | | | 61 · 2 | | | | 55 · 3 | | 61.8 | 83.6 | | 4 | 59.8 | 59.8 | | | | 56 · 7 | | | | | 58.5 | 61.6 | | 68 • 2 | | | | | 61 · 1 | | | | | | 60.2 | 44.6 | | 5 | 61.4 | 59 • 4 | 57.7 | 57.5 | 57 • 2 | 56.8 | 54 · 8 | 53.9 | 55 · 4 | 58 · 5 | 61.6 | 64 • 4 | 66.3 | 67 • 2 | 66 • 1 | 64 · 4 | 62.5 | 61.6 | 61.3 | 61 · 6 | 61.6 | 61 · 4 | 61 · 2 | 61.0 | 60.6 | 54.8 | | 6 | 60.7 | 60.4 | 59 · 7 | 58 · 8 | 57 - 5 | 55 · 2 | 55 · 2 | 55 · 9 | 56.8 | 59 · 1 | 62.8 | 65.2 | 67.2 | 66 · 1 | 63 · 2 | 62.3 | 62.1 | 62.3 | 62·9 | 60.5 | 61.5 | 61 · 4 | 61 · 4 | 61 · 1 | 60.8 | 59.3 | | 7 | 60.8 | 60.6 | 57 · 7 | 57.8 | 56 • 4 | 55.0 | 55 · 1 | 55.6 | 57.3 | 59.5 | 61.5 | 63.8 | 66 · 1 | 66 • 4 | 64 • 2 | 62 · 4 | 61.7 | 60.5 | 60.7 | 61.2 | 61 · 4 | 61 · 4 | 61.3 | 61.2 | 60.4 | 49.6 | | 8 | 60.8 | 60.6 | 60.1 | 59 · 7 | 58 · 1 | 55.8 | 54 · 1 | 54 · 2 | 57.5 | 59.6 | 62.8 | 65.2 | | 68 • 7 | | | | | 63.4 | | | | | | 61 · 1 | 65.2 | | 9 d | 54 · 8 | 58 · 1 | 55.9 | | | 54 · 1 | | | | | 64 · 1 | 67.6 | | | | | | | 63 · 4 | | | | | | 61.0 | 65.0 | | 10 q | 60.5 | 60.7 | 59 · 7 | 59 • 2 | 58 · 6 | 58 · 1 | 56 · 9 | 57.0 | 57.8 | 59 · 8 | 61.7 | 63.6 | 64.9 | 64 · 3 | 63.7 | 63 · 2 | 62.1 | 61.7 | 61.3 | 60 · 7 | 60.6 | 60.7 | 60.8 | 60.6 | 60.8 | 58 · 2 | | 1 | 60.2 | 60.2 | 59.6 | 58.9 | 57.6 | 56 · 4 | 55 · 6 | 55.8 | 56 · 4 | 58 · 5 | 61.5 | 63.7 | 64 - 7 | 65 · 2 | 65 · 7 | 64 · 5 | 63.9 | 63.4 | 62.7 | 62.8 | 62.2 | 61.8 | 60.5 | 61.8 | 61.0 | 63.6 | | 12 | | 62.0 | | | | | 54 . 9 | 54 · 1 | 55.3 | 56.8 | 59.9 | 65.1 | 68-1 | 69.6 | 68.9 | 66 · 8 | 63 · 7 | 62.4 | 62.2 | 62.3 | 62.0 | 61.6 | 61.5 | 61.9 | 61.5 | 75 · 7 | | i 3 a | | 61.3 | | | | 56 · 4 | 54 · 3 | 53.9 | 54 · 8 | 57.3 | 59 · 9 | 63.8 | 66 · 7 | 67.0 | 66.9 | 66 • 2 | 64 • 7 | 63.2 | 62.1 | 62.1 | 62.2 | 61 • 4 | 61.3 | 61 · 1 | 61 · 1 | 67.2 | | 4 | 60.7 | 60.5 | 60.2 | 59 · 3 | | 57 · 4 | | | | | | 61.8 | 64.4 | | | | | | 63.0 | | | 57 · 5 | 55 · 8 | 56 • 9 | 60.3 | 46 · 7 | | 15 d | 59 · 4 | 59.8 | 59 · 3 | 58 · 7 | 58 · 1 | 58 • 4 | 57 • 4 | 56 · 7 | 57.0 | 58 · 8 | 62.5 | 67.7 | 72.6 | 75・2 | 72.7 | 73 · 3 | 70.6 | 69・4 | 66 · 1 | 57 · 6 | 59 · 8 | 60 · 5 | 56 · 0 | 56 • 0 | 62.7 | 103.6 | | 16 d | 54 · 1 | 62.4 | 58 • 2 | 54 · 8 | 57 · 4 | 62.2 | 54.9 | 54 · 1 | 61 · 1 | 61.7 | 63 · 4 | 65.3 | 66 · 1 | 68 · 2 | 69.5 | 69.9 | 68 · 2 | 62.6 | 59.3 | 54 · 1 | 51 · 1 | 50.6 | 48.6 | 50-1 | 59.5 | 27.9 | | 17 d | 63.6 | 59.9 | 56.7 | 61.4 | 65 · 2 | 59 · 1 | 59 • 4 | 61.6 | 61.5 | 63.2 | 63.7 | 64.3 | 65.0 | 63.3 | 61.6 | 63.0 | 64 • 5 | 61.5 | 62.4 | 62.5 | 62.3 | 62 · 1 | 56 · 1 | 61.3 | 61.9 | 85 · 2 | | 18 | 51.3 | 54.2 | 55.0 | 56 · 6 | 56 · 6 | 56 · 4 | 54 · 8 | 53.6 | 54 • 2 | | | 61.0 | 63.9 | | | 65 · 1 | | | | | 62 · 1 | | | | 59.3 | 22.7 | | 19 | 57 · 7 | 57.3 | | | | | | | | 56 • 4 | | 60 · 7 | | | | | | | 61.9 | | | | | | 59.7 | 33.2 | | 20 <i>q</i> | 59 • 4 | 59 • 4 | 59.7 | 59.5 | 58.9 | 57 · 7 | 56 • 4 | 55 • 4 | 55.5 | 56·8 | 59.8 | 62.4 | 64.8 | 66.9 | 66 · 5 | 65 · 2 | 64 · 5 | 63.3 | 62 · 1 | 60.8 | 60.5 | 61 · 2 | 60.7 | 60.8 | 60.8 | 58.2 | | 21 q | 60.6 | 60.0 | 59.5 | 59.0 | 58 4 | 57.5 | 56.0 | 55 · 1 | 55.4 | 56 · 7 | 58.9 | 61.5 | 63.1 | 63.6 | | | | | 61.5 | | | | 61.6 | 61.3 | 60.4 | 49.2 | | 22 | 60.2 | 59.6 | 59 · 4 | 59.5 | 58 · 7 | 56 · 7 | 55.8 | 55.8 | 56 · 1 | 56 · 9 | 59 · 2 | 62.9 | 67.0 | 67.6 | 66.6 | 66 · 3 | 64 • 9 | 64 · 1 | 63.0 | 62.0 | 61 · 4 | 61 · 2 | 59 • 4 | 58 • 9 | 61.0 | 63 · 2 | | 23 | 59.5 | 59.9 | 59.3 | 58.3 | 57.3 | 56 · 2 | 54 • 9 | | | | 60.0 | | 66 • 4 | | | | | | 61.9 | | | | | | 60.6 | 54.9 | | 24 q | 60.3 | 59.3 | 59.0 | 58 • 7 | 57 · 7 | 56 • 9 | | | | | | | | | | | | | 63 · 1 | | | | | | 60.9 | 61.4 | | 25 | 60.4 | 60.3 | 59.8 | 59 • 4 | 58 · 2 | 57.1 | 56 · 7 | 56 · 1 | 56 · 6 | 58.6 | 61.3 | 64.3 | 66 · 1 | 66.9 | 67.3 | 66.8 | 63.6 | 65.9 | 65 · 1 | 61 · 1 | 62.5 | 62.6 | 62.6 | 63.0 | 61.8 | 82.3 | | 26 | 59.8 | 59.9 | 60.3 | 60.7 | 59.3 | 57.0 | 55.7 | 56 · 7 | 58 · 5 | 59.5 | 60.7 | 62.1 | 63 · 2 | 63.6 | | | | | 61.8 | | | | | | 60.4 | 50.3 | | 27 . | 58 • 8 | 57.5 | 56.6 | 58.6 | 58.3 | 56 · 7 | 56 · 6 | 56.6 | 57 • 4 | 58 · 4 | 61.6 | 64 • 9 | | 65 · 1 | | | | | 61 · 2 | | | | 60 · 7 | | 60.4 | 48-6 | | 28 | 61 · 4 | 60.7 | 60.5 | 59.9 | | 57 • 4 | | 56.0 | | 55.9 | | | | | | | | | 61.2 | | | | | | 60.4 | 50.3 | | 29 | | 59.9 | | 60.1 | | 55.0 | | | | | 60.7 | | | | | | | | 63.3 | | | | | | 60.9 | 62.4 | | 30 d | 57.4 | 58·4 | 59 · 2 | 59.6 | 57.8 | 55 · 2 | 53.2 | 52.7 | 54.3 | 57 · 1 | 59·8 | 63.6 | 67.1 | 68.7 | 68.7 | 68.1 | 66.4 | 63.4 | 62·4 | 62.0 | 28.8 | 56 · 4 | 58 · 1 | 59.1 | 60.3 | 47-5 | | an | 59.6 | 59.9 | 59.2 | 58.9 | 58 · 2 | 56 · 9 | 55.6 | 55 · 5 | 56.6 | 58·3 | 60:9 | 63.8 | 66 · 1 | 66.9 | 66 · 5 | 65.7 | 64.5 | 63.2 | 62.4 | 61.3 | 60.7 | 60.3 | 59·1 | 59·3 | 60.8 | | | Sum
0 · 0 ′ + | | | | | | | | | | | | | 383 · 8 | 406 · 7 | 394 · 7 | 372.3 | 336 · 2 | 295.5 | 271 · 1 | 239 · 7 | 222·3 | 207 · 6 | 172 · 8 | 180 · 0 | | Grand Tota
43781·1 | | 21 ES | DALEMU | IR (2) |) | | | | | | | | 4 | 5,000γ | (0.45 | CGS un | řt) + | | | | | | | | | | Ju | INE 1965 | |-------------------------
-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------------| | | Hour 0 | 2MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
10,000y+ | | 1 2 | γ | | | 438 | 438 | 439 | 440 | 441 | 439 | 434 | 431 | 429 | 427 | 422 | 419 | 422 | 423 | 427 | 436 | 440 | 445 | 445 | 442 | 439 | 440 | 440 | 438 | 435 | 434 | | | 438 | 437 | 436 | 438 | 439 | 439 | 438 | 438 | 436 | 431 | 426 | 422 | 423 | 430 | 434 | 437 | 443 | 447 | 450 | 451 | 447 | 444 | 439 | 438 | 438 | 501 | | 3 | 438 | 438 | 439 | 440 | 441 | 443 | 443 | 438 | 434 | 430 | 419 | 414 | 417 | 426 | 434 | 439 | 441 | 446 | 453 | 446 | 443 | 442 | 438 | 438 | 437 | 480 | | | 438 | 438 | 438 | 439 | 440 | 441 | 440 | 440 | 437 | 428 | 427 | 432 | 427 | 429 | 439 | 449 | 455 | 467 | 462 | 454 | 450 | 447 | 444 | 435 | 441 | 596 | | 5 | 418 | 415 | 418 | 419 | 429 | 433 | 434 | 435 | 431 | 427 | 423 | 422 | 422 | 425 | 431 | 437 | 441 | 446 | 445 | 444 | 442 | 440 | 440 | 440 | 432 | 357 | | 6 | 439 | 440 | 440 | 443 | 443 | 444 | 440 | 439 | 438 | 432 | 427 | 422 | 424 | 427 | 434 | 439 | 445 | 451 | 451 | 450 | 445 | 444 | 441 | 440 | 439 | 538 | | 7 | 438 | 436 | 434 | 438 | 439 | 440 | 440 | 439 | 437 | 425 | 414 | 418 | 427 | 435 | 439 | 444 | 450 | 449 | 443 | 440 | 439 | 439 | 439 | 439 | 437 | 481 | | 8 | 438 | 437 | 438 | 440 | 440 | 443 | 444 | 438 | 435 | 427 | 423 | 421 | 417 | 425 | 427 | 432 | 436 | 438 | 446 | 453 | 447 | 446 | 433 | 405 | 435 | 429 | | 9 d | 411 | 423 | 422 | 424 | 432 | 437 | 440 | 434 | 431 | 424 | 413 | 411 | | 425 | 437 | 455 | 469 | 467 | 457 | 452 | 455 | 450 | 444 | 441 | 436 | 469 | | 10 <i>q</i>
11 | 438
440 | 437
440 | 439
441 | 441
441 | 443
442 | 442
441 | 443
439 | 442
439 | 438
437 | 430
434 | 421
430 | 421
424 | 422 | 427
427 | 433
430 | 438
437 | 443
439 | 444 | 444
441 | 444
440 | 444
441 | 444
443 | 441
443 | 441
439 | 437 | 500
492 | | 12 | 439 | 438 | 438 | 438 | 440 | 440 | 438 | 439 | 436 | 427 | 418 | 412 | 420 | 430 | 435 | 438 | 441 | 444 | 444 | 444 | 444 | 442 | 440 | 439 | 436 | 464 | | 13 q | 440 | 440 | 440 | 443 | 444 | 445 | 442 | 441 | 438 | 432 | 423 | 422 | 428 | 434 | 438 | 436 | 436 | 438 | 440 | 439 | 438 | 438 | 438 | 438 | 437 | 491 | | 14 | 439 | 439 | 438 | 440 | 440 | 440 | 438 | 438 | 433 | 426 | 417 | 415 | 422 | 430 | 430 | 435 | 435 | 434 | 434 | 437 | 445 | 445 | 440 | 438 | 435 | 428 | | 15 d | 438 | 438 | 439 | 438 | 438 | 437 | 437 | 437 | 431 | 427 | 420 | 409 | 411 | 412 | 431 | 443 | 460 | 464 | 479 | 476 | 458 | 458 | 445 | 437 | 440 | 563 | | 16 d | 416 | 390 | 420 | 429 | 429 | 405 | 416 | 411 | 409 | 409 | 426 | 451 | 468 | 493 | 550 | 578 | 581 | 567 | 528 | 484 | 446 | 434 | 411 | 398 | 456 | 949 | | 17 d | 358 | 344 | 358 | 360 | 367 | 399 | 417 | 432 | 433 | 441 | 443 | 443 | 450 | 464 | 471 | 469 | 472 | 478 | 467 | 459 | 452 | 447 | 437 | 389 | 427 | 250 | | 18 | 398 | 408 | 416 | 418 | 427 | 434 | 446 | 448 | 448 | 447 | 442 | 433 | 433 | 440 | 444 | 445 | 450 | 456 | 454 | 454 | 450 | 449 | 447 | 444 | 439 | 531 | | 19 | 440 | 439 | 443 | 444 | 446 | 451 | 454 | 451 | 447 | 439 | 436 | 432 | 436 | 441 | 441 | 441 | 444 | 444 | 444 | 445 | 445 | 445 | 444 | 444 | 443 | 636 | | 20 q | 444 | 444 | 444 | 445 | 446 | 448 | 446
449 | 445 | 443 | 436
448 | 433
445 | 427
437 | 430 | 434
434 | 436
438 | 439
443 | 444
445 | 450
450 | 450
450 | 448
446 | 448
445 | 447
444 | 445
442 | 444
441 | 444 | 616
662 | | 21 q
22 | 444
441 | 444
440 | 444
440 | 445
441 | 447
441
443 | 449
440 | 440
436 | 448
436
434 | 451
436
433 | 428
433 | 428
429 | 432
429 | 433
427 | 429
427 | 433
429 | 438
434 | 446
442 | 451
445 | 451
448 | 451
445 | 448
444 | 445
444 | 444
444 | 440
443 | 440
438 | 552
510 | | 23
24 <i>q</i>
25 | 440
439
441 | 440
438
440 | 438
440
440 | 442
441
441 | 443
443 | 441
444
445 | 444
443 | 441
441 | 438
437 | 433
434 | 430
427 | 427
420 | 429
420 | 432
422 | 427
418 | 427
434 | 433
458 | 437
472 | 438
476 | 439
480 | 441
463 | 440
450 | 440
447 | 440
444 | 437
443 | 481
636 | | 26 | 441 | 441 | 441 | 442 | 440 | 443 | 440 | 438 | 434 | 434 | 437 | 438 | 438 | 444 | 445 | 447 | 447 | 446 | 445 | 452 | 450 | 449
444 | 445 | 440 | 442 | 617 | | 27 | 426 | 420 | 427 | 435 | 439 | 438 | 437 | 439 | 436 | 433 | 431 | 428 | 432 | 440 | 446 | 445 | 446 | 447 | 444 | 444 | 444 | 444 | 440 | 440 | 438 | 501 | | 28 | 440 | 440 | 441 | 442 | 443 | 444 | 443 | 435 | 429 | 427 | 426 | 422 | 429 | 434 | 441 | 439 | 440 | 443 | 444 | 444 | 444 | | 441 | 441 | 438 | 516 | | 29 | 440 | 440 | 438 | 436 | 437 | 436 | 438 | 436 | 428 | 419 | 419 | 422 | 426 | 429 | 432 | 440 | 446 | 450 | 452 | 453 | 450 | 448 | 442 | 434 | 437 | 491 | | 30 d | 430 | 433 | 437 | 438 | 436 | 432 | 429 | 432 | 433 | 430 | 428 | 429 | 431 | 437 | 442 | 447 | 451 | 452 | 451 | 451 | 451 | 444 | 436 | 421 | 438 | 501 | | Mean | 432 | 431 | 433 | 435 | 437 | 438 | 439 | 438 | 435 | 431 | 427 | 425 | 428 | 433 | 440 | 445 | 451 | 454 | 453 | 450 | 447 | 445 | 440 | 435 | 438 | | | Sum
12,000y+ | 968 | 935 | 1006 | 1061 | 1118 | 1153 | 1168 | 1135 | 1056 | 918 | 803 | 754 | 836 | 1005 | 1192 | 1361 | 1519 | 1608 | 1576 | 1507 | 1398 | 1336 | 1210 | 1049 | | Grand Total
315,672 | #### GEOMAGNETIC CHARACTER FIGURES (K, K_H , K_D , K_Z , AND C) AND TEMPERATURE IN MAGNETOGRAPH CHAMBER | | indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _Z | Sum of
K _D
indices | 3-h range
indices
K _Z | Sum of
K _Z
indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph chamber
200°A+ | |--------|--------------|------------------------|--|-------------------------------------|--|-------------------------------------|--|-------------------------------------|--|---| | 1 i | 1001 2222 | 10 | 1001 2222 | 10 | 1000 1102 | 5 | 0000 0000 | 0 | 0 | 84 • 9 | | 2 | 1122 2231 | 14 | 0012 2231 | 11 | 1121 0111 | 8 | 0000 0000 | 0 | 1 | 85.0 | | 3 | 1000 2343 | 13 | 1000 2343 | 13 | 0000 0133 | 7 | 0000 0121 | 4 | 1 | 85 · 1 | | 4 | 0223 3333 | 19 | 0223 3333 | 19 | 0211 2313 | 13 | 0001 1312 | 8 | 1 | 85.0 | | 5 | 3221 2121 | 14 | 3221 2121 | 14 | 3220 0000 | 7 | 2200 0000 | 4 | 1 | 85.0 | | 6 | 1112 2231 | 13 | 1112 2231 | 13 | 0101 1020 | 5 | 0000 0100 | 1 | 1 | 85 · 1 | | ,
7 | 2102 2210 | 10 | 2102 2210 | 10 | 2101 0000 | 4 | 0000 0000 | 0 | 0 | 85 · 1 | | ś I | 1022 2333 | 16 | 1022 2333 | 16 | 1021 1123 | 11 | 0000 0013 | 4 | 1 | 85 · 1 | | 9 d | 3322 3332 | 21 | 3322 3321 | 19 | 3310 2232 | 16 | 3100 0200 | 6 | 1 | 85 · 1 | | 0 q | 2101 1000 | 5 | 2001 1000 | 4 | 1101 0000 | 3 | 0000 0000 | 0 | 0 | 85 · 2 | | 1 | 0001 2232 | 10 | 0001 2232 | 10 | 0000 1011 | 3 | 0000 0000 | 0 | 1 | 85 · 2 | | 2 | 1102 2210 | ا و | 1002 2210 | 8 | 1101 0100 | 4 | 0000 0000 | 0 | 0 | 85 · 4 | | 3 9 | 1000 0010 | 2 | 1000 0010 | 2 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 85 · 4 | | 4 | 0112 2332 | 14 | 0002 2332 | 12 | 0110 1122 | 8 | 0000 0011 | 2 | 1 | 85 · 4 | | 5 d | 1213 4444 | 23 | 1213 4444 | 23 | 1112 3233 | 16 | 0000 2223 | 9 | 1 | 85 · 5 | | 5 d | 4444 5554 | 35 | 3444 5554 | 34 | 4433 4544 | 31 | 3313 5453 | 27 | 2 | 85 · 4 | | 7 a | 5442 3325 | 28 | 5442 3325 | 28 | 4421 2214 | 20 | 4420 2124 | 19 | 2 | 85.5 | | , u | 4312 1243 | 20 | 4302 1243 | 19 | 3110 0122 | 10 | 3210 1010 | 8 | 1 | 85.5 | | ا و | 2110 0000 | 4 | 2000 0000 | 2 | 1110 0000 | 3 | 0000 0000 | 0 | 0 | 85.5 | | 0 9 | 0000 1120 | 4 | 0000 1120 | 4 | 0000 0110 | 2 | 0000 0010 | 1 | 0 | 85.5 | | 1 9 | 0000 0101 | 2 | 0000 0101 | 2 | 0000 0000 | 0 | 0000 0000 | Ö | 0 | 85 · 5 | | 2 | 1111 2212 | 11 | 1101 2212 | 10 | 1110 0001 | 4 | 0000 0000 | 0 | 0 | 85.5 | | 3 | 2001 2210 | 8 | 1001 2210 | 7 | 2000 0000 | 2 | 0000 0100 | 1 | 0 | 85.5 | | 4 9 | 1000 1220 | 6 | 1000 1220 | 6 | 1000 0010 | 2 | 0000 0000 | 0 | 0 | 85.5 | | 5 4 | 0101 3432 | 14 | 0001 3432 | 13 | 0100 1331 | 9 | 0000 1320 | 6 | 1 | 85.5 | | 5 | 3322 1233 | 19 | 3212 1233 | 17 | 2321 1113 | 14 | 0000 0011 | 2 | 1 | 85 · 4 | | 7 | 3212 2211 | 14 | 3212 2211 | 14 | 2110 0100 | 5 | 2000 1000 | 3 | 1 | 85.5 | | s l | 0111 2211 | ا وَ | 0101 2211 | 8 | 0110 0010 | 3 | 0000 0000 | 0 | 0 | 85.5 | | ١ | 2233 3333 | 22 | 2233 3332 | 21 | 1221 1123 | 13 | 0010 0101 | 3 | 1 | 85.5 | | 0 d | 2223 3234 | 21 | 2223 3234 | 21 | 1221 2133 | 15 | 0100 1103 | 6 | 1 | 85.5 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. $[\]mathbf{K}_{\mathrm{H}}$ For horizontal component. \mathbf{K}_{D} For declination. \mathbf{K}_{Z} For vertical component. (See Introduction). 19 ESKDALEMUIR (H) 16,000γ (0·16 CGS unit) + TULY 1965 | 19 ES | KDALEMU | IR (H) | | | | | | | | | 1 | 6,000y | (0.16 | CGS un | it) + | | | | | | | | | | Jt | JLY 1965 | |-------------------|------------|------------|------------|------------
------------------------|------------------------| | | Hour | GMT | | | | | | | | | | | T | | | | | | | | | | | | [| Sum | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | 21,000y+ | | _ | γ | īγ | γ | | 1 | 929 | 907 | 909 | 907 | 908 | 912 | 898 | 877 | 866 | 871 | 884 | 892 | 896 | 899 | 915 | 915 | 921 | 926 | 930 | 945 | 946 | 915 | 922 | 914 | 909 | 804 | | 2 | 907 | 904 | 906 | 908 | 912 | 911 | 898 | 894 | 892 | 884 | 881 | 871 | 870 | 882 | 892 | 911 | 925 | 926 | 932 | 927 | 924 | 918 | 916 | 914 | 904 | 705 | | 3 | 907 | 910
907 | 907
910 | 909
912 | 909
912 | 910
906 | 903
903 | 894
899 | 891 | 890
889 | 891
886 | 886 | 889 | 900 | 914 | 924 | 923 | 931 | 944 | 935 | 929 | 922 | 911 | 914 | 910 | 843 | | 4 <i>q</i>
5 q | 910
916 | 907 | 910 | 912 | 912 | 918 | 903 | 905 | 896
900 | 896 | 897 | 886
903 | 889
904 | 897
910 | 907
921 | 915
925 | 924
924 | 929
924 | 929
927 | 925
927 | 926
929 | 922
924 | 917
924 | 921
923 | 909
916 | 817
982 | | - |] |) · | | 6 d | 923
908 | 916
900 | 917
902 | 919
900 | 92 4
903 | 930
900 | 955
902 | 936
902 | 914
897 | 891
890 | 884
890 | 890
893 | 878
895 | 887
899 | 892
904 | 929
906 | 909
913 | 923
921 | 923
925 | 915
929 | 919
924 | 914 | 911 | 920 | 913 | 919 | | ,
8 d | 918 | 916 | 902 | 900 | 903 | 918 | 912 | 912 | 908 | 900 | 897 | 899 | 912 | 928 | 927 | 928 | 955 | 957 | 943 | 929 | 930 | 923
926 | 918
924 | 919
906 | 907 | 763 | | 9 | 925 | 909 | 913 | 909 | 909 | 904 | 897 | 893 | 890 | 885 | 878 | 883 | 891 | 903 | 926 | 929 | 915 | 918 | 926 | 927 | 933 | 936 | 940 | 931 | 920
911 | 1077
868 | | 10 d | 918 | 927 | 926 | 909 | 930 | 905 | 892 | 883 | 889 | 878 | 874 | 871 | 884 | 916 | 921 | 918 | 922 | 920 | 913 | 913 | 914 | 914 | 914 | 912 | 907 | 763 | | | 910 | 909 | 910 | 910 | 909 | 905 | 896 | 889 | 887 | 885 | 882 | 883 | 890 | 895 | 909 | 918 | 920 | 918 | 916 | 918 | 918 | 914 | | | 1 | | | 11 q | 913 | 912 | 914 | 913 | 912 | 903 | 896 | 892 | 891 | 889 | 887 | 889 | 892 | 896 | 899 | 902 | 926 | 929 | 941 | 942 | 926 | 914 | 913
928 | 911
924 | 905
910 | 715
846 | | 12
13 | 921 | 922 | 921 | 916 | 920 | 918 | 912 | 905 | 899 | 900 | 905 | 906 | 892 | 906 | 926 | 936 | 933 | 930 | 940 | 935 | 919 | 919 | 918 | 918 | 910 | 1017 | | 14 | 914 | 920 | 918 | 912 | 911 | 909 | 910 | 909 | 903 | 899 | 898 | 902 | 906 | 911 | 916 | 918 | 919 | 931 | 926 | 928 | 931 | 923 | 924 | 915 | 915 | 953 | | 15 | 919 | 919 | 917 | 919 | 919 | 916 | 909 | 897 | 895 | 902 | 905 | 886 | 886 | 902 | 918 | 924 | 921 | 923 | 922 | 922 | 920 | 918 | 918 | 911 | 912 | 888 | | | | | 910 | 911 | 014 | 909 | 904 | 897 | 893 | 893 | 893 | 893 | 897 | 904 | 914 | 922 | 918 | | | 924 | 925 | | | | | | | 16 | 911
918 | 907
915 | 910 | 911 | 914
918 | 916 | 914 | 909 | 902 | 892 | 883 | 876 | 886 | 895 | 906 | 910 | 917 | 919
921 | 919
929 | 924 | 925
926 | 923
925 | 916
924 | 918
923 | 910
911 | 834
864 | | 17 q | 918 | 920 | 920 | 921 | 922 | 910 | 917 | 911 | 904 | 896 | 889 | 883 | 881 | 891 | 903 | 951 | 948 | 953 | 964 | 945 | 942 | 945 | 943 | 942 | 922 | 1133 | | 18
19 | 942 | 934 | 931 | 926 | 922 | 919 | 902 | 904 | 902 | 882 | 877 | 871 | 877 | 888 | 892 | 910 | 918 | 920 | 927 | 926 | 926 | 919 | 918 | 916 | 910 | 849 | | 20 | 913 | 912 | 915 | 915 | 916 | 912 | 912 | 899 | 894 | 888 | 895 | 899 | 902 | 902 | 915 | 931 | 933 | 939 | 941 | 928 | 921 | 912 | 913 | 911 | 913 | 918 | | | 912 | 910 | 914 | 910 | 906 | 908 | 907 | 906 | 908 | 900 | 896 | 895 | 899 | 902 | 910 | 918 | 920 | 926 | 929 | 925 | 923 | 922 | 921 | 921 | 912 | 888 | | 21
22 | 912 | 919 | 916 | 918 | 917 | 911 | 912 | 912 | 908 | 898 | 890 | 885 | 889 | 898 | 912 | 926 | 924 | 926 | 930 | 931 | 937 | 940 | 932 | 930 | 916 | 982 | | 23 d | 937 | 931 | 928 | 928 | 926 | 931 | 928 | 928 | 918 | 900 | 891 | 890 | 896 | 918 | 895 | 907 | 929 | 933 | 939 | 931 | 929 | 928 | 923 | 921 | 920 | 1085 | | 24 | 921 | 916 | 914 | 917 | 917 | 914 | 918 | 911 | 900 | 891 | 884 | 894 | 894 | 901 | 914 | 918 | 921 | 930 | 926 | 925 | 927 | 922 | 923 | 921 | 913 | 919 | | 25 | 919 | 918 | 921 | 918 | 912 | 912 | 909 | 905 | 902 | 912 | 909 | 902 | 902 | 908 | 919 | 912 | 922 | 934 | 923 | 924 | 927 | 925 | 923 | 921 | 916 | 979 | | 26 | 921 | 920 | 920 | 921 | 921 | 926 | 924 | 926 | 925 | 918 | 907 | 900 | 907 | 912 | 911 | 911 | 913 | 924 | 927 | 927 | 926 | 928 | 926 | 924 | 919 | 1065 | | 26 | 921 | 923 | 926 | 926 | 931 | 930 | 930 | 926 | 915 | 907 | 903 | 898 | 898 | 906 | 914 | 918 | 930 | 933 | 933 | 942 | 930 | 928 | 926 | 931 | 922 | 1125 | | 28 d | 921 | 923 | 911 | 914 | 905 | 903 | 878 | 885 | 894 | 886 | 883 | 882 | 890 | 908 | 914 | 916 | 928 | 916 | 922 | 926 | 926 | 920 | 923 | 926 | 908 | 803 | | 29 u | 907 | 909 | 914 | 911 | 913 | 904 | 907 | 912 | 905 | 900 | 890 | 897 | 900 | 899 | 914 | 935 | 943 | 935 | 947 | 926 | 919 | 916 | 914 | 917 | 914 | 934 | | 30 | 914 | 916 | 908 | 907 | 910 | 906 | 902 | 897 | 894 | 895 | 894 | 895 | 903 | 911 | 915 | 921 | 920 | 919 | 921 | 918 | 920 | 920 | 919 | 918 | 910 | 843 | | 31 <i>q</i> | 910 | 908 | 914 | 915 | 918 | 915 | 907 | 891 | 878 | 872 | 877 | 891 | 904 | 911 | 916 | 920 | 926 | 927 | 923 | 923 | 921 | 916 | 914 | 911 | 909 | 808 | | Mean | 918 | 915 | 915 | 914 | 916 | 913 | 908 | 903 | 899 | 893 | 890 | 890 | 893 | 903 | 911 | 920 | 925 | 928 | 930 | 928 | 926 | 923 | 921 | 919 | 913 | | | Sum
27,000y+ | 1452 | 1374 | 1375 | 1345 | 1388 | 1306 | 1161 | 1006 | 860 | 679 | 600 | 591 | 699 | 985 | 1251 | 1524 | 1660 | 1761 | 1837 | 1759 | 1713 | 1603 | 1556 | 1504 | | Grand Total
678,989 | ## | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
1400·0 | |--------------|--------------|------------|--------|--------------|--------------|--------------|--------------|-------------------|--------------|--------|--------|--------|--------------|--------|---------|---------|---------|--------------|--------|--------|---------|-----------|--------------|--------|------|------------------| | | | | , | | | , | -,- | , | | , | | | ٠, | | | 65.7 | 64.5 | 62.4 | 62.0 | | | ,
50.2 | ,
50.4 | | 60.3 | 46·1 | | 1 | 56.8 | 58.1 | 58.6 | | 57·6
57·9 | 56·9
56·5 | 54·8
55·6 | 54 · 4 | 56·0
54·3 | | 59.3 | 65.0 | 67·0
64·3 | 66·3 | 66·6 | 65.7 | 64.5 | 63·4
62·6 | | 61.6 | 56 · 9 | 58·3 | 58·4
59·4 | 57.4 | 60.3 | 43.8 | | 2 | 57.5 | 58 • 4 | 59.2 | 59·7
60·1 | | | 55.7 | | | 55.6 | | | | 67.3 | | | 65.0 | 64 · 1 | | | | 57.7 | 59.4 | | 60.7 | 57.4 | | 3 | 61.3 | 61.1 | | | | | | | 56 • 2 | | | 61.9 | | 65.2 | | | | 62.3 | | | 61.8 | | 61.2 | | 60.0 | 40. | | 4 q
5 q | 58 · 7 | 58.8 | | | 57.5 | | | | | | | | | | 66 4 | | | 62.7 | | | | | 61.4 | | 60.7 | 56 · | | 34 | 36 7 | 30 0 | 30 / | 30 3 | 37 3 | 33 3 | ĺ | | 6 d | 59.7 | 58.8 | 58.6 | 56 · 1 | 55 · 2 | | 63.0 | | | 60.1 | 62.7 | | | 67.3 | 68.8 | | | 62.3 | | | | 62.1 | 61.3 | | 62.1 | 91 · | | 7 | 61.3 | 58.8 | 59 · 1 | 56 · 7 | 57.0 | 55 · 4 | | 55 · 4 | | 58 2 | | 62.9 | 65.3 | 66 · 7 | 66.9 | 65.7 | | 63.8 | | | 59.8 | 61.6 | 58.0 | | 60.5 | 52 · | | 8 d | 59.7 | | | 57.9 | | 55.9 | - | | | 56.0 | | | 64.5 | | | | | 64.7 | | | | | | | 60.4 | 48. | | 9 | | 56 • 4 | | 57 · 4 | | 54 · 1 | | 55 · 7 | | 56.6 | | 63.0 | 65.3 | | | | | 62.1 | | | | | 62.3 | | 60.3 | 46 · | | 10 d | 59 · 2 | 59.0 | 54 · 1 | 53.5 | 56 • 4 | 52.2 | 54.8 | 56 · 2 | 58.6 | 59 · 7 | 61.2 | 64.2 | 66.3 | 67 • 4 | 65.2 | 63.6 | 62.6 | 61.5 | 61.3 | 62.1 | 62.2 | 61.3 | 61 · 2 | 60.7 | 60.2 | 44 - | | 11 9 | 60.5 | 60.2 | 60.1 | 59.4 | 58 · 1 | 55 • 4 | 55.3 | 55 • 9 | 56 · 7 | 57.8 | 60.2 | 62.6 | 65.2 | 65 · 1 | 64.6 | 63.4 | 61.9 | 61.0 | 60.7 | 61.3 | 61.2 | 60.6 | 60.8 | 60.3 | 60.3 | 48・ | | 12 | 60.7 | 60.4 | 59.7 | 59.5 | | 57.0 | | 56 · 1 | 56 · 5 | | 57.9 | 61.4 | 64.5 | 66 · 2 | 67.0 | 66.3 | 66 · 2 | 65.3 | 63.6 | 63.8 | 62.0 | 61.2 | 61 · 1 | 60.3 | 61.2 | 68. | | 13 | 60.2 | 59.9 | 59.8 | 58.1 | | 55.6 | | | 55 · 7 | 56.6 | 58.8 | 62.9 | 64.6 | 66.3 | 67.0 | 67.0 | 65.3 | 63.3 | 62.7 | 61 · 4 | 61 · 1 | 61.3 | 60.7 | 60.3 | 60.7 | 57 | | 14 | 59.7 | 59.1 | | | 55 • 2 | 55.3 | 54 · 1 | 55 · 3 | 56 · 9 | 58.5 | 60.6 | 63.3 | 65.5 | 65.5 | 65.9 | 65.8 | 64.2 | 62.8 | 61.5 | 61.5 | 61.6 | 61.2 | 59.6 | 57.2 | 60-1 | 42 • | | 15 | 59.0 | 58.9 | 58 · 4 | | | 55.2 | | | | | 60.5 | | 68.7 | 70.0 | 67.3 | 65 · 7 | 64.2 | 62.6 | 62.0 | 61 · 4 | 61 · 1 | 60.3 | 61 · 7 | 56.0 | 61.0 | 64 · | | 16 | 58 · 1 | 59.0 | 58 · 7 | 57 · 4 | 56 · 8 | 56 · 1 | 56.0 | 56 · 4 | 57 • 4 | 58 · 7 | 60.6 | 63.4 | 66 · 2 | 67.3 | 67.0 | 65.9 | 64 · 1 | 62-4 | 61 · 4 | 61 · 2 | 61 · 1 | 60.4 | 60.5 | 60.6 | 60-7 | 56 · | | 17 9 | 60.5 | 60.1 | 59.8 | 59.4 | | 57.6 | | 57.8 | 57.9 | 59 1 | 61.4 | | 66.2 | 67 · 7 | 68.0 | 67.1 | 65.0 | 63.1 | 62.2 | 61.2 | 60.7 | 60.7 | 60.6 | 60.5 | 61.5 | 76・ | | 18 | 59.8 | 59.6 | 59.5 | | 58.3 | | 55.8 | 55 · 4 | 54.9 | 55 · 4 | | 59.3 | 63.4 | 65.4 | 65.3 | 66 · 5 | 66.3 | 66.0 | 65.2 | 64.4 | 62.4 | 63.0 | 61.5 | 60.3 | 60.9 | 61 · | | 19 | 59.4 | 59.0 | | 58.8 | | | | | 57 • 4 | | 62.6 | 64 · 3 | 67.8 | 70.0 | 71.6 |
70.8 | 67.6 | 66.3 | 64 · 1 | 60.6 | 58.2 | 61.0 | 60.1 | 59.1 | 61.5 | 76・ | | 20 | 58 · 7 | 58.6 | 58.2 | 58 · 1 | | | | 56 · 5 | | | 60.5 | | | | | | | 64.5 | | | 62.3 | 58.8 | 58 • 4 | 59 · 5 | 60.7 | 55 - | | 21 | 58.9 | 58 · 3 | 60.7 | 58 • 2 | 58 · 8 | 57 · 3 | 55.8 | 55.3 | 55 • 4 | 56 · 4 | 59.5 | 62.0 | 64.0 | 65.5 | 65.5 | 64 · 4 | 62.5 | 62.6 | 62.9 | 61.8 | 61.1 | 60.8 | 60.7 | 60.6 | 60.4 | 49. | | 22 | 60.4 | 60.2 | | 59.3 | | 56 · 0 | 56.6 | 57 · 1 | | 57.3 | 58.5 | | 63.3 | 64 · 1 | 64.1 | | | 63.0 | | | 62.8 | 62.7 | 60.8 | 60.4 | 60.6 | 54 · | | 23 d | 61.7 | 59.8 | | 58.9 | 58 5 | | 60.4 | | 57.0 | | | 61.2 | 63.3 | | 65.6 | | | 65 · 4 | | | 60.7 | 54.8 | 55.0 | 56.0 | 60.7 | 55 · | | 24 | | | | 59.9 | | | | | | 56 · 5 | | | 64.7 | 66.5 | 64.7 | | | 61.7 | 60.7 | 59.8 | 60.2 | 61.5 | 61.1 | 60.6 | 60.1 | 42 · | | 25 | | | | | 56 · 7 | | 57.2 | | | | 61 · 1 | | 63.8 | 64 · 4 | 64.1 | 63.5 | 63 · 1 | 63.0 | 62 · 1 | 61.4 | 61.5 | 61.3 | 61.2 | 60.8 | 61.0 | 64 | | 1 | | 60.4 | 59.9 | 60.3 | 59.8 | | 57.8 | 56.7 | 57.0 | 59.6 | 60.8 | 64 • 0 | 65.8 | 66 · 1 | 65 • 4 | 63 · 4 | 61.8 | 60.5 | 60.9 | 60.7 | 61 · 1 | 61.6 | 61.6 | 61.9 | 61.2 | 68. | | 26 | 60·6
59·8 | 59.4 | | | 57.5 | | | | | 56.3 | 59.0 | | 64.3 | 67.4 | | | | 64.6 | | | 58.0 | | 59.7 | | 60.4 | 49 | | 27
28 d | 56.8 | 55 · 4 | | 58.3 | | | | | 57.7 | | 59.6 | | | 64.9 | 66.1 | | | 63.4 | | | | | 57.3 | | 60.4 | 49 - | | 28 4 | | | 57.9 | 57.8 | | | | 55.7 | | 56 · 7 | 59.7 | | | | | | | 62.2 | | | | | | | 59.9 | 37 · | | 30 | | | | | 56 · 1 | | | | | | 60.0 | | | | | | | 62.0 | | | | | | | 59.8 | 34 · | | 31 9 | | | | | 58 · 2 | | | | | 57.5 | 60.5 | 64.6 | 67.4 | 68.4 | 67.4 | 65.0 | 63.0 | 61.4 | 60.7 | 59.6 | 59 · 7 | 60.5 | 60.3 | 59.7 | 60.6 | 53・ | | ean | | | | | 57.5 | | | | | | | | 65.3 | 66 · 4 | 66.3 | 65.5 | 64.3 | 63·1 | 62.3 | 61.3 | 60.8 | 60.5 | 60.1 | 59.7 | 60.6 | | | Sum
0.0'+ | | | | | | | | | | | | 247:9 | 323.6 | 357.6 | 356 · 6 | 331 · 7 | 293 · 3 | 256.6 2 | 31.7 | 200-2 | 184 · 4 | 175.9 | 163 · 1 | 51.4 | | Grand T
45091 | 21 ESEDALEMUIR (Z) 45,000y (0.45 CGS unit) + JULY 1965 | | • | • • | | | | | | | | | | -,, | | | , | | | | | | | | | | • | | |----------------|-------------|------------|-----|-----|-----|-----|-----|-----|-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-----------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
10,000y+ | | | γ | ĺγ | γ | | 1 | 432 | 415 | 427 | 435 | 441 | 441 | 439 | 439 | 437 | 434 | 433 | 423 | 426 | 438 | 441 | 444 | 448 | 451 | 450 | 448 | 448 | 446 | 430 | 428 | 437 | 494 | | 2 | 433 | 438 | 441 | 440 | 440 | 441 | 440 | 437 | 434 | 435 | 431 | 428 | 430 | 434 | 438 | 444 | 449 | 452 | 452 | 452 | 447 | 445 | 444 | 441 | 440 | 566 | | 3 | 439 | 438 | 434 | 433 | 438 | 439 | 439 | 439 | 436 | 430 | 431 | 431 | 430 | 435 | 438 | 443 | 446 | 446 | 446 | 450 | 452 | 448 | 444 | 435 | 439 | 540 | | 4 q | 439 | 440 | 441 | 442 | 445 | 445 | 441 | 441 | 440 | 435 | 427 | 417 | 416 | 420 | 427 | 431 | 438 | 441 | 445 | 445 | 441 | 441 | 441 | 439 | 437 | 478 | | 5 q | 439 | 439 | 440 | 441 | 444 | 445 | 443 | 439 | 433 | 430 | 424 | 418 | 420 | 428 | 438 | 440 | 441 | 441 | 444 | 442 | 441 | 440 | 439 | 439 | 437 | 488 | | 6 d | 439 | 439 | 439 | 436 | 434 | 422 | 402 | 407 | 413 | 421 | 416 | 421 | 430 | 450 | 455 | 467 | 478 | 481 | 474 | 469 | 461 | 455 | 449 | 444 | 442 | 602 | | 7 | 442 | 441 | 439 | 441 | 445 | 447 | 446 | 445 | 445 | 444 | 441 | 437 | 436 | 439 | 445 | 450 | 451 | 455 | 456 | 455 | 458 | 452 | 447 | 444 | 446 | 701 | | 8 d | 441 | 439 | 433 | 409 | 421 | 428 | 433 | 431 | 433 | 434 | 435 | 436 | 431 | 428 | 434 | 438 | 441 | 455 | 469 | 469 | 463 | 458 | 447 | 433 | 439 | 539 | | 9 | 424 | 426 | 424 | 412 | 428 | 438 | 441 | 439 | 437 | 435 | 439 | 437 | 434 | 437 | 444 | 452 | 458 | 458 | 452 | 447 | 444 | 441 | 440 | 441 | 439 | 528 | | 10 d | 444 | 438 | 430 | 417 | 407 | 415 | 424 | 428 | 425 | 429 | 435 | 437 | 439 | 441 | 442 | 446 | 454 | 456 | 452 | 446 | 446 | 446 | 446 | 445 | 437 | 488 | | 11 q | 445 | 445 | 446 | 446 | 446 | 449 | 450 | 448 | 442 | 436 | 435 | 435 | 488 | 445 | 449 | 451 | 452 | 453 | 450 | 446 | 445 | 445 | 444 | 444 | 445 | 685 | | 12 | 444 | 445 | 444 | 445 | 446 | 446 | 444 | 442 | 437 | 434 | 428 | 423 | 424 | 430 | 434 | 436 | 436 | 438 | 438 | 441 | 445 | 444 | 441 | 441 | 439 | - 526 | | 13 | 442 | 442 | 442 | 444 | 445 | 445 | 442 | 441 | 439 | 436 | 430 | 423 | 418 | 426 | 434 | 439 | 444 | 446 | 451 | 448 | 447 | 444 | 442 | 441 | 440 | 551 | | 14 | 441 | 439 | 436 | 439 | 439 | 438 | 433 | 433 | 432 | 430 | 430 | 429 | 425 | 430 | 434 | 439 | 443 | 446 | 447 | 444 | 441 | 441 | 439 | 438 | 437 | 486 | | 15 | 439 | 438 | 439 | 439 | 440 | 441 | 438 | 435 | 430 | 428 | 425 | 424 | 430 | 438 | 443 | 45. | 460 | 462 | 458 | 449 | 446 | 445 | 442 | 441 | 441 | 583 | | 16 | 437 | 439 | 441 | 445 | 445 | 445 | 445 | 442 | 439 | 435 | 432 | 425 | 428 | 433 | 434 | 438 | 445 | 449 | 450 | 446 | 444 | 442 | 442 | 441 | 440 | 562 | | 17 q | 441 | 441 | 442 | 443 | 443 | 443 | 444 | 445 | 441 | 439 | 433 | 428 | 429 | 434 | 438 | 441 | 445 | 446 | 446 | 445 | 441 | 440 | 439 | 440 | 440 | 567 | | 18 | 441 | 441 | 442 | 442 | 445 | 445 | 444 | 441 | 438 | 434 | 431 | 428 | 427 | 430 | 433 | 432 | 435 | 438 | 441 | 446 | 451 | 445 | 442 | 434 | 439 | 526 | | 19 | 440 | 441 | 442 | 444 | 445 | 445 | 446 | 434 | 430 | 429 | 426 | 430 | 437 | 442 | 450 | 463 | 474 | 475 | 470 | 463 | 456 | 451 | 446 | 445 | 447 | 724 | | 20 | 441 | 442 | 443 | 445 | 445 | 445 | 445 | 440 | 435 | 434 | 431 | 429 | 429 | 430 | 433 | 439 | 445 | 453 | 462 | 463 | 461 | 456 | 448 | 445 | 443 | 639 | | 21 | 442 | 441 | 439 | 441 | 444 | 444 | 445 | 444 | 438 | 436 | 433 | 421 | 421 | 428 | 435 | 435 | 440 | 446 | 445 | 442 | 442 | 441 | 440 | 441 | 439 | 524 | | 22 | 441 | 441 | 442 | 442 | 444 | 445 | 439 | 438 | 436 | 430 | 427 | 422 | 415 | 416 | 428 | 436 | 442 | 443 | 442 | 440 | 439 | 438 | 442 | 442 | 436 | 470 | | 23 d | 431 | 431 | 434 | 434 | 436 | 433 | 433 | 438 | 444 | 442 | 437 | 433 | 433 | 436 | 446 | 446 | 448 | 455 | 459 | 467 | 460 | 452 | 440 | 440 | 442 | 608 | | 24 | 440 | 441 | 441 | 441 | 442 | 444 | 442 | 441 | 437 | 434 | 434 | 430 | 427 | 429 | 435 | 442 | 444 | 446 | 446 | 446 | 444 | 444 | 442 | 442 | 440 | 554 | | 25 | 442 | 440 | 430 | 433 | 438 | 440 | 443 | 445 | 441 | 436 | 434 | 431 | 430 | 433 | 435 | 439 | 444 | 444 | 445 | 445 | 444 | 442 | 442 | 442 | 439 | 538 | | 26 | 441 | 441 | 440 | 441 | 440 | 437 | 436 | 438 | 433 | 426 | 424 | 427 | 426 | 424 | 431 | 438 | 445 | 448 | 445 | 439 | 439 | 440 | 440 | 440 | 437 | 479 | | 27 | 441 | 440 | 440 | 440 | 441 | 440 | 437 | 435 | 434 | 430 | 430 | 427 | 427 | 431 | 434 | 439 | 444 | 445 | 447 | 446 | 449 | 446 | 445 | 437 | 439 | 525 | | 28 d | 419 | 424 | 427 | 429 | 431 | 419 | 421 | 426 | 433 | 434 | 435 | 434 | 437 | 438 | 443 | 448 | 448 | 451 | 448 | 455 | 452 | 448 | 441 | 430 | 436 | 471 | | 29 | 434 | 438 | 440 | 440 | 441 | 439 | 438 | 437 | 439 | 434 | 428 | 428 | 428 | 437 | 451 | 458 | 459 | 458 | 459 | 465 | 456 | 448 | 446 | 445 | 444 | 646 | | 30 | 441 | 437 | 439 | 441 | 443 | 446 | 443 | 440 | 439 | 438 | 442 | 434 | 431 | 439 | 443 | 443 | 449 | 451 | 446 | 444 | 444 | 445 | 443 | 440 | 442 | 601 | | 31 q | 441 | 441 | 442 | 445 | 445 | 442 | 442 | 444 | 442 | 437 | 433 | 429 | 428 | 436 | 440 | 444 | 445 | 449 | 448 | 446 | 445 | 443 | 442 | 442 | 441 | 591 | | Mean | 439 | 438 | 438 | 438 | 440 | 440 | 439 | 438 | 436 | 434 | 431 | 428 | 428 | 433 | 439 | 444 | 448 | 451 | 451 | 450 | 448 | 445 | 442 | 440 | 440 | | | Sum
3,000y+ | 596 | 581 | 579 | 565 | 627 | 632 | 598 | 572 | 512 | 439 | 370 | 275 | 280 | 435 | 605 | 754 | 891 | 978 | 983 | 949 | 892 | 812 | 715 | 640 | | Grand Tota
327,280 | #### GEOMAGNETIC CHARACTER FIGURES (K, KH, KD, KZ, AND C) AND TEMPERATURE IN MAGNETOGRAPH CHAMBER | 22 | ESKDALEMUIR | | | | | | | | | JULY 1965 | |----------|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------------|--|-------------------------------------|--|---| | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of
K _D
indices | 3-h range
indices
K _Z | Sum of
K _Z
indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph chamber
200°A+ | | 1 | 3223 3233 | 21 | 3223 3233 | 21 | 3112 1132 | 14 | 1001 1001 | 4 | 1 | 85.5 | | 2 | 1111 2211 | 10 | 1111 2211 | 10 | 1111 0001 | 5 | 0001 1000 | 2 | 0 | 85.5 | | 3 | 2111 2332 | 15 | 1111 2332 | 14 | 2100 0022 | 7 | 0000 0000 | 0 | 1 | 85 · 4 | | 3
4 q | 1110 1211 | 8 | 0010 1211 | 6 | 1110 0001 | 4 | 0000 0000 | 0 | 0 | 85.5 | | 5 q | 0111 1011 | 6 | 0001 1011 | 4 | 0110 0001 | 3 | 0000 0000 | 0 | 0 | 85.5 | | 6 d | 2333 4432 | 24 | 2333 4432 | 24 | 1333 2321 | 18 | 0121 1100 | 6 | 2 | 85.5 | | 7 | 2112 1222 | 13 | 2112 1222 | 13 | 2111 0022 | 9 | 0000 0000 | 0 | 0 | 85.5 | | ,
8 d | 3312 3543 | 24 | 2212 3543 | 22 | 3311 2323 | 18 | 1200 0112 | 7 | 2 | 85 · 4 | | 9 | 4311 3332 | 20 | 3311 3332 | 19 | 4310 0112 | 12 | 2200 0000 | 4 | 1 | 85 · 4 | | 10 d | 3422 3210 | 17 | 3422 3210 | 17 | 3322 1000 | 11 | 0200 0000 | 2 | 1 | 85 • 4 | | 11 9 | 0100 1100 | 3 | 0000 1100 | 2 | 0100 0000 | 1 |
0000 0000 | 0 | 0 | 85 • 4 | | 12 | 0000 1342 | 10 | 0000 1342 | 10 | 0000 0211 | 4 | 0000 0100 | 1 | 1 | 85.5 | | 13 | 1112 3330 | 14 | 1102 3330 | 13 | 1111 1110 | 7 | 0000 0000 | 0 | 1 | 85 · 5 | | 14 | 1100 0212 | 7 | 1100 0212 | 7 | 1000 0001 | 2 | 0000 0000 | 0 | 0 | 85 · 5 | | 15 | 2123 3323 | 19 | 2113 3322 | 17 | 1122 2013 | 12 | 0000 0000 | 0 | 1 | 85 · 5 | | 16 | 2011 2211 | 10 | 2011 2211 | 10 | 2000 0000 | 2 | 0000 0000 | 0 | 0 | 85.5 | | 17 q | 1000 2120 | 6 | 1000 2120 | 6 | 0000 0010 | 1 | 0000 0000 | 0 | 0 | 85.5 | | 18 | 0000 1431 | 9 | 0000 1431 | 9 | 0000 0221 | 5 | 0000 0100 | 1 | 1 | 85.5 | | 19 | 2332 3322 | 20 | 2231 3322 | 18 | 2332 1122 | 16 | 0021 1111 | 7 | 1 | 85.5 | | 20 | 1012 2232 | 13 | 1002 2232 | 12 | 1010 0112 | 6 | 0000 0011 | 2 | 1 | 85.5 | | 21 | 2210 0110 | 7 | 1210 0110 | 6 | 2110 0000 | 4 | 0000 0000 | 0 | 0 | 85.5 | | 22 | 1111 1222 | 11 | 1111 1222 | 11 | 0110 0012 | 5 | 0000 0000 | 0 | 0 | 85 • 5 | | 23 d | 2322 4433 | 23 | 2222 4433 | 22 | 2321 1123 | 15 | 1110 1112 | 8 | 1 | 85.5 | | 24 | 2223 3221 | 17 | 2213 3221 | 16 | 1221 2120 | 11 | 0000 0000 | 0 | 1 | 85.5 | | 25 | 2221 2220 | 13 | 1121 2220 | 11 | 2210 0000 | 5 | 1100 0000 | 2 | 1 | 85.5 | | 26 | 0101 1201 | 6 . | 0101 1200 | 5 | 0100 0001 | 2 | 0000 0000 | 0 | 0 | 85.5 | | 27 | 2222 3332 | 19 | 2222 3331 | 18 | 0111 1122 | 9 | 0000 1001 | 2 | 1 | 85.5 | | 28 d | 3332 3332 | 22 | 3332 3332 | 22 | 2332 1122 | 16 | 2220 0112 | 10 | 1 | 85.5 | | 29 | 1332 3331 | 19 | 1332 3331 | 19 | 1221 2230 | 13 | 0000 1020 | 3 | 1 | 85.5 | | 30 | 2100 0112 | 7 | 2000 0111 | 5 | 2100 0002 | 5 | 0000 0000 | 0 | 0 | 85.5 | | 31 q | 1100 0111 | 5 | 1000 0111 | 4 | 0100 0010 | 2 | 0000 0000 | 0 | 0 | 85 • 5 | | | L | | | | | | | Mean | 0.65 | 85.5 | q denotes an international quiet day and d an international disturbed day. $K_{\rm H}$ For horizontal component. $K_{\rm D}$ For declination. $K_{\rm Z}$ For vertical component. (See Introduction). | 19 ES1 | KDALEM | IR (H |) | | | | | | | | 1 | 6,000y | (0.16 | CGS un | it) + | | | | | | | | | | AUGI | JST 1965 | |-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------|-------------------|------------------------|-------------------|-------------------|-------------------|-------------------|------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------| | , | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
21,000y+ | | 1
2
3 | 910
920
919 | 910
925
913 | 911
927
911 | 910
928
921 | 915
930
911 | 913
930
906 | γ
905
922
902 | γ
899
915
897 | γ
892
897
894 | γ
886
889
897 | 9
882
884
897 | 90
890
891
899 | 909
903
891 | 918
905
893 | γ
919
930
909 | 920
922
924 | 929
925
937 | 937
932
911 | 946
936
919 | γ
935
930
929 | 936
913
930 | 927
910
923 | 931
914
920 | 921
917
923 | 915
916
911 | 951
995
876 | | 4 | 925 | 925 | 913 | 911 | 912 | 913 | 908 | 901 | 895 | 894 | 893 | 893 | 895 | 897 | 915 | 930 | 909 | 915 | 932 | 929 | 928 | 933 | 924 | 918 | 913 | 908 | | 5 q | 917 | 917 | 917 | 917 | 918 | 914 | 911 | 910 | 909 | 906 | 901 | 905 | 904 | 907 | 917 | 921 | 920 | 918 | 928 | 928 | 929 | 927 | 924 | 920 | 916 | 985 | | 6 q | 917 | 917 | 912 | 912 | 912 | 911 | 908 | 905 | 903 | 900 | 895 | 897 | 904 | 911 | 908 | 912 | 916 | 916 | 921 | 922 | 929 | 924 | 924 | 923 | 912 | 899 | | 7 | 922 | 922 | 923 | 924 | 922 | 919 | 915 | 910 | 913 | 916 | 909 | 902 | 902 | 909 | 910 | 907 | 921 | 920 | 925 | 928 | 929 | 929 | 938 | 925 | 918 | 1040 | | 8 | 923 | 918 | 920 | 912 | 919 | 919 | 914 | 907 | 904 | 905 | 898 | 899 | 900 | 905 | 918 | 914 | 918 | 927 | 927 | 932 | 937 | 917 | 916 | 916 | 915 | 965 | | 9 | 917 | 916 | 917 | 921 | 923 | 914 | 909 | 906 | 900 | 895 | 894 | 894 | 909 | 914 | 920 | 912 | 933 | 927 | 920 | 921 | 922 | 921 | 928 | 912 | 914 | 945 | | 10 q | 911 | 912 | 913 | 919 | 914 | 910 | 904 | 898 | 890 | 884 | 875 | 884 | 900 | 906 | 909 | 924 | 920 | 920 | 925 | 924 | 923 | 921 | 920 | 926 | 910 | 832 | | 11 | 935 | 933 | 921 | 911 | 908 | 913 | 907 | 903 | 900 | 892 | 909 | 911 | 899 | 907 | 920 | 922 | 921 | 923 | 926 | 925 | 926 | 928 | 926 | 914 | 916 | 980 | | 12 | 914 | 916 | 916 | 919 | 911 | 913 | 895 | 885 | 878 | 878 | 882 | 885 | 892 | 901 | 907 | 910 | 913 | 921 | 920 | 923 | 922 | 918 | 920 | 919 | 907 | 758 | | 13 <i>q</i> | 915 | 916 | 917 | 918 | 915 | 910 | 907 | 901 | 894 | 888 | 887 | 893 | 900 | 902 | 910 | 916 | 920 | 922 | 925 | 928 | 930 | 927 | 927 | 925 | 912 | 893 | | 14 | 925 | 928 | 921 | 923 | 923 | 918 | 919 | 910 | 924 | 894 | 890 | 896 | 904 | 905 | 916 | 920 | 919 | 921 | 923 | 924 | 925 | 931 | 916 | 915 | 916 | 990 | | 15 | 915 | 911 | 911 | 911 | 911 | 908 | 904 | 899 | 899 | 892 | 890 | 897 | 899 | 906 | 911 | 912 | 913 | 920 | 931 | 920 | 923 | 927 | 928 | 930 | 911 | 868 | | 16 | 925 | 918 | 917 | 916 | 915 | 914 | 912 | 911 | 904 | 902 | 899 | 901 | 905 | 914 | 918 | 924 | 924 | 925 | 928 | 933 | 941 | 936 | 923 | 924 | 918 | 1029 | | 17 | 930 | 921 | 920 | 916 | 923 | 912 | 914 | 903 | 909 | 903 | 895 | 878 | 892 | 917 | 920 | 912 | 915 | 928 | 907 | 920 | 919 | 918 | 917 | 911 | 913 | 900 | | 18 <i>d</i> | 911 | 913 | 910 | 912 | 913 | 911 | 904 | 899 | 892 | 888 | 890 | 900 | 905 | 914 | 927 | 945 | 946 | 968 | 949 | 932 | 890 | 892 | 911 | 915 | 914 | 937 | | 19 <i>d</i> | 921 | 930 | 906 | 903 | 911 | 867 | 920 | 903 | 888 | 880 | 879 | 884 | 888 | 898 | 872 | 907 | 917 | 930 | 926 | 916 | 908 | 941 | 915 | 915 | 905 | 725 | | 20 <i>d</i> | 915 | 909 | 911 | 904 | 913 | 915 | 909 | 898 | 883 | 879 | 876 | 886 | 887 | 908 | 917 | 913 | 922 | 915 | 915 | 914 | 917 | 926 | 915 | 911 | 907 | 758 | | 21 | 920 | 926 | 907 | 903 | 909 | 922 | 907 | 893 | 880 | 864 | 870 | 882 | 884 | 897 | 908 | 918 | 913 | 906 | 914 | 917 | 917 | 916 | 915 | 914 | 904 | 702 | | 22 | 913 | 915 | 913 | 911 | 911 | 913 | 909 | 907 | 898 | 891 | 888 | 894 | 892 | 903 | 905 | 912 | 905 | 920 | 921 | 915 | 916 | 918 | 910 | 906 | 908 | 786 | | 23 | 898 | 902 | 903 | 905 | 907 | 908 | 910 | 904 | 896 | 891 | 889 | 896 | 904 | 913 | 917 | 924 | 937 | 927 | 936 | 922 | 934 | 916 | 904 | 922 | 911 | 865 | | 24 <i>d</i> | 932 | 906 | 909 | 920 | 912 | 907 | 892 | 873 | 872 | 879 | 883 | 890 | 901 | 908 | 907 | 904 | 911 | 913 | 919 | 921 | 927 | 920 | 924 | 912 | 906 | 742 | | 25 <i>d</i> | 908 | 920 | 920 | 902 | 924 | 913 | 909 | 902 | 899 | 897 | 895 | 899 | 903 | 910 | 916 | 905 | 915 | 918 | 921 | 932 | 920 | 917 | 921 | 938 | 913 | 904 | | 26 | 929 | 915 | 915 | 915 | 919 | 915 | 902 | 900 | 889 | 893 | 899 | 906 | 912 | 911 | 920 | 920 | 918 | 923 | 921 | 922 | 924 | 921 | 919 | 919 | 914 | 927 | | 27 | 919 | 917 | 917 | 918 | 917 | 916 | 913 | 901 | 897 | 890 | 891 | 899 | 909 | 920 | 927 | 921 | 921 | 922 | 921 | 919 | 924 | 917 | 917 | 921 | 914 | 934 | | 28 <i>q</i> | 931 | 916 | 913 | 913 | 913 | 910 | 905 | 900 | 892 | 888 | 890 | 896 | 903 | 906 | 910 | 910 | 913 | 919 | 924 | 920 | 920 | 919 | 919 | 919 | 910 | 849 | | 29 | 919 | 918 | 921 | 919 | 915 | 913 | 907 | 905 | 896 | 888 | 889 | 899 | 905 | 912 | 918 | 919 | 924 | 927 | 922 | 934 | 923 | 923 | 926 | 923 | 914 | 945 | | 30 | 926 | 938 | 937 | 909 | 910 | 913 | 912 | 904 | 899 | 898 | 901 | 903 | 904 | 904 | 908 | 913 | 920 | 934 | 935 | 927 | 921 | 920 | 920 | 925 | 916 | 981 | | 31
Mean | 939
920 | 927
918 | 916
916 | 918
914 | 906
915 | 913
912 | 908 | 897
901 | 865
895 | 864
891 | 882
890 | 899
895 | 908
900 | 916
908 | 920
914 | 923
917 | 919
921 | 920
923 | 921
925 | 924
925 | 922
923 | 909 | 920
920 | 920
919 | 911
912 | 856 | | Sum
27,0007+ | | 1470 | 1385 | | 1362 | | 1163 | 946 | 751 | 611 | 602 | 748 | | | 1329 | | 1534 | 1625 | 1684 | 1666 | | | | 1499 | | Grand Total
678,725 | | 1 | Hour | CMT | Sum | |----------|--------|--------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|--------------|--------------|--------|--------|--------------|---------|--------------|-------|---------|---------|----------|--------------|--------|------|----------------| | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | 1300.0 | | 1 | 59·7 | 59·4 | 59·3 | 59.4 | 57:9 | 55 • 4 | 55 · 2 | 55·3 | 55.6 | 56·8 | | 63.4 | 66.9 | 67.2 | 66 · 1 | 65.2 | 63.0 | 62.0 | 61.8 | 61.9 | 61.7 | 62·1 | 61.7 | 59.4 | 60.7 | ,
156∙6 | | 2 | 59.4 | 59.1 | | 58 · 4 | 57.9 | 56 . 2 | 57.5 | 57.1 | 58 · 5 | 61.3 | 63.7 | 66 · 1 | 69.0 | 72.0 | 73.8 | 70.6 | 65.2 | 61.6 | 61.5 | 60.6 | 55.7 | 59 · 4 | 60.4 | 60.5 | 61.8 | 184.0 | | 3 | 57 · 7 | 56 · 9 | | 56 · 3 | | 53.8 | 52.9 | 52.8 | 54 8 | 57 • 4 | | 63.5 | 66 · 2 | | | | 66.8 | | | 61.6 | | 60.2 | | 60.3 | 59.9 | 137 · 2 | | 4 | 57.6 | 57.0 | | | | | 56.9 | 57.8 | 58 · 4 | 59 • 4 | | 61.1 | | 65.2 | 66 · 7 | | | | | | | 56 · 7 | | 59.4 | 60.1 | 142.5 | | 5 q | 59.7 | 58 · 9 | 58 · 7 | 59 · 2 | 59.3 | 57.8 | 57.8 | 57.8 | 58.3 | 59.3 | 60.9 | 63.8 | 65.7 | 66 · 7 | 66.9 | 65.1 | 64 · 5 | 63.6 | 62.1 | 61.3 | 60.8 | 59.8 | 58 • 1 | 59.5 | 61.1 | 165.6 | | 6 q | 59.3 | 59.0 | | | | 57.0 | 57.5 | | 57 · 9 | 58 · 8 | | 63.3 | | 66.7 | 64 · 9 | 64 · 1 |
 60.6 | | 61 · 4 | | | | 61.2 | 60.7 | 155.9 | | 7 | 59 · 8 | 59.7 | 59 • 3. | 58.6 | | 55.9 | 56 · 1 | 56.8 | 57.0 | | | 64.3 | 66 · 7 | 67.7 | 67.7 | | | | 61.7 | 61.7 | | | | 60.2 | 61.1 | 166.8 | | 8 | 58.3 | 58 · 1 | | 59.2 | | 56 · 5 | 56 · 4 | 56 . 7 | 57 · 8 | 59 · 7 | | 63.3 | | 67.2 | | 64 . 7 | | | 60.6 | | 58.3 | | 59.9 | | 60.5 | 151 · 8 | | 9 | 60.2 | | 59·9
59·3 | 59·6
59·4 | | 56·5
57·4 | 56·3
55·4 | 56·0
55·0 | 56·6
55·9 | 58·2
58·6 | 61.2 | 64·3
64·1 | | 68·9 | | 65·1
64·4 | | 59·5
61·4 | | | | | 56·4
60·5 | | 60.4 | 149 · 1 | | 10 q | 59.9 | 59 · 4 | 39.3 | 59.4 | 37.0 | 3/ 4 | 33.4 | 33.0 | 33.3 | 30.0 | 01.3 | 04.1 | | | | 04 4 | 02-3 | 01.4 | 01.1 | 01.2 | 60-7 | 01.3 | 00.2 | 60.4 | 60.6 | 153 · 3 | | 11 | 59.3 | 57 • 4 | 57 · 0 | 52.9 | 55 · 2 | | 55.2 | | 57 · 7 | 59.5 | | 62.6 | | | | | | | | | 60 · 1 | | | 59.5 | 59.5 | 126 · 9 | | 12 | 60.4 | 58.3 | 58 · 5 | 58.0 | | 57.8 | 57.0 | 56 · 7 | 56 · 1 | | 60.7 | 63.4 | | 67.1 | 66 • 4 | | | | | 61.3 | | 59.8 | | 58.9 | 60.6 | 154 · 2 | | 13 q | 59.4 | 59.3 | 59.0 | 59 · 1 | | 57.9 | 57.6 | | 57.5 | | | 64.4 | 67.1 | | | | | | | | 62.1 | | 60.7 | | 61.4 | 173.5 | | 14 | 59 · 1 | | 58 · 8 | 60.3 | | 57 4 | 56 · 9 | 55.6 | 55·6
58·8 | 58·1
62·0 | | 63·8
67·4 | 67·9
69·6 | | | 63.3 | 61.2 | | | | 59.5 | | | 59.0 | 60.1 | 141 · 2 | | 15 | 59.0 | 58 · 7 | 58 • 2 | 58 · 5 | 57.5 | 55.6 | 54 · 9 | 56 · 0 | 29.9 | 62.0 | 02.1 | 07.4 | 09.0 | 08.7 | 00.1 | 03.3 | 00.9 | 00.0 | 60.7 | 20.0 | 59 · 4 | 60.3 | 60-1 | 29.1 | 60.8 | 159 · 1 | | 16 | 57 • 4 | 57 • 6 | 59・4 | 58.8 | 58 · 3 | 57 • 4 | 56.∙9 | 56 · 8 | 57 · 1 | 59 • 4 | | 64.3 | | | | | | | 62.5 | | | 61 · 1 | 61.0 | 60.6 | 61.2 | 169.6 | | 17 | 59.3 | 57 · 9 | 57.9 | 58.9 | 55.7 | 52.8 | 52.3 | 54 · 1 | | 57.9 | 61.4 | 66 · 1 | | | 67.7 | | 63.4 | | | 60.7 | | 60.2 | | 56.6 | 60.1 | 142.8 | | 18 d | 56.6 | 57.4 | 57 · 8 | 58.0 | 58 · 1 | 57.6 | 56.9 | 56 · 7 | 56 · 4 | 57 · 7 | 59.7 | 63.4 | | 67.5 | | | 69.9 | | | 63 · 4 | | | 58 • 4 | | 60.5 | 153 · 1 | | 19 d | 59.8 | 58.8 | 53 · 2 | 55 . 7 | 56 · 5 | 61.0 | 66 · 1 | 61.2 | 57.9 | 57.5 | 59.8 | 62.1 | | 67.5 | | 65.0 | 63.4 | | 57.0 | 54 · 5 | | | | 58.5 | 59.8 | 135.9 | | 20 d | 57 · 7 | 58.3 | 59 · 0 | 59.8 | 58 · 8 | 56 · 6 | 55.7 | 20.1 | 57.9 | 58.9 | 61.5 | 65.7 | 67.4 | 00.7 | 03.7 | 02.1 | 03.4 | 01.3 | 57.9 | 58 • 6 | 59 · 5 | 59.6 | 60.4 | 66 · 1 | 60.7 | 157 · 1 | | 21 | 60.5 | 61.7 | 55.0 | 58 · 6 | 59 · 8 | 56 · 2 | 55.6 | 57.5 | 58 · 7 | 59.6 | | 63.4 | | 66 • 4 | | | | 58 • 4 | | | | 60 · 1 | 59 · 7 | 59.8 | 60.1 | 143.0 | | 22 | 59.4 | 59.8 | 59.6 | 58 6 | 58 · 3 | 58.0 | 57.3 | 56 • 4 | 57.0 | 57.9 | | 64 · 1 | | | | 63.5 | | | | | | | | 57.3 | 60.1 | 142.7 | | 23 | 58 1 | | 59.3 | 58.8 | 58 · 1 | 57.1 | | 56 · 3 | 57.0 | 58.7 | | 62.2 | | 63.2 | | | 62.1 | | | 61.2 | | | | 58.4 | 59.1 | 117.8 | | 24 d | 55.8 | | 56 · 3 | 54 · 9 | 55.2 | 55.8 | 55.5 | 55 · 4 | 55.0 | 57.0 | | 62.7 | 64.9 | | | | 61.1 | | | | | | | 52.1 | 58.2 | 97 · 7 | | 25 d | 57.0 | 56.8 | 60.7 | 56 · 6 | 56 · 5 | 57.4 | 57.6 | 55.6 | 56 • 4 | 58 · 4 | 61.7 | 64.5 | 67.2 | 08.4 | 68.5 | 66.3 | 03.9 | 62 · 1 | 39.7 | 54 · 1 | 57.8 | 59·4 | 59.7 | 60.7 | 60.3 | 147.0 | | 26 | 59.0 | 64.0 | 60.3 | 58.3 | | 57.0 | 57 · 4 | 56 · 7 | 57.0 | 59.3 | | 67.0 | | 67.4 | | | 60.2 | | | | | | 59.3 | | 60.7 | 157.6 | | 27 | 59.5 | 59.4 | 59 · 7 | 58.9 | 57 · 7 | 55.9 | 54 2 | | 56 · 7 | | | 65.8 | | | 64.5 | | | | | | 56 · 7 | | 58.9 | | 60.0 | 139 · 2 | | 28 q | 59.5 | | 58·6
59·4 | 57.8 | 57·7
57·1 | 55 · 2 | 55·4
55·0 | 54·9
56·0 | 55·4
56·0 | 58·7
57·4 | | 65.4 | | | 65.5 | | | | | 61.6 | 59.8 | | | 59.6 | 60.1 | 141.5 | | 29
30 | 59·4 | 60.1 | | | 57.3 | | | 58.5 | 58.6 | 58.9 | | 63.3 | | | 63.6 | | | | | | | | 59·8
59·4 | 58.9 | 59.9 | 143·1
138·1 | | | | | | | | | | | | | 65.3 | | | | | | | | | _ | | | | | | | | 31 | | 57.7 | | | 53 · 1 | | | | | | | | | | 65 - 1 | | | | | | | 58.9 | | | 60.6 | 154 · 2 | | ean | 28.9 | 28.8 | 28.7 | 5/.9 | 57 · 4 | 20.0 | 56 · 4 | 30.4 | 2/.1 | 20.9 | 61.3 | 04.2 | 00.4 | 07.0 | 00.1 | 04.2 | 02.9 | 01.4 | 01.0 | 90.3 | 29.0 | 58.9 | 59.3 | 59.4 | 60.3 | | | Sum | 124.6 | 122.0 | 105 · 1 | 94 · 8 | 80.7 | 53 · 4 | 48.6 | 48.3 | 71 • 1 | 125·3 | 201 · 7 | 91 · 1 | 359 · 2 3 | 377.0 | 348 7 | 300-5 | 249.7 2 | 204 · 1 | 190-0 | 168 · 8 | 127.8 1 | 26 · 1 1 | 37.2 1 | 42.3 | 1 | Grand Tot | | 21 ESI | CDALEMU | IR (Z) | | | | | | | | | 4 | 5,000y | (0.45 | CGS uni | it) + | | | | | | | | | | AUGU | ST 1965 | |------------------|-------------|------------|-----|-----|------------------------| | | Hour
0-1 | CMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
10,000y+ | | | γ | | 1 | 442 | 443 | 444 | 445 | 447 | 449 | 445 | 445 | 444 | 437 | 433 | 429 | 425 | 426 | 434 | 438 | 444 | 446 | 445 | 444 | 444 | 442 | 438 | 439 | 440 | 568 | | 2 | 439 | 440 | 440 | 440 | 441 | 441 | 437 | 431 | 433 | 433 | 434 | 428 | 419 | 427 | 439 | 457 | 476 | 474 | 465 | 462
451 | 464
449 | 453
446 | 446
444 | 445
443 | 444
439 | 664
530 | | 3 | 435 | 436 | 438 | 435 | 434 | 439 | 438 | 438 | 433 | 428 | 428 | 428 | 432 | 433 | 435 | 439 | 445 | 452 | 451
451 | 451
450 | 450 | 446 | 440 | 439 | 439 | 531 | | 4 | 439 | 435 | 434 | 436 | 439
440 | 441
441 | 441
441 | 441
441 | 441
439 | 439
433 | 432
426 | 423
423 | 422
428 | 425
431 | 427
435 | 438
441 | 451
444 | 451
448 | 449 | 448 | 445 | 445 | 444 | 441 | 439 | 544 | | 5 q | 441 | 440 | 440 | 440 | 440 | 441 | 771 | 771 | 739 | 733 | 720 | 423 | 720 | 731 | 733 | 441 | 777 | 440 | 777 | 440 | | | | | | | | 6 q | 441 | 440 | 440 | 440 | 441 | 441 | 441 | 441 | 439 | 436 | 430 | 428 | 423 | 424 | 431 | 439 | 444 | 446 | 444 | 443 | 443 | 443 | 441 | 440 | 438 | 519 | | 7 | 442 | 441 | 441 | 442 | 442 | 443 | 441 | 440 | 435 | 429 | 422 | 421 | 424 | 431 | 440 | 442 | 441 | 445 | 443 | 442 | 443 | 442 | 435 | 434 | 438 | 501 | | 8 | 436 | 438 | 437 | 439 | 440 | 440 | 440 | 441 | 438 | 434 | 432 | 429 | 429 | 434 | 436 | 441 | 445 | 446 | 446 | 446 | 443 | 441 | 442 | 441 | 439 | 534 | | 9 | 442 | 441 | 441 | 440 | 439 | 440 | 440 | 441 | 439 | 435 | 435 | 428 | 427 | 434 | 444 | 447 | 452 | 462 | 461 | 457 | 456 | 449 | 440 | 440 | 443 | 630 | | 10 <i>q</i> | 442 | 443 | 443 | 442 | 443 | 445 | 443 | 442 | 438 | 434 | 434 | 436 | 439 | 445 | 446 | 446 | 449 | 451 | 446 | 444 | 443 | 443 | 443 | 442 | 443 | 622 | | 11 | 436 | 425 | 422 | 422 | 432 | 435 | 437 | 439 | 437 | 438 | 438 | 436 | 435 | 435 | 435 | 440 | 443 | 442 | 442 | 444 | 445 | 442 | 442 | 440 | 437 | 482 | | 12 | 435 | 438 | 440 | 440 | 442 | 442 | 446 | 436 | 443 | 435 | 430 | 433 | 434 | 439 | 446 | 450 | 451 | 447 | 445 | 443 | 445 | 445 | 443 | 440 | 441 | 588 | | 13 q | 441 | 442 | 442 | 442 | 443 | 444 | 442 | 442 | 440 | 439 | 428 | 420 | 423 | 429 | 435 | 439 | 440 | 440 | 440 | 440 | 439 | 440 | 440 | 439 | 438 | 509 | | 14 | 440 | 440 | 436 | 428 | 422 | 425 | 432 | 436 | 438 | 435 | 434 | 429 | 432 | 440 | 447 | 453 | 454 | 453 | 453 | 449 | 446 | 442 | 440 | 440 | 439 | 544 | | 15 | 442 | 442 | 442 | 443 | 446 | 446 | 445 | 442 | 439 | 432 | 429 | 424 | 422 | 425 | 433 | 439 | 441 | 443 | 446 | 453 | 448 | 443 | 442 | 440 | 439 | 547 | | 16 | 440 | 441 | 441 | 441 | 444 | 446 | 445 | 443 | 440 | 434 | 428 | 423 | 418 | 425 | 434 | 439 | 441 | 442 | 441 | 440 | 440 | 441 | 441 | 442 | 438 | 510 | | 17 | 441 | 440 | 440 | 440 | 434 | 436 | 435 | 435 | 425 | 422 | 425 | 433 | 434 | 431 | 437 | 445 | 446 | 449 | 460 | 453 | 447 | 445 | 446 | 444 | 439 | 543 | | 18 d | 444 | 443 | 442 | 443 | 443 | 444 | 444 | 446 | 440 | 435 | 426 | 422 | 422 | 425 | 430 | 435 | 440 | 440 | 454 | 466 | 486 | 470 | 453 | 447 | 443 | 640 | | 19 d | 441 | 421 | 425 | 440 | 443 | 436 | 401 | 411 | 419 | 422 | 426 | 427 | 431 | 438 | 446 | 448 | 453 | 471 | 469 | 468 | 459 | 435 | 436 | 434 | 437 | 500 | | 20 d | 436 | 439 | 442 | 444 | 446 | 446 | 451 | 449 | 447 | 443 | 440 | 434 | 435 | 441 | 448 | 456 | 456 | 462 | 470 | 465 | 457 | 448 | 436 | 400 | 445 | 691 | | 21 | 411 | 401 | 421 | 421 | 412 | 421 | 434 | 438 | 442 | 434 | 430 | 426 | 432 | 441 | 443 | 448 | 456 | 457 | 454 | 448 | 447 | 447 | 447 | 445 | 436 | 456 | | 21
22 | 446 | 446 | 446 | 446 | 447 | 446 | 444 | 443 | 441 | 440 | 435 | 430 | 431 | 437 | 443 | 448 | 455 | 458 | 455 | 454 | 451 | 449 | 448 | 437 | 445 | 676 | | 23 | 435 | 439 | 443 | 446 | 448 | 449 | 452 | 451 | 446 | 443 | 441 | 441 | 437 | 434 | 440 | 441 | 444 | 447 | 447 | 451 | 448 | 448 | 446 | 435 | 444 | 652 | | 24 d | 400 | 409 | 429 | 435 | 437 | 440 | 442 | 443 | 438 | 435 | 428 | 422 | 422 | 430 | 437 | 440 | 440 | 441 | 442 | 442 | 443 | 447 | 437 | 419 | 433 | 398 | | 25 d | 409 | 407 | 397 | 418 | 429 | 433 | 437 | 441 | 441 | 440 | 435 | 429 | 428 | 433 | 441 | 448 | 450 | 455 | 455 | 458 | 451 | 448 | 446 | 437 | 436 | 466 | | 0.5 | 426 | 423 | 429 | 437 | 441 | 441 | 445 | 447 | 448 | 439 | 430 | 428 | 432 | 440 | 447 | 451 | 453 | 450 | 444 | 443 | 443 | 446 | 445 | 444 | 441 | 572 | | 26
27 | 445 | 446 | 444 | 444 | 445 | 446 | 447 | 448 | 446 | 438 | 432 | 430 | 436 | 438 | 446 | 449 | 449 | 448 | 444 | 444 | 447 | 446 | 443 | 440 | 443 | 641 | | 27
28 q | 433 | 437 | 441 | 442 | 444 | 447 | 446 | 443 | 439 | 433 | 428 | 425 | 426 | 433 | 439 | 441 | 446 | 445 | 443 | 443 | 443 | 443 | 443 | 443 | 439 | 546 | | 29 4 | 443 | 443 | 442 | 441
| 441 | 442 | 443 | 444 | 440 | 433 | 427 | 418 | 418 | 424 | 433 | 440 | 443 | 447 | 447 | 448 | 448 | 447 | 444 | 443 | 439 | 539 | | 30 | 442 | 435 | 422 | 431 | 439 | 442 | 444 | 442 | 437 | 434 | 429 | 424 | 424 | 429 | 434 | 440 | 446 | 443 | 443 | 447 | 447 | 445 | 443 | 443 | 438 | 505 | | 31 | 432 | 431 | 432 | 435 | 437 | 436 | 440 | 440 | 440 | 433 | 431 | 430 | 435 | 441 | 442 | 445 | 447 | 446 | 446 | 446 | 447 | 450 | 445 | 441 | 439 | 548 | | Mean | 436 | 435 | 436 | 438 | 439 | 441 | 441 | 441 | 439 | 435 | 431 | 428 | 428 | 433 | 439 | 444 | 448 | 450 | 450 | 449 | 449 | 446 | 443 | 439 | 440 | | | Sum
13,,000y+ | 517 | 485 | 516 | 578 | 621 | 663 | 659 | 660 | 605 | 475 | 356 | 257 | 275 | 418 | 603 | 763 | 885 | 947 | 941 | 932 | 907 | 817 | 719 | 597 | | Grand Total
327,196 | #### GEOMAGNETIC CHARACTER FIGURES (K, K_H , K_D , K_Z , AND C) AND TEMPERATURE IN MAGNETOGRAPH CHAMBER | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of
K _D
indices | 3-h range
indices
K _Z | Sum of
K _Z
indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph chamber
200°A+ | |-------------------|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------------|--|-------------------------------------|--|---| | 1 | 0101 1333 | 12 | 0001 1333 | 11 | 0100 0112 | 5 | 0000 0000 | 0 | 1 | 85 • 6 | | 2 | 1222 3333 | 19 | 1212 3333 | 18 | 1222 2333 | 18 | 0001 1201 | 5 | 1 | 85.6 | | 3 | 3211 2321 | 15 | 2211 2321 | 14 | 3110 1120 | 9 | 0000 0100 | 1 | 1 | 85.6 | | 4 | 2111 3323 | 16 | 2011 3323 | 15 | 2110 1213 | 11 | 1000 0100 | 2 | 1 | 85.6 | | 5 q | 0001 2222 | و ا | 0001 2222 | 9 | 0001 0012 | 4 | 0000 0000 | 0 | 0 | 85.6 | | 6 q | 1110 2111 | 8 | 1010 2111 | 7 | 1110 1000 | 4 | 0000 0000 | 0 | 0 | 85.6 | | 7 | 1123 2322 | 16 | 1023 2322 | 15 | 0111 1112 | 8 | 0000 0001 | 1 | 1 | 85 · 6 | | 8 | 2211 3231 | 15 | 2201 3231 | 14 | 2210 1121 | 10 | 0000 0000 | 0 | 1 | 85 • 6 | | ğ | 1102 3333 | 16 | 0102 3333 | 15 | 1101 2233 | 13 | 0000 1211 | 5 | 1 | 85 • 6 | | 10 q | 0111 2212 | 10 | 0111 2212 | 10 | 0110 1000 | 3 | 0000 0000 | 0 | 0 | 85.6 | | | 3211 2222 | 15 | 3211 2222 | 15 | 2201 0012 | 8 | 2100 0000 | 3 | 1 | 85.6 | | 11 | 2210 2323 | 15 | 1210 2323 | 14 | 2210 0112 | 9 | 0000 0000 | 0 | 1 | 85 · 6 | | 12
13 <i>a</i> | 0000 1222 | 137 | 0000 1222 | 7 | 0000 0001 | 1 | 0000 0000 | 0 | 0 | 85.6 | | | 2222 3223 | 18 | 2222 3213 | 17 | 1211 2122 | 12 | 1100 1010 | 4 | 1 | 85 · 6 | | 14
15 | 1102 2233 | 14 | 1102 2233 | 14 | 0100 1022 | 6 | 0000 0010 | 1 | 1 | 85.6 | | 16 | 3121 1232 | 15 | 3021 1232 | 14 | 2110 0021 | 7 | 0000 0000 | 0 | 1 | 85.6 | | 17 | 3322 3232 | 20 | 3222 3232 | 19 | 2311 1122 | 13 | 0111 0010 | 4 | 1 | 85 · 6 | | 18 d | 2001 3454 | 19 | 1001 3454 | 18 | 2000 2354 | 16 | 0000 0033 | 6 | 1 | 85 ⋅ 6 | | 19 d | 3441 4434 | 27 | 3441 4434 | 27 | 3441 2333 | 23 | 3220 2222 | 15 | 1 | 85 · 6 | | 20 d | 2223 3334 | 22 | 2223 3333 | 21 | 1121 2234 | 16 | 0000 0114 | 6 | 1 | 85.6 | | 21 | 4312 2210 | 15 | 3312 2210 | 14 | 4312 0110 | 12 | 2210 1000 | 6 | 1 | 85 · 7 | | 22 | 0012 2323 | 13 | 0012 2322 | 12 | 0010 1113 | 7 | 0000 0002 | 2 | 1 | 85 · 7 | | 23 | 2000 1434 | 14 | 2000 1433 | 13 | 2000 1234 | 12 | 0000 0103 | 4 | 1 | 85.7 | | 24 d | 4332 2113 | 19 | 4232 2113 | 18 | 3321 0003 | 12 | 3100 0002 | 6 | 1 | 85 · 7 | | 25 d | 4322 2333 | 22 | 4322 2333 | 22 | 3221 1132 | 15 | 2200 0112 | 8 | 1 | 85 · 7 | | 26 | 3212 2202 | 14 | 3212 2202 | 14 | 3111 2102 | 11 | 1000 0000 | 1 | 1 | 85.7 | | 27 | 1012 3233 | 15 | 1012 3222 | 13 | 1001 1033 | 9 | 0000 0001 | 1 | 1 | 85 · 7 | | 28 <i>q</i> | 2111 1110 | 8 | 2111 1110 | 8 | 1110 0000 | 3 | 0000 0000 | 0 | 0 | 85 · 7 | | 29 | 1210 1132 | 11 | 1210 1132 | 11 | 1110 0021 | 6 | 0000 0000 | 0 | 0 | 85 · 7 | | 50 | 3211 2232 | 16 | 3011 2232 | 14 | 3210 1022 | 11 | 2100 0000 | 3 | 1 | 85 · 7 | | 31 | 3333 2222 | 20 | 3333 2222 | 20 | 2311 1002 | 10 | 1001 1000 | 3 | 1 | 85 · 7 | | | | | | | | | | Mean | 0.81 | 85.6 | q denotes an international quiet day and d an international disturbed day. $[\]mathbf{K_H}$ For horizontal component. $\mathbf{K_D}$ For declination. $\mathbf{K_Z}$ For vertical component. (See Introduction). | 19 ESE | DALEMU | IR (H) |) | | | | | | | | | 16,000 | (0.16 | CCS u | nit) + | | | | | | | | | | SEPTEM | BER 1965 | |---|--|--|--|--|---|--|--|---|--|--|--|--|--|--|--|--|--|--|--|--|---|---|--|---|--|--| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
21,0007+ | | 1
2
3
4
5
6
7
8 q
9 q
10 q | 922
916
916
937
920
920
917
918
919
919 | 919
925
915
916
913
913
919
916
920
920 | 918
920
915
912
914
910
919
912
918
921 | 915
911
914
914
916
913
918
911
917
920 | 913
907
913
915
909
911
916
915
917 | 903
906
911
920
903
912
911
915
913
916 | 909
911
909
913
904
909
911
913
909
914 | 903
917
896
907
910
909
906
907
908 | 903
891
894
911
903
901
904
905
907
904 | 99
886
884
906
901
899
897
899
909 | 97
897
889
878
897
901
899
898
895
906
896 | 902
894
881
894
895
904
905
895
904
903 | 911
892
889
864
901
909
911
899
905
911 | 920
901
900
879
915
908
914
910
908
917 | 927
906
905
901
920
913
919
913
914
917 | 924
917
910
911
917
915
912
916
919
916 | 925
915
919
923
924
910
918
917
920
914 | 930
916
926
935
927
912
911
920
922
920 | 922
919
928
905
926
918
920
917
921
927 | 916
921
927
919
915
920
923
918
923
925 | 921
918
926
913
916
923
924
918
924
924
937 | 924
923
927
911
921
922
930
919
922
922
933 | 917
918
932
919
920
920
931
920
917
924 | 920
915
928
922
921
917
917
920
917
922
929 | 914
909
910
911
912
912
915
912
915
916 | 934
812
850
864
898
885
955
890
956
977 | | 12
13
14 <i>q</i>
15 | 934
938
922
923
872 | 926
911
918
920
875 | 915
913
917
919 | 929
915
918
918 | 923
919
918
926 | 919
918
916
926 | 912
915
916
925 | 903
908
912
926
894 | 890
896
903
915 | 882
887
892
899 | 886
887
885
888 | 896
900
886
882 | 907
909
897
887
849 | 917
914
904
892
885 | 920
920
907
896
890 | 924
918
915
920
872 | 924
918
922
931 | 919
921
922
927
915 | 916
924
924
888
888 | 934
924
917
907 | 932
924
908
905 | 925
923
915
883 | 929
923
921
889 | 930
926
920
867 | 916
915
911
907 | 992
951
875
759 | | 17 <i>d</i>
18
19 <i>d</i>
20 | 908
897
908
912 | 902
905
906
908 | 900
905
914
908 | 907
905
902
907 | 910
906
907
906
913 | 901
911
918
905 | 912
908
909
900 | 903
905
883
894 | 884
899
902
891 | 876
890
904
887 | 879
886
899
884 | 882
889
899
892 | 872
891
882
903 | 877
899
884
906 | 896
889
895
905 | 875
889
899
906 | 898
892
901
905 | 914
904
901
911 |
918
892
922
915 | 915
897
905
913 | 921
911
908
906 | 907
919
917
912
928 | 906
883
909
917 | 916
898
909
907 | 899
899
903
904 | 579
570
683
700 | | 21
22
23
24
25 | 915
914
919
920
909 | 912
917
917
921 | 913
921
918
922 | 915
919
917
915 | 917
917
918
918 | 922
921
905
926 | 915
923
912
904 | 915
921
911
901 | 914
915
895
895 | 910
913
897
887 | 905
903
896
888 | 902
905
897
894 | 905
916
895
902 | 908
919
909
903 | 913
906
908
897 | 916
918
913
895 | 918
902
915
908 | 924
901
916
907 | 930
911
920
913 | 924
912
911
913 | 925
919
911
914 | 924
921
927
920 | 926
918
917
914 | 925
921
915
913 | 916
915
911
907 | 834
992
958
860
779 | | 26
27 d
28 d
29
30 q | 915
923
904
907
902 | 914
897
866
907
905 | 908
898
887
905
904 | 923
909
902
907
904 | 926
911
925
906
902 | 921
910
913
904
905 | 922
909
896
902
907 | 903
905
910
896
902 | 891
897
884
891
896 | 895
889
863
896
895 | 890
889
861
886
891 | 883
887
868
886
889 | 891
897
879
884
889 | 888
897
892
892
890 | 905
904
905
892
895 | 907
909
904
891
899 | 908
913
909
900
904 | 912
896
900
910
909 | 912
889
905
912
912 | 916
871
907
917
914 | 915
866
899
912
913 | 920
832
904
917
911 | 918
835
902
917
912 | 919
858
909
920
912 | 908
891
896
902
903 | 802
391
494
657
662 | | Mean
Sum
26,000y+ | 916
1469 | 911
1334 | 911
1342 | 913
1393 | 914 | 913
1392 | 911
1321 | 905 | 931 | 894
812 | 730 | 893
793 | 895
853 | 902
1067 | 907 | 909
1254 | 912
1371 | 915
1463 | 915
1440 | 915
1458 | 916
1469 | 916
1467 | 913
1404 | 914
1415 | 908 | Grand Total
653,955 | | 20 ES | KDALEMU | IR (D |) | | | | | | | | | 9° · | + | | | | | | | | | | | | SEPTEM | BER 1965 | |----------------|-------------|------------|-----------|-----------|--------|--------|--------|----------|-----------|--------|--------|---------|---------|-----------|---------|---------|-----------|-----------|---------|--------|--------|--------|-----------|--------|--------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-1 | 4 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | | Sum
1300·0'+ | | 1 | ,
60·2 | 59.2 | ,
58·7 | ,
57·6 | 57·1 | 56 · 4 | 56 · 2 | 56·5 | ,
56·7 | 58·8 | 62.3 | 64.7 | 65.6 | ,
64·9 | 62·7 | 60·3 | ,
59·7 | ,
59·7 | 60-4 | 60·0 | 60·7 | 61·1 | ,
59·3 | 59.4 | 59.9 | 138 · 2 | | 2 | 57 . 9 | 59 · 4 | 57.6 | 56 · 9 | 57.6 | 57 · 1 | 55 · 8 | 55.6 | 56.8 | 58 · 4 | 60.7 | 63.9 | 66.8 | 68.9 | 66.3 | 63 · 1 | 61.5 | 60.8 | 60.5 | 60.5 | 59.2 | 58.2 | 58.3 | 58.6 | 60.0 | 140.4 | | 3 | 59.5 | 59 · 1 | | 58 · 1 | 58 · 1 | 57.7 | 56 · 7 | . 56 · 5 | 56 · 7 | 58 1 | 60.4 | 63.6 | 66.0 | | 65.0 | 62.7 | 61.7 | 61.3 | 60.7 | 60.7 | 60.7 | 60.6 | 60.7 | 59·3 | 60.4 | 149 · 1 | | 4 | 54 8 | 52.2 | 53 · 9 | 53 · 8 | 54 · 1 | 55 · 9 | 55 · 4 | 55 · 5 | 55.9 | 58.8 | | 65.0 | 68.1 | 69.6 | | 66.3 | 64 9 | 64.0 | 61 · 7 | 55.8 | 59.6 | 59.9 | 59 · 7 | 60.7 | 59.8 | 135 · 3 | | 5 | 58.0 | 60.5 | 59 · 8 | 58 9 | 59.0 | 58.0 | 56 · 9 | 56 · 8 | 57 • 4 | 58.8 | 61.5 | 63.6 | 65.7 | 65.9 | 64.2 | 62.5 | 62.1 | 62.3 | 61.3 | 58 • 0 | 60.6 | 60.7 | 60.5 | 59 · 7 | 60.5 | 152.7 | | 6 | 61.8 | 58 · 4 | 57 · 7 | 58.0 | 57 · 4 | 56 · 1 | 56 · 0 | 56.6 | 58.0 | 59.8 | 60.7 | 62.6 | 65.2 | 65.7 | 64.7 | 63.3 | 58 6 | 61 · 1 | 60.7 | 60.2 | 57.6 | 58 · 6 | 58 · 7 | 59.2 | 59.9 | 136 · 7 | | 7 | 59.4 | 59 · 1 | 58 - 5 | 58 · 4 | 58 · 1 | 57.6 | 57.8 | 57 · 7 | 58 · 2 | 59 · 4 | 61.3 | 63.2 | 64.2 | 64.2 | 64.0 | 62.1 | 61 2 | 62.0 | 61.7 | 61.2 | 60.7 | 59.9 | 55.4 | 54.8 | 60.0 | 140.1 | | 8 9 | 59.4 | 58 • 4 | 58.9 | 58.5 | 57.5 | 57.2 | 57.0 | 56 · 9 | 57.5 | 59.6 | 62.1 | 64 · 1 | 65.0 | 64.5 | 62.9 | 60.8 | 59.9 | 59.8 | 60.6 | 60.7 | 60.2 | 59.8 | 59.5 | 59.4 | 60.0 | 140 · 2 | | 9 q | 59 · 4 | 58 • 9 | 59.3 | | | 58.2 | | 57.5 | 57.6 | 58.9 | 61.8 | 63.7 | | 64.0 | | 60.6 | 59 · 4 | 59.2 | 60.0 | 60.5 | 60.3 | 59.3 | 58.5 | 58 • 4 | 59 9 | 137.0 | | 10 q | 59 · 4 | 59.3 | 59.3 | 58.8 | 58.5 | 58.3 | 57 · 4 | 57 · 1 | 57.0 | 58.0 | 60.3 | 63.0 | 64.9 | 64 • 7 | 63.2 | 62.1 | 61.2 | 60.5 | 60 · 4 | 59.9 | 59 · 7 | 59・4 | 59.6 | 59.5 | 60.1 | 141.5 | | 11 | 59.2 | 58 · 9 | 58 · 7 | 58 • 5 | 58 · 1 | 57 · 7 | 57.0 | 57 · 1 | 58 · 1 | 59.3 | 61.1 | 64.3 | 66.5 | 66 8 | 66.0 | 64 · 7 | 63 · 1 | 62.2 | 62.2 | 62.0 | 61 - 7 | 61.0 | 60.3 | 59.6 | 61.0 | 164 · 1 | | 12 | 55.8 | 52.4 | 54 · 7 | | 55.5 | 56 · 7 | 56 • 4 | 55 • 4 | 55 · 4 | 57.4 | 60.8 | 64 · 8 | 66.8 | 65.9 | 63.7 | 62.4 | 60.8 | 60.3 | 61.2 | 60.9 | 60.7 | 60.4 | 60.0 | 60.1 | 59.4 | 125.9 | | 13 | 57.2 | 52.6 | 56 · 7 | 58.5 | 58.0 | 57.8 | 58.3 | 58 • 4 | 58 · 7 | 59.6 | 61.4 | 63 • 4 | 66.0 | 65 2 | 63.6 | 61.8 | 61.3 | 61.2 | 60.7 | 60.4 | 60.0 | 59.6 | 59.5 | 59 · 1 | 60.0 | 139.0 | | 14 q | 58.5 | 59.0 | 59 · 4 | 59.2 | 59.2 | 59.3 | 58.7 | 57.6 | 56 · 5 | 56 · 3 | 58.6 | 62.1 | 65.2 | 66 · 1 | 64.9 | 63.0 | 61.6 | 60.2 | 59 · 7 | 59.6 | 58.5 | 58.8 | 58.9 | 57.8 | 59.9 | 138 · 7 | | 15 | 58.4 | 58.3 | 58.3 | 58.2 | 57 • 4 | 57 · 4 | 56 · 1 | 56 · 6 | 58 · 1 | 57.9 | 59 • 4 | 60.6 | 64.0 | 66.0 | 64.9 | 67.5 | 67.9 | 66 · 1 | 59 · 5 | 60.8 | 58.0 | 49.9 | 47 · 1 | 42.2 | 58 8 | 110.6 | | 16 d | 35.6 | 41.8 | 53 · 1 | 59.3 | 58.5 | 57:5 | 53 · 8 | 54.9 | 59 · 7 | 62.8 | 60.7 | 65.9 | 67.3 | 66 · 9 | 66.6 | 65.0 | 62.9 | 61.4 | 51 · 2 | 58 · 7 | 58.3 | 55 · 1 | 51:2 | 59.5 | 57.8 | 87 · 7 | | 17 d | 60.0 | 62.7 | 58.6 | 58 · 7 | 58 • 1 | 58.6 | 61.7 | 60.3 | 60.2 | 60.6 | 60.3 | 63.1 | 64.2 | 64.8 | 65.9 | 64.3 | 62.0 | 62.4 | 61.0 | 59.0 | 53 · 7 | 54.9 | 55.1 | 52.1 | 60.1 | 142.3 | | 18 | 52.7 | 58.0 | 57.0 | 57.5 | 60.9 | 59.6 | 58.5 | 58.0 | 58 • 4 | 59.6 | 60.1 | 61 • 4 | 66.3 | | 65.6 | 64.5 | 62.2 | 62.3 | 58 • 4 | 56 • 0 | 56 • 6 | 62.7 | 50 · 4 | 54.8 | 59.5 | 127 · 1 | | 19 d | 55.6 | 56 · 5 | 58 · 1 | 57.8 | 58 • 9 | 58 · 5 | 59.6 | 61.6 | 59.8 | 59.7 | 60.6 | 63.3 | 65.0 | | 63.6 | 61.5 | | 57.9 | 54 • 4 | 60 · 1 | | 59 · 4 | 59·1 | 59.3 | 59.8 | 134 · 6 | | 20 | 60.3 | 59.2 | 58 · 9 | 58 · 8 | 58 · 7 | 58 · 3 | 57.7 | 57 • 4 | 57.6 | 58 • 4 | 60.5 | 62.6 | 63.7 | 63.2 | 62.6 | 61.2 | 60.5 | 60.3 | 59·8 | 59.3 | 59.0 | 59.2 | 59.6 | 56.8 | 59.7 | 133 · 6 | | 21 | 58.0 | 59 · 2 | 56 · 7 | 56 6 | 57 • 4 | 57 · 4 | 56 · 8 | 56 · 4 | 56 · 5 | 57.3 | 59.5 | 61 · 7 | 63.0 | 62.9 | 61.7 | 60.9 | 60.2 | 59.5 | 59.0 | 58 · 4 | 58.2 | 58.8 | 59.5 | 59·1 | 58.9 | 114.7 | | 22 | 58.5 | 57 · 7 | 57.0 | 56 • 4 | 56 • 4 | 56 · 7 | 56 · 8 | 58.0 | 57.6 | 58 · 4 | 59 · 4 | 61 • 1 | 62.7 | 63.3 | 63 • 4 | 62.8 | 62.3 | 62.7 | 62.6 | 62.1 | 61.8 | 60.9 | 60.4 | 58 · 1 | 59.9 | 137 · 1 | | 23 | 58.9 | 58 • 4 | 57.9 | 58 • 2 | 58.0 | 58 · 3 | | 58 · 1 | 58 · 1 | 58 · 7 | 60.7 | 63.3 | | 67.9 | 67.0 | 68.0 | 61.5 | 64.0 | 62.4 | 58.9 | | 60.4 | 59.3 | 58.9 | 60.9 | 161.5 | | 24 | 57 · 9 | 58.7 | 58.7 | 58.0 | 55.9 | 58 · 2 | 58 · 1 | 58 · 1 | 57 • 4 | 58.5 | 61 · 1 | 64 · 2 | 64.0 | | 62.8 | 61.7 | 61.1 | 60.5 | | 60.1 | 59 · 4 | | | 57.0 | 59.6 | 130 · 4 | | 25 | 57.6 | 59.6 | 56 · 7 | 49 · 3 | 53.7 | 55 · 3 | 54 · 7 | 55.3 | 55.9 | 58 • 4 | 61.7 | 64.2 | 66 · 2 | 67.6 | 66.3 | 64.3 | 60.6 | 57.9 | 61.3 | 60.2 | 59 · 7 | 57.0 | 58 · 9 | 58.9 | 59.2 | 121-3 | | 26 | 58.8 | 58 · 0 | 56 · 2 | 59 • 4 | 55.8 | 57.3 | 59.3 | 59.3 | 59.6 | 59.3 | 61.8 | 63.8 | 67.4 | 66 • 2 | 66.3 | 65.3 | 62.8 | 61.6 | 60.3 | 58.9 | 59.5 | 59.8 | 58.3 | 59 · 1 | 60.6 | 154 · 1 | | 27 d | 54 · 1 | 51 · 2 | 55.6 | 57.9 | 58.3 | 58 · 1 | 58 • 0 | 57 • 5 | 57.8 | 58 · 4 | 60 · 7 | 64.2 | 66 · 1 | 65.3 | 63.9 | 62.7 | 61.8 | 59 • 4 | 60.5 | 54 · 1 | 44.6 | 44 · 7 | 45 · 2 | 44 · 1 | 56.8 | 64 · 2 | | 28 d | 55 • 1 | 45.4 | 50.0 | 49 • 4 | 53.6 | 56 · 9 | 58 • 4 | 59.8 | 58.8 | 59.2 | 62.4 | 66 · 1 | 67.1 | | 65.9 | 64.8 | | | 62.3 | 58.3 | 53 · 4 | 55 · 4 | 59 • 4 | 59.4 | 58.8 | 112.0 | | 29 | 58 · 4 | 58.8 | 58 · 4 | 58.5 | 58.3 | 58 • 6 | 58 · 1 | 57.9 | 58 · 1 | 59.0 | 61.2 | 63.1 | 64 7 | 64.8 | | 62.0 | 59.4 | 61.2 | 61.1 | 59 · 1 | 59.8 | 58 · 4 | | 58.7 | 60.0 | 141.0 | | 30 q | 58 · 1 | 58.3 | 57 · 7 | 58.8 | 58 · 7 | 58.1 | 57.6 | 56 •4 | 56 · 3 | 56 · 9 | 59 · 1 | 60.7 | 62.1 | 62.8 | 63.0 | 62.7 | 61.7 | 60.8 | 60.3 | 59.8 | 60.0 | 59 · 7 | 59 • 4 | 59·4 | 59.5 | 128 • 4 | | Mean | 57 · 3 | 57 • 0 | 57 · 4 | 57.5 | 57 · 5 | 57.6 | 57 · 4 | 57 · 4 | 57 · 7 | 58.8 | 60.8 | 63.4 | 65.4 | 65.5 | 64.5 | 63.2 | 61.6 | 61 · 2 | 60.2 | 59.5 | 58 · 7 | 58 · 4 | 57.6 | 57.4 | 59.7 | | | Sum
700·0'+ | 18.5 | 9.2 | 20.7 | 23.5 | 24 · 7 | 28.8 | 21.0 | 20.8 | 30.4 | 64.3 | 123.6 | 201 · 3 | 261 · 1 | 265.0 | 235.6 | 194 · 9 | 147.5 | 134 · 8 | 105 · 9 | 84 · 2 | 61.0 | 51 · 7 | 28.0 | 23.0 | | Grand Total
42979·5 | 317 908 21 ESEDALEMUIR (Z) SEPTEMBER 1965 45,000y (0.45 CGS unit) + Hour GMD Sum 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 10,000γ+ 0-1 443 444 447 442 454 454 443 446 444 441 446 441 444 446 441 437 436 444 442 434 428 425 427 442 440 440 439 440 441 442 444 439 432 437 446 443 443 448 455 448 444 444 441 440 441 444 444 432 429 452 443 441 443 437 440 442 444 570 441 444 444 444 444 446 443 432 444 441 443 442 8 q 9 q 10 q 445 434 445 430 441 442 442 441 4.36 12 13 14 *q* 15 443 443 443 431 441 443 427 424 443 444 443 444 441 444 439 437 435 438 485 478
435 451 441 441 441 439 445 447 444 458 479 457 446 16 d 17 d 443 448 441 449 443 464 448 442 442 437 437 438 446 445 456 447 446 19 d 446 446 447 441 459 539 655 436 22 460 459 448 444 454 450 435 447 446 444 442 24 25 459 447 447 438 429 448 439 411 461 27 d *432* 450 441 446 452 460 454 453 448 439 797 #### GEOMAGNETIC CHARACTER FIGURES (K, KH, KD, KZ, AND C) AND TEMPERATURE IN MAGNETOGRAPH CHAMBER 975 1099 1260 1425 1527 1579 1601 1575 1500 1334 1254 1195 | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of K _D indices | 3-h range
indices
K _Z | Sum of
K _Z
indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph chambe
200°A+ | |-----|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------|--|-------------------------------------|--|--| | 1 | 1220 1222 | 12 | 1220 1222 | 12 | 0010 0122 | 6 | 0000 0000 | 0 | 1 | 85.7 | | 2 | 2112 2223 | 15 | 2112 2223 | 15 | 2111 1011 | 8 | 1000 0000 | 1 | 1 | 85 · 8 | | 3 | 0000 0113 | 5 | 0000 0112 | 4 | 0000 0003 | 3 | 0000 0000 | 0 | 0 | 85 · 8 | | | 3233 4333 | 24 | 3133 4333 | 23 | 2222 2131 | 15 | 1010 1111 | 6 | 1 | 85.8 | | 5 | 3222 3222 | 18 | 3222 3222 | 18 | 2211 1122 | 12 | 1000 1011 | 4 | 1 | 85 · 9 | | 6 | 2112 3332 | 17 | 1112 3322 | 15 | 2111 2332 | 15 | 1000 0100 | 2 | 1 | 85.8 | | , | 1102 3313 | 14 | 1102 3313 | 14 | 0100 1203 | 7 | 0000 0000 | 0 | 1 | 85 · 8 | | 3 9 | 2101 2110 | 8 | 2101 2110 | 8 | 1100 1000 | 3 | 0000 0000 | 0 | 1 | 85.8 | | q | 1111 1101 | 7 | 1011 1101 | 6 | 1100 0001 | 3 | 0000 0000 | 0 | 0 | 85 · 8 | |) q | 1002 0111 | 6 | 1002 0111 | 6 | 0001 0000 | 1 | 0000 0000 | 0 | . 0 | 85-9 | | ı | 1000 1222 | 8 | 0000 1222 | 7 | 1000 0001 | 2 | 0000 0001 | 1 | 0 | 85.9 | | 2 | 3301 2333 | 18 | 3301 2333 | 18 | 3200 1103 | 10 | 1100 0001 | 3 | 1 | 85 · 9 | | 3 | 4100 2111 | 10 | 3100 2111 | 9 | 4100 1001 | 7 | 2000 0000 | 2 | 1 | 85 • 9 | | q | 1000 1022 | 6 | 1000 1022 | 6 | 0000 0012 | 3 | 0000 0000 | 0 | 0 | 85.9 | | 5 | 2112 3434 | 20 | 2112 3433 | 19 | 1011 1334 | 14 | 0000 0434 | 11 | 1 | 86.0 | | i d | 5343 4354 | 31 | 3243 4353 | 27 | 5233 2144 | 24 | 2311 2122 | 14 | 2 | 86.0 | | d | 3232 3443 | 24 | 2232 3443 | 23 | 3122 2233 | 18 | 1010 2222 | 10 | 1 | 86 · 1 | | 3 | 3311 2344 | 21 | 2201 2344 | 18 | 3311 2344 | 21 | 1100 2233 | 12 | 1 | 86 · 1 | | d | 2233 3442 | 23 | 2233 3342 | 22 | 2222 2441 | 19 | 0010 1221 | 7 | 1 | 86 · 1 | |) | 1011 2122 | 10 | 1011 2122 | 10 | 1010 0102 | 5 | 0000 0002 | 2 | 0 | 86 · 1 | | | 2111 0233 | 13 | 2011 0233 | 12 | 2110 0022 | 8 | 1000 0010 | 2 | 1 | 86 · 1 | | 2 | 1111 1222 | ii | 1111 1222 | 11 | 1110 0011 | 5 | 0000 0000 | 0 | 0 | 86 · 1 | | , | 2112 3422 | 17 | 2112 3422 | 17 | 1111 2321 | 12 | 0000 1210 | 4 | 1 | 86 · 1 | | í | 2322 2023 | 16 | 2322 2023 | 16 | 1222 1012 | 11 | 0000 0011 | 2 | 1 | 86 · 1 | | 5 | 3321 3313 | 19 | 2221 3303 | 16 | 3310 2312 | 15 | 3120 2100 | 9 | 1 | 86 • 1 | | , | 2322 2213 | 17 | 2222 2213 | 16 | 1312 2112 | 13 | 0210 2002 | 7 | 1 | 86 • 1 | | đ | 3102 2354 | 20 | 3002 2334 | 17 | 3102 2253 | 18 | 2001 2234 | 14 | 1 | 86 • 1 | | d | 5332 2343 | 25 | 5332 2342 | 24 | 5322 1143 | 21 | 4211 1110 | 11 | 1 | 86 • 1 | | , - | 1112 1323 | 14 | 1112 1323 | 14 | 0011 0212 | 7 | 0000 0102 | 3 | 1 | 86 · 1 | | q | 1100 1000 | 3 | 0100 1000 | 2 | 1100 0000 | 2 | 0000 0000 | 0 | 0 | 86·1 | q denotes an international quiet day and d an international disturbed day. 1062 1082 1117 1165 1192 1214 1233 1231 1181 1105 1036 28 d 29 30 a Mean 12,0007+ $K_{\overline{H}}$ For horizontal component. $K_{\overline{D}}$ For declination. $K_{\overline{Z}}$ For vertical component. (See Introduction). | 19 ES | KDALEMU | IR (H) |) | | | | | | | | 1 | 6,000γ | (0.16 | CGS un | it) + | | | | | | | | | | OCTO | BER 1965 | |-------------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
21,000y+ | | 1
2 d
3
4 q
5 | 912
925
910
911
915 | 912
924
910
911
918 | 912
907
908
911
919 | 913
911
909
912
928 | 915
913
914
913
925 | 915
927
911
913
924 | 915
926
912
910
918 | 912
917
909
907
923 | 906
909
901
902
920 | 9
896
896
895
894
912 | 992
894
893
888
900 | 90
890
894
892
889
900 | 994
885
894
894
907 | γ
897
902
900
899
894 | 902
900
907
904
888 | 906
892
910
909
908 | 911
900
913
912
916 | 913
907
916
914
919 | 919
918
914
916
923 | 920
907
918
916
923 | 921
896
918
916
922 | γ
920
907
917
916
916 | 918
907
914
915
918 | 921
908
910
915
919 | 910
907
908
908
915 | 7
832
772
795
787
955 | | 6 q
7
8 d
9
10 | 916
918
919
914
918 | 914
918
920
918
917 | 914
918
932
912
917 | 914
917
934
912
917 | 914
918
938
911
916 | 914
918
937
912
917 | 916
918
933
911
918 | 916
919
928
906
914 | 913
914
915
900
905 | 906
918
906
896
896 | 897
906
899
895
888 | 889
905
899
894
889 | 888
911
906
894
895 | 893
916
911
902
903 | 900
924
921
906
911 | 908
926
920
913
917 | 913
920
923
917
919 | 917
920
927
918
920 | 920
923
926
917
922 | 919
922
913
917
923 | 917
924
903
918
925 | 918
925
909
918
919 | 918
923
931
919
920 | 918
918
914
918
920 | 911
918
919
910
913 | 852
1039
1064
838
906 | | 11
12
13
14
15 <i>q</i> | 921
921
921
921
921
917 | 918
915
922
915
915 | 918
913
921
912
912 | 918
912
920
911
914 | 918
918
922
915
917 | 919
922
914
915
917 | 918
920
918
914
917 | 914
914
921
912
916 | 905
905
913
904
908 | 895
896
898
899
899 | 890
895
890
888
892 | 894
893
891
887
891 | 902
896
907
888
892 | 910
907
905
891
898 | 915
912
909
904
906 | 917
911
911
911
912 | 916
911
916
914
914 | 918
915
914
916
917 | 917
917
897
917
920 | 917
913
904
917
917 | 921
921
900
917
918 | 922
921
915
917
918 | 920
921
920
917
919 | 922
922
918
917
919 | 914
912
911
909
911 | 925
891
867
819
865 | | 16 q
17
18
19
20 | 918
919
933
920
922 | 918
919
930
921
921 | 918
918
924
920
921 | 919
920
926
922
921 | 920
921
930
923
921 | 921
921
932
924
922 | 921
920
928
924
924 | 919
916
924
923
924 | 912
906
921
919
918 | 900
897
907
909
910 | 893
891
898
900
898 | 893
895
897
895
894 | 895
901
903
898
898 | 902
913
912
907
906 | 912
921
913
912
912 | 919
923
914
910
917 | 921
923
916
911
920 | 923
923
920
920
923 | 919
924
917
921
922 | 921
925
916
921
923 | 921
926
921
923
922 | 920
926
924
923
921 | 922
924
922
922
922 | 921
928
921
922
923 | 915
917
919
916
917 | 948
1000
1049
990
1005 | | 21 q
22
23 d
24 d
25 | 923
921
911
918
919 | 921
925
911
919
900 | 923
926
910
893
900 | 924
925
905
900
905 | 923
927
908
922
915 | 925
931
926
914
911 | 921
930
923
914
924 | 913
924
905
905
924 | 910
911
897
905
916 | 906
909
898
900
901 | 901
899
904
895
886 | 900
903
901
895
890 | 904
911
880
905
891 | 910
912
871
908
903 | 912
922
894
901
890 | 915
924
906
890
901 | 917
923
910
904
899 | 920
909
917
911
897 | 923
887
908
917
908 | 924
904
905
911
914 | 924
917
917
908
914 | 922
908
886
921
912 | 921
904
909
928
913 | 920
904
900
917
900 | 917
915
904
908
906 | 1002
956
702
801
733 | | 26
27
28 <i>d</i>
29
30 |
908
919
930
917
913 | 918
915
920
914
914 | 914
915
909
911
915 | 915
918
908
911
914 | 919
920
915
913
915 | 921
920
921
913
913 | 921
920
923
916
922 | 918
923
925
913
916 | 910
919
919
910
904 | 898
910
908
906
896 | 894
902
889
900
898 | 896
906
871
899
898 | 898
906
872
904
902 | 905
909
908
910
903 | 908
910
911
916
911 | 910
920
912
917
913 | 916
919
912
918
911 | 922
923
916
915
916 | 922
924
908
917
919 | 921
924
913
919
911 | 918
924
915
916
925 | 915
919
911
918
918 | 914
927
910
901
914 | 927
928
912
910
914 | 913
917
910
912
911 | 908
1020
838
884
875 | | 31
Mean | 913
918 | 912 | 920
915 | 914
916 | 916
919 | 919
920 | 915 | 920
917 | 916
910 | 911 | 904
895 | 901
895 | 904
898 | 910 | 914 | 916
912 | 904
914 | 906
917 | 901
916 | 905
916 | 900 | 907 | 905
917 | 908
917 | 910
912 | 841 | | Sum
27,000y+ | 1463 | 1425 | 1363 | 1389 | 1475 | 1509 | 1510 | 1420 | 1213 | 968 | 759 | 731 | 825 | 1017 | 1168 | | | | | 1403 | | | | 1414 | 912 | Grand Total
678,759 | | 2 0 E | SKDALEM | UIR (D |) | | | | | | | | | 9° | + | _ | | | | | | | | | | | осто | BER 1965 | |------------------|-------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|-------------|---------|---------|---------|---------|---------|--------|---------|--------|--------|--------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 5 16-17 | 7 17-18 | 3 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
1300·0'+ | | | , | | • | | | , | • | | • | • | • | • | · · | • | | • | | • | - | | • | • | • | -, | | , | | 1 | 59-2 | 59 · 1 | 59.0 | 59 · 1 | 59.0 | 59 · 1 | 58 · 7 | 58 · 2 | 57.6 | 57.9 | 59.7 | 62.3 | 64-1 | 64.4 | 64.4 | 63.3 | 61.9 | 60.7 | 60.8 | 60.5 | 60.5 | 60.2 | 59.6 | 59.3 | 60-4 | 148-6 | | 2 d | 58.8 | 53 · 2 | 53.8 | 55 · 1 | 54 . 9 | 57 · 7 | 56 · 4 | 56 . 5 | 56 . 8 | 57.5 | 59.0 | 63 • 4 | 64.7 | 68.5 | 67.9 | 67.1 | 66 · 7 | 64 · 2 | 63 · 1 | 62.8 | 60.7 | 48 • 4 | 55.0 | 58 · 2 | 59.6 | 130 · 4 | | 3 | 58.9 | 58.3 | 57.8 | 58.3 | 58.0 | 58 · 2 | | 57.7 | 57 • 7 | 58 • 4 | 59.7 | 62.2 | 63.5 | 63.7 | | | | 60.6 | | 60 • 4 | 59.7 | 59 · 4 | 58.3 | 58.6 | 59.8 | 135 · 0 | | 4 q | 58.7 | | 58 • 5 | 58 • 7 | | | | | 56 · 8 | 56 · 8 | 58 · 1 | 60.6 | | 62.7 | | | | 60.3 | | 59 · 5 | 59 · 5 | 59 · 4 | 59 • 4 | 59 · 4 | 59.5 | 128 · 1 | | 5 | 59.3 | 59.0 | 59 · 2 | 58・3 | 58 · 2 | 58.0 | 57.4 | 57.3 | 56 · 8 | 56 · 7 | 58.6 | 61 • 4 | 65.6 | 66.6 | 66∙3 | 65 · 1 | 62.8 | 61.6 | 60.7 | 60 · 2 | 59.5 | 59.3 | 59.0 | 58 · 1 | 60.2 | 145.0 | | 6 q | 58.2 | 59.0 | 59 • 0 | 58 · 8 | 59.0 | 58 · 7 | 58.3 | 58-0 | 57.3 | 57.0 | 58.3 | 60.6 | 63.0 | 64 · 4 | 64.5 | 63.1 | 61 · 4 | 60.3 | 59 · 7 | 59 · 4 | 59 · 4 | 59 · 4 | 59 · 4 | 59 · 4 | 59.8 | 135-6 | | 7 | 59 · 4 | 59.3 | 59.0 | 58 8 | 58 · 9 | 58 · 7 | 58.3 | 57 • 4 | 56 • 6 | 56 • 9 | 59.8 | 62.5 | 64.1 | 66.0 | 67.0 | 67 · 1 | 64 · 8 | 63.6 | 61.6 | 60.6 | 59.9 | 59 · 4 | 59.0 | 58.3 | 60.7 | 157.0 | | 8 d | 57.2 | 57 • 4 | 58 6 | 57.8 | 58 · 3 | | 58 • 2 | | 57.0 | 57.0 | 58.7 | 61.5 | | | | | | | 60.7 | | | | | 55.3 | 59-1 | 117.8 | | 9 | 58.0 | 59.6 | 59 • 2 | 56 · 8 | 57 • 4 | | 57 • 4 | | | 56 • 9 | | 62.3 | | | | | | | 60.3 | | | | 59.3 | 59 · 0 | 59.6 | 131 · 1 | | 10 | 59.1 | 58.8 | 58 • 9 | 59・2 | 58.8 | 58 · 7 | 58 · 2 | 57.0 | 55 · 8 | 56 · 5 | 59.0 | 62.6 | 64.2 | 64 · 5 | 63.5 | 62.0 | 60.6 | 60.3 | 60.3 | 60 · 1 | 58.3 | 59 · 1 | 59.6 | 59.6 | 59.8 | 134 · 7 | | 11 | 59.6 | 59.5 | 59.5 | 59 • 4 | 59 · 3 | 59.3 | 58.4 | 57.5 | 56 · 3 | 56 · 3 | 58.0 | 61.6 | 64.6 | 64.5 | 63.6 | 62.3 | 60.8 | 60.4 | 60.2 | 60 · 1 | 59.3 | 59 · 4 | 59.3 | 58 • 4 | 59.9 | 137.6 | | 12 | 56 · 9 | 55 · 4 | 57.9 | 58.0 | 59 · 4 | 58.6 | 58.5 | 58.0 | 56 · 8 | 57.5 | 59.7 | 63.5 | 64.6 | 65 · 1 | 64.1 | 62.5 | 60.6 | 60.0 | 60.0 | 55 · 8 | 58.0 | 58.8 | 59.3 | 59 · 4 | 59.5 | 128 · 4 | | 13 | 59.0 | 59 · 4 | 59 · 2 | 58.9 | 57.9 | 58 · 7 | 60.6 | 60.1 | 58 • 7 | 57.7 | 59.5 | 63.1 | 64.9 | | | | | 61.7 | | | 54 • 4 | | 58 · 7 | | 59.6 | 130.9 | | 14 | 58.8 | 57.1 | 56 · 5 | | 59 · 4 | | 58 • 4 | | | 56 · 8 | 58.5 | 61 · 1 | 63.9 | 63.8 | 63.5 | | | | 60.2 | | 59.6 | 59 · 3 | 58 · 7 | 56 • 0 | 59 • 4 | 126.6 | | 15 q | 56 · 8 | 57 · 9 | 58.5 | 58.9 | 59 · 1 | 59 • 2 | 58 · 9 | 58 • 2 | 57 • 4 | 57 • 7 | 58 · 8 | 61.1 | 63.5 | 64.3 | 63.8 | 62.8 | 61 · 2 | 60.6 | 60-4 | 59 • 7 | 59 · 7 | 59.5 | 59.3 | 59.2 | 59.9 | 136 · 5 | | 16 q | 58.9 | 58.9 | 58 · 7 | 59 · 2 | 59.0 | 58 · 7 | 58.8 | 58 · 1 | 56 · 9 | 56 · 8 | 58.5 | 61 • 4 | 63.8 | 64.6 | 64 · 1 | 62.6 | 61.0 | 60.2 | 59.8 | 60-1 | 59.8 | 59.6 | 59.3, | 59.3 | 59.9 | 138 · 1 | | 17 | 59.3 | 59 · 2 | 59.3 | 59 · 4 | 59.3 | 59 · 1 | 58 • 6 | 57.8 | 56 • 7 | 57.0 | 59 • 6 | 63.0 | 64.7 | 64.9 | 63.9 | 62 • 1 | 60.6 | 60.6 | 60 • 4 | 60.3 | 60.3 | 60.1 | 59.6 | 59.5 | 60.2 | 145.3 | | 18 | 58.5 | 57.3 | 59 • 1 | 58 • 4 | | | 60.0 | 59.7 | 58 · 8 | 57.9 | | 62 • 1 | | | | | | | 60.2 | | | | | 59 · 7 | 60.3 | 146 · 8 | | 19 | | 59 • 1 | | | | | 59 · 1 | 58 · 2 | | 58.0 | | 62.5 | | | | | | | 60.2 | | | | | 59.6 | 60.1 | 143.6 | | 20 | 59.3 | 59.3 | 59 · 3 | 59 • 4 | 59 • 4 | 59 · 3 | 58.8 | 58.0 | 57 · 7 | 58 • 4 | 59.9 | 62.3 | 63.1 | 63.6 | 63·1 | 62.0 | 61 · 1 | 60.9 | 60.6 | 60.0 | 56 · 7 | 58 • 2 | 59·2 | 59.5 | 60.0 | 139 · 1 | | 21 q | 59.4 | 59 · 4 | 59.3 | 59.3 | 59.3 | 58.7 | 57.9 | 57.8 | 57.6 | 57.8 | 58.9 | 60.5 | 62.2 | 62.8 | 62.4 | 61 • 4 | 60.4 | 59.9 | 59 · 4 | 59 · 3 | 59 · 3 | 59 · 3 | 59.3 | 59·4 | 59.6 | 131 · 0 | | 22 | 59.3 | 59.0 | 58 · 2 | 59.2 | 58.8 | 58 · 9 | 58.6 | 57.3 | 57 · 1 | 57.6 | 58.0 | 60.1 | 62.7 | 64 • 4 | 65.3 | 64.6 | 67.0 | 71.0 | 67.8 | 61 · 4 | 59 · 1 | 55.5 | 54 · 8 | 54 · 2 | 60-4 | 149 · 9 | | 23 d | 54.5 | 56 • 4 | 57.8 | | | | 58 · 2 | | | 56 · 7 | | 62.5 | | | | | | | 60.5 | | | | | | 57 · 9 | 90 · 7 | | 24 d | | 52.8 | | | 57.9 | | | | | 57.9 | | 62.3 | | 64.3 | | | | | 55 • 2 | | | | | | 58 · 7 | 107 · 7 | | 25 | 55 · 1 | 54 • 9 | 57.0 | 58.5 | 61.2 | 60.8 | 60.8 | 60.0 | 58.6 | 59.0 | 59 · 2 | 62.8 | 63.7 | 64 · 5 | 63.3 | 63 · 4 | 61 · 4 | 63.8 | 60.9 | 59 · 6 | 58 · 1 | 56 · 0 | 55.2 | 54 · 2 | 59 · 7 | 132.0 | | 26 | 59-1 | 63 · 2 | 56 · 7 | 58.2 | 58.8 | 58.7 | 58.4 | | | 56.8 | 58.5 | 62.1 | 63.2 | 63.4 | 62.4 | 60.9 | 60.5 | 60.2 | 59.6 | 59 · 3 | 58.6 | 57.9 | 58 · 2 | 61.2 | 59.6 | 130.7 | | 27 | 59.0 | 58 • 2 | 59 · 2 | 58 • 7 | | 58.6 | | 58 · 1 | | | | 63 · 1 | | | | | | | 60.9 | | | | 56 · 6 | | 59.9 | 137 · 1 | | 28 d | 60.2 | 57.5 | 53 • 4 | | | | 57 • 9 | | | | | 63.5 | | | | | | | 58.5 | | | | | | 59 · 1 | 118 • 6 | | 29 | 59.1 | | 58.0 | | | | 58 · 4 | | | 57.2 | | 60.5 | | | | | | | 59 · 7 | | | | | | 59.3 | 123 · 1 | | 30 | 57.4 | 58 • 8 | 57.8 | 57.5 | 58 · 1 | 59.8 | 61 · 4 | 59.8 | 58.7 | 58 · 5 | 59·6 | 61 • 9 | 62.2 | 62.8 | 62.3 | 60.9 | 59·4 | 58 • 4 | 59.7 | 58.8 | 55 · 0 | 58 • 2 | 57.5 | 56 · 8 | 59.2 | 121 · 3 | | 31 | 58.0 | 57.3 | 59.0 | 58 • 2 | 58 · 7 | 57 • 9 | 57.9 | 58.8 | 57.8 | 57.9 | 59·4 | 61.6 | 62.2 | 62 · 4 | 62.2 | 61.5 | 61.9 | 60-4 | 56.8 | 58 · 2 | 57.0 | 55.5 | 55 · 5 | 57 · 4 | 58・9 | 113.5 | | Mean | 58.3 | 58 · 1 | 58.0 | 58.5 | 58 · 7 | 58 · 7 | 58.6 | 58.0 | 57 · 3 | 57.5 | 59·1 | 62.0 | 63.6 | 64.4 | 64.0 | 62.8 | 61.6 | 61 · 1 | 60.0 | 59 • 2 | 58 · 4 | 58·1 | 58.0 | 58·2 | 59·7 | | | Sum
700·0'+ | 109.0 | 101.3 | 99 • 1 | 112.0 | 118.9 | 118-2 | 115.6 | 98·7 | 76 • 5 | 80.8 | 132.5 | 222.0 | 271 · 9 | 295 · 9 | 283 · 8 | 245 · 5 | 210.2 | 192.8 | 160 · 2 | 134 · 5 | 110.8 | 101 · 6 | 97 • 0 | 103·0 | | Grand Total
44391.8 | 21 ESEDALEMUIR (Z) 45,0007 (0.45 COS unit) + OCTOBER 1965 | | | | | | | | _ | | | | | -,, | (| | , | | | | | | | | | | oc. i ca | PW 1900 | |----------------|-------------|------------|-----|-----|-----|-----|-----|-----|-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|------------------------| | | Hour
0-1 | CMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
10,000y+ | | | γ | | 1 . | 448 | 448 | 448 | 448 | 447 | 447 | 447 | 446 | 444 | 441 | 436 | 432 | 431 | 436 | 438 | 441 | 446 | 446 | 447 | 447 | 447 | 447 | 447 | 447. | 444 | 652 | | 2 d | 447 | 436 | 440 | 442 | 442 | 432 | 430 | 435 | 440 | 441 | 434 | 428 | 427 | 431 | 440 | 455 | 455 | 456 | 456 | 465 | 469 | 456 | 438 | 444 | 443 | 639 | | 3 | 448 | 448 | 449 | 448 | 448 | 448 | 448 | 445 | 445 | 445 | 441 | 437 | 436 | 437 | 440 | 445 | 448 | 448 | 449 | 449 | 448 | 448 | 449 | 450 | 446 | 697 | | 4 q | 449 | 449 | 449 | 448 | 448 | 448 | 448 | 448 | 448 | 445 | 441 | 438 | 437 | 438 | 439 | 443 | 447 | 448 | 448 | 448 | 448 | 448 | 448 | 448 | 446 | 699 | | 5 | 448 | 447 | 446 | 447 | 443 | 442 | 444 | 442 | 442 | 441 | 440 | 435 | 433 | 441 | 445 | 445 | 447 | 447 | 447 | 447 | 447 | 448 | 448 | 448 | 444 | 660 | | 6 q | 448 | 447 | 446 | 445 | 445 | 445 | 445 | 445 | 447 | 445 | 444 | 444 | 443 | 442 | 442 | 445 | 448 | 448 | 447 | 447 | 448 | 448 | 448 | 448 | 446 | 700 | | 7 | 448 | 447 | 447 | 445 | 445 | 444 | 445 | 445 | 447 | 442 | 438 | 435 | 431 | 431 | 433 | 439 | 442 | 443 | 444 | 445 | 445 | 445 | 447 | 448 | 443 | 621 | | 8 d | 447 | 443 | 437 | 437 | 436 | 436 | 436 | 438 | 443 | 441 | 438 | 437 | 437 | 437 | 438 | 438 |
441 | 441 | 442 | 448 | 456 | 450 | 437 | 438 | 441 | 572 | | 9 | 442 | 440 | 437 | 440 | 442 | 443 | 444 | 444 | 444 | 441 | 438 | 434 | 436 | 437 | 441 | 444 | 446 | 445 | 445 | 445 | 446 | 446 | 445 | 445 | 442 | 610 | | 10 | 446 | 445 | 444 | 444 | 444 | 443 | 444 | 445 | 447 | 442 | 436 | 431 | 433 | 437 | 442 | 445 | 445 | 444 | 443 | 444 | 443 | 443 | 444 | 444 | 442 | 618 | | 11 | 445 | 445 | 445 | 445 | 445 | 444 | 445 | 445 | 445 | 443 | 437 | 433 | 433 | 438 | 443 | 448 | 448 | 447 | 447 | 447 | 446 | 445 | 448 | 448 | 444 | 655 | | 12 | 446 | 445 | 445 | 445 | 444 | 443 | 444 | 445 | 445 | 442 | 435 | 432 | 434 | 439 | 445 | 450 | 452 | 450 | 450 | 450 | 448 | 445 | 445 | 446 | 444 | 665 | | 13 | 448 | 446 | 443 | 443 | 444 | 444 | 443 | 443 | 443 | 443 | 440 | 438 | 438 | 441 | 446 | 449 | 450 | 452 | 463 | 460 | 457 | 452 | 449 | 448 | 447 | 723 | | 14 | 448 | 446 | 445 | 442 | 443 | 448 | 449 | 449 | 450 | 450 | 448 | 443 | 444 | 446 | 449 | 451 | 452 | 451 | 450 | 450 | 449 | 449 | 448 | 449 | 448 | 749 | | 15 q | 446 | 445 | 448 | 448 | 446 | 448 | 447 | 449 | 449 | 449 | 448 | 444 | 444 | 445 | 447 | 449 | 450 | 449 | 448 | 449 | 448 | 446 | 446 | 446 | 447 | 734 | | 16 q | 446 | 446 | 446 | 445 | 446 | 446 | 445 | 446 | 448 | 446 | 441 | 437 | 438 | 438 | 442 | 445 | 447 | 448 | 448 | 446 | 446 | 446 | 445 | 445 | 445 | 672 | | 17 | 445 | 445 | 445 | 445 | 445 | 445 | 446 | 449 | 449 | 446 | 443 | 439 | 439 | 441 | 443 | 445 | 445 | 445 | 445 | 444 | 444 | 443 | 444 | 443 | 444 | 663 | | 18 | 438 | 437 | 438 | 439 | 439 | 440 | 441 | 442 | 441 | 442 | 439 | 438 | 434 | 439 | 443 | 446 | 446 | 446 | 448 | 449 | 448 | 445 | 445 | 445 | 442 | 608 | | 19 | 446 | 445 | 444 | 444 | 443 | 443 | 444 | 444 | 443 | 443 | 441 | 439 | 439 | 442 | 447 | 450 | 450 | 449 | 448 | 446 | 446 | 445 | 445 | 444 | 445 | 670 | | 20 | 445 | 445 | 444 | 443 | 443 | 443 | 443 | 445 | 448 | 446 | 443 | 441 | 443 | 444 | 445 | 445 | 445 | 444 | 444 | 444 | 448 | 446 | 445 | 444 | 444 | 666 | | 21 g | 444 | 444 | 443 | 441 | 441 | 441 | 443 | 444 | 444 | 444 | 442 | 438 | 437 | 439 | 442 | 444 | 443 | 442 | 442 | 444 | 444 | 444 | 444 | 444 | | | | 22 4 | 445 | 443 | 442 | 441 | 439 | 439 | 439 | 441 | 442 | 439 | 437 | 437 | 434 | 432 | 434 | 439 | 447 | 461 | 487 | 480 | 469 | 471 | 467 | 463 | 442 | 618 | | 23 d | 462 | 458 | 453 | 450 | 444 | 437 | 432 | 434 | 442 | 442 | 437 | 431 | 437 | 449 | 455 | 456 | 457 | 456 | 450 | 456 | 446 | 437 | | | 449 | 768 | | 24 d | 426 | 418 | 424 | 425 | 425 | 433 | 437 | 438 | 438 | 439 | 438 | 438 | 438 | 439 | 446 | 464 | 457 | 453 | 454 | 452 | 452 | | 437 | 439 | 446 | 697 | | 25 | 426 | 425 | 421 | 428 | 431 | 437 | 436 | 438 | 440 | 442 | 443 | 443 | 445 | 447 | 455 | 460 | 464 | 465 | 463 | 459 | 456 | 449 | 441 | 432 | 440 | 556 | | 25 | 420 | | | | | | | | | | | 773 | 773 | | | | | 403 | | 439 | 430 | 456 | 452 | 448 | 445 | 680 | | 26 | 442 | 425 | 431 | 438 | 443 | 443 | 444 | 445 | 448 | 447 | 443 | 441 | 443 | 444 | 449 | 450 | 449 | 448 | 447 | 448 | 449 | 449 | 449 | 443 | 444 | 658 | | 27 | 441 | 443 | 445 | 446 | 445 | 445 | 445 | 443 | 444 | 443 | 442 | 442 | 444 | 448 | 450 | 450 | 449 | 449 | 449 | 449 | 449 | 449 | 446 | 437 | 446 | 693 | | 28 d | 427 | 414 | 423 | 432 | 436 | 439 | 442 | 443 | 443 | 443 | 442 | 444 | 451 | 448 | 446 | 450 | 450 | 451 | 453 | 452 | 452 | 449 | 450 | 450 | 443 | 630 | | 29 | 444 | 441 | 444 | 445 | 447 | 447 | 449 | 448 | 449 | 449 | 446 | 443 | 442 | 443 | 445 | 449 | 450 | 450 | 450 | 449 | 449 | 446 | 446 | 449 | 447 | 720 | | 30 | 449 | 446 | 445 | 446 | 445 | 444 | 439 | 440 | 443 | 444 | 442 | 441 | 442 | 441 | 447 | 449 | 450 | 450 | 450 | 450 | 451 | 446 | 448 | 448 | 446 | 696 | | 31 | 449 | 448 | 443 | 444 | 445 | 445 | 445 | 445 | 446 | 443 | 441 | 439 | 442 | 445 | 447 | 450 | 455 | 456 | 459 | 462 | 463 | 461 | 456 | 452 | 449 | 781 | | Mean | 445 | 442 | 442 | 443 | 443 | 443 | 443 | 443 | 445 | 443 | 441 | 438 | 438 | 441 | 444 | 448 | 449 | 449 | 450 | 451 | 450 | 448 | 447 | 446 | 445 | | | Sum
3,000γ+ | 779 | 700 | 700 | 719 | 719 | 722 | 729 | 749 | 787 | 749 | 654 | 572 | 585 | 655 | 764 | 879 | 921 | 928 | 963 | 971 | 957 | 898 | 847 | 823 | | Grand Total
330,770 | #### GEOMAGNETIC CHARACTER FIGURES (K, K_H, K_D, K_Z, AND C) AND TEMPERATURE IN MAGNETOGRAPH CHAMBER | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of
K _D
indices | 3-h range
indices
K _Z | Sum of K _Z indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph chamber
200°A+ | |-----|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------------|--|-------------------------------|--|---| | 1 | 0001 0001 | 2 | 0001 0001 | 2 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 86 • 0 | | 2 d | 3332 3334 | 24 | 3332 3334 | 24 | 3311 2234 | 19 | 1221 1123 | 13 | 1 | 85 · 9 | | 3 | 0111 1111 | 7 | 0111 1111 | 7 | 0110 0001 | 3 | 0000 0000 | 0 | 0 | 85.9 | | 4 q | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 85 • 9 | | 5 | 2122 3211 | 14 | 2122 3211 | 14 | 1111 1001 | 6 | 0000 1000 | 1 | 1 | 85 · 9 | | 6 q | 0000 0010 | 1 | 0000 0010 | 1 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 85 • 9 | | 7 | 0013 3322 | 14 | 0013 3322 | 14 | 0002 1101 | 5 | 0001 0000 | 1 | 1 | 85.9 | | 8 d | 4232 3233 | 22 | 4232 3233 | 22 | 4231 2133 | 19 | 2010 0022 | 7 | 1 | 85.8 | | 9 | 2111 1011 | 8 | 2111 1001 | 7 | 2111 0010 | 6 | 0000 0000 | 0 | 0 | 85.8 | | 0 | 0111 0021 | 6 | 0111 0010 | 4 | 0010 0021 | 4 | 0000 0000 | 0 | 0 | 85.7 | | 1 | 0001 1111 | 5 | 0001 1111 | 5 | 0000 1011 | 3 | 0000 0000 | 0 | 0 | 85 · 7 | | 2 | 2212 2230 | 14 | 2212 2220 | 13 | 2111 1130 | 10 | 0000 0000 | 0 | 0 | 85.8 | | 3 | 2221 2231 | 15 | 2221 2221 | 14 | 2110 1131 | 10 | 0000 0010 | 1 | 1 | 85 · 8 | | 4 | 2212 1102 | 11 | 2112 1102 | 10 | 2201 1002 | 8 | 0000 0000 | 0 | 0 | 85 · 8 | | 5 q | 1101 1000 | 4 | 1101 1000 | 4 | 1001 0000 | 2 | 0000 0000 | 0 | 0 | 85.8 | | 5 q | 0000 0011 | 2 | 0000 0011 | 2 | 0000 0010 | 1 | 0000 0000 | 0 | 0 | 85.9 | | 7 | 0001 2002 | 5 | 0001 2002 | 5 | 0000 1002 | 3 | 0000 0000 | 0 | 0 | 85 · 9 | | 8 | 3111 1110 | 9 | 3111 1110 | 9 | 3111 1000 | 7 | 1000 0000 | 1 | 1 | 85.9 | | 9 | 0012 2110 | 7 | 0012 2110 | 7 | 0000 1110 | 3 | 0000 0000 | 0 | 0 | 85 • 9 | | 9 | 0001 0022 | 5 | 0001 0011 | 3 | 0000 0022 | 4 | 0000 0000 | 0 | 0 | 86 • 4 | | l q | 0010 0000 | 1 | 0010 0000 | 1 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 86 • 4 | | 2 | 2113 2442 | 19 | 2113 2332 | 17 | 0012 1442 | 14 | 0000 0321 | 6 | 1 | 86 • 4 | | 3 d | 3333 3343 | 25 | 3322 3333 | 22 | 2233 3343 | 23 | 1211 2111 | 10 | 1 | 86 • 4 | | 1 d | 3322 3343 | 23 | 3322 3343 | 23 | 3211 2342 | 18 | 2100 1212 | 9 | 1 | 86 • 4 | | 5 | 3222 3323 | 20 | 3222 3223 | 19 | 3211 2323 | 17 | 1100 1101 | 5 | 1 | 86 • 4 | | 5 | 3110 0013 | 9 | 3110 0013 | 9 | 3100 0013 | 8 | 2000 0001 | 3 | 1 | 86.5 | | 7 | 1112 2223 | 14 | 1112 2223 | 14 | 1112 2113 | 12 | 0000 1001 | 2 | 1 | 86 • 5 | | 3 d | 3213 3132 | 18 | 3213 3132 | 18 | 3112 2022 | 13 | 2101 1000 | 5 | 1 | 86.5 | | • | 2110 0113 | 9 | 2110 0113 | 9 | 1010 0013 | 6 | 1000 0001 | 2 | 0 | 86 • 5 | |) | 2222 2331 | 17 | 1122 2331 | 15 | 2221 1231 | 14 | 0010 0010 | 2 | 1 | 86 • 5 | | ı İ | 2111 1232 | 13 | 2111 1232 | 13 | 2110 1232 | 12 | 1000 0010 | 2 | 1 | 86 · 5 | | ' | | | | | | | | Mean | 0.48 | 86 · 1 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. $[\]mathbf{K}_{\mathbf{H}}$ For horizontal component. $\mathbf{K}_{\mathbf{D}}$ For declination. $\mathbf{K}_{\mathbf{Z}}$ For vertical component. (See Introduction). | 19 ESI | CDA LEMU | IR (H) | | | | | | | | | 1 | 6,000γ | (0.16 | CCS un | it) + | | | | | | | | | | NOVEM | BER 1965 | |--|--|---|--|---|---|---|---|---|---|---|--|---|---|---|--|---|---|---|---|---
---|---|---|---|---|---| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
21,000y+ | | 1
2
3 q
4 5 d
6 d
7
8
9
10 q
11
12
13 | 913
915
915
920
924
894
910
917
916
919
924
920 | 914
912
915
927
922
906
911
914
916
917
920
920
918 | 911
916
915
922
925
908
908
915
917
919
923
916 | 911
914
916
921
927
939
914
916
915
918
920
923
923 | 914
916
918
928
925
923
919
917
918
921
921
925
927 | 915
918
919
931
920
923
924
918
920
923
923
925
923 | 916
919
920
935
917
922
924
918
921
924
925
925
922 | 917
918
918
938
918
915
923
921
919
923
925
925
925 | 913
909
911
931
913
904
911
914
913
917
923
923
917 | 907
904
903
918
907
894
898
904
898
910
914
917
911 | 904
902
896
916
910
882
884
901
892
904 | 905
902
897
908
914
889
896
902
892
906
908
911
896 | 904
905
900
897
916
893
899
906
899
912
913
914
899 | 910
897
904
900
915
900
903
908
911
916
920
918
908 | 912
898
908
904
920
906
901
910
913
919
922
921 | 915
900
912
915
923
904
901
909
915
920
921
927
918 | 916
908
915
918
918
904
905
910
914
921
917
928
921 | 917
917
918
922
918
910
896
911
915
922
921
932
925 | 920
913
919
923
911
894
896
912
917
922
923
934
916 | 919
911
918
925
913
890
900
913
919
923
917
933
903 | 911
913
919
923
895
892
904
909
920
921
920
932
906 | 915
920
919
925
893
898
913
913
919
920
917
930
885 | 915
927
919
925
909
894
917
916
919
920
923
926
906 | 913
916
918
923
886
903
923
911
916
922
924
923
915 | 913
911
913
921
914
904
907
912
913
918
919
924
913 | 907
864
912
1095
939
687
780
885
912
1037
1062
1169
914 | | 14
15
16 q
17
18
19 d
20 d | 917
920
919
918
915
923
927 | 915
913
918
919
912
923
927 | 917
913
919
920
916
924
923 | 918
916
917
920
930
926
915 | 918
922
920
925
928
920
925 | 917
921
920
929
930
928
924 | 916
922
922
930
934
937
918 | 920
921
922
927
934
918
921 | 916
916
918
918
932
915
920 | 910
906
912
909
926
911
895 | 903
900
904
903
920
899
887 | 900
900
902
898
911
897
893 | 903
905
906
905
909
893
888 | 910
916
912
908
911
908
907 | 914
918
918
916
913
910
908 | 918
920
922
920
916
907
912 | 922
921
924
920
920
904
905 | 920
921
926
924
921
899
898 | 913
911
926
926
923
896
896 | 913
905
924
925
919
899
890 | 918
911
922
926
921
909
891 | 921
920
920
923
921
911
887 | 921
921
918
923
920
915
893 | 918
920
919
922
923
914
898 | 915
915
918
919
921
912
906 | 958
959
1030
1054
1105
886
748 | | 21
22
23 <i>q</i>
24
25 | 901
913
919
919
919 | 903
913
919
917
919 | 905
915
919
918
921 | 918
916
920
921
924 | 911
916
922
921
925 | 911
920
923
922
927 | 918
922
924
926
928 | 913
922
923
927
926 | 917
916
921
927
921 | 915
911
915
919
916 | 911
908
910
913
910 | 909
908
909
910
912 | 909
908
913
909
917 | 911
911
917
915
923 | 909
913
918
923
925 | 911
916
919
926
923 | 920
918
921
926
919 | 921
917
922
927
927 | 918
920
922
926
927 | 913
921
919
913
926 | 911
918
916
920
912 | 912
917
919
919
916 | 915
918
923
921
916 | 915
920
920
919
919 | 912
916
919
920
921 | 897
977
1053
1084
1098 | | 26
27
28 q
29
30 d | 920
918
918
923
918 | 920
919
917
923
919 | 921
921
918
922
920 | 921
923
920
923
921 | 925
924
923
923
924 | 926
924
924
926
929 | 928
924
924
928
930 | 926
923
924
927
936 | 919
919
920
928
937 | 910
914
916
921
941 | 909
913
913
920
940 | 912
914
912
920
937 | 916
919
916
921
914 | 921
924
920
922
896 | 924
925
923
923
901 | 920
925
924
924
908 | 920
925
925
921
908 | 916
916
925
914
913 | 920
905
926
916
881 | 921
912
924
919
908 | 922
917
923
916
892 | 923
919
924
911
892 | 923
917
923
916
902 | 921
917
922
917
935 | 920
919
921
921
917 | 1084
1057
1104
1104
1002 | | Mean
Sum
27,000y+ | 917
513 | 917
508 | 917
522 | 920
606 | 921
644 | 923
683 | 719 | 923
692 | 919
559 | 332 | 906
173 | 906
170 | 907
208 | 911
342 | 914
430 | 916
491 | 917
514 | 917
525 | 915
452 | 915
435 | 914
410 | 914
422 | 917
501 | 917
512 | 916 | Grand Total
659,363 | | 20 ES | KDALEMU | IR (D) |) | | | | | | | | | 9° | + | | | | | | | | | | | | NOVEM | BER 1965 | |----------------|-------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|---------------|--------|--------|------------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 3 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
1300 • 0 ′ + | | | , | | , | , | , | , | , | , | , | , | | , | , | , | , | -, | , | , | | | , | -, | -, | , | , 1 | | | 1 | 57.9 | 57.9 | 58 · 1 | 58.6 | 58.6 | 58 · 4 | 58.4 | 58:3 | 57 · 7 | 56 · 8 | 58 · 3 | 60.0 | 61.6 | 62 · 4 | 62 · 2 | 61.0 | 60.8 | 60.8 | 60.5 | 60.6 | 59.5 | 57.8 | 57.8 | 57.8 | 59.2 | 121.8 | | 2 | 57.3 | 57.2 | 58 · 7 | 58 · 7 | 58 · 7 | 58.8 | 58.6 | 58.2 | 57.6 | 57.8 | 59.8 | 61.9 | 62.5 | 63 · 7 | 62.4 | 61 · 2 | 58.9 | 59.7 | 59 · 1 | 58.5 | 57.9 | 56 · 8 | 56 · 9 | 58.0 | 59 · 1 | 118.9 | | 3 q | 58 · 7 | 59.2 | 59 · 2 | 59.3 | 59.2 | 59.0 | 57.6 | 57.6 | 56.7 | 56.6 | 58 • 4 | 60.3 | 61.3 | 61 · 2 | 60.7 | 59.7 | 59 • 4 | 59.3 | 59.2 | 59 · 1 | 58.5 | 58 · 5 | 58 · 5 | 58.3 | 59.0 | 115.5 | | 4 | 58 · 4 | 58.8 | 58 · 5 | 58 · 1 | 58.7 | 57.9 | 57.6 | 57 · 4 | 56 · 5 | 56 • 7 | 59.3 | 62.2 | 61.9 | | 61 · 2 | | 59.6 | 59.0 | | 59.0 | 58 · 7 | 58 · 6 | 58 · 7 | 58.9 | 59.1 | 117.4 | | 5 d | 58.9 | 58.5 | 58.8 | 59.0 | 58.9 | 58.6 | 58.5 | 57.6 | 56 · 7 | 56.5 | 58.7 | 61.6 | 62.7 | 63.3 | 62.3 | 63.2 | 63 · 1 | 63.2 | 64 · 0 | 61 · 1 | 57.7 | 52.6 | 45 · 2 | 45.9 | 58.6 | 106 · 6 | | 6 d | 48.3 | 47.8 | 53 · 0 | 53 · 9 | 54.0 | 58.5 | 58 · 2 | 58.7 | 58 · 4 | 58 · 2 | 59.5 | 62.2 | 63.6 | 63.2 | 62.2 | 60.2 | 59.5 | 59.3 | 56 · 4 | 53 · 4 | 56 · 2 | 52.7 | 55 · 4 | 60.5 | 57 . 2 | 73.3 | | 7 | 50.4 | 51 · 4 | 56.6 | 57 · 7 | 58.6 | 58.5 | 58 · 5 | 58 · 1 | 57.5 | 58.0 | 59 · 9 | 63.2 | 64 · 7 | 65.7 | 63.9 | 61.9 | 60.4 | 59.2 | 60.2 | 58.2 | 57 · 7 | 58.5 | 58.5 | 60.3 | 59 - 1 | 117.6 | | 8 | 59.6 | 59.5 | 59 • 4 | 59.7 | 59.2 | 59.2 | 58.7 | 58.0 | 57 · 3 | 57.3 | 59.5 | 61.7 | 62.8 | 63 · 1 | 62.5 | 61.5 | 59.6 | 60.5 | 60.4 | 59 · 5 | 54 · 9 | 57.8 | 57.9 | 56 · 0 | 59 • 4 | 125.6 | | 9 | 58 · 5 | 58.6 | 58.0 | 59 · 1 | | 58.7 | | 57.7 | 56.6 | 57 · 3 | 59.0 | 60.1 | 62.0 | | 61.9 | 60.7 | | 60.1 | | 59 · 2 | | 58.6 | | 58 · 1 | 59 · 2 | 121 · 8 | | 10 q | 58.5 | 58.8 | 58.9 | 59.3 | 59.3 | 59.2 | 59.0 | 58.3 | 57.2 | 57.0 | 58 · 4 | 60.8 | 62.0 | 62.2 | 61 · 4 | 60.5 | 60 • 4 | 60.0 | 59.6 | 59 · 2 | 58 · 7 | 58 • 6 | 58 • 4 | 58 • 4 | 59.3 | 124 · 1 | | 11 | 58.2 | 58.7 | 58.9 | 59.2 | 59.2 | 59.2 | 58.9 | 58.5 | 57.7 | 57.6 | 58.9 | 61.0 | 62.2 | 62.2 | 61.7 | 60.9 | 60.4 | 60.3 | 60.3 | 58 · 7 | 57 · 2 | 57.4 | 58 · 1 | 58.7 | 59.3 | 124 · 1 | | 12 | 58 • 4 | 58.6 | 58.8 | 59.2 | 59.3 | 59.3 | 59.2 | 58.7 | 57 • 9 | 57.8 | 58.5 | 60.3 | 62.1 | 63 · 1 | 62.3 | 61 · 5 | 61 · 1 | 60.7 | 60.4 | 60.0 | 59 · 3 | 58 · 8 | 58.5 | 58.5 | 59.7 | 132.3 | | 13 | 58 · 7 | 59.1 | 59 • 4 | 60.4 | | 57.6 | 58 • 4 | 58.2 | 57.5 | 57.6 | 58.9 | 60 • 4 | | 63.1 | 62.0 | | 60.4 | 60.3 | 60.3 | | | 46 · 4 | | 57.9 | 58.8 | 110.6 | | 14 | 59 · 2 | 59.3 | 59 • 4 | 59 · 2 | | 58.7 | | 58.6 |
57.7 | 57 • 4 | 58.8 | 60.4 | | 62.7 | 62.3 | | | 61 · 2 | | 60.0 | 58 · 5 | 58 • 4 | | 57.3 | 59.5 | 128 · 2 | | 15 | 55.6 | 58 · 2 | 58 • 2 | 58.8 | 58 · 4 | 58.3 | 58.5 | 58.0 | 57 · 4 | 57.3 | 58.8 | 60.6 | 62.3 | 62.3 | 61 · 4 | 60.5 | 60.2 | 60.1 | 60.0 | 59.8 | 59 · 7 | 58 · 9 | 58 8 | 58 · 7 | 59.2 | 120.8 | | 16 q | 58.5 | 58 • 4 | 58 • 4 | 58.8 | 59.2 | 58.8 | 58.5 | 58.2 | 57.9 | 57 • 4 | 58 · 5 | 60.2 | 61.6 | 61.9 | 61.3 | 60.5 | 60.0 | 59.6 | 59 • 4 | 59 · 3 | 59 · 1 | 58 • 4 | 58.0 | 58 • 2 | 59 - 2 | 120 · 1 | | 17 | 58.5 | 59.0 | 59 • 4 | 59 · 7 | 60.4 | 59.4 | 58 • 4 | 57.8 | 57.3 | 57.0 | 59.0 | 60.9 | 62.7 | 62.2 | 61 · 3 | 60.5 | 59.7 | 59.3 | 59.2 | 58 · 9 | 58 · 5 | 58 • 4 | 58 • 4 | 57.3 | 59.3 | 123.2 | | 18 | | 57.3 | 58 • 4 | 59.7 | 58 · 1 | 58.6 | 58 • 4 | 58.1 | 58 · 1 | 58 • 4 | 60.0 | 61 · 1 | | | 63.2 | | | 60.9 | 59.9 | | 58.8 | 58 • 4 | 58.0 | | 59.5 | 129 · 1 | | 19 d | 58.7 | 58.8 | 59 • 2 | 58 • 7 | 58.0 | 59.6 | 59.2 | 58:8 | 61 · 5 | 61.6 | 60.5 | 61.6 | 62.8 | 63.0 | 62.8 | | 61.0 | 57.2 | 57 · 2 | 55.3 | | 57.1 | | 58.6 | 59:4 | 126:1 | | 20 d | 58 • 4 | 59.2 | 55 · 1 | 57.6 | 58.2 | 59.1 | 59.6 | 61.0 | 60.9 | 61.6 | 62.5 | 53.2 | 64.6 | 62.5 | 61.4 | 59.4 | 57.1 | 54.8 | 54.0 | 56.3 | 53.0 | 53 · 1 | 53.0 | 53.0 | 58.3 | 98.6 | | 21 | 55.0 | 55.3 | 57 • 4 | 58.6 | 60.3 | 61.8 | 60.9 | 59.0 | 58.0 | 58 · 7 | 58.7 | 60.3 | 61.9 | 61.9 | 61.2 | 59 · 2 | 59.6 | 59.3 | 58-7 | 56.6 | 54.0 | 56 · 7 | 56 · 8 | 58 · 1 | 58 · 7 | 108.0 | | 22 | 58.1 | 58.8 | 60.1 | 59 · 2 | 58.2 | 58.0 | 58.2 | 57.9 | 57.5 | 57.8 | 59·1 | 60.6 | 62 • 4 | 61 • 9 | 61.0 | 60.3 | 59.8 | 59 · 1 | 58.2 | 58.7 | 58 • 6 | 57.5 | 56 · 4 | 56 • 7 | 58.9 | 114 · 1 | | 23 q | 58.3 | 59 · 1 | 59 · 1 | 59.3 | 59.2 | 59.2 | 58.8 | 58 · 4 | 58.0 | 58.0 | 58.7 | 59.8 | 60.6 | 61.8 | 61 · 1 | 60.3 | 59.6 | 59.5. | 59 · 2 | 58 · 4 | 57 · 7 | 57 · 4 | 57 · 1 | 57.0 | 59.0 | 115.6 | | 24 | 57.2 | 57.3 | 58.3 | 58.3 | 58 · 2 | 58.3 | | 57.5 | 57 · 8 | | 58 • 4 | 60.1 | 62.1 | 62.0 | | | 60.2 | 60.1 | 60.2 | 59 · 1 | 58.3 | 57.6 | 57 · 5 | 57.9 | 58.9 | 114.3 | | 25 | 57.7 | 58.5 | 59.1 | 59 · 2 | 59.3 | 59.2 | 58 · 7 | 58 · 2 | 57 · 7 | 57.2 | 57.8 | 59.8 | 61.6 | 62 · 4 | 61.8 | 61.5 | 61.2 | 60.5 | 59.6 | 59 · 2 | 56.0 | 52.8 | 56 ·3 | 57.3 | 58.9 | 112.6 | | 26 | 57.8 | 58.7 | 58.9 | 59 · 1 | 59.2 | 58.6 | 58.5 | 58 · 5 | 58 · 1 | 57.6 | 58.6 | 61 · 1 | 62.8 | 62.4 | 62.2 | 61 · 1 | 61.3 | 61.9 | 60.6 | 59.9 | 59.2 | 58.6 | 58 · 7 | 58.3 | 59.7 | 131 · 7 | | 27 | 57.7 | 56 · 7 | 56 · 8 | 57.9 | 58.1 | 57.9 | 58.3 | 58.2 | 57.8 | 57.9 | 59.2 | 60.3 | 61 · 1 | 60.8 | 60.2 | 59 · 2 | 59.7 | 57.8 | 57 · 5 | 59 · 4 | 58.5 | 57.6 | 57.6 | 57.6 | 58.5 | 103.8 | | 28 q | 58.1 | 58.8 | 58.6 | 58.6 | 58.6 | 58 · 5 | 58 • 4 | 58.2 | 58.0 | 58 · 1 | 59.2 | 60.8 | | 61.0 | | | | 59.2 | 59 · 1 | 59.0 | | 58 · 2 | 58 · 1 | 58.0 | 59.0 | 116 · 1 | | 29 | 58 · 4 | 58.9 | 59 · 1 | 58.8 | 59 · 1 | 58 · 8 | 58 · 7 | 58 • 4 | 58 • 4 | | 59.7 | 60.8 | | 61.2 | | 60.5 | | | 59.7 | 58 · 7 | - | 56 · 4 | | 58.0 | 59.2 | 120.7 | | 30 d | 57.9 | 58.6 | 58 · 5 | 59.1 | 59 · 2 | 59 · 3 | 59.2 | 59.0 | 59.0 | 59 · 1 | 59.5 | 60.7 | 61.9 | 63.3 | 65·2 | 68.9 | 65.9 | 61.5 | 57.9 | 56.0 | 52.9 | 53.9 | 54 · 1 | 54.9 | 59.4 | 125.5 | | Mean | 57 · 4 | 57 · 8 | 58 · 3 | 58 · 8 | 58 · 7 | 58 · 8 | 58 · 6 | 58 · 3 | 57 · 9 | 57 · 9 | 59·1 | 60.9 | 62.3 | 62.5 | 61.9 | 61.0 | 60.4 | 59.8 | 59 · 3 | 58 · 7 | 57.6 | 56 · 7 | 57.0 | 57.4 | 59·1 | | | Sum
700·0'+ | 23·3 | 35.0 | 50.3 | 62.8 | 62.2 | 65.0 | 59.0 | 49·1 | 36 · 4 | 36 · 8 | 74 · 1 | 128.0 | 167.5 | 175·3 | 155 · 6 | 130.8 | 111.6 | 94.9 | 78 · 5 | 59.8 | 26 · 8 | 2.5 | 10.0 | 22.8 | | Grand Total
42518·1 | | 21 E | SKDALEMU | IR (Z) | | | | | | | | | 4 | 5,000γ | (0.45 | CGS un: | it) + | | | | | | | | | | NOVEMB | ER 1965 | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------| | | Hour
0-1 | CMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
10,000γ+ | | 1
2
3 q
4
5 d | 7
453
452
446
446
447 | 7
451
451
446
444
447 | 9
451
449
447
443
446 | 9
450
447
447
444
444 | 7
450
448
446
443
444 | γ
450
449
447
442
445 | 9
450
449
449
444
446 | 7
449
450
450
441
447 | γ
450
451
451
443
449 | γ
447
450
451
440
449 | 7
443
449
450
436
444 | y
440
446
449
435
441 | 7
440
448
449
443
440 | 7
442
450
448
446
444 | 446
456
450
447
450 | 7
451
458
450
447
451 | 7
451
460
450
447
451 | y
450
456
450
446
453 | y
448
455
450
446
461 | 450
455
450
446
464 | 7
453
454
450
447
472 | 7
453
451
450
447
476 | 7
452
445
450
446
461 | γ
452
444
449
446
455 | 7
449
451
449
444
451 | 7
772
823
775
655
827 | | 6 d
7
8
9
10 q | 439
422
446
441
450 | 435
424
447
441
448 | 424
428
447
444
448 | 399
434
448
447
447 | 399
438
447
447
447 | 409
439
446
446
446 | 424
440
447
446
446 | 433
442
447
447
447 | 439
446
449
450
449 | 442
451
448
449
449 | 442
452
446
447
446 | 441
451
445
446
445 | 442
450
446
446
444 | 446
451
450
449
447 | 450
456
451
453
451 | 451
457
452
453
451 | 450
457
454
452
450 | 450
458
453
451
448 | 453
460
452
450
447 | 462
461
451
449
447 | 457
460
456
448
447 | 453
456
451
449
448 | 450
452
450
449
448 | 435
449
449
450
447 | 439
447
449
448
448 | 525
734
778
750
743 | | 11
12
13
14
15 | 448
446
446
449
449 | 447
446
446
450
447 | 447
446
447
450
448 | 446
446
443
450
449 | 446
445
441
450
446 | 445
445
443
450
447 | 444
445
444
449
447 | 444
443
444
447
447 | 444
444
446
447
450 | 444
443
446
449
449 | 443
440
446
448
448 | 439
439
446
449
446 | 439
439
445
446
446 | 443
441
446
447
447 | 446
444
447
450
448 | 447
444
450
450
449 | 447
444
450
450
447 | 448
444
450
450
448 | 447
443
451
453
451 | 448
443
456
454
453 | 449
443
458
453
453 | 447
444
460
451
450 | 446
444
451
450
447 | 445
445
449
450
446 | 445
444
448
450
448 | 689
646
751
792
758 | | 16 q
17
18
19 d
20 d | 449
447
449
449
444 | 448
446
447
447
436 | 447
446
446
446
429 | 448
445
438
444
432 | 447
444
439
446
432 | 447
444
441
443
433 | 446
445
442
440
437 | 449
447
443
444
440 | 449
450
443
446
445 | 449
450
444
446
451 | 447
450
443
447
452 | 446
450
444
450
456 | 446
446
446
451
460 | 447
450
447
453
463 | 450
450
449
454
463 | 450
450
449
456
461 | 450
450
449
457
461 | 450
449
450
461
465 | 450
449
450
465
464 | 450
449
450
464
468 | 450
449
451
462
470 | 450
449
451
457
470 | 450
449
451
453
465 | 448
450
450
451
458 | 448
448
446
451
<i>452</i> | 763
754
712
832
855 | | 21
22
23 q
24
25 | 451
450
449
450
450 | 445
449
449
449 | 438
446
450
448
449 | 437
445
450
449
449 | 439
448
450
447
449 | 441
448
449
447
448 | 441
449
449
445
447 | 447
449
449
445
446 | 449
451
449
444
447 | 449
452
449
443
449 | 449
450
449
443
447 | 449
450
448
442
445 | 450
452
449
444
443 | 454
456
449
445
443 | 456
456
450
448
446 | 457
456
450
449
449 | 454
455
450
449
450 | 451
453
455
449
449 | 451
452
450
449
449 | 454
450
450
453
450 | 456
450
451
452
454 | 454
452
451
453
455 | 450
451
450
450
452 | 449
450
449
450
449 | 449
451
450
448
449 | 771
820
794
743
764 | | 26
27
28 q
29
30 d | 449
450
449
448
449 | 449
450
449
448
448 | 449
449
449
446
447 | 448
449
449
446
446 |
446
449
449
446
445 | 445
449
448
446
445 | 445
448
448
446
445 | 444
448
446
445
442 | 446
449
446
445
443 | 448
449
445
443
438 | 448
446
444
439
435 | 445
445
444
439
437 | 445
446
445
443
443 | 447
449
446
444
448 | 450
450
450
446
450 | 450
450
450
448
455 | 450
450
450
449
461 | 451
452
450
452
463 | 452
456
449
454
477 | 452
454
449
452
474 | 452
455
449
453
469 | 452
455
448
454
466 | 450
454
448
450
456 | 450
453
448
449
439 | 448
450
448
447
451 | 763
805
748
731
821 | | Mean | 447 | 446 | 445 | 444 | 444 | 444 | 445 | 445 | 447 | 447 | 446 | 445 | 446 | 448 | 450 | 451 | 451 | 452 | 453 | 454 | 454 | 453 | 451 | 449 | 448 | | | Sum
13,000y+ | 413 | 379 | 350 | 316 | 313 | 323 | 343 | 362 | 410 | 412 | 369 | 348 | 372 | 438 | 513 | 541 | 545 | 555 | 584 | 608 | 623 | 603 | 520 | 454 | | Grand Total
322,694 | GEOMAGNETIC CHARACTER FIGURES (K, K_H , K_D , K_Z , AND C) AND TEMPERATURE IN MAGNETOGRAPH CHAMBER | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of
K _H
indices | 3-h range
indices
K _D | Sum of
K _D
indices | 3-h range
indices
K _Z | Sum of
K _Z
indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph chambe
200°A+ | |----------|---------------------------|------------------------|--|-------------------------------------|--|-------------------------------------|--|-------------------------------------|--|--| | 1 | 1011 1122 | 9 | 1011 1112 | 8 | 0010 1121 | 6 | 0000 0000 | 0 | 0 | 86 · 4 | | 2 | 2011 2212 | 11 | 2011 2212 | 11 | 2001 1202 | 8 | 0000 1001 | 2 | o l | 86 · 4 | | 2
3 a | 1000 0000 | i i | 1000 0000 | ī | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 86 · 4 | | 4
4 | 2213 2210 | 13 | 2113 2210 | 12 | 2213 1000 | 9 | 0001 0000 | 1 | 1 | 86 · 4 | | 5 d | 1102 3334 | 17 | 1102 3334 | 17 | 0001 2234 | 12 | 0000 1122 | 6 | 1 | 86 · 4 | | 5 d | 4322 2234 | 22 | 3312 2232 | 18 | 4311 1034 | 17 | 3220 0023 | 12 | 1 | 86 • 4 | | 7 | 3112 0222 | 13 | 2112 0222 | 12 | 3011 0022 | 9 | 1010 0001 | 3 | 1 | 86 • 4 | | 8 | 2011 0232 | 11 | 2011 0222 | 10 | 1001 0132 | 8 | 0000 0000 | 0 | 1 | 86 • 4 | | 9 | 3101 1000 | 6 | 3101 1000 | 6 | 2100 0000 | 3 | 2000 0000 | 2 | 0 | 86 · 4 | | 0 q | 0000 1000 | 1 | 0000 1000 | 1 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 86 • 4 | | ı | 1000 0232 | 8 | 0000 0231 | 6 | 1000 0022 | 5 | 0000 0010 | 1 | 0 | 86 · 4 | | 2 | 0001 2112 | 7 | 0001 2112 | 7 | 0000 1101 | 3 | 0000 0000 | 0 | 0 | 86 · 3 | | 3 | 2211 1144 | 16 | 1101 1123 | 10 | 2210 0044 | 13 | 0000 0011 | 2 | 1 | 86 · 3 | | 1 | 0010 0220 | 5 | 0000 0210 | 3 | 0010 0120 | 4 | 0000 0000 | 0 | 0 | 86 · 3 | | 5 | 2100 0020 | 5 | 2100 0020 | 5 | 2100 0010 | 4 | 0000 0000 | 0 | 0 | 86 · 3 | | 5 q | 0100 0000 | 1 | 0000 0000 | 0 | 0100 0000 | 1 | 0000 0000 | 0 | 0 | 86 · 3 | | , . | 1111 1101 | 7 | 0111 1101 | 6 | 1101 0001 | 4 | 0000 0000 | 0 | 0 | 86 · 2 | | 3 | 1201 1121 | 9 | 1201 1121 | 9 | 1200 1010 | 5 | 0100 0000 | 1 | 0 | 86 · 2 | | d | 1232 2331 | 17 | 1232 2331 | 17 | 0222 1321 | 13 | 0000 0100 | 1 | 1 | 86 · 2 | |) d | 3233 2332 | 21 | 3233 2232 | 20 | 3221 1331 | 16 | 2011 0111 | 7 | 1 | 86 • 2 | | l | 2222 2222 | 16 | 1211 2222 | 13 | 2222 1122 | 14 | 2010 1000 | 4 | 1 | 86 · 2 | | 2 | 2111 1112 | 10 | 1010 1111 | 6 | 2101 1102 | 8 | 0000 0000 | 0 | 0 | 86 • 2 | | 3 q | 0000 0012 | 3 | 0000 0012 | 3 | 0000 0010 | 1 1 | 0000 0000 | 0 | 0 | 86 • 3 | | 1 | 1010 1021 | 6 | 1010 1021 | 6 | 1010 1011 | 5 | 0000 0010 | 1 | 0 | 86 · 3 | | ; | 1010 1233 | 11 | 0000 1221 | 6 | 1010 0133 | 9 | 0000 0010 | 1 | 1 | 86.3 | | | 1111 1211 | 9 | 1111 1211 | 9 | 0100 1100 | 3 | 0000 0000 | 0 | 0 | 86.3 | | , | 2000 0321 | 8 | 1000 0321 | 7 | 2000 0221 | 7 | 0000 0100 | 1 | 1 | 86 · 3 | | 3 a | 1000 1010 | 3 | 0000 1000 | 1 | 1000 0010 | 2 | 0000 0000 | 0 | 0 | 86 · 3 | | j T | 0100 0221 | 6 | 0100 0211 | 5 | 0100 0121 | 5 | 0000 0000 | 0 | 0 | 86 · 3 | | d | 0002 3334 | 15 | 0002 3334 | 15 | 0001 2333 | 12 | 0000 2122 | 7 | 1 | 86 · 3 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. $[\]textbf{K}_{\textbf{H}} \text{ For horizontal component.} \quad \textbf{K}_{\textbf{D}} \text{ For declination.} \quad \textbf{K}_{\textbf{Z}} \text{ For vertical component.} \quad \text{(See Introduction)}.$ | 19 ESE | DALEMU | IR (H) | | | | | | | | | 1 | 6,000γ | (0.16 | CCS un | it) + | | | | | | | | | | DECEME | BER 1965 | |--|--|--|---|---|--|--|--|--|--|--|--|--|--|--|---|--|---|---|--|---|--|--|--|--|---|---| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
21,000y+ | | 1 d
2
3
4
5
6
7 | 922
906
920
929
913
918
923
918 | 912
913
916
924
914
922
925
918 | 913
912
917
922
917
921
921
921
918 | 917
917
911
918
917
915
922
920
920 | 920
905
918
919
916
925
924
922 | 920
918
918
918
922
923
925
926 | 920
919
918
925
920
927
929
928 | 921
919
917
925
922
925
939
930 | 914
912
916
922
919
922
932
929 | 917
902
912
917
917
918
924
929 | 916
903
911
924
914
912
915
924 | 920
902
914
921
914
909
915
922 | 921
910
918
918
914
913
918
925 | 900
912
920
928
918
918
922
930 | 916
921
929
923
922
925
932 | 909
909
920
925
925
925
923
933 | 99
908
919
905
925
926
924
930 | γ
912
909
919
905
926
926
924
939 | 902
917
921
908
924
925
924
937 | γ
877
916
919
912
924
922
923
930 | 908
913
916
920
922
920
922
931 | 900
914
919
911
922
922
919
930 | 912
918
912
922
922
922
918
929 | 904
915
919
917
922
922
918
924 | 907
907
911
918
919
920
921
923
927 | γ
779
873
1024
1057
1071
1109
1153
1254 | | 9
10
11
12
13
14 q
15 q | 927
918
916
905
915
922
918 | 927
920
917
910
918
920
920 | 922
922
916
914
916
919
922 | 923
922
918
916
918
920
923 | 925
922
919
918
919
922
925 | 929
925
927
921
924
925
925 | 929
927
931
923
926
924
926 | 930
927
923
924
928
923
926 | 929
927
919
926
929
922
926 | 925
925
918
924
919
919
925 | 913
925
914
925
918
919
925 | 916
922
914
926
915
921
925 | 917
921
914
924
918
924
925 | 903
925
918
922
919
923
927 | 922
926
918
907
912
926
929 | 925
924
912
898
911
923
928 | 927
928
922
913
919
921
929 | 924
918
904
918
921
923
929 | 920
910
923
913
921
923
929 | 920
913
915
914
923
922
928 | 920
904
914
918
923
921
927 | 920
928
918
918
923
920
926 | 919
912
914
916
923
916
926 | 921
909
914
917
922
913
925 | 922
921
917
917
920
921
926 | 1133
1100
1018
1010
1080
1111
1214 | | 16 q
17 q
18 d
19
20 | 924
926
926
921
925 | 923
929
926
897
913 | 923
931
926
905
911 | 926
932
930
911
914 | 929
933
931
913
918 | 931
934
931
916
922 | 930
935
940
917
923 | 930
935
988
910
921 | 927
933
942
911
918 | 923
930
933
908
915 | 924
926
928
907
916 | 925
921
918
907
916 | 929
923
918
910
918 | 935
927
924
912
921 |
933
928
925
914
923 | 930
925
927
916
923 | 930
924
910
918
925 | 931
929
892
920
925 | 931
929
887
912
915 | 931
929
878
906
913 | 930
930
892
894
904 | 930
928
908
906
914 | 928
928
913
912
913 | 927
926
906
917
918 | 928
929
919
911
918 | 1280
1291
1049
860
1024 | | 21 <i>q</i>
22
23
24
25 <i>d</i> | 921
931
911
920
902 | 920
930
913
919
910 | 921
930
916
921
909 | 923
933
920
921
925 | 926
935
924
926
922 | 927
930
925
931
924 | 927
930
925
933
924 | 926
937
925
934
929 | 920
938
922
935
920 | 917
936
915
934
914 | 917
926
911
930
913 | 916
917
910
927
910 | 915
914
913
925
911 | 917
910
921
929
911 | 918
918
924
929
913 | 918
922
924
931
913 | 914
923
924
926
906 | 926
918
925
925
924 | 930
922
925
918
928 | 930
923
925
935
926 | 929
924
925
929
925 | 930
921
924
914
923 | 930
921
922
880
914 | 930
927
920
906
919 | 923
926
920
924
917 | 1148
1216
1089
1178
1015 | | 26 d
27
28 d
29
30 | 920
912
918
916
914 | 917
917
912
915
918 | 920
919
911
916
920 | 924
922
920
919
921 | 927
924
921
918
922 | 931
921
922
922
930 | 927
927
934
923
930 | 932
930
922
919
928 | 912
925
912
915
922 | 922
922
903
912
919 | 908
908
896
913
915 | 881
900
893
920
905 | 908
904
922
907 | 886
918
902
915
915 | 887
918
901
915
917 | 903
917
903
909
916 | 909
916
889
901
913 | 898
919
908
913
923 | 924
913
912
909
920 | 917
896
899
914
921 | 919
910
914
917
922 | 911
914
913
917
924 | 927
913
922
930
923 | 922
911
918
920
921 | 913
916
910
916
919 | 920
980
849
990
1066 | | 31
Mean | 921
919 | 922 | 923 | 925 | 927 | 928 | 927 | 923 | 920 | 920 | 918 | 919
914 | 924 | 918 | 925 | 918 | 923 | 919 | 919 | 920 | 920 | 919
919 | 918
917 | 920
918 | 922
919 | 1133 | | Sum
28,000γ+ | 478 | 457 | 474 | 546 | 595 | 679 | 724 | 718 | 616 | 514 | 414 | 341 | 417 | 454 | 467 | 471 | 446 | 495 | 491 | 421 | 463 | 486 | 437 | 470 | | Grand Total
684,074 | 919 at 0-1h. January 1, 1966. GEOMAGNETIC DECLINATION (WEST) Mean values for periods of sixty minutes ending at exact hours, CMT | 20 ES | KDALEMU | IR (D |) | | | | | | | | | 9° | + | | | | | | | | | | | | DECEMBE | DR 1965 | |------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------|--------------|----------------|---------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 0 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 5 16-1 | 7 17-18 | 3 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
1300·0' | | | , | | | | | | | | - | | | • | -, - | , | , | | • | | , | | | | | | - | - | | 1 d | 56 · 4 | 57.3 | 58 • 3 | 58.6 | 59 · 1 | 59.2 | 58.7 | 59.2 | 59.4 | 60.1 | 61.8 | 63.0 | 63 · 2 | 63 · 7 | 61.6 | 65 · 2 | 62.8 | 60.9 | 59.5 | 54 · 1 | 47.7 | 49.5 | 46.3 | 54.8 | 58-3 | 100-4 | | 2 | 55.4 | 56.5 | | 57.3 | 58.2 | 59.3 | 59.2 | | 58.8 | 59.3 | 60.4 | 59.8 | 60.9 | 60.2 | | | | 58 · 1 | | | 57.0 | 56.7 | 57 · 1 | | 58.2 | 97.8 | | 3 | 58.7 | | 58 · 5 | 58 · 4 | 58.6 | 58 · 4 | 58 · 3 | 58 · 2 | 58 · 2 | 58.2 | 59.2 | 60.2 | 61.0 | 60.6 | 59.6 | 59.0 | 58.9 | 58 . 6 | 58.8 | 58.3 | 58 · 1 | 56 · 1 | 57.0 | 57.4 | 58.6 | 106 - 8 | | 4 | 59.2 | 57.7 | 56 - 8 | 58 · 2 | 58.8 | 58.6 | 57.8 | 57.7 | 57.5 | 57.8 | 60.2 | 61.8 | 62 · 2 | 63.0 | 62.6 | 63 · 2 | 60.0 | 62.5 | 60.3 | 59 · 1 | 51 · 7 | 52.7 | 56 · 3 | 57.3 | 58.9 | 113.0 | | 5 | 56 • 7 | 57.0 | 57-8 | 57.5 | 58 · 5 | 58.8 | 58 · 1 | 58 ·0 | 57.8 | 58.0 | 58.3 | 59 · 3 | 60.3 | 60.5 | 60∙1 | 59.6 | 59 · 1 | 58 · 7 | 58 · 4 | 58.3 | 58 · 1 | 57 · 8 | 57-8 | 58.1 | 58 · 4 | 102.6 | | 6 | 57 · 7 | 58.5 | 58 · 3 | 59.0 | 59·1 | 58.8 | 58 · 4 | | | 57.6 | 59 - 1 | 60.2 | 61.3 | 61 · 2 | 60.4 | 59.6 | 59.3 | 59 · 1 | 58.5 | 58 · 2 | 56.8 | 56 - 6 | 56 · 7 | 57.6 | 58 - 6 | 107 - 4 | | 7 | 58 · 1 | 58 6 | 58 • 0 | 58・3 | 58.3 | 57.9 | | | | 58 · 8 | 59.0 | 60.3 | 60.8 | 61 · 1 | 60-4 | | 59∙3 | | 58 • 4 | 58.3 | | 57 · 7 | 57.5 | | 58 · 7 | 109 · 9 | | 8 | 57 · 7 | 58.0 | | 58.6 | 58.6 | 58 · 2 | | | 57 · 3 | 58.0 | | 59.9 | | 61.8 | 61.3 | | | 59.9 | | | | | 57 · 7 | | 58 • 9 | 113.6 | | 9 | 57.5 | 56 · 6 | | 57.8 | 58 · 5 | 58 · 6 | | | | | | 59.5 | 60.8 | | | | | 59.2 | | | | 57.2 | | 54.2 | 58.2 | 97.9 | | 10 | 55.8 | 57 • 4 | 58 · 1 | 58 · 4 | 58 · 7 | 58 · 4 | 58.3 | 58.2 | 57.8 | 57 · 2 | 58 · 3 | 59.3 | 60.0 | 60.9 | 91.0 | 01.8 | 02.0 | 65 · 2 | 63.7 | 61.3 | 57.8 | 57 · 2 | 53.3 | 53.9 | 58.9 | 114.6 | | 11 | 56 • 4 | 56 · 7 | 58 • 5 | 59.3 | 62 · 1 | 60 · 1 | | 58 • 4 | 57.0 | 56 · 8 | 57 • 5 | 58 • 9 | | 60.2 | | 59 · 8 | 60.6 | _ | 59 · 4 | 59.3 | | | 56 · 4 | 48.6 | 58-4 | 102 · 7 | | 12 | 52 · 7 | 53.8 | 57 • 0 | 59 · 5 | 59 · 4 | 58.9 | | | 58 · 2 | | | 59.0 | 60.0 | 61.0 | 61 · 2 | 60.2 | | | 55.3 | 57 · 5 | 58 · 2 | 56 · 6 | | 56 · 3 | 58 · 1 | 94.9 | | 13 | 56 · 4 | 56 · 7 | 58 · 7 | 59 · 7 | 58 · 4 | | 58 · 2 | | | | | 59.6 | 1 | | 60.8 | | | 59.4 | | | 58 · 1 | | | | 58.8 | 112.3 | | 14 q | 57.7 | 57.7 | 58.0 | 58.3 | 58 · 5 | | 58·1
58·3 | | 57·9
58·4 | 58.5 | 59.5 | 60·3
59·4 | | 60·5 | | 59.4 | 59·8
59·1 | | 59·2
58·9 | | | 57.6 | | 55.4 | 58 . 7 | 108 · 4 | | 15 q | 57.1 | 57 · 7 | 58 • 0 | 58 · 2 | 58 · 3 | 58 · 3 | | | | 58 · 5 | 58 · 9 | • | 1 | • | _ | | | | - | | | | 58 · 2 | 58·1 | 58.7 | 108 · 0 | | 16 q | 58.3 | 58∙0 | ••• | 59 · 1 | | | 58.9 | 58 • 4 | 58.0 | 58 · 1 | | 59.6 | | 60.9 | 59.9 | 59.3 | | 59 · 2 | | | | | 58 · 3 | 1 | 58.9 | 114.5 | | 17 q | 58.6 | 58.9 | 59.0 | 58.8 | 59.0 | 58 · 6 | | 58.3 | 58 · 4 | 58.3 | 58.5 | 59 · 6 | | 61.2 | 59.6 | 58.9 | 59.0 | | 58.8 | | | | 58 · 1 | | 58.9 | 113.3 | | 18 d | 58.3 | 58.6 | | 59.0 | 58.9 | 58·7
57·8 | | 59·0
57·7 | 60·4
57·9 | 60·4
53·5 | 60·7
59·6 | 61·7
60·0 | | 63·1
59·7 | 61·8
59·1 | | 59.2 | 61·3
58·2 | | 56·6
57·1 | 53.9 | | | 55.2 | 59.7 | 133 · 2 | | 19
20 | 55·6
56·9 | 52·0
57·3 | 57·1
57·6 | 57·7
58·3 | 57·9
58·2 | | 57·7 | 57.7 | 57.6 | 58.3 | 58.9 | 59.4 | | 59.7 | | | | 58.6 | | | | | | 56·9
58·3 | 57·8 | 86 · 5
86 · 8 | | | | | | | | | | | | | | | Į. | | | | | | | | | | | | | | | 21 q | 59.1 | 59.0 | | 59.3 | 59.0 | 58 · 2 | | 57.9 | 57.7 | 57.8 | 58.6 | 59 · 3 | | 60.4 | 60.0 | 59.3 | 58.6 | | 58.3 | | | | | 58.3 | 58.7 | 110.0 | | 22 | 58.4 | 58.6 | 59 · 1 | 59.3 | 59.2 | | | 58.4 | 58 2 | 58 · 3 | 58 · 2 | 59.7 | | 62.7 | 62.8 | | | 59.7 | | | | | | 55.6 | 58.9 | 114.3 | | 23 | 54.6 | 58.1 | | | 59.1 | | 58·4
58·4 | | 58.1 | 58·1
58·1 | 58·7
58·4 | 60·0
58·6 | 60.7 | 60·7 | | | | 59.2 | | | 57 · 7 | 57·0
57·7 | 57.6 | | 58·5
57·6 | 104·8
82·6 | | 24
25 d | 55.0 | 58·1
57·8 | | | 58.3 | 58·8
57·5 | | | 57 • 7 | 57.6 | | 59 · 1 | | 60.9 | 60.2 | | | 57.7 | | 58 · 1 | | | 55.0 | | 58 1 | 94.6 | | ·- i | 26 d | 57.9 | 57.6 | 58.6 | 59.0 | 59.4 | 58.9 | 58.8 | | | | 62.3 | 59.3 | | | 60.1 | | | 53.2 | | | | | 52 · 1 | | 58:3 | 98 · 7 | | 27 | 56·9
56·3 | 57·9
57·8 | 58·5 | 58.5 | 57·8
57·9 | 59.3 | 60·1 | 60.2 | 59·7
60·0 | 60.1 | 60·3
59·9 | 60·9
61·0 | | 62·0 | 60.0 | 59.5 | 58.4 | | 58.4 | 56 · 1 | 55·1
51·9 | | 57.3 | | 58.8 | 111.6 | | 28 d
29 | | 57.8 | | | 57.8 | | 58.3 | | | | 59.4 | 59.6 | | 59.4 | | | | | | | 58 · 1 | | | | 58·4
57·9 | 100·8
90·4 | | 30 | | 58.3 | | | | 58.2 | | 58.6 | | 59.2 | | 60.6 | | | | | | | | | 56 · 4 | | | 58.0 | 58.6 | 105.7 | | 11 | | | | | | | | | | | 60.2 | | | | | | | | | | 58·1 | | | | 58.6 | 106 · 1 | | an | | | | | | | | | | | 59.3 | | | | | | | | | | 56.7 | | | | 58.5 | | | 0 · 0 ' + | | | | | | | | | | | | | 188 · 4 | | | | | | | | | | | | | rand Tot
43544·2 | 58.1 at 0-1h. January 1, 1966. | 21 ESI | CDALEMU | IR (Z) | | | | | | | | | 4 | 5,000γ | (0.45 | CCS un | it) + | | | | | | | | | | DECEMB | ER 1965 | |-------------|---------|------------|------------|------------|-----|------------|------------|-----|-----|------|-------|--------|-------|--------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|--------|----------------| | | Hour 0 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | Sum
10,000γ | | | γ | <u>γ</u> | γ | γ | γ | γ | γ | | 1 d | 434 | 440 | 445 | 446 | 447 | 447 | 448 | 448 | 449 | 446 | 443 | 440 | 442 | 453 | 469 | 471 | 468 | 463 | 464 | 473 | 466 | 452 | 449 | 445 | 452 | 848 | | 2 | 445 | 441 | 437 | 441 | 446 | 449 | 450 | 450 | 453 | 454 | 450 | 452 | 450 | 452 | 455 | 457 | 459 | 457 | 458 | 456 | 455 | 455 | 453 | 450 | 451 | 825 | | 3 | 446 | 448 | 449
439 | 449
443 | 450 | 450 | 450 | 450 | 450 | 450 | 449 | 448 | 446 | 448 | 450 | 450 | 450 | 451 | 450 | 450 | 453 | 452 | 450 | 449 | 449 | 788 | | 4 | 444 | 439
451 |
 443
450 | 444 | 445
449 | 447
449 | 448 | 448 | 448 | 443 | 441 | 443 | 441 | 444 | 450 | 463 | 463 | 466 | 464 | 463 | 457 | 455 | 451 | 450 | 789 | | 5 | 453 | 451 | 450 | 430 | 449 | 449 | 449 | 449 | 449 | 449 | 449 | 448 | 449 | 449 | 451 | 451 | 451 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 796 | | 6 | 450 | 448 | 448 | 448 | 447 | 446 | 447 | 449 | 449 | 450 | 450 | 451 | 451 | 452 | 453 | 452 | 451 | 450 | 450 | 451 | 451 | 450 | 450 | 450 | 450 | 794 | | 7 | 449 | 445 | 446 | 446 | 446 | 446 | 445 | 443 | 445 | 446 | 447 | 447 | 449 | 450 | 451 | 451 | 451 | 450 | 450 | 450 | 450 | 451 | 452 | 452 | 448 | 758 | | 8 | 452 | 451 | 450 | 449 | 449 | 446 | 446 | 445 | 445 | 442 | 442 | 443 | 443 | 444 | 448 | 449 | 448 | 446 | 445 | 446 | 446 | 446 | 446 | 448 | 446 | 715 | | 9 | 446 | 443 | 443 | 445 | 445 | 443 | 445 | 445 | 446 | 445 | 446 | 446 | 448 | 454 | 450 | 451 | 450 | 450 | 451 | 452 | 453 | 452 | 452 | 453 | 448 | 754 | | 10 | 450 | 449 | 448 | 448 | 446 | 446 | 445 | 445 | 444 | 442 | 439 | 442 | 445 | 445 | 448 | 450 | 450 | 450 | 461 | 464 | 469 | 466 | 448 | 452 | 450 | 792 | | 11 | 450 | 450 | 449 | 449 | 445 | 440 | 441 | 445 | 445 | 445 | 444 | 443 | 444 | 445 | 450 | 455 | 455 | 458 | 456 | 456 | 457 | 458 | 460 | 460 | 450 | 800 | | 12 | 457 | 452 | 450 | 450 | 450 | 451 | 450 | 449 | 448 | 443 | 439 | 438 | 441 | 446 | 452 | 457 | 457 | 456 | 459 | 458 | 453 | 453 | 453 | 452 | 451 | 814 | | 13 | 452 | 450 | 448 | 445 | 446 | 446 | 445 | 445 | 444 | 444 | 445 | 445 | 445 | 446 | 450 | 455 | 455 | 455 | 456 | 455 | 452 | 452 | 450 | 450 | 449 | 776 | | 14 q | 450 | 450 | 450 | 449 | 449 | 450 | 449 | 449 | 449 | 449 | 447 | 446 | 448 | 448 | 448 | 449 | 448 | 449 | 451 | 452 | 448 | 448 | 449 | 456 | 449 | 781 | | 15 <i>q</i> | 453 | 450 | 450 | 449 | 449 | 449 | 449 | 449 | 448 | 448 | 449 | 449 | 447 | 447 | 449 | 449 | 449 | 449 | 449 | 449 | 449 | 449 | 449 | 449 | 449 | 776 | | l6 q | 448 | 447 | 446 | 446 | 448 | 448 | 448 | 449 | 449 | 449 | 446 | 446 | 446 | 445 | 446 | 447 | 448 | 447 | 448 | 447 | 447 | 447 | 446 | 446 | 447 | 730 | | 17 q | 445 | 445 | 444 | 444 | 444 | 444 | 445 | 445 | 446 | 446 | 445 | 445 | 443 | 445 | 448 | 449 | 450 | 449 | 449 | 449 | 449 | 449 | 448 | 446 | 446 | 712 | | 18 d | 446 | 445 | 445 | 445 | 445 | 445 | 443 | 443 | 442 | 442 | 448 | 446 | 446 | 445 | 449 | 452 | 457 | 485 | 489 | 498 | 487 | 471 | 463 | 457 | 456 | 934 | | 9 | 428 | 435 | 438 | 449 | 451 | 451 | 452 | 454 | 453 | 452 | 453 | 455 | 456 | 457 | 457 | 457 | 456 | 455 | 457 | 458 | 464 | 462 | 457 | 455 | 453 | 862 | | 20 | 448 | 445 | 449 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 451 | 451 | 451 | 452 | 452 | 453 | 452 | 452 | 455 | 457 | 459 | 457 | 456 | 453 | 452 | 843 | | 21 g | 451 | 451 | 450 | 450 | 449 | 449 | 449 | 449 | 450 | 450 | 450 | 450 | 450 | 450 | 452 | 455 | 456 | 452 | 450 | 450 | 450 | 450 | 449 | 450 | 451 | 812 | | 22 | 450 | 449 | 448 | 447 | 445 | 445 | 445 | 444 | 443 | 442 | 445 | 448 | 447 | 450 | 451 | 455 | 455 | 458 | 457 | 456 | 455 | 455 | 453 | 452 | 450 | 795 | | 23 | 450 | 450 | 450 | 450 | 450 | 450 | 449 | 449 | 447 | 445 | 447 | 449 | 450 | 451 | 452 | 453 | 453 | 452 | 451 | 450 | 450 | 450 | 450 | 451 | 450 | 799 | | 24 | 452 | 451 | 449 | 450 | 449 | 448 | 446 | 445 | 444 | 443 | 444 | 444 | 442 | 443 | 447 | 449 | 450 | 450 | 453 | 450 | 450 | 452 | 456 | 449 | 448 | 756 | | 25 d | 444 | 444 | 445 | 437 | 440 | 442 | 444 | 445 | 446 | 449 | 448 | 445 | 445 | 450 | 452 | 455 | 458 | 457 | 453 | 452 | 451 | 450 | 452 | 450 | 448 | 754 | | 6 d | 449 | 450 | 450 | 449 | 449 | 448 | 449 | 447 | 449 | 445 | 448 | 461 | 460 | 463 | 472 | 473 | 467 | 469 | 462 | 456 | 456 | 457 | 449 | 445 | 455 | 923 | | 27 | 446 | 449 | 450 | 450 | 450 | 450 | 449 | 449 | 450 | 450 | 451 | 453 | 450 | 451 | 455 | 456 | 459 | 459 | 460 | 464 | 463 | 458 | 455 | 449 | 453 | 876 | | 8 d | 445 | 448 | 450 | 449 | 450 | 449 | 446 | 448 | 449 | 451 | 456 | 457 | 456 | 460 | 469 | 470 | 477 | 476 | 466 | 469 | 463 | 457 | 446 | 449 | 457 | 956 | | 9 | 452 | 454 | 454 | 452 | 452 | 452 | 452 | 452 | 450 | 452 | 452 | 452 | 451 | 4 54 | 455 | 459 | 463 | 465 | 462 | 461 | 458 | 457 | 455 | 451 | 455 | 917 | | 10 | 452 | 453 | 454 | 452 | 451 | 449 | 450 | 450 | 450 | 449 | 450 | 450 | 451 | 452 | 455 | 452 | 459 | 457 | 457 | 455 | 455 | 452 | 452 | 452 | 452 | 859 | 451 at 0-1h. January 1, 1966. Grand Total 335,176 ### GEOMAGNETIC CHARACTER FIGURES (K, K_H , $K_{\dot{D}}$, K_Z , AND C_J AND TEMPERATURE IN MAGNETOGRAPH CHAMBER 453 454 455 456 940 1033 1086 1120 1135 1141 1153 1126 1068 1005 | 2: | 2 ESEDALEMUI | R | | | | | | | DEC | EMBER 1965 | |------------|---------------------------|------------------------|--|-------------------------------|--|-------------------------------|--|-------------------------------|--|---| | | 3-h range
indices
K | Sum of
K
indices | 3-h range
indices
K _H | Sum of K _H indices | 3-h range
indices
K _D | Sum of K _D indices | 3-h range
indices
K _Z | Sum of K _Z indices | Geomagnetic
character
of day, C
(0-2) | Temperature
in magneto-
graph chamber
200°A+ | | 1 d | 2022 3344 | 20 | 2022 3343 | 19 | 2002 3244 | 17 | 1000 2021 | 6 | 1 | 86 · 2 | | 2 | 2212 1232 | 15 | 2211 1232 | 14 | 2212 1231 | 14 | 1100 0100 | 3 | 1 | 86 · 1 | | 3 | 1000 0002 | 3 | 1000 0001 | 2 | 0000 0002 | 2 | 0000 0000 | 0 | 0 | 86 • 2 | | 4 | 2122 3343 | 20 | 2112 3332 | 17 | 2120 2343 | 17 | 1000 0210 | 4 | 1 1 | 86 · 2 | | 5 | 1100 1002 | 5 | 1100 1002 | 5 | 1100 0001 | 3 | 0000 0000 | 0 | 0 | 86 · 2 | | 6 | 1000 0021 | 4 | 0000 0001 | 1 | 1000 0021 | 4 | 0000 0000 | 0 | 0 | 86 · 1 | | 7 | 2021 1000 | 6 | 2021 1000 | 6 | 1011 0000 | 3 | 0000 0000 | 0 | 0 | 86 · 1 | | 8 | 0000 1222 | 7 | 0000 1222 | 7 | 0000 0110 | 2 | 0000 0000 |) 0 | 0 | 86 • 0 | | 9 | 2102 3012 | 11 | 2002 3011 | 9 | 2101 1012 | 8 | 1000 1000 | 2 | 1 | 86 · 1 | | 0 | 2001 2235 | 15 | 1001 2235 | 14 | 2001 1234 | 13 | 0000 0023 | 5 | 1 | 86 · 1 | | 1 | 2321 1323 | 17 | 1221 1322 | 14 | 2311 1223 | 15 | 0100 1100 | 3 | 1 | 86-0 | | 2 | 3211 3332 | 18 | 2111 3322 | 15 | 3211 1231 | 14 | 1000 1010 | 3 | 1 | 86 • 0 | | 3 | 2211 2210 | 11 | 2210 2210 | 10 | 2111 1010 | 7 | 1000 1000 | 2 | 0 | 86 • 0 | | 4 q | 0100 0102 | 4 | 0000 0101 | 2 | 0100 0002 | 3 | 0000 0000 | 0 | 0 | 85.9 | | 5 q | 1001 0000 | 2 | 1001 0000 | 2 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 85 · 8 | | 6 a | 1000 1000 | 2 | 1000 1000 | 2 | 1000 0000 | 1 | 0000 0000 | 0 | 0 | 85-8 | | 7 a | 0000 0100 | 1 | 0000 0100 | 1 | 0000 0000 | 0 | 0000 0000 | 0 | 0 | 85 · 8 | | 8 d | 0022 2442 | 16 | 0022 2432 | 15 | 0011 2342 | 13 | 0000 0322 | 7 | 1 | 85 · 8 | | 9 | 4110 0123 | 12 | 4110 0123 | 12 | 4100 0021 | 8 | 3000 0011 | 5 | 1 | 85.9 | | 0 | 2010 0132 | 9 | 2010 0122 | 8 | 2000 0032 | 7 | 1000 0010 | 2 | 1 | 85.9 | | 1 q | 0100 0200 | 3 | 0000 0200 | 2 | 0100 0000 | 1 | 0000 0000 | 0 | 0 | 85.8 | | 2 . | 0112 2213 | 12 | 0112 2213 | 12 | 0001 0111 | 4 | 0001 1000 | 2 | 1 | 85 • 8 | | 3 | 3000 0000 | 3 | 2000 0000 | 2 | 3000 0000 | 3 | 0000 0000 | 0 | 0 | 85.8 | | 4 | 1100 1134 | 11 | 1000 1134 | 10 | 1100 1124 | 10 | 0000 1002 | 3 | 1 | 85 · 7 | | 5 d | 4421 2312 | 19 | 2321 2312 | 16 | 4411 1202 | 15 | 0100 0100 | 2 | 1 | 85 · 7 | | 5 d | 1134 3324 | 21 | 1134 3324 | 21 | 1123 3323 | 18 | 0002 2111 | 7 | 2 | 85.7 | | 7 | 2212 2133 | 16 | 1112 2132 | 13 | 2201 1123 | 12 | 0000 0011 | 2 | 1 | 85 · 7 | | 8 <i>d</i> | 3232 3433 | 23 | 2232 2333 | 20 | 3222 3433 | 22 | 1001 1212 | 8 | 2 | 85 · 7 | | • | 1112 2423 | 16 | 0102 1322 | 11 | 1111 2423 | 15 | 0000 0101 | 2 | 1 | 85.7 | |) | 1201 2210 | 9 | 1201 2200 | 8 | 1200 1210 | 7 | 0000 0000 | 0 | 0 | 85 · 7 | | l | 0011 1110 | 5 | 0011 1110 | 5 | 0010 0010 | 2 | 0000 0000 | 0 | 0 | 85 · 9 | | | | | | | | | | Mean | 0.61 | 85.9 | $[\]boldsymbol{q}$ denotes an international quiet day and \boldsymbol{d} an international disturbed day. 449 449 451 451 874 875 450 450 448 448 881 872 Mean Sum 13,000y+ 452 453 $[\]mathbf{K}_{\mathbf{H}}$ For horizontal component. $\mathbf{K}_{\mathbf{D}}$ For declination. $\mathbf{K}_{\mathbf{Z}}$ For vertical component. (See Introduction). MEAN MONTHLY AND ANNUAL VALUES OF GEOMAGNETIC ELEMENTS For all, a, quiet, q, and disturbed, d, days for H, D and Z and for all days for X, -Y, I and F | ESKDALEMUIK | | | | | | | | | | | | | |-------------|-------------------------------------|------------|------|--|--------------|---------|------------------------|-----|---------------------|---------------------|---|---| | riż | <pre>Horizontal,(#) component</pre> | (#) | Dec. | $\begin{array}{c} {\tt Declination} \ ({\tt D}) \\ ({\tt west}) \end{array}$ | (a) | Vert | Vertical (Z) component | (Z) | North component (X) | West component (-Y) | $\begin{array}{c} {\rm Inclination} \ (I) \\ {\rm (north)} \end{array}$ | $\begin{array}{c} {\rm Total} \\ {\rm force} \ (F) \end{array}$ | | 16 | 16,000y + | + <i>q</i> | а | 9° + | þ | a
45 | 9
45,000y + | p + | all days | all days | all days | all days | | \
\ | ٨ | ٨ | | - | | ٨ | ٨ | ٨ | γ | γ | , 0 | χ | | 96 | 897 | 892 | 63.2 | 63.2 | 63.4 | 433 | 433 | 433 | 16636 | 2949 | 0.98 69 | 48473 | | 95 | 868 | 887 | 62.8 | 63.1 | 62.3 | 435 | 436 | 437 | 16636 | 2947 | | 48475 | | 66 | 905 | 894 | 62.5 | 62.6 | 62.3 | 435 | 434 | 433 | 16640 | 2947 | 69 35.8 | 48476 | | 8 | 901 | 988 | 9.19 | 61.8 | 61.9 | 436 | 436 | 438 | 16642 | 2942 | | 48477 | | 60 | 906 | 905 | 61.2 | 61.5 | 8.09 | 434 | 433 | 433 | 16651
 2942 | | 48479 | | 911 | 912 | 905 | 8.09 | 8.09 | 61.1 | 438 | 440 | 439 | 16653 | 2941 | 69 35.2 | 48483 | | 13 | 910 | 914 | 9.09 | 9.09 | 2.09 | 440 | 440 | 439 | 16655 | 2940 | 69 35.1 | 48485 | | 2 | 912 | 606 | 60.3 | 2.09 | 59.9 | 440 | 439 | 439 | 16655 | 2938 | | 48485 | | 8 | 911 | 968 | 29.7 | 59.9 | 58.7 | 442 | 442 | 441 | 16652 | 2935 | 69 35.4 | 48485 | | 12 | 912 | 910 | 29.7 | 29.7 | 58.9 | 445 | 445 | 443 | 16656 | 2935 | | 48490 | | 16 | 918 | 911 | 59.1 | 59.1 | 58.6 | 448 | 449 | 449 | 16660 | 2933 | 69 35.1 | 48494 | | 61 | 925 | 913 | 58.5 | 58.8 | 28.6 | 451 | 448 | 453 | 16664 | 2931 | 69 34.9 | 48498 | | | | | | | | | | | | | | | | 206 | 606 | 905 | 8.09 | 61.0 | 9.09 | 440 | 440 | 440 | 16650 | 2940 | 69 35.4 | 48483 | #### ALL DAYS Departures from the mean of the 24 hourly values (uncorrected for non-cyclic change) | | | IR . | 965 | |-----------|-------------------|------------------|------------------|------------------|----------------------------|----------------|----------------------|----------------------|----------------|-----------------------------|------------------|----------------|------------------|--------------------|--------------------|------------------|----------------|-------------------|--------------------------|-------------------|-------------------|----------------|---------------|-----| | | Hour GN | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23 | | | | | | | | | | | | | NORTI | COMPON | ENT | | | | | | | | | | | | | | γ | 7 | | : | +2·1
+3·6 | +0·8
+2·5 | +0·1
+2·1 | +0·9
+3·7 | +2·7
+6·2 | +5·2
+7·3 | +6·9
+8· 4 | +8• <i>3</i>
+7•3 | +5·6
+5·0 | +2·0
-1·4 | -2·9
-9·0 | -5·7
-14·5 | -6·9
-13·6 | -6·3 | -5·8
-7·0 | -3·7
-3·8 | -0·9 | -1 · 4
-1 · 8 | -2·9
-0·5 | -2·0
+1·1 | -1·2
+3·5 | -1·0
+4·8 | +2·4
+5·3 | | | | +5•9 | +4 • 2 | +4 • 2 | +5.5 | +6 • 6 | +6 • 6 | +8•5 | +6・9 | -0.2 | -5.9 | -11.3 | -15 • 9 | -14-9 | -12.4 | -9.0 | -6 ·5 | -3 • 4 | -0.5 | +1 • 6 | +4 · 1 | +7 • 1 | +7 • 2 | +6.0 | + | | | +9·3
+6·6 | +7·5
+6·4 | +6 · 2
+4 · 7 | +6.·3
+4·3 | +7·9
+5·0 | +5·8
+3·5 | +3·0
+0·2 | -1·9
-3·9 | -8·5
-8·6 | -18·2
-15·2 | -23·9
-21·7 | -24·4
-22·2 | -20·4
-18·3 | -14·7
-12·8 | -6·6
-6·5 | 0·0
+1·2 | +4·3
+6·0 | +9·0
+11·1 | +9·3
+12·9 | +9·9
+12·8 | +9·9
+10·1 | +9·7
+9·3 | +10·4
+8·5 | | | . | +4.6 | +6 · 1 | +4 • 3 | +4 • 1 | +3 · 1 | +3.7 | -1 · 2 | -7.6 | -14.8 | -21 · 1 | -25.0 | -24.5 | -20.2 | -12.9 | -2.9 | +3·8 | +10-6 | +14 · 3 | +20 · 1 | +16.5 | +13 · 1 | +10-3 | +8 • 4 | | | 1 | +6 • 1 | +3 • 9 | +3.9 | +3 · 7 | +5.8 | +4.0 | - 0·2 | -5 · 2 | -10-1 | -16.9 | -21.3 | -24 · 3 | -22.8 | -14.7 | -6 ·2 | +3 · 1 | +8.5 | +12 · 8 | +15.9 | +14 · 2 | +13 · 3 | +10.0 | +8•9 | | | . | +8·9
+9·3 | +7·3
+5·1 | +5·0
+5·1 | +4 · 1
+6 · 6 | +5·0
+7·5 | +2·9
+6·6 | -0·3
+4·3 | -7·3
-1·2 | -14·1
-8·6 | -19·9
-13·6 | -22·4
-18·0 | -20·1
-18·0 | -16·9
-17·8 | -10·2
-10·9 | -3·4
-5·5 | +1·4
-2·7 | +6·0
+2·4 | +10·0
+5·8 | +12·3
+5·9 | +12 · 4
+7 · 1 | +12·1
+8·1 | +10·5
+8·3 | +9·0
+6·9 | | | 1 | +6•9 | +5.9 | +3.9 | +4.4 | +7.0 | +8 • 1 | +8 · 2 | +5.8 | -0·3
+3·7 | -8.1 | -16 · 1 | -19.5 | -17.8 | -12·4
-7·3 | -7·4
-3·9 | -2·7
-1·1 | +0·2
+0·1 | +3·0
+1·1 | +3·7
- 0·9 | +4·3
-0·9 | +5·6
-0·8 | +5·3
+0·3 | +6.5 | | | | +2·7
+0·4 | +2·1
-0·5 | +2·2
-0·7 | +4·6
+1·3 | +5·9
+2·7 | +7·2
+5·5 | +8·5
+7·1 | +7·8
+7·0 | +3.7 | -3·6
+0·3 | -9·9
-3·5 | -11·5
-6·4 | -11·5
-4·8 | -3.7 | -2.7 | -2.3 | -2.6 | -0.7 | -0.4 | -1.9 | +0.3 | +1.0 | +2·6
-0·2 | +5.5 | +4·3 | +3 • 4 | +4 • 1 | +5.5 | +5.6 | +4+4 | +1 • 4 | -3.9 | -10·1 | -15.5 | -17 • 2 | -15.5 | -10.8 | -5.6 | -1.2 | +2·3 | +5·2 | +6 · 4 | +6.5 | +6 • 8 | +63 | +6 • 2 | | | er
nox | +2·1
+7·9 | +1·3
+5·7 | +0·9
+4·9 | +2·7
+5·7 | +4·4
+7·3 | +6∙3
+6∙3 | +7 · 7
+5 · 9 | +7·6
+2·4 | +4·5
-4·4 | -0·7
-11·4 | -6·3 | -9·5
-19·5 | -9·2
-17·8 | -7·1
-12·6 | -4·8
-7·1 | -2·7
-3·0 | -1·8
+0·9 | -0·7
+4·3 | -1·2
+5·1 | -1·0
+6·4 | +0·4
+7·6 | +1·3
+7·6 | +2·5
+7·5 | | | er | +6.6 | +5.9 | +4 · 6 | +4.0 | +4 • 8 | +3.5 | -0.4 | -6.0 | -12.0 | -18.3 | -22.6 | -22.7 | -19.6 | -12.7 | -4.8 | +2·3 | +7.8 | +12.0 | +15.3 | +13 · 9 | | +10-1 | +8.7 | WEST | COMPONE | NT | | | | | | | | | | | | | | γ
-9· 7 | γ
-6⋅3 | γ
-4·3 | γ
-0·1 | γ
+1·0 | γ
+1·5 | γ
+1·7 | γ
+0·1 | γ
-2·9 | $-\frac{\gamma}{2} \cdot 7$ | γ
-0·4 | γ
+5·1 | γ
+10·6 | γ
+13·4 | γ
+11·6 | γ
+7·7 | γ
+6∙6 | γ
+4·3 | γ
∻0∙6 | γ
-2·4 | γ
-6·9 | γ
-7·8 | γ
-9·4 | | | | -8·0
-4·9 | -4·2
-4·9 | -2.7 | -3·2
-6·1 | -2·5
-5·8 | -1·8
-4·8 | -0·5
-2·1 | -1·0
-6·3 | -4·2
-10·2 | -5·9
-10·9 | -1·5
-4·5 | +5·9
+7·7 | +13·5
+18·0 | +18·1
+23·3 | +17.8 | +11·5
+16·3 | +4·8
+9·4 | +4·3
+0·5 | +0·4
-1·4 | -0·8
-4·3 | -7·4
-5·8 | -10·4
-8·6 | -11·9
-6·3 | | | | -3.6 | -3.5 | -5·1
-4·1 | -7·0 | -7.3 | -9.8 | -14.4 | -17.9 | -21 · 1 | -17.8 | -7.9 | . +5 • 2 | +18.5 | +25 • 2 | +24 · 3 | +19-1 | +12.8 | +8•6 | +3.8 | +1 • 2 | +0.3 | ~ 0 · 1 | -2.0 | | | | -4·0
-5·2 | -4·7
-3·7 | -8·1
-7·4 | -10·3
-9·0 | -14·4
-12·3 | -17·8
-19·1 | -21·3
-26·2 | -22·9
-27·8 | -20·6
-23·8 | -13·3
-16·0 | -1·1
-4·1 | +12·2
+10·8 | +22·6
+23·0 | +25 · 7
+28 · 1 | +23 · 7
+27 · 8 | +19·6
+25·3 | +14·6
+20·5 | +10·9
+14·4 | +7·2
+11·4 | +4·6
+5·5 | +3·1
+2·0 | +0·2
-0·9 | -1·7
-7·1 | | | | -3·2
-4·9 | -6·5 | | -11.3 | -14.7 | -19-7 | -22 · 9 | -23.3 | -22.4 | -17.7 | -7.5 | +6+8 | +19·3 | +26 · 2 | +27 • 5 | | +19.9 | +14 · 8 | +11.3 | +5.9 | +3·3 | +1 · 3 | -1.0 | | | | -5.9 | -6.6 | -9.6 | -11.5 | -13.6 | -18.3 | -19.7 | -21.0 | -18.5 | -10.9 | +1.0 | +15.9 | +27 • 4 | +31 • 4 | +28 • 1 | +21 • 1 | +13.7 | +7 • 2 | +5 • 3 | +1 · 8 | -4.7 | -5.3 | -3.9 | | | | -10·3
-5·1 | -12·1
-7·1 | -10·7
-7·3 | -10·5
-5·0 | -10·2
-3·9 | -10·0
-4·1 | -11·9
-4·9 | -13·2
-8·6 | -12·7
-13·3 | -8·0
-13·3 | +1·5
-5·7 | +14•8
+8•7 | +25·4
+16·9 | +27 · 3
+21 · 8 | +23·6
+20·7 | +17·7
+15·1 | +10·5
+10·2 | +9·0
+8·0 | +4·7
+2·8 | +1·1
-1·2 | -2·9
-4·8 | -4·7
-6·2 | -8·7
-7·3 | | | | -7.6 | -5.8 | -3.2 | -0.7 | -0.5 | +0.2 | -0.7 | -2·4
+0·4 | -5·2
-0·3 | -6·4
+0·6 | -1·3
+3·0 | +7·3
+6·2 | +14·0
+11·1 | +16·0
+12·3 | +13·3
+8·2 | +9·7
+7·1 | +6·7
+4·0 | +4·1
+2·5 | +1·0
-0·2 | -2·1
-4·4 | -7·6
-8·9 | -11·5
-8·8 | -9·8
-11·8 | | | 1 | -7·3 | -5-3 | -1.9 | +0.7 | +1·1 | +1 •6 | +0•8 | ŦU- 4 | -0.3 | 10-0 | 13-0 | 10.12 | 11.1 | 112 3 | 78 2 | ., 1 | .40 | 12 3 | 0 2 | 7 7 | 0,7 | 0 0 | 0 | | | | -6.4 | -5.9 | -5.9 | - 6·2 | 6·9 | -8·4 | -10.0 | -11.7 | -12.7 | -10.0 | -2·3 | +8•9 | +18·3 | +22·3 | +20.7 | +16 · 2 | +11•0 | +7·3 | +3·8 | +0·3 | - 3·4 | - 5·3 | -6⋅8 | | | er | -8.2 | -5.4 | -3.0 | -0.8 | -0.2 | +0•4 | +0•4 | -0.7 | -3 · 1 | -3-6 | -0-1 | +6 • 1 | +12.3 | +15 · 0 | +12 · 8 | +9•0 | +5 • 5 | +3・8 | +0•4 | -2 · 4 | -7 · 7 | -9.6 | -10.7 | - | | nox | -6·1 | - 7·0 | -6 ·9 | -7 · 1 | -6·7 | -6⋅8 | -7・8 | -10.7 | -13.7 | -12.0 | -3.9 | +9 • 1 | +19.6 | +24 · 2 | +22.5 | | +10 - 4 | +6 • 2 | +2·1 | -1 · 2 | -3·6
+0·9 | -5·1
-1·2 | -6·2
-3·4 | | | r | -5.0 | -5·4 | - 7·9 | -10.5 | -13.8 | -18·7 | -22.5 | -23·8 | -21 · 3 | -14.5 | -2.9 | +11•4 | +23.0 | +27 · 9 | +26 · 8 | +22·8 | +17·2 | +11 · 8 | +8•8 | +4·5 | 10.9 | -1.2 | 3.4 | | | | | | | | | | | | | | VERT ICA | L COMPON | VENT | | | | | | | | | | | | | | γ
-2·6 | γ
-3·3 | γ
-3·4 | γ
-3·0 | $\frac{\gamma}{-2\cdot 5}$ | γ
-2·5 | γ
-2-4 | γ
-2·6 | γ
-2·1 | γ
-2·4 | γ
-2·6 | γ
-2·8 | γ
-2·8 | γ
-0·9 | γ
+2·8 | γ
+4·2 | γ
+3·9 | γ
+3·9 | γ
+4·8 | γ
+5·0 | γ
+ 4·3 | γ
+4·2 | γ
+2·3 | | | | -3.5 | -4 ·0 | -3.6 | -3.4 | -3.8 | -4 - 7 | -5 · 1 | ~4·6 | -3・4 | -2.8 | -3.6 | -4 · 4 | -4 · 2 | -1.8 | +2.7 | +7・4 | +9·3
+8·2 | +9·0
+10·6 | +8·9
+9·5 | +7·0
+9·0 | +6∙0
+6∙2 | +3·5
+4·1 | +0·9
+2·2 | | | | -0·2
+0·7 | -1·4
+0·5 | -1·6
-0·2 | -1·7
-0·4 | -2·2
-1·6 | -2·9
-1·5 | -3·4
-0·1 | -2·4
0·0 | -2·2
-1·6 | -3·9
-4·2 | -7·3
-7·4 | -10·3
-10·7 | -10·3
-11·1 | -6·1
-7·8 | -0·4
-2·2 | +5·1
+2·6 | +5 • 7 | +6•9 | +8 • 1 | +8.0 | +6.3 | +4.9 | +3.4 | | | | +0 • 4 | - 0·3 | -0.6 | +0.4 | +1 • 5 | +1 • 7 | +0.6 | -0.6 | -3 · 4 | -8.6 | -12.6 | -15.3 | -12.7 | -6·4
-4·9 | -1·2
+1·2 | +2·7
+7·0 | +6·8
+12·2 | +9·3
+15·1 | +9·8
+14·1 | +9·0
+11·8 | +7·8
+8·1 | +6·1
+6·1 | +3·5
+1·9 | | | | - 6·1 | -7 · 2 | -5.0 | -3.0 | -1 · 1 | -0.1 | +0.5 | -0.6 | +3.3 | -7.8 | -11.6 | -13.4 | -10.5 | | -1.0 | +3.8 | +8 • 2 | +11.4 | +11 · 2 | +10·1 | +8.2 | +5.6 | +2.5 | | | | -1·3
-3·7 | -1·8
-4·8 | -1·9
-3·8 | -2·3
-1·7 | -0·3
-0·4 | -0·1
+0·9 | -1·3
+0·9 | -2·1
+0·8 | -4·0
-0·9 | -6·4
-5·0 | -9·0 | -11·7
-12·2 | -11·5
-11·5 | -6·5
-7·0 | -1.0 | +4 • 3 | +8 • 1 | +10 · 1 | +10.0 | +9.6 | +8.8 | +6.0 | +2.7 | | | | -6 ·2 | -5 · 4 |
-4 ·3 | -2.8 | -1 . 8 | -1.0 | -0.5 | -0·5
-1·1 | -2·1
+0·1 | -4·8
-1·0 | -7·0
-4·1 | -9·3
-6·8 | -9·1
-6·4 | -4·9
-4·0 | +0·5
-0·6 | +5·9
+3·1 | +9·4
+4·5 | +11 · 1
+4 · 8 | +11·8
+5·8 | +11 · 0
+6 · 1 | +8·5
+5·6 | +2·9
+3·8 | +0·3
+2·1 | | | | -0·1
-1·1 | -2·6
-2·2 | -2·7
-3·2 | -2·1
-4·2 | -2·1
-4·4 | -1·9
-4·1 | -1·7
-3·4 | -2.8 | -1 · 2 | -1 · 1 | -2.6 | -3.2 | -2.5 | -0.3 | +2 • 2 | +3 • 2 | +3.3 | +3.7 | +4 · 6 | +5 • 4 | +5.9 | +5 • 2 | +2.5 | | | | -2.5 | -3.0 | -2.9 | -2.9 | -2.7 | -3 · 1 | -3.0 | -2.9 | -2.8 | -3 · 1 | -3·1 | -2.8 | - 2·6 | -0.8 | +2·2 | +3・9 | +5•0 | +5 • 4 | +5 • 7 | +6 • 0 | +5•2 | +3·3 | +1·3 | | | | -2.2 | -3.0 | -2.8 | -2·3 | -1.8 | -1.6 | -1.6 | -1.6 | -2 • 2 | -4· 3 | - 6·6 | -8.6 | -7·9 | -4 ·3 | +0•4 | +4•4 | +7 · 1 | +8•4 | +8·7 | +8 · 2 | +6·7 | +4·6 | +2 • 1 | | | 1 | | | | | | | | | | | | 2.2 | | | | | 45.4 | 40.0 | +6.0 | +5.0 | 45.3 | | 44.7 | | | er | -2-4 | -3·1 | -3.3 | -3 • 4 | -3.3 | -3.6 | -3.5 | -3 · 2 | -2 · 4 | -2.3 | -3·0
-6·5 | -3·3
-9·3 | -3·0
-9·2 | -0·9
-5·7 | +2·5
-0·7 | +4·7
+4·2 | +5·4
+6·9 | +5·5
+8·3 | +8 • 8 | +5·9
+8·5 | +5·3
+6·5 | +4•1
+3·9 | +1·7
+2·0 | • | "Winter" comprises the four months January, February, November, December; "Equinox" the months March, April, September, October; and "Summer" May to August. Departures from the mean of the 24 hourly values (uncorrected for non-cyclic change) | 25 E | SKDALEMU | IR | 19 | 65 | |----------------------|-------------------------|-------------------------|-------------------------|----------------|----------------|----------------|-------------------|----------------|----------------|-------------------|--------------------|----------------|-----------------------------|--------------------|----------------|-----------------|--------------------|--------------------|------------------------|----------------|----------------|----------------|----------------|----------------| | | Hour C | | | | | | | 7.0 | | 0 10 | 10 11 | 11 10 | | 12.4 | 14 15 | 18 | 16 17 | 17 | 10.15 | 10.00 | 20. 21 | 21 22 | 22.22 | 02.04 | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | y-10 | 10-11 | 11-12 | 12-13 | 15-14 | 14-15 | 15-16 | 10-17 | 1/-18 | 19-19 | 19-20 | 20-21 | 21-22 | 22-23 | 25-24 | | | | | | | | | | DBC | CLINATIO | N (meas | ured po | sitive (| towards | the wes | ity | | | | | | | | | | | Jan. | | -1.30 | | | | | | -0·27 | | | +0.02 | | | | | +1 · 68 | | | +0.22 | | -1.34 | | -1·97 | | | ieb.
Mar. | | -1-14 | | | -1 · 40 | -0·62
-1·20 | -0·72 | -1.51 | -1·01
-2·04 | -1 · 98 | +0·01
-0·50 | +2 • 11 | +4 • 14 | +5 - 11 | +4.82 | +3 • 49 | +1 · 10
+2 · 00 | +0.11 | +0·10
-0·34 | -1 · 01 | -1·61
-1·42 | -1 - 97 | -2·57
-1·47 | -2·23 | | lpr.
Lay | -1.03 | -1 · 18 | -1.78 | -2.22 | -3.07 | -3.68 | -4 ·28 | -3·51
-4·45 | -3.82 | -2.13 | | +3 · 23 | +5.18 | +5.61 | +4 - 97 | +3·83
+3·89 | +2.72 | +1 · 78 | +0.98 | -0·11
+0·47 | +0.26 | -0.28 | -0·77
-0·65 | -1.06 | | une
uly | -1.10 | | -1.63 | | -2·58 | | -5·21
-4·58 | | -4·25
-4·12 | -2·46
-2·94 | +0·07
-0·75 | | | | +5·68
+5·73 | | +3·73
+3·69 | +2.52 | +1.57 | +0·51
+0·69 | | -0.09 | -1·72
-0·51 | -1·48
-0·89 | | lug.
Sept. | -1.49 | -1.58 | -2.11 | -2.45 | -2.91 | -3.78 | | -3.95 | -3 · 21 | -1 - 47 | | +3 · 89 | +6·08
+5·68 | | +5.75 | +4 · 18 | +2.54 | +1 · 08
+1 · 47 | t0.62
+0.51 | -0∙0 7 | -1 · 38 | -1·44
-1·30 | -1·09
-2·10 | -0·92
-2·26 | | ct.
ov. | -1 - 31 | -1 . 56 | -1.63 | -1 - 21 | -1.00 | -1.02 | -1 · 09 | -1·65
-0·75 | -2 · 36 | -2·21
-1·16 | | | | | +4.32 | +3·10
+1·98 | | | | | -1·26
-1·49 | | | | | ec. | | | | | | | -0.08 | | - 0·18 | | | | +2·39 | +2·60 | +1 · 73 | +1.50 | +0・90 | +0.53 | -0.03 | -0-81 | -1.80 | -1 · 79 | -2 · 35 | -2.23 | | ear | -1 · 48 | -1.34 | -1·31 | -1 · 38 | -1.57 | -1 · 88 | -2·16 | -2·40 | -2 · 41 | -1.65 | +0 • 09 | +2·39 | +4 · 22 | +4-86 | +4 • 34 | +3 • 29 | +2 · 13 | +1 · 27 | +0.53 | -0·17 | -0.93 | -1 · 29 | -1 · 58 | -1 - 57 | | inter | -1.71 | | | | | | -0.20 | | | -0.70 | | +1 · 56 | | | | +1.90 | | | | | -1 · 56 | | -2 · 23 | | | mmer | -1·49
-1·23 | | -1·55
-1·75 | | | -1·61
-3·87 | | -2·23
-4·55 | -2·58
-3·85 | | | +2·51
+3·09 | +4·55
+5·31 | +5 · 30
+6 · 03 | +4·77
+5·53 | | +2·06
+3·17 | | +0·24
+1·22 | -0·46
+0·40 | | -1·29
-0·59 | -1·51
-0·99 | -1·49
-1·09 | NAT ION | | | | | | | | | | | | | | ın. | -0·09 | ,
-0∙06 | ,
-0∙04 | ,
-0·13 | -0·25 | -0·42 | -0·53 | -0·61 | -0·39 | | +0·13 | | | | +0·31 | | | +0.14 | | +0 · 28 | | +0.26 | +0.01 | -0.09 | | b.
г. | -0·23
-0·34 | -0·21
-0·25 | -0·19
-0·25 | -0·29
-0·33 | -0·47
-0·42 | -0·57
-0·45 | -0·67
-0·62 | -0·58
-0·44 | -0·36
+0·08 | +0.42 | +0·52
+0·61 | +0.70 | +0 · 51 | | | | | +0.29 | +0·25
+0·15 | +0·11
0·00 | -0.25 | | -0·18
-0·27 | -0·30
-0·25 | | or.
Iy | -0·55
-0·38 | -0·44
-0·37 | -0·36
-0·23 | -0·34
-0·15 | -0·47
-0·12 | -0·30
+0·02 | -0·03
+0·25 | +0·33
+0·51 | +0.72 | | +1 · 13 | +0.93 | +0.62 | +0·48
+0·38 | | -0·15
-0·24 | - 0⋅40 | -0.62 | | -0·67 | | -0∙4 6 | -0.45 | | | ne | -0.39 | -0.54 | -0.32 | -0.24 | -0·09
-0·21 | -0·02
-0·03 | +0.40 | +0·80
+0·56 | | +1 · 38 | | +1 · 15 | +0·80
+0·98 | +0.40 | -0·10
+0·06 | -0·37
-0·40 | -0·63
-0·59 | -0·73 | -1·10
-0·89 | -0·85
-0·75 | -0·68
-0·70 | -0·51
-0·53 | -0·42
-0·51 | -0·48
-0·46 | | lly
g.
ept. | -0·38
-0·61
-0·64 | -0·22
-0·53
-0·32 | -0·23
-0·31
-0·32 | | -0·18
-0·42 | +0.04 | +0.27 | +0·74
+0·20 | +1 - 11 | +1·31
+0·85 | +1 -23 | +0·84
+0·77 | +0·51
+0·65 | +0·13
+0·29 | +0·13
+0·11 | − 0 · 23 | -0·35
-0·04 | -0.49 | -0.62 | | | −0·48 | -0.48 | -0·49
-0·41 | | t.
v. | -0.39 | -0.37 | -0.24 | | -0.46 | -0.53 | -0·53
-0·63 | -0⋅33 | +0·15
-0·22 | +0.65 | +1 · 02
+0 · 60 | +1 . 02 | +0·82
+0·53 | | +0·24
+0·15 | | | | | -0·11
+0·22 | -0·17
+0·29 | | -0·29
0·00 | -0·25 | | c. | 0.00 | +0.02 | -0.01 | -0.17 | | -0.45 | | -0.54 | -0.31 | - 0·10 | +0-12 | +0 · 28 | +0·12 | +0.08 | +0·13 | +0 · 16 | +0・25 | +0·15 | +0 · 17 | +0 · 32 | +0.21 | +0-11 | +0·18 | +0.08 | | ar | -0.34 | -0.29 | -0.22 | -0.26 | -0.32 | -0.31 | -0.21 | 0.00 | +0·35 | +0.67 | +0 · 87 | +0.81 | +0-61 | +0 · 34 | +0·14 | 0.00 | -0.10 | - 0·22 | - 0⋅25 | -0.22 | - 0⋅24 | -0.24 | -0.27 | -0.31 | | inter | - 0·11 | -0·10 | -0-11 | -0.25 | -0·37 | -0.51 | | | -0.32 | _ | +0-34 | +0 -47 | +0.39 | | | | +0·19 | | +0.22 | | | +0.13 | | -0.10 | | uinox
mmer | -0·48
-0·44 | | -0·29 | -0·33
-0·18 | -0·45
-0·15 | -0·41
0·00 | -0·33
+0·29 | -0∙06
+0∙66 | +0·41
+0·96 | +0·80
+1·19 | | +0·94
+1·02 | +0·71
+0·73 | | +0·19
-0·01 | +0·11
-0·31 | -0·01
-0·49 | | -0·13
-0· <i>83</i> | | -0·30 | -0·34
-0·50 | -0·37
-0·47 | -0·37 | | | 0 44 | 0 12 | V 2 / | RIZONTA | L COMPON | | 24 | 24 | ~ | ~ | 24 | | • | ~ | a , | 24 | ~ | | n. | γ
+0·4 | γ
-0·3 | | | | | | | | | | | γ
- 4 ·9
-11·0 | | | | | | | | | | | | | b.
г. | +2·1
+5·0 | +1.7 | +1·6
+3·2 | +4 • 4 | +5.5 | +5.7 | +8.0 | +5.7 | -2.0 | -7 • 7 | -11.9 | -14 · 3 | -11·5
-16·8 | -8 · 1 | -4.9 | -3.6 | -1.7 | ' −0∙4 | +1 · 3 | +3 • 3 | +6.0 | +5.6 | +4.8 | 3 +4• | | т.
У | +8·5
+5·8 | +6·8
+5·5 | +5.4 | +2 • 4 | +2-4 | +0.3 | -3.5 | -7.9 | -12.1 | | -21.6 | -19.7 | -14·1
-15·9 | -8 ·1 | -2.3 | +4.6 | +8.5 | +12.8 | +13-9 | +13-4 | +10.5 | +9-2 | +8-1 | +6. | | ne
ly | +3·6·
+5·2 | +5 • 4 | +3·0
+2·7 | +2.5 | +3 • 1 | +0•5 | -4· 2 | -9·2 | -13-9 | -19·7 | -22.3 | -22.7 | -19·1 | -9.9 | -1.3 | +7.5 | +11-9 | +15.2 | +17 • 6 | +15-0 | +13.6 | +10-1 | +8•6 | 5. +6. | | g.
pt. | +7·8
+7·3 | +6·1
+2·8 | +3·3
+3·2 | +2.0 | | +4 • 9 | +2.4 | ~3⋅2 | -10.5 | -14.6 | -17 · 3 | -15 · 1 | -11·9
-13·2 | -6∙1 | -1 • 4 | +0-2 | +4-1 | +7.2 | +6 • 4 | +7.0 | +7 • 4 | +7.3 | +5-2 | 2 +5∙ | | t.
v. | +5·9
+1·3 | +4·6
+1·1 | +2·6
+1·6 | +3·4
+4·4 | +5 • 7 | +7 • 1 | +8 • 2 | +7.3 | | -10·1
-4·7 | -10.0 | -10 · 1 | -14·7
-8·9 | -4 · 4 | -1.5 | +0.6 | +1.3 | +1.8 | - 0·7 | -1.3 | -2.1 | -1 · 7 | +0.9 | +1 | | c. | -0.9 | -1.4 | | | | | +7 · 1 | +7・0 | +3·6 | +0·4 | -2.9 | -5·2 | -2.8 | -1.5 | -1.2 | ! -1.0 | -1.9 | -0.2 | 0·4 | -2.6 | -1.3 | -0.5 | -2.2 | ? -1 | | | | +3 • 2 | +2·3 | +3 · 0 | +4 · 2 | +4 • 0 | +2·6 | -0.7 | -6∙1 | -11.7 | -15 · 6 | -15.4 | -12·1 | -6.7 | -1.9 | +1.7 | +4.2 | +6-4 | +7 • 0 | +6·4 | +6 • 1 | +5 • 3 | +4-9 | +4 • | | ar | +4.3 | ar
nter'
uinox | +4·3
+0·7
+6·7 | +0.3 | +0·4
+3·6 | +2·5
+4·4 | | | | | | -1·3
-13·3 | -6·2
-17·7 | | -6·9
-14·1 | | | | | | | | | | | | [&]quot;Winter" comprises the four months January, February, November, December; "Equinox" the months March, April, September, October; and "Summer" May to August. ### DIURNAL INEQUALITIES OF THE GEOGRAPHICAL COMPONENTS OF GEOMÁGNETIC FORCE INTERNATIONAL QUIET DAYS Departures from the mean of the 24 hourly values (uncorrected for non-cyclic change) | - | Warra Ch | 965 | |---------------------------|--|---|---
--|---|---|--|---|---|---|---|--|--|---|--|--|--|--|--|---|---|--|--|------| | | Hour G | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23- | | | | | | | | | | | | | NORTI | i Compon | ENT | | | | | | | | | | | | | n.
D.
r.
r.
y | γ
-1·5
+3·2
+3·5
+7·0
+5·0 | γ
-1·9
+1·9
+1·0
+4·2
+3·2
+3·9 | γ
-1·7
+1·5
+1·2
+4·9
+1·6
+2·8 | 7
-0·9
+2·5
+2·1
+6·1
+2·2
+3·9 | γ
+0·7
+3·2
+3·0
+6·3
+2·8
+4·0 | γ
+2·2
+5·1
+4·7
+5·9
+1·9
+4·2 | γ
+4·5
+6·7
+6·9
+4·5
-1·2
+0·1 | γ
+4·2
+6·6
+6·4
+1·7
-5·1
-5·0 | γ
+1·7
+2·2
+3·0
-5·3
-9·5
-10·1 | 7
-0.9
-3.3
-4.7
-17.5
-16.0
-14.4 | 7
-4·6
-9·3
-11·7
-24·4
-20·7
-19·3 | γ
-6·2
-13·1
-16·3
-24·7
-20·8
-21·3 | 7
-6·1
-13·3
-13·6
-22·8
-14·2
-20·9 | 7
-3·8
-9·7
-11·1
-16·0
-8·2
-15·1 | γ
-1·7
-3·1
-8·1
-6·7
-2·6
-10·0 | γ
+1·0
-0·4
-4·9
+0·7
+2·5
-3·3 | γ
+1·4
+0·4
-2·1
+4·0
+6·3
+5·1 | | γ
+2·7
+1·0
+4·4
+11·3
+11·3
+18·0 | 7
+2·9
+2·8
+6·6
+11·5
+12·3 | 7
+2·6
+2·1
+7·5
+11·1
+9·5 | 7
+1·3
+2·9
+7·7
+10·9
+8·9 | 7
+2·1
+6·9
+6·6
+9·4
+9·9 | **** | | y | +4·6
+4·0
+6·9
+5·3
+6·0
+0·8
-2·5 | +2·7
+4·9
+5·4
+4·5
-0·4
-2·5 | +5·3
+3·9
+3·9,
+4·2
0·0 | +6 · 6
+5 · 4
+3 · 6
+5 · 1
+0 · 4
-0 · 5 | +8·0
+4·3
+3·6
+5·8
+2·9
+1·6 | +5·8
+1·9
+3·1
+6·7
+4·1
+3·2 | -0·5
-1·7
+2·3
+6·0
+5·5
+3·4 | -7·6
-5·5
-1·8
+3·6
+4·9
+3·1 | -13·6
-11·2
-5·7
-1·0
+0·9
+0·8 | | -24·2
-22·8
-17·0
-16·6
-11·8
-3·3 | -24·0
-19·8 | -19·5
-14·4
-14·8
-19·9
-10·2
-3·5 | -13·4
-10·8
-9·4
-14·9
-6·1
-1·2 | -2·9
-5·5
-4·9
-8·6
-2·2
+0·4 | +4·1
+1·5
0·0
-1·8
+0·7
-1·0 | +9·9
+3·7
+3·2
+2·1
+2·8
-2·1 | +12·4
+5·9
+7·0
+5·6
+4·4
+1·8 | +13·9
+11·7
+8·5
+7·3
+4·9
+3·0 | +18·2
+13·6
+11·6
+7·7
+7·3
+3·8
+2·7 | +13·6
+13·6
+6·1
+7·1
+2·9
+2·4 | +11·3
+9·8
+11·4
+6·8
+6·9
+3·3
+2·1 | +10·1
+8·2
+11·1
+7·9
+7·1
+3·7
+0·9 | +1 | | r | +3.5 | +2·3 | +2·2 | +2•9 | +3·8 | +4 • 1 | +3·0 | +0·5 | -3.9 | -10·1 | -15·4 | -16.9 | -14·4 | -10.0 | ~4· 6 | -0·1 | +2·9 | +5·9 | +8·2 | +8•4 | +7·7 | +7•0 | +7•0 | | | nter
ninox
nmer | 0·0
+5·4
+5·1 | -0·8
+3·7
+3·7 | -0·6
+3·5
+3·4 | +0·4
+4·1
+4·5 | +2·1
+4·7
+4·7 | +3·7
+5·1
+3·4 | +5·0
+4·9
-0·8 | +4·7
+2·4
-5·8 | +1·4
-2·3
-11·1 | -2·8
-10·4
-17·0 | -7·2
-17·4
-21·7 | -9·3
-19·9
-21·5 | -8·3
-17·7
-17·2 | -5·2
-12·7
-11·7 | -1·6
-7·1
-5·2 | +0·1
-1·5
+1·2 | +0·6
+1·9
+6·2 | +2·2
+5·7
+10·1 | +2·9
+7·8
+13·7 | +3·0
+8·3
+13·9 | +2·5
+7·9
+12·8 | +2·3
+8·0
+10·4 | +3·4
+7·7
+9·9 | 4 | | | | | | | | | | | | | WEST | COMPON | ENT | | | | | | | | | | | | | | γ
-4·7
-9·4
-3·7
-1·9
-4·8
-1·0 | γ
-2·2
-3·6
-3·3
-3·7
-6·0
-2·6 | γ
-2·0
-3·2
-2·1
-3·5
-6·9
-4·5 | γ
-1·1
-1·3
-4·9
-5·0
-8·3
-7·1 | 7
-0·1
-0·9
-4·5
-6·8
-10·6
-11·0 | γ
-0·2
-1·5
-5·3
-8·6
-16·0
-16·6 | γ
-0·6
-3·4
-7·0
-12·9
-19·2
-23·6 | γ
-1·5
-6·0
-12·2
-18·3
-21·3
-26·6 | 7
-4·0
-8·6
-15·5
-22·6
-21·7
-24·5 | 7
-3·5
-9·9
-16·0
-21·1
-15·6
-17·4 | 7
-1·1
-4·4
-7·6
-12·3
-3·2
-6·8 | 7
+2·5
+6·2
+5·8
+3·4
+10·0
+5·7 | 7
+7·5
+13·4
+18·0
+17·6
+24·3
+15·8 | γ
+10·7
+17·1
+22·3
+23·3
+27·7
+19·6 | 7
+8·3
+15·4
+20·5
+21·8
+24·2
+20·7 | γ
+4·3
+10·1
+13·7
+17·2
+18·3
+19·4 | γ
+2·9
+6·0
+6·1
+11·6
+13·1
+15·8 | γ
+2·5
+4·8
+1·5
+8·0
+9·9
+11·4 | 7
+1·2
+1·2
+0·6
+4·0
+5·9
+9·4 | γ
+0·1
+0·4
-0·8
+3·6
+3·1
+7·5 | γ
-2·0
-1·2
-0·9
+2·4
+0·2
+5·1 | γ
-3·4
-3·5
-0·9
+1·8
+0·5
+4·9 | γ
-5·3
-9·5
-1·7
-0·4
-0·3
+3·9 | | | y | -6·0
-4·7
-3·7
-5·7
-3·3
-3·5 | -7·5
-7·8
-4·5
-4·1
-1·2
-3·1 | -8·3
-9·6
-4·1
-4·0
-1·3
-1·3 | -8·9
-9·3
-5·4
-2·9
-0·1
-0·3 | -12·3
-11·7
-7·0
-2·6
+0·5
+0·3 | -20·7
-16·9
-7·7
-4·0
0·0
-1·1 | | -21·8
-22·2
-14·2
-8·3
-3·9
-2·6 | -22·0
-20·6
-15·5
-12·9
-7·5
-3·4 | -17·2
-12·1
-11·5
-14·1
-9·2
-3·1 | -6·3
-1·0
-0·5
-9·1
-4·4
0·0 | +8·9
+13·7
+11·0
+1·9
+4·1
+3·5 | +22·0
+24·1
+20·1
+11·9
+9·7
+8·1 | +27 · 8
+28 · 1
+21 · 0
+17 · 4
+11 · 6
+9 · 2 | +27·5
+22·7
+16·0
+17·9
+9·1
+5·8 | +21·2
+17·4
+9·8
+13·3
+5·5
+2·9 | +14·6
+11·0
+5·0
+6·9
+4·0
+1·4 | +9·5
+6·5
+2·3
+3·5
+2·9
+2·7 | +7·0
+5·3
+3·1
+1·8
+1·9
+0·9 | +5·2
+5·1
+2·5
+0·6
+0·2
-0·1 | +4·8
+3·7
+0·3
+0·2
-2·8
-2·0 | +3·7
+1·5
-1·2
-0·3
-3·8
-3·2 | +2·6
-1·6-
-2·1
-0·8
-4·8
-4·0 | | | r | ~4:4 | ~4·1 | ~4 ·3 | ~4·6 | -5.6 | -8 · 2 | -10.9 | -13·2 | -14.9 | -12.6 | ~4·7 | +6+3 | +16.0 | +19·7 | +17·5 | +12·8 | +8·2 | +5·4 | +3·5 | +2·3 | +0.7 | -0.3 | -2.0 | | | ter
inox
mer | -5·2
-3·7
-4·1 | -2·5
-3·9
-5·9 | -2·0
-3·4
-7·2 | -0·7
-4·5
-8·3 | -0·1
-5·2
-11·4 | -0·7
-6·4
-17·5 | -1·9
-9·0
-21·5 | -3·5
-13·3
-22·9 | -5·9
-16·6
-22·2 | -6·4
-15·7
-15·6 | -2·5
-7·4
-4·3 | +4·0
+5·5
+9·5 | +9·7
+16·9
+21·5 | +12·2
+21·0
+25·8 | +9·7
+19·1
+23·7 | +5·7
+13·5
+19·1 | +3·5
+7·4
+13·6 | +3·2
+3·9
+9·3 | +1 ·3
+2·3
+6·9 | +0·1
+1·5
+5·2 | -2·0
+0·5
+3·5 | -3·5
-0·1
+2·6 | -5·9
-1·2
+1·1 | • | | | | | | | | | | | | | | AL COMP | | | | | | | | | | | | | | | 9'
0.0
-0.8
+1.7
+1.6
+0.8
+1.4 | 7
-0·1
-1·7
+1·5
+2·3
+0·4
+1·0 | γ
-0·8
-1·8
+1·5
+2·4
+1·2
+1·9 | 7
-0.5
-1.9
+1.7
+2.3
+1.2
+3.4 | 7
-0.5
-1.8
+1.9
+2.3
+1.4
+5.0 | 7
-1·2
-2·5
+1·9
+2·4
+1·3
+6·0 | γ
-0·5
-2·4
+2·1
+3·3
+0·4
+5·2 | γ
-0·3
-2·1
+3·3
+3·3
-1·6
+3·8 | 7
-0·2
-1·0
+1·3
+0·6
-4·6
+2·1 | 7
-0·3
-0·5
-1·3
-3·7
-8·8
-3·6 | 7
-0.8
-2.0
-5.3
-7.4
-13.4
-9.2 | γ
-0·7
-3·5
-10·5
-10·7
-19·6
-12·8 | γ
-1·4
-2·4
-11·9
-10·4
-13·6
-11·2 | γ
-1·1
-0·3
-8·1
-7·5
-7·4
-7·4 | γ
+1·2
+2·4
-2·5
-3·4
-1·4
-5·1 | γ
+1·5
+4·1
+1·7
+0·1
+1·8
-3·0 | γ
+1·1
+3·8
+3·7
+2·5
+6·4
+0·6 | 7
+1·2
+3·3
+4·1
+3·6
+8·5
+4·2 | γ
+1·1
+2·8
+3·3
+4·1
+9·4
+4·8 | γ
+0·7
+2·9
+2·7
+3·3
+9·4
+3·6 | γ
+0·4
+2·6
+2·1
+2·8
+8·6
+3·7 | 7
+0·7
+2·3
+1·9
+1·7
+7·8
+3·0 | γ
+0·4
+0·8
+1·7
+2·4
+6·2
+1·6 | | | ,
t. | +0·9
+0·1
+0·5
+1·4
+0·1
+1·0 | +1·2
+0·9
+1·6
+1·0
-0·6
+0·1 | +2·1
+1·7
+2·2
+1·2
-0·3
-0·4 | +3·3
+1·7
+1·7
+0·2
-0·3
-0·8 | +4·5
+2·7
+0·8
0·0
-0·7
-0·6 | +4·8
+4·1
+1·8
+0·5
-1·2
-0·5 | +3·9
+3·1
+2·3
+0·4
-0·9
-0·4 | +3·3
+2·3
+2·4
+1·2
-0·3
-0·2 | -0·5
-0·5
-0·8
+2·0
+0·3
0·0 | -4·6
-4·5
-4·3
+0·6
0·0
-0·1 | -9·7
-10·3
-6·4
-2·0
-1·3
-1·0 | -14·7
-13·1
-9·0
-5·0
-2·1
-1·2 | -13·9
-11·7
-9·5
-5·4
-1·9
-1·6 | -7·4
-7·1
-5·6
-4·8
-1·2
-1·5 | -1·7
-2·3
-2·2
-2·8
+1·7
+0·2 | +1·3
+1·7
+0·3
0·0
+1·7
+1·4 | +4·1
+5·1
+2·6
+1·8
+1·5
+1·8 | +6·0
+6·5
+3·6
+1·9
+2·0
+0·7 | +6·5
+4·9
+3·1
+1·4
+0·7
+1·0 | +4·7
+4·1
+3·6
+1·6
+0·7
+1·0 | +2·5
+3·1
+3·6
+1·6
+0·9
+0·2 | +1·8
+3·3
+3·1
+1·2
+0·8
+0·1 | +0·9
+2·7
+2·2
+1·0
+0·7
-0·2 | | | . } | +0.7 | +0•6 | +0·9 | +1 • 0 | +1 · 3 | +1 ·
5 | +1 • 4 | +1·3 | -0·1 | -2.6 | -5·7 | -8.6 | -7.9 | -4.9 | -1·3 | +1 • 1 | +2·9 | +3 · 8 | +3·6 | +3·2 | +2·7 | +2·3 | +1 · 7 | | | ter
inox | +0·1
+1·3 | -0·6
+1·6 | -0·8
+1·8 | -0·9
+1·7 | -0·9
+1·3 | -1·3
+1·7 | -1·1
+2·0 | -0·7
+2·5 | -0·2
+0·8 | -0·2
-2·2 | -1·3
-5·3 | -1·9
-8·8 | -1·8
-9·3 | -1·0
-6·5 | +1·4
-2·7 | +2·2
+0·5 | +2·1
+2·7 | +1·8
+3·3 | +1·4
+3·0 | +1·3
+2·8 | +1·0
+2·5 | +1·0
+2·0 | +0·4
+1·8 | 4 | "Winter" comprises the four months January, February, November, December; "Equinox" the months March, April, September, October; and "Summer" May to August. Departures from the mean of the 24 hourly values (uncorrected for non-cyclic change) | 27 ES | KDALEMUI | R | 19 | 965 | |-------------|----------------|-------------------------|------------------|-------------------------|----------------|-------------------------|-------------------------|-------------------------|-------------------------|---------|-------------------------------|-------------------------|-------------------------|----------------|--------------|--------------------|--------------------|----------------|----------------|---------------------------------------|----------------|----------------|-------------------|--------------| | | Hour GM | T
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | - | · · · · · · · · · · · · · · · · · · · | | | | *** | | | , | , | | | | | | | DECLINA | TION (n | neasured | l positi | ve towas | rds the | west) | | | | | , | | | | , | | 1.
D. | -0·89
-2·00 | -0·37
-0·79 | -0·35
-0·70 | -0·19
-0·36 | | -0·11
-0·49 | -0·27
-0·92 | -0·45
-1·44 | -0·87
-1·80 | | -0·05
-0·56 | +0·73
+1·70 | +1 · 73
+3 · 16 | | | | +0·53
+1·18 | | +0·15
+0·20 | -0·09
-0·02 | -0·49
-0·32 | -0·73
-0·81 | | -1·69 | | r.
r. | -0·87
-0·63 | -0·69
-0·88 | -0.47 | -1·05
-1·21 | -1·01
-1·59 | -1·23
-1·94 | -1.65 | -2·67
-3·73 | -3 · 21 | -3.03 | -1·11
-1·59 | +1.73 | +4.09 | | +4 · 39 | | +1 · 29 | +0 · 25 | -0.03 | -0.39 | -0·45
+0·09 | -0·45
-0·02 | -0.57 | -0·6
+0·1 | | ie | -1 · 14 | | -1 · 43 | -1·74
-1·57 | -2.23 | -3·27
-3·47 | | -4.09 | -4 · 01 | -2.56 | | +2.73 | +5·36
+3·90 | +5·83
+4·45 | | +3·58
+4·01 | | | +0·78
+1·24 | +0·19
+0·85 | -0·29
+0·50 | | | -0·9
+0·2 | | у | -1·35 | -1·59
-1·73 | | -2·01
-2·05 | | | -4·63
-4·01 | -4·09 | -3·92
-3·74 | | -0·41
+0·61 | | +5·09
+5·33 | | | +4·11
+3·43 | | | +0·91
+0·65 | +0·55
+0·61 | +0·48
+0·26 | +0·39
-0·11 | | -0·4
-0·6 | | t. | -0.92 | -1·73
-1·10
-0·98 | -0.97 | -1·20
-0·76 | -1.52 | | -2.12 | -2.78 | -2·91
-2·55 | -1 · 94 | +0.50 | +2 - 84 | +4 · 56 | | +3 · 39 | +1 · 96
+2 · 72 | +0.88 | +0.22 | +0.32 | +0.22 | -0.15 | -0.48 | - 0∙70 | -0.9 | | | -0.68 | | − 0 · 26 | -0.03 | 0.00 | -0.15 | -0.64 | -0.95 | -1·54
-0·70 | -1 · 67 | -0.46 | +1 · 29 | | +2·53
+1·89 | | +1 · 07
+0 · 61 | +0 · 70
+0 · 36 | | | -0·09
-0·11 | -0·66
-0·48 | | -1·08
-0·84 | | | r | -1 - 00 | -0.90 | -0∙9 3 | -1.02 | -1 · 25 | -1.79 | -2·28 | -2·67 | -2.85 | -2·16 | -0.40 | +1 · 87 | +3·72 | +4 · 29 | +3·67 | +2 · 56 | +1 · 54 | +0.88 | +0 · 42 | +0 • 16 | -0·14 | -0.31 | -0.65 | - 0∙7 | | ter | - ' | -0.48 | | -0⋅16 | | -0.27 | | -0.87 | -1 · 23 | | -0 · 24 | +1 · 14 | +2 · 23 | +2.62 | +1 · 99 | +1 · 14 | +0-69 | +0.57 | +0 · 16 | -0.08 | -0.49 | -0.78 | -1 · 30 | -1 - 3 | | inox
mer | -0.94 | -0·91
-1·32 | | -1·05
-1·84 | -1·21 | -1·47
-3·63 | -1·97
-4·29 | -2·75
-4·39 | -3·25
-4·06 | -2·77 | -0·86
-0·10 | +1·81
+2·67 | +4·02
+4·92 | +4·66
+5·59 | | +2·75
+3·78 | | | +0·19
+0·89 | | -0·18
+0·24 | | -0·52
-0·12 | | | | . 01 | . 02 | | - 0. | NATION | | | | | | | | | | | | | | | | | | +0.06 | | -0.17 | -0.30 | -0.27 | -0·07 | +0.09 | +0.29 | +0.36 | +0·28 | | | | | -0·12
-0·02 | -0·17
-0·01 | -0·18
-0·11 | -0·14
-0·06 | -0·03
-0·09 | | +0·0
-0·0 | | | -0⋅14 | -0·12
+0·01 | | -0.04 | | -0·37
-0·20 | | -0·41
-0·20 | +0·07
+0·02
+0·63 | +0・46 | +0·61
+0·72
+1·56 | | +0·65
+0·38
+1·03 | +0 · 27 | +0 · 23 | +0 • 20 | | -0·01
-0·58 | -0 · 21 | -0·36
-0·71 | -0.43 | -0.45 | − 0·37 | -0. | | | -0⋅25 | -0·18
-0·13 | | -0·28
-0·02
-0·09 | | -0·23
+0·09
+0·07 | | +0·18
+0·54
+0·73 | | +1 · 01 | +1 · 06
+1 · 11 | +0.76 | +0.31 | | -0·15 | -0.33 | -0·41
-0·50 | -0.66 | | -0·61
-1·19 | | -0.40 | -0.49 | -0·4 | | • | | -0·20
-0·06 | -0.20 | -0.24 | -0.27 | -0.02 | +0.39 | +0.83 | +1 · 13 | | +1 - 42 | | +0·67
+0·38 | +0·37
+0·20 | | | -0·72
-0·25 | -0·78
-0·30 | | -0·83 | -0·88
-0·85 | | | -0·5 | | t. | -0.29 | -0·21
-0·26 | - 0⋅15 | -0·20
-0·13 | -0⋅13 | +0·17
-0·07
-0·38 | +0·42
+0·02
-0·32 | +0·67
+0·34
-0·11 | +0·96
+0·53
+0·26 | +0.70 | +1 · 25
+0 · 96
+1 · 14 | +0.83 | +0.50 | +0·23
+0·66 | +0.09 | -0 · 11 | -0.20 | -0·40
-0·36 | -0 ⋅51 | -0·44
-0·45 | -0.32 | ~0⋅35 | -0·44
-0·43 | -0.4 | | | -0.01 | +0·03 | +0.01 | -0·29
-0·03 | -0.22 | -0.30 | | -0 ·29 | +0.03 | +0 - 44 | +0·79
+0·19 | +0.79 | +0.51 | +0·24
-0·06 | +0.08 | -0.06 | -0⋅19 | -0.27 | | -0·23
-0·15 | -0.14 | −0·15 | -0·17
-0·02 | -0∙1 | | | | | | | | | | | | | | | 40.56 | 40.31 | +0.07 | -0.11 | -0-01 | -0.26 | -0.40 | -0.50 | -0.45 | -0.30 | -0. 20 | -0-1 | | • | -0⋅16 | -0.09 | | | | | | | +0·43
-0·03 | +0.74 | +0.92 | +0.82 | +0 · 56 | | | | -0·21
-0·03 | | | -0·50
-0·17 | -0.45 | | -0·39
-0·14 | -0.3 | | er
inox | | +0·07
-0·15 | +0·04
-0·15 | -0·04
-0·18 | -0·16
-0·21 | -0·27
-0·22 | -0·33
-0·17 | -0·28
+0·05 | +0 · 36 | +0.80 | +1 - 09 | +1.02 | +0.73 | +0-44 | +0·18 | -0.05 | -0.14 | -0.34 | -0-47 | -0.49 | -0.49 | | | -0.4 | | eř | -0.27 | -0.15 | -0.10 | -0·14 | -0.10 | +0.08 | +0·38 | +0+69 | +0+96 | +1 · 16 | +1 · 21 | +0.92 | +0.57 | +0·29 | 0.00 | -0.29 | -0.46 | -0.61 | -0.82 | -0.84 | -0.77 | -0.61 | -0.59 | -0.5 | | | | | | | | | | | | нс | R I ZONTA | L COMPO | NENT | | | | | | | | | | | | | | γ
-2·3 | γ
-2·3 | γ
-2·0 | γ
-1·1 | γ
+0·7 | γ
+2·1 | γ
+4·3 | γ
+3·9 | | | | | | | | _ | | | | | | | | | | | +1·5
+2·8 | +1 - 2 | +0・9 | +2 • 2 | +3·0
+2·2 | +4·7
+3·7 | +5.6 | +4 - 2 | +0 · 2 | -7 • 4 | -12-8 | -15.0 | -10-2 | 7. | 0 -4. | 4 -2. | 4 -1.0 | +1 - 1 | 7 +4-4 | +6.4 | +7. | 2 +7. | 4 +6. | 2 + | | | +6·6
+4·1 | +3·5
+2·1 | +4 · 2
+0 · 4 | +5·1
+0·7 | +0-9 | -0.9 | -4.5 | -8 ·7 | -13 · 2 | -18 · 5 | -20 . 9 | -23·7
-18·7
-20·0 | -9.7 | 7 -3. | 2 +1 · | 7 +5. | 7 +8•5 | +13 - | 1 +12-1 | +12. | 7 +9• | 4 +8• | 9 +9• | 7 + | | | +4·4
+2·9 | | | | | | -4.5 | -11-3 | -17.2 | -23 · 1 | -24 - 9 | -22.1 | -15:3 | 3 -8- | 3 +2. | 0 +7・ | 7 +12 - 3 | +13-9 | +14-9 | +14-3 | 3 +14 - | 2 +10・ | 3 +8• | 5 + | | | +6·0
+4·6 | +3.5 | +2 • 2 | +3.7 | +2·2
+2·3 | -1·1
+1·7 | +0.5 | -4.2 | -8.3 | -12-1 | -16 • 8 | | -11-1 | l -5· | 6 -2・ | 1 +1- | 7 +4 • 0 | +7 • : | 3 +8-9 | +8.0 |) +6• | 1 +6. | 5 +7. | 4 + | | • | +4·9
+0·2 | +3·7
-0·6 | +3·4
-0·2 | +4·5
+0·4 | +3.0 | +4 • 0 | +5.0 | +4 • 2 | -0∙4 | -6∙6 | -12 · 4 | -12.6 | -8.4 | , −4 ∙ | 0 −0∙ | 6 +1-0 | 5 +3・4 | +4 • 1 | 3 +5-2 | +3-1 | 3 +2. | 4 +2 • | 6 +2・ | 8 + | | | -3·1 | -3.0 | -2.2 | -0.5 | +1 • 6 | +3・0 |) +3·1 | +2·6 | 10-2 | 2.3 | . 3.2 | | | | | . • | | | | | | | | - | | | +2.7 | +1 · 5 | +1 · 4 | +2 · 2 | +2.8 | +2 • 6 | +1-1 | -1 · 8 | -6⋅5 | -12-1 | -16 • 0 | -15.5 | -11-4 | -6⋅ | 4 -1 · | 5 +2• | 1 +4・3 | +6 • 8 | 8 +8•7 | +8+7 | 7 +7・ | 7 +6・ | 8 +6• | 5 + | | er | -0.9 | inox
ner | +4·7
+4·3 | +3·0
+2·6 | | | | | | | | | | -19.5 | | | | | | | 5 +14.7 | | | | | | "Winter" comprises the four months January, February, November, December; "Equinox" the months March, April, September, October; and "Summer" May to August. ### DIURNAL INEQUALITIES OF THE GEOGRAPHICAL COMPONENTS OF GEOMAGNETIC FORCE INTERNATIONAL DISTURBED DAYS Departures from the mean of the 24 hourly values (uncorrected for non-cyclic change) | | Hour G | MT | 965 | |-----------|----------------|----------------|------------------|----------------|----------------------|------------------|----------------|---------------------|------------------|----------------|-------------------|----------------|-----------------------|----------------|--------------------|----------------|-------------------|--------------------------|--------------------|--------------------------|----------------|----------------|----------------|------------| | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-2 | | | | | | | | | | | | | NORTH | COMPONE | NT | | | | | | | | | | | | | | γ | γ | γ
+4.7 | γ | γ
+5.1 | γ
+11·2 | γ
+7·3 | γ
+1 4 ·7 | γ | γ
+5·1 | γ
-1·3 | γ
-3·1 | γ
- 6⋅6 | γ
-11·5 | γ
-15.0 | γ
-13·0 | γ
-5·6 | γ
-8·4 | γ
-9·3 | γ
-5·8 | γ
-2·7 | γ
-4·8 | γ
+0·3 | γ | | | +14·4
+13·0 | +8·4
+6·3 | +4·7
+5·6 | +4·6
+8·5 | +5·1
+15·1 | +15.6 | +12.7 | +9•0 | +8·1
+4·5 | -3.6 | -11.9 | -19.8 | -19.0 | -16 • 2 | -11.2 | -6.3 | -13 · 1 | -9.8 | -11.0 | -7 · 4 | +6 • 9 | +15 · 7 | +9.9 | +4
+6 | | | +8·0
+16·4 | +9·8
+16·7 | +8·6
+17·0 | +13·4
+18·0 |
+13·1
+21·0 | +1·6
-0·1 | +6·6
-16·1 | +2·0
-25·9 | -13·5
-23·5 | -14·1
-30·0 | -11·6
-31·3 | -15·7
-26·3 | -11·8
-20·3 | -10·3
-15·3 | -5·9
-11·6 | -8·7
+3·9 | -4·5
+8·5 | -2·7
+11·8 | +2·9
+11·6 | +5·3
+17·0 | | | +1·9
+13·8 | +3
+13 | | | +10·1
+1·3 | +18 • 1 | +11·7
+11·1 | +7·4
+2·6 | +8·3
-1·0 | +1·6
+4·6 | -4·3
-2·5 | -5·7
-15·9 | -7·8
-30·9 | -13·6
-40·3 | -23·0
-36·9 | | -18·6
-18·7 | -13·6
-4·3 | -14·7
+12·9 | -4·3
+15·3 | +5·8
+24·1 | +9·7 | +14·3
+29·0 | +15·5
+19·6 | | | +8·5
+6·5 | -4
+4 | | | +11.7 | +10.2 | +6.9 | +5.3 | +10-6 | +5.5 | +1.2 | -1.9 | -6·1 | -20.3 | -26 - 9 | -29 · 1 | -25.3 | -7.1 | -8.6 | +1.3 | +10.9 | | +12.6 | +7.3 | +9+4 | +7.5 | +6.9 | +4 | | | +10.5 | +8 • 8 | +4.5 | +1.8 | +8 • 1 | -4·3
+14·7 | -0·7
+11·7 | -11·2
+2·8 | -18·9
-13·3 | -22·2
-14·8 | -24·4
-14·7 | -20·0
-15·6 | -17·1
-26·1 | -7·2
-14·7 | -6·7
-3·6 | +1·0
-8·4 | +9·2
+4·4 | +17 · 8
+7 · 3 | +15·9
+8·9 | +15·4
+4·9 | +7·3
+8·5 | | +9·3
-1·7 | +9 | | • | | -0·6
+11·8 | +4·4
+3·5 | +10·0
+3·1 | +10-4 | +15 · 7 | +14 • 6 | +7 • 1 | +0.5 | -6⋅8 | -13.7 | -20.7 | -23.7 | -14.7 | -9.4 | -9.3 | -3·1 | +4.0 | +4-9 | +1 · 2 | +0 · 2 | +0 • 7 | +9.8 | +2 | | | +8·4
+5·6 | +10·5
+2·6 | +10·7
+2·2 | +15·7
+9·0 | +13·5
+11·0 | | +13·8
+15·1 | +10·6
+14·4 | +6·5
+5·6 | -1·6
+2·9 | -8·1
-2·9 | -7·2
-10·8 | -13·4
-6·3 | -9·0
-12·1 | -5·1
-15·3 | -8·8 | -5·0
-11·6 | -3·4
-6·1 | -14·1
-3·3 | -8·5
-11·5 | -11·7
+2·5 | | -3·2
+2·7 | +0 | | | | | | | | | | | - 4 | | | 40.5 | 47.0 | | | -2.4 | | 14.6 | 45.0 | 14.5 | | 46.0 | 45.4 | | | | +10.4 | +9•5 | +7・6 | +8·3 | +10 · 9 | +7・6 | +5•0 | 0.0 | | -13·3 | | | | -11.3 | -7.9 | -3·4 | +1.7 | +4·6 | +5·2 | +4.5 | +5•4 | +6.0 | +5·4 | +4 | | er
nox | +10·4
+12·2 | +6·9
+9·4 | +5·8
+8·3 | +9·4
+11·2 | +11·2
+15·0 | +13·1
+8·0 | +12.2 | +12 · 2 | +6·1
-12·5 | +0·7
-16·4 | -6·0
-17·8 | -10·2
-19·6 | -11·4
-20·5 | -12·2
-13·7 | -11·8
-7·5 | -7·7
-5·6 | -8·8
+1·3 | -7·0
+5·1 | -9·4
+7·0 | - 8∙3
+7∙1 | -1·2
+9·2 | +0·4
+6·8 | +2·4
+5·9 | +3
+6 | | er | +8.4 | +11.9 | +8.6 | +4.3 | +6 • 5 | +1.8 | -1.6 | -8.7 | -15.9 | -24 · 1 | -27 · 8 | -25.7 | -19.9 | -8.0 | -4·3 | +3 • 4 | +12.6 | +15.8 | +18-0 | +14 • 4 | +8 • 3 | | +7 • 7 | +3 | WEST | COMPONE | NT | | | | | | | | | | | | | | γ
-18·5 | γ
-16·2 | γ
-12·1 | γ
-3·6 | γ
-0·8 | γ
+4·5 | γ
+9·7 | γ
+6·2 | γ
-0·3 | γ
+3·1 | γ
+ 4·4 | γ
+11·3 | γ
+16·1 | γ
+16·7 | γ
+16·6 | γ
+12·1 | γ
+14·0 | γ
+7·3 | γ
+0·5 | γ
-7·9 | γ
-18·7 | | | | | | -8·5
-14·1 | -6·4
-13·8 | -6·4
-13·9 | -7·4
-16·1 | -6·9
-14·2 | +1 ·8
-5 · 2 | +9·1
+15·5 | +10·6
+14·1 | +6·5
+0·7 | +3·5
+0·3 | +6·0
+1·1 | +12·5
+11·9 | +19·6
+21·8 | +23·2
+26·9 | +25·5
+26·1 | +17·6
+19·5 | +6·6
+14·9 | +2·0
-6 ·2 | -7·1
-10·6 | -4·9
-11·5 | -27·3
-14·4 | -34·2
-14·6 | -24·2
-10·7 | -11
-7 | | | -7 · 1 | -8 ⋅ 1 | -9.5 | -16 · 8 | -11·7
-20·4 | -13·9
-9·9 | -14·5
-14·6 | -8.6 | -16·6
-16·5 | -15·2
-9·5 | -3·9
+0·6 | +6·1
+15·9 | +17·7
+26·7 | +30 • 1 | | +28·6
+24·7 | +20·7
+21·2 | | +3·4
+8·9 | -0·6
+6·4 | -4·8
+1·0 | -5·3
-8·5 | -5·0
-15·4 | -9
-21 | | | -5·2
-15·8 | -4.9 | -17·7
-14·1 | -18·9
-16·3 | -9.7 | -15.6 | -27 . 7 | -27.5 | -18.9 | -10.1 | +1.6 | +17.9 | +31 · 5 | +38 · 2 | +38 • 0 | +40 · 1 | +35 · 1 | | +13-4 | -3.2 | | | -24 · 3 | -1 | | | ~4·5 | -9.7 | -13.4 | -18.1 | -16·6
-13·1 | -10.6 | -10·8
-8·0 | -17·5
-16·5 | -18·0
-19·3 | -16·4
-14·1 | -7·9
-1·4 | +7·8
+15·2 | +18·5
+27·1 | +26·1
+33·7 | +26 · 1
+32 · 3 | | +23·8
+24·8 | +15·9
+13·6 | +10·7
+8·5 | +3·0
-6·0 | +3.6 | -4·6
-17·5 | -8·8
-5·1 | !
! | | | -10·9
-30·7 | -11·1
-35·8 | -11·8
-17·1 | -14·3
-8·5 | -3.2 | -11·9
-1·2 | +0.2 | +1 · 3 | +0.6 | +4 • 7 | +8 • 7 | +26 • 4 | +31 · 7 | +31.8 | +31 • 9 | +23 • 4 | +17 · 7 | +11-2 | -2.4 | -2.3 | -23 · 2 | -23.6 | -23·6
-14·1 | -17
-8 | | | -6·7
-9·3 | -15·0
-8·1 | -17·5
-6·5 | -7·3
-1·8 | -4·9
-2·2 | -2·0
+4·5 | -2·4
+4·2 | -4·8
+4·1 | -7·2
+4·7 | -8·6
+3·8 | -0·6
+6·3 | +15·1
+15·1 | | +27·2
+20·8 | | | +17·6
+12·8 | +10·3
+2·5 | | -6·6
-12·3 | -12·8
-19·3 | -25 • 2 | -27 · 3 | -19 | | | -8.0 | -3·2 | + 1.5 | +4 · 7 | -0.4 | +2.6 | +3·8 | +4・6 | +6 • 4 | +8.7 | +9•7 | +9・4 | +15.7 | +18 · 3 | +6・2 | +12•4 | +3·9 | -3·3 | +1 · 7 | -15·6 | -24.5 | -19-0 | -23·4 | -12 | | | -11.6 | -11·1 | -11.5 | -10-4 | -8.7 | -4.7 | -3.0 | -4 ·5 | -6∙5 | -4 · 1 | +2 · 1 | +13 · 7 | +22 · 1 | +27 · 0 | +25 • 8 | +22·6 | +17 • 8 | +8•5 | +2 · 2 | - 5·1 | -14 · 7 | -16 · 9 | -16-4 | -12 | | ег | -11-1 | -8.5 | -5.9 | -2.0 | -2.6 | +3・4 | +6.7 | +6・4 | +4.3 | +4 • 8 | +6 • 6 | +12 • 1 | | +19.7 | | +15.3 | +9.3 | +2 · 1 | -2.7 | -10.2 | | -23 · 1 | -22 · 4 | | | nox | -14.7 | -18.1 | -14·5 | -12.2 | -8·5
-14·9 | -5·5
-12·0 | -0·3
-15·3 | +0·5
-20·4 | -5·6
-18·2 | -4·7
-12·5 | +1·4
1·8 | +14·9
+14·2 | +22 • 4 | +29.0 | +29 · 1
+31 · 2 | +22·8
+29·9 | +17 · 7 | +7·3
+16·0 | -1·3
+10·4 | -5·2
+0·1 | -13·8
-7·9 | -16·1
-11·3 | -13·4
-13·4 | -1:
-1: | | ·r | -9·1 | -6 ∙7 | -14-2 | -16.9 | -14-9 | -12-0 | 13.3 | 20 4 | 10.2 | 12 3 | 10 | | 20 3 | | 0 | VERT ICA | L COMPO | NENT | | | | | | | | | | | | | | γ
-8·6 | γ
-10·8 | γ
-10·7 | γ
-9·2 | γ
-7·6 | γ
-6⋅8 | γ
-7·2 | γ
-9·0 | γ
-5·9 | γ
-6·2 | γ
-5·4 | γ
-4·8 | γ
-2·6 | γ
+2·6 | γ
+7·3 | γ
+9·8 | | γ
+10·4 | | | γ
+9·9 | γ
+9·2 | γ
+6·2 | γ
+3 | | | -10·6
+0·6 | -11·2
-4·8 | -7·4
-8·6 | -6·0
-11·2 | -9·0
-12·8 | -13·5
-14·3 | -15·4
-17·3 | -12·2
-14·6 | -8·4
-9·8 | -7·4
-8·0 | -7·4
-9·4 | -7·4
-9·2 | -4·0
-7·2 | -0·8
-1·4 | +3·8
+5·2 | | | +27·3
+25·3 | +30 · 6
+25 · 6 | | +16·8
+10·2 | +4·0
+4·2 | -6·0
+4·2 | -10 | | | -2.0 | -0.9 | -6 ⋅2 | -10 · 1 | -17.9 | -18 · 6 | -14.3 | -14.7 | -9.6 | -5-9 | -3.8 | -5·3
-10·8 | -3·6
-9·7 | -0·1
-2·0 | +6·8
+5·2 | | +19·3
+13·8 | +16·6
+16·6 | +17·3
+17·5 | | | +8·1
+10·3 | +3·4
+1·2 | -(
-) | | | -5·1
-28·9 | -10·0
-33·8 | -12·2
-24·2 | -7·9
-21·7 | -5·0
-19·0 | -4·2
-17·4 | -5·5
-11·7 | -4·8
-10·2 | -5·6
-12·0 | -10·3
-13·3 | -10·6
-13·4 | -10.8 | -4.5 | +6.8 | +26 · 8 | | +47 · 2 | | +36 • 9 | | | +7.1 | -4.8 | -22 | | | -4.5 | -5.0 | -6.6 | | -13-4 | -15.8 | -16.7 | -13-2 | -9.6 | -7·3 | -7·6 | -7·0 | -5·3 | -0.6 | +4·8
+1·3 | +9·7
+6·3 | +14 · 6
+8 · 7 | | +21 · 1
+18 · 9 | | +17·2
+20·1 | | +5·4
+2·5 | -(
-11 | | | -13·1
-33·1 | -15·4
-28·6 | -12·1
-18·9 | -3·1
-10·7 | +0·5
-4 ·7 | +0·6
-2·8 | -4·1
-1·7 | -1·1
-2·3 | -2·1
-1·7 | -4·2
-1·2 | -8·1
-1·3 | -12·3
-3·9 | -11·5
-1·5 | -5·8
+1·6 | +6・9 | +15-3 | +18 • 9 | +22 · 2 | +25 · 3 | +22.9 | +16 · 5 | +2.0 | -7.9 | -11 | | | -0.6 | -8.7 | -7.0 | -5·3
-15·9 | -5·8
-15·6 | -7·1
-13·8 | -7·0
-10·5 | -4·9
-7·6 | -1·2
-4·4 | -1·3
-3·7 | -4·6
-4·8 | -6·9
-3·8 | -4·4
-1·7 | -1·7
+2·0 | +2·6
+4·6 | +10·1
+5·9 | +9·6
+7·2 | +8·9
+9·6 | | +12·1
+17·6 | | +5·7
+15·5 | -1·8
+8·2 | _ | | | -9.8 | -6·2
-8·1 | -10·4
-6·4 | -8.3 | -7.3 | - 7·2 | -7.5 | -7.3 | -6.4 | -6.9 | -4 ⋅8 | -3.7 | -3.6 | +0.7 | | +10-7 | | | | | | | -1.6 | - | | | -0.0 | -12.0 | -10.0 | -10.2 | -0·8 | -10-1 | -9.9 | -8.5 | - 6∙4 | -6⋅3 | -6.8 | -7·2 | -5.0 | +0·1 | +7•0 | +13 · 1 | +16 • 4 | +19•6 | +20 · 3 | +18.5 | +14 · 2 | +7 • 7 | +0.7 | -4 | | | -9.9 | -12.0 | -10.9 | | | | | | | | | | -3.0 | +1 · 1 | +6 · 1 | | | +16 • 0 | | | | +8 • 1 | +1.7 | -3 | | er | −8·1
 −8·8 | -9·1
-10·7 | -8·7 | -9·9
-9·3 | -9·9
-10·3 | -10·3
-10·7 | -10·1
-10·1 | -9·0
-9·1 | -6·3
-5·6 | -6·1
-4·1 | -5·6
-4·8 | -4·9
-6·3 | -3·0
-4·2 | -0.4 | | +13.6 | | | | | | +5.0 | -0.5 | -2 | | inox | -8.8 | 10.7 | -10.2 | | | | -0.5 | -7.3 | | | | | -7.7 | -0.4 | | +16 · 2 | | | | | | +10-1 | +1 • 1 | -9 | Departures from the mean of the 24 hourly values (uncorrected for non, cyclic change) 1965 29 ESKDALEMUIR Hour CMT 4-5 5-6 6-7 7-8 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 3-4 8-9 0-1 1-2 2-3 DECLINATION (measured positive towards the west) +2·88 +3·74 -2·66 -7·41 -4 · 22 -0.88 -0.34 +0.51 +1.68 +0.72 -0 - 34 +0.44 +0.02 +2.30 +3.46 +3 - 76 +3.88 +3.00 +1 - 77 +0.44 -1 · 38 -3.00 -3.24 Ian. +5.50 -0.72 -5.72 -5.20 -2.46 -1 - 51 +1 - 14 +0.75 -1 . 02 Feb. -2 - 16 -1 · 48 -1 - 78 -1 - 92 -0.19 +1:38 +1 -80 +0.83 +1 -62 +3 - 20 +4.60 +5 - 23 +1.78 +5 · 44 -2·49 -0·73 -2.20 -3.30 -1.09 . 88 +2.75 +0.62 +0.55 +0.64 +2.93 +4 - 78 +5.75 +4 · 21 +3.14 -1 - 15 -2.22 -3 - 28 -3.31 -1.67 -3.10 Mar. +5.59 +0.27 -1.57 -1.49 -2.35 -4.01 +2 · 15 +3.85 +2.40 -2.78 -0.81 -2.49 -1.98 +0.33 +4 - 27 +6 - 58 -2.01 -2.22 -2.51 -3.09 -2.33 -2.05 -3.78 -1.43 +0.94 +6 - 00 +6 - 71 +6·26 +7·16 +5-10 +4 - 04 +2.50 +1 - 28 +0.74 -0.16 -2.13 -3.38 May +7 - 80 +4.62 +6 • 97 +7.49 +6.18 +3.20 +1 · 65 -1.34 -3 · 26 -3.31 -5.10 -3.64 -3 · 21 -1 - 36 -3.22 -3:35 -1 - 90 -3.28 -5 - 47 -4 · 94 -2.70 +0.61 +1 - 62 +4 · 38 -2.00 -3 - 38 -2 - 57 -0.62 +2.59 +4 - 60 +5 - 47 +5 - 52 +5 - 25 +2 · 71 +1.70 +0.35 +0.38 -1 - 19 -1 - 21 -1.22 -2.20 -2.02 -3.81 -3 - 70 -2 - 31 -2 - 20 -3.43 July -3·99
-4·78 -4·23 -2·24 -0·75 +3·76 +5·85 +6 · 03 +7 · 26 -2.54 -3.20 -2.03 +0.58 +7 - 00 +6.72 +5.65 +4.64 +2 - 10 -4.46 -1 - 34 -0.68 -2.52 -2.93 +1 - 13 Aug. -2.55 -3·79 -1·86 -4·00 -2·54 +1.99 -0.63 -4.95 +3.39 -4.67 +0.15 +6 - 89 +6 · 51 +4.98 -0.80 -6.60 -7 . 15 -3.59 -2:06 -1 - 19 -0:38 +0.59 +1 - 46 +2 - 27 -3·18 -5·35 -1·36 -2·16 -2.58 +0 · 36 -1 · 77 -3.42 -3.64 -1 · 22 -1 · 46 -1.49 +3.76 +4 · 51 +5.98 +5.92 +4 · 25 +3.64 +1 · 92 +0.73 Oct. +4 - 19 +2.74 -0.68 -3.45 -4.70 +3.86 +0.61 -2.15 -2.00 -1.67 -0.92 -0.92 +0.43 +0.36 +0.44 +0.71 +0.82 +1.55 +3 - 28 +4 - 53 +4 · 48 -1.79 +0.42 +1 . 09 +2 - 26 +3 - 37 +4.06 +2.78 -0.45 +0.46 -2.72 -4.77 +0.62 +0 - 24 +2.05 -0.74 +0.23 Dec. -0.36 +1.02 +5.03 +5 -81 +5 - 45 +4.65 +3.50 +1 - 54 +0.25 -1.18 -3 · 14 -3.59 -3.47 -2.69 -2.57 -2.58 -2.37 -2.12 -1.22 -0.77 -0.90 -1 · 04 Year -3.06 +0.91 +2 · 17 +0.67 -0.20 -1.75 -4.45 -0.74 -0.91 +0 · 21 +0.85 +0.65 Winter -2 - 58 -1 - 95 -1 - 38 -3·21 -2·83 -2·23 -1·39 -0·21 +0·22 -0·69 -0·37 +0·90 +3·67 +4 · 76 +3.51 +1.29 -0.51 -1.30 -3.09 -3.47 -2.89 -2.42 +5-21 +6 · 30 +6 • 09 -3 - 3 - 3 - 97 Equinox -3.15 -3.54 -2.47 -3.01 -3.08 -1.66 +0.63 +3.75 +5.90 +6 - 75 +6 · 41 +5.87 +4.81 +2.65 +1 - 44 -0.50 -1.87 -2.65 -2.95 -2 - 44 Summer -2.12 -1.77 INCLINATION +0.62 -0.05 +1 -03 -0.63 -0.67 -0.53 -0.10 -0.94 -0.43 -0.40 -0.51 -0.95 -0.77 $-1 \cdot 25$ -0·58 +1 - 56 -1 . 01 +0.01 +0.53 +0.97 +0.92 +0.77 +0.53 +0.50 +1 - 28 +1 - 29 +1 - 09 +0 - 28 -0.53-0.51 -0.54Feb. -1.13 -1 . 01 -0.62 -0.48 -0.62 +0.51 +0.64 +0.66 +0.34 +0.32 +0.57 +0.10 -0.05 +0.72 -0·60 -1·02 Var. -0.61 -0.97 -1 . 01 -0.40 -1.04 -0.65 +1 - 43 +1 -50 +1 - 00 +2.00 +1 -52 +1 - 03 +0.65 +0 - 57 -0.19 -0.32 -0.53 -0.37 -0.73 -0.82 -∩·64 -0.76 -0.79 -0.29 Apr. -1 - 04 -1 · 16 -1 . 23 +0.74 +1 - 23 +0.76 +0.48 -0.46 -0.43 -0.10 +0.32 +0.48 +0.56 +0 • 20 +2 - 42 +2.07 +1 -45 +0.75 +0.01 -0.62 -0.51 -0.82 -0.52 -1 - 14 -0.63 +0.09 -0:30 -0.26 -0.62 -0.29 -0 · 55 -1 - 49 Tune -0.61 -1.16-0.52 -0.37 0.00 +0.37 +1 - 33 +1 - 67 +1 -64 +1 - 31 +0-14 +0:38 -0.15 -0.63 -0.56 -0.43 +0.03 -0 · 23 -0.13 -0.22 -0 · 24 -0.83 -0.63 Tulv -0.82 -0.68 -0.46 -0.49 -0.96 -0.43 -0.49 -0.06 +0.10 -0·24 -0.67 -0.67 -0.43 +0 - 26 -0.46 -0.03 -0·37 -1·11 +0.43 +0.04 +0.90 +1 -41 +1 - 51 +1 - 42 +0.83 +0.52 -0.91 Aug. -0.89 -0.83 +0·83 +0·79 +0·62 +1·01 +0·27 +0·30 +0·21 +0·34 -0·45 -0·07 -0.26 +0.82 +0.89 +1 - 31 +0.64 +0.04 +0.66 -0.03 -0.06 +0.07 +0.11 +0.19 -1.02 -0.81 Sept -1 - 28 -0.25 -0.56 -0.82 +1 - 23 +0.61 +0.36 +0.63 +0.24 -0.16 -0.16 +0.51 +0.44 -0.53 -0.52 -0.81 -1 - 18 -1 - 10 +0.02 Oct. -0.73 -1 . 29 . 93 -0.59 -0.03 +0 - 34 +0.21 +0.60 +0.40 +0.22 +0-13 +0:36 +0.43 +1 - 36 +1-13 +1 -41 +1 - 33 +0.73 +0.19 -1 . 24 Nov. -0.53 -0.74 -0.88 $-1 \cdot 40$ -0.04 +1.01 +0 - 85 +1.33 -0.46 +0.51 +0-14 +0.60 +1 - 15 +0.40 +0.26 +0.05 -0.13 -0.85 -0.00 -0.99 -1 - 21 -1 - 18 -0.60 -0.51 -0.69 -0.54 **-0.16** +0.40 +0.76 +0.94 +0.87 +0.75 +0.43 +0.39 +0.28 +0.09 +0.09 +0.13 +0.22 +0.17 -0.01 -0.15 -0.26 Year -0.79 -0.79 -0.63 -0.68 -0.85 +0.60 +0.83 +1.09 +0.68 -0.13 Winter -0.75 -0.58 -0.53 -0.95 -1 - 09 -0.61 +0.18 -0·72 -0·52 -0·01 +0·75 +1·03 +1·03 +0·95 +0.98 +0.55 +0.29 +0.44 +0.11 +0.03 +0.03 +0.02 -0.14 -0.14 -0.25 -0.35 -0.85 -0.67 -0.63 -0.82 -1.14 Equipor +0-14 +0.15 -0.17 -0.60 -0.61 -0.71 +0.63 +1 - 07 +1.51 +1 -60 +1 · 26 +0.81 -0.43 -0.05 -0.33 -0.33 -0.74 -0.37 -0.48 -0.21 +0.04 Summer HORIZONTAL COMPONENT -8·4 -11·9 -5·4 -9·8 -12.7 -3·1 -11·7 -1·8 -7·0 -9·3 -3·8 -9·1 -12·1 +1·0 -7·1 -8·1 +3·2 +2·5 +4·4 +15·5 +10·7 +7·9 +5·6 -0·5 -10·7 -5·9 +2·0 -7·2 +9·5 -2·3 +5·5 +1·5 +4·3 +4.9 +11·8 +15·7 +8.9 +5.6 -3.7 -10.7 +10·9 +5.4 +3.9 -15·3 -7·8 -6·6 -1·2 -3·1 -5·2 -17 · 3 +14·1 +9·2 +5·1 +7·2 +7·1 +10·4 Feb +11.3 +13.7 -13.8 -13.4 +0.7 -13.2 -11.2 +8.3 +8 • 4 0.0 +2 • 2 Mar. +10 - 4 +5.4 +6.0 -26 · 1 -27.0 +12.6 +12-7 Apr May +18.6 -2.5 -18.4 +11 . 8 -6·8 -7·3 -a · n -10.5 -15:0 -22 - 5 -20.8 -13 - 7 -8.0 -9.5 0.0 +9.4 +12-1 +15.6 +16 • 4 +10 - 1 +10.6 +9 - 1 +17 . 6 +8.5 +4.0 +22 - 1 -33 • 7 +29.9 +2 • 1 -20-5 +1 • 1 -1.5 -0.3 -2.7 +1 .8 +9.8 -21 · 7 -2 · 4 -4.9 -9 · 1 -22 · 8 -27·3 +6 · 6 +5 • 3 +3 · 3 July +2 · 1 +7.5 +3.6 -0.7 +10 • 7 +8 • 4 +10·3 -2·4 -3·0 -1 - 3 +5·9 -4·2 +13·3 +7·4 +3·6 +4·4 -13.9 -22.0 -24 - 3 $-24 \cdot 3$ -17.1 -12.1 $-1 \cdot 0$ +19.9 +17 - 1 +14 - 1 +8•3 +9 - 3 Aug. Sept +8·5 +7·0 +5.7 +6.7 +2.4 -0.7 +3.0 -10.8 -9·ŏ +9 • 1 +8 • 4 +4 • 4 -13.0 -13.8 -13.0 +11.6 -5.8 +2.6 -6·8 +1.4 +8.4 +15.0 +14.3 +6·2 +11·1 -0·8 +7·2 -8·2 -0·9 -13·6 -6·9 -20·2 -9·7 -9·8 -5·3 -4·4 -1·6 0·0 -10·5 -2·0 -14·8 +7·2 -7·9 +15.1 -17.8 -5 - 8 0.0 +5.7 +5.6 +0 • 4 +14 · 0 Oct. +10·8 +6·7 +9.0 +0.4 +1.8 +9.4 +0.3 -14.3 -3 · 3 +8•9 +12.9 +14 - 3 +14.3 +6 - 6 +4 . 3 -9.0 -3 - 5 -6 · 5 Dec. +4 - 1 +2.0 +2 - 4 +9.7 +10.8 -13.8 -16 · 6 -15.8 -13-1 -6.5 -3 - 3 +0.6 +4 • 7 +6.0 +5.5 +4 · 4 -8.4 +3.5 +2 • 1 Year +7.4 +6.4 +9.2 +6.7 +5.5 +13 · 1 +6 · 8 +1 - 5 -4 . 8 -8.0 -8 - 1 -8.6 -8 - 7 -5.0 -7 - 1 -6.5 -9.7 -0.0 +13.5 Winter +5.3 +4.7 +8.9 +10.6 +8.3 -17 · 3 -16 · 7 -16 · 3 -3.3 -13.3 -17.0 -8.5 -2.4 -1 · 6 +4 • 4 +6 · 3 +6 • 1 +6 · 7 +8.9 +4 • 1 +3.9 +3.5 +4 . 3 +13.3 +6.9 Equinox +6 • 1 +9.5 -25.9 -27 . 7 -22.8 -15.1 -2 · 3 +1 . 2 +8 • 5 +16.9 +18 · 3 -18.8 +19.5 -0.3 -4.2 -12.1 +14 • 2 +6 . 8 +8 - 7 +5.3 +1.5 +6.0 +6 - 7 +10.6 [&]quot;Winter" comprises the four months January, February, November, December; "Equinox" the months March, April, September, October; and "Summer" May to August. 1965 30 ESKDALEMUIR Disturbed days All days Quiet days Disturbed days All days Ouiet days -Y ī I D I x -Y z x z X -v 7 מ H D H H γ 2·9 7·6 16·0 14·8 29·0 $\frac{\gamma}{15\cdot 2}$ γ 8·4 10.7 5.30 0.66 8 · 10 19-1 30.6 35.4 24 · 4 24.8 Tan. 46·0 42·8 37·9 28·3 81·0 20·2 24·0 36·2 33·1 35·5 29·1 52·3 42·0 59·7 43·0 47·1 5·91 8·06 9·57 9·92 Feb. Mar. 22·9 24·4 30·0 34·2 14·4 20·9 27·0 38·3 6·59 7·15 1·44 1·32 21·5 22·3 1·16 1·19 17·8 22·4 12·91 9·44 2·94 1·92 33·0 24·2 Apr. May 46·3 48·6 19·2 25·1 45·9 49·4 9.49 35·3 35·5 2·27 1·72 38·1 34·0 10.59 3·68 2·65 34 · 8 2.05 50.8 53.0 10.06 1.81 35 · 1 69.3 39.6 3.91 June 45.1 55.9 28.5 39 · 5 47.3 18.8 67.8 11.38 2.49 47.1 9.65 2.30 13.27 72.3 38·7 36·1 58·4 21·3 33·5 26·4 9·33 11·46 14·41 10·21 22·9 22·3 21·1 10.35 2·16 1·93 40·3 34·9 10.68 2·30 2·10 1·47 1·65 39.8 July 40 · 2 50.8 38 · 1 51 · 0 21 · 2 42.5 44.6 2.50 43.9 10·68 10·26 7·47 6·57 4·20 2·98 36·6 25·7 27·2 17·8 6·9 34·8 27·3 27·7 50·3 36·5 32·0 19·6 13·1 7·4 4·1 42·2 41·9 39·4 29·8 54·7 67·7 48·9 Aug. Sept. 52·4 40·5 10.60 2.47 44.2 36 - 4 26 · 6 27 · 6 19 · 0 8·52 7·07 1·62 1·55 24·7 25·2 2·59 2·41 35·2 35·3 35·1 27·5 Oct. Nov. 12.9 2·81 2·54 5·77 4·95 1·23 0·87 18·3 12·3 1·14 0·45 9·88 9·05 30·0 29·5 20.0 20.8 48 · 1 3.4 30 · 4 42.8 Dec. 13.5 24 · 1 9 · 1 14.7 7.27 Year 24.0 35.0 17.3 25.3 34.6 12.4 29 · 4 43.9 32.3 1 · 21 22.6 7.14 1.42 24 - 7 9.40 1.79 25 · 8 4 - 1 28 · 4 5.48 1.07 16.0 4.01 0.85 9.03 Winter 17.2 25.7 9.6 14 · 3 18.9 25 - 3 42.8 11.6 2 · 24 23 · 4 Equinox 27 · 4 37.9 18 · 1 28 · 2 37.6 12.6 35.5 47.2 29.9 7.88 1.50 24.6 7.91 1.58 27.0 10.27 2.17 30.6 45 · 6 48 · 7 21.5 45 · 8 52 · 7 40.6 10.58 2.09 39.4 9.98 2.05 36 · 8 10.52 47 · 2 Summer 38.0 51 . 7 24 · 5 2.70 #### NON-CYCLIC CHANGE | 31 E | SKDALEN | UIR | | | | | _ | 19 | 55 | |---------|---------|----------|--------|--------|-------------------|--------|--------|----------|--------| | | | All days | | Q | uiet day | 's | Dis | turbed d | ays | | | H | D | Z | H | D | Z | H | D | Z | | | γ | , | γ | γ | , | γ | γ | , | γ | | Jan. | +0 · 1 | -0.03 | 0.0 | +0-9 | -0.33 | -1.0 | -5.8 | +0.61 | +2 · 2 | | Feb. | 0.0 | +0.01 | +0-1 | +0•7 | +0.38 | +0 • 2 | -0.9 | 0.00 | -2 · 4 | | Mar. | +0.3 | -0.03 | +0 · 1 | +3 • 2 | +0.23 | -1 · 1 | -3.4 | +0.68 | +1 • 9 | | Apr. | +0 · 1 | -0.01 | +0 • 1 | +2.5 | - 0·14 | +0.7 | -4.4 | -0.71 | -0 · 1 | | May | +0・3 | -0.02 | -0 · 1 | +4.6 | 0.00 | +1 • 9 | -12-4 | -0.94 | +0 • 4 | | June | +0 • 4 | -0.08 | -0.3 | +2.9 | +0 • 17 | -0.7 | -2·1 | +0.87 | -3.7 | | July | -0.8 | +0.06 | +0.5 | +2.5 | +0-35 | +0-4 | -10-0 | -0.47 | 0.0 | | Aug. | +0-3 | +0.02 | 0.0 | +5.0 | +0.21 | +0.9 | +2 • 2 | +1.89 | -4・9 | | Sept. | -0.3 | -0.04 | +0 • 2 | +0.7 | +0-49 | +1 • 9 | +6・3 | +4 · 08 | +9・4 | | Oct. | 0.0 | -0.05 | +0 · 1 | +1 · 1 | +0.95 | -0.7 | -4.5 | +0.12 | -5.4 | | Nov. | +0-6 | -0.07 | -0.5 | +2 • 1 | -0.06 | -0∙6 | -5-9 | -2.08 | -5 · 1 | | Dec. | -0.3 | +0.07 | +0-5 | +3.0 | +0.07 | -1 · 2 | -4-1 | +0.73 | +1 • 5 | | Year | +0 • 1 | -0.01 | +0·1 | +2•4 | +0-19 | +0·1 | -3-7 | +0-40 | -0.5 | | Winter | +0 · 1 | -0.01 | 0.0 | +1 · 7 | +0.01 | -0.7 | ~4.2 | -0.19 | -0.9 | | Equinox | 0-0 | -0.03 | +0 · 1 | +1 • 9 | +0-38 | +0.2 | -1.5 | +1 • 04 | +1 - 5 | | Summer | +0 • 1 | -0.01 | 0.0 | +3 · 7 | +0.18 | +0.6 | -5.6 | +0.34 | -4 · 1 | #### AVERAGE RANGE OF DIURNAL INEQUALITY 1932-53 WITH 1965 AS PERCENTAGE OF THIS | 32 E | SKDALEMUIR | | | | | | | | 19 | 55 | |---------|------------|------|----------|--------|--------|------------------------|------|--------|-----------|---------| | | | | All days | | | ternation
uiet day: | | | ternation | | | | | H | D | Z | H | D | z | Н | D | Z | | i | | γ | | γ | γ | | γ | γ . | | γ | | Year | 1932-53 | 37.8 | 8.66 | 28 · 7 | 34 • 4 | 8.43 | 13.7 | 53 · 9 | 11.93 | 82.1 | | | 1965(%) | 60 | 84 | 60 | 72 | 85 | 91 | 48 | 79 | 39 | | Winter | 1932-53 | 19.3 | 6.95 | 21.2 | 16.2 | 4 · 44 | 5.9 | 34 · 4 | 11.45 | 66 · 5 | | 1 | 1965(%) | 83 | 79 | 45 | 72 | 90 | 69 | 68 | 79 | 43 | | Equinox | 1932-53 | 43.1 | 10.18 | 37 · 1 | 39.7 | 9.69 | 14.8 | 75 - 4 | 15.11 | 108 · 9 | | - 1 | 1965(%) | 57 | 77 | 49 | 68 | 82 | 85 | 41 | 68 | 27 | | Summer | 1932-53 | 59.7 | 11 · 84 | 33.9 | 50-4 | 11.76 | 21.9 | 83 · 7 | 13.11 | 82.4 | | 1 | 1965(%) | 66 | 89 | 72 | 73 | 85 | 98 | 56 | 80 | 49 | [&]quot;Winter" comprises the four months January, February, November, December; "Equinox" the months March, April, September, October; and "Summer" May to August. # HARMONIC COMPONENTS OF THE DIURNAL INEQUALITY OF
GEOMAGNETIC FORCE Values of a_n , b_n in the series $\Sigma(a_n \cos 15nt + b_n \sin 15nt)$, t being reckoned in hours from midnight GMT Longitude of Eskdalemuir Observatory, 3°12'W. 33 ESKDALEMUIR 1965 | | | | N | orth c | ompone | nt | | | | | W | est cor | ponent | : | | | | | Ver | tical o | compone | ent | | | |---------|----------------|------------------|------------------|--------|----------------|------------------|------------------|------------|---------|------------------|--------|---------|--------|--------|--------|--------|------|------------|------------------|--------------|----------------|--------|----------------|----------------| | | a ₁ | <i>b</i> , | a, | ь, | a _s | b ₃ | a, | <i>b</i> . | а, | b_{\bullet} | а, | ь, | a, | b, | 3. | b | a, | <i>b</i> , | a, | ь, | a _a | b , | 8, | b ₄ | | | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | γ | У | γ | У | У | γ | y | γ | y | γ | γ | γ | | | | | | | | | | | | | | ALL I | DAYS | | | | | | | | | | | | | Jan. | +2.3 | +3.7 | -2.2 | -1 · 7 | +2.6 | -0.5 | +0.3 | -0 • 1 | -7.6 | -1.6 | -1.6 | +4 · 7 | -1.5 | -1 - 7 | +0.6 | +0.8 | +0.5 | -4.0 | -1 · 5 | -0.7 | +0.3 | -0.6 | -0.7 | -0.4 | | Feb. | +6.7 | +3 • 4 | -4 · 2 | -2 · 1 | +2.6 | -1.6 | -0.9 | +0 • 1 | -8.5 | -3 · 2 | -0·1 | +6 · 3 | -1 · 1 | -2.0 | +0.6 | +2.8 | +0.3 | -6 · 4 | -2.9 | 0.0 | +0.5 | +0.7 | -0.9 | -0.8 | | Mar. | +9 · 1 | +2.5 | -4.8 | -1.8 | +1 · 5 | -1 · 4 | -0 • 4 | +0.8 | -8 • 4 | -6 · 1 | +2.8 | +7 • 9 | -0 · 4 | -4 · 6 | 11.2 | +2 - 4 | +3.5 | -5.5 | -4.4 | -0.4 | +1 -8 | 11.1 | -0.9 | -0.4 | | Apr. | +14 · 1 | -3 · 4 | -7 · 1 | +1 · 8 | +2 · 3 | | +0・2 | +0•4 | -5 · 2 | -12.8 | +4.0 | +9・4 | -2.3 | -4 · 2 | +0.9 | +1 · 2 | +4.5 | -3.7 | -4 ·3 | -1.0 | +1 · 7 | +0.7 | -0.9 | +0 · 1 | | May | +12.3 | -5 · 1 | -7 · 1 | +1 · 3 | | -0 · 4 | +0 • 1 | +0.5 | -7.5 | -16 · 0 | +6 · 3 | +7 • 4 | -3 · 2 | -1 · 7 | +0.9 | +0.7 | +5.9 | -4 · 5 | -6 ⋅0 | +0.1 | +1.5 | -0 · 7 | -0.6 | +0.3 | | June | +13.4 | -8⋅5 | -8.8 | +2.7 | +1 • 0 | - 0·5 | +0.5 | +0.7 | -8.1 | -18 · 7 | +5.2 | +10.5 | -3.5 | -0.8 | +0 • 4 | +0.5 | +2.6 | -7.5 | -8 · 1 | -0.4 | +1 · 3 | -0.6 | -0.5 | -0.3 | | July | +13-1 | -6 ⋅8 | -8.6 | +1 • 0 | | -0.5 | -0 · 1 | -0.4 | | -18.9 | +4 • 4 | +9 · 1 | -1 .8 | -2 · 3 | +0 · 2 | +0.9 | +4.2 | -5.5 | -5 · 7 | -0.5 | +1 - 1 | +0 • 4 | -0.4 | -0.2 | | Aug. | +12.9 | -6.3 | -5.9 | +2.7 | +0.6 | -1 • 4 | +0.7 | +0 • 7 | -10.9 | -14 · 5 | +7 • 7 | +8 • 6 | -2.6 | -2 · 4 | +1 · 5 | +1 • 1 | +3・4 | -4.9 | -6 ·6 | -1 · 4 | +1 · 4 | -0.4 | -1.0 | -0.3 | | Sept. | +11・4 | -1 · 7 | -5.5 | +1 • 4 | +1 • 2 | -1 · 6 | +0 • 4 | +0 · 1 | -12.0 | -11 · 2 | +3.7 | +6 · 3 | -3.3 | -2 · 9 | +1 • 5 | +1 · 2 | +1.7 | -5.9 | -6.3 | -0.9 | +0.8 | +0.3 | -0.7 | -0·1 | | Oct. | +9・7 | +1 · 3 | - 6⋅2 | -0.3 | +3.0 | -1.5 | - 0·2 | +0.8 | -7.7 | -8.0 | +1 • 4 | +7•9 | -1 · 7 | -3 - 8 | +2.3 | +1 • 4 | +2.0 | -3.5 | -2.7 | -1 · 4 | +1 · 2 | +0 • 2 | -0.9 | -0.2 | | Nov. | +4.6 | +3 · 3 | -4· 5 | +0 • 4 | +2・9 | -1 · 4 | -0.2 | +0.3 | -7 · 7 | -2.7 | -0.1 | +6 · 1 | -1 · 5 | -1 -8 | +1 · 7 | +1 · 3 | +0.7 | -4.5 | -0.9 | -1 · 4 | +0 • 4 | -0.3 | -0.9 | +0 · 1 | | Dec. | +1.6 | +2.6 | -2.7 | -1.2 | +1 • 4 | -1 · 3 | 0.0 | +0.5 | -7.8 | +0.3 | -0.7 | +4 • 4 | -1 · 4 | -0.3 | +0.5 | +0·7 | +0.6 | -4 · 3 | -1 · 8 | -0.3 | +0 · 1 | -0.1 | -0.4 | -0 · 1 | | Year | +9.3 | -1.3 | -5.6 | +0·3 | +1.9 | -1 · 2 | 0.0 | +0•4 | -8.2 | -9.3 | +2·7 | +7·3 | -2.0 | -2 · 4 | +1 • 0 | +1 · 3 | +2.5 | -5.0 | -4·3 | -0.7 | +1 • 0 | +0 • 1 | -0 · 7 | -0.2 | | Winter | +3.8 | +3·3 | -3.4 | -1 · 1 | +2-4 | -1 · 2 | -0 · 2 | +0.2 | -7.9 | -1 - 8 | -0.6 | +5 · 4 | -1 · 4 | -1 - 5 | +0.8 | +1 • 4 | +0.5 | -4.8 | -1 · 7 | -0.6 | +0.3 | -0 · 1 | -0.7 | -0.3 | | Equinox | +11 · 1 | -0.3 | - | +0.3 | +2.0 | -1.5 | 0.0 | +0.5 | -8.4 | -9.1 | +2.9 | | -1.8 | -3.9 | +1.5 | +1 -5 | +2.9 | -4.6 | -4.4 | -0.9 | +1.4 | +0.6 | -0.8 | -0.2 | | Summer | +12.9 | -6.7 | -7.6 | | +1 · 2 | | +0.3 | +0.4 | 1 . | -17.0 | | | 2.8 | -1.8 | +0.7 | | 14.0 | 5.6 | -6.6 | -0.5 | 1.3 | -0.3 | -0.6 | -0.1 | QUIET | | | | | | | | | | | | | | Year | +8.7 | -1.9 | -5.6 | +0.2 | +1.6 | -1.0 | -0 · 1 | +0.6 | -4.7 | -9.1 | +3 · 2 | +6 · 6 | -2 · 7 | -2.9 | +0.8 | +1 · 2 | +3.1 | -1.0 | -3·1 | -0.1 | +1 • 4 | 0.0 | -0.6 | 0.0 | | Winter | +3 · 2 | +0.6 | -3.8 | -0.6 | +1 · 7 | -1 - 1 | -0.3 | +0.5 | -4.2 | -2.9 | +0 · 1 | +4 · 2 | -2 - 1 | -1 · 7 | +0.7 | +1 · 4 | +0.3 | -1.6 | -0.6 | -0.1 | +0.7 | 0.0 | -0.5 | -0.2 | | Equinox | +10.4 | -1 · 1 | -6 ·4 | -0⋅3 | +2 • 4 | -1.0 | -0.3 | +0.7 | -4 · 1 | -8.6 | +3 · 4 | +7 • 7 | -2 • 7 | -4 · 2 | +1 • 2 | +1.7 | +3.6 | -0.3 | -3 · 2 | -0.3 | +1 • 7 | +0.4 | -0.7 | 0.0 | | Summer | +12·5 | -5.2 | -6 ·8 | +1 • 7 | +0.7 | -0.9 | +0 • 2 | +0•4 | -5.8 | -15.6 | +6 · 2 | +7・9 | -3.4 | -2.8 | +0.6 | +0.5 | +5・6 | -1 · 3 | -5.5 | +0 • 2 | +1 • 9 | -0 · 4 | - 0 · 7 | +0 • 2 | | | | | | | | | | | | | Dī | STURBE. | D DAYS | | | | | | | | | | | | | Year | +11.5 | -1.0 | -5.6 | +1 ·8 | +1 • 1 | -1 · 1 | +0.5 | +0 - 1 | -15.7 | -6 ·7 | | +9•0 | +0.7 | -2 · 1 | +2 · 3 | +1 · 4 | -0.9 | -14 · 5 | -6 · 2 | -1.5 | -0 · 1 | +0.7 | -1 · 1 | -0.3 | | | 3 | • 0 | 5 0 | . 0 | • • | - • | | | | | | | - ' | | | - ' | | | ٠. | • ., | 0 1 | . 0 / | | 0 3 | | Winter | +6 • 7 | +8 • 3 | -2.5 | -1 · 5 | +2 • 4 | -1 · 7 | -0 · 1 | -0 · 4 | | +1.6 | -0.9 | +7 · 1 | +1 · 4 | -0.5 | +1 • 9 | +1 · 5 | -0.3 | | -4 · 2 | -1.9 | -0.8 | +0.6 | -0.9 | +0.2 | | Equinox | +13.8 | -1 · 2 | -6 ·1 | +2.5 | - 0·3 | -1 · 0 | +0 · 7 | -0.5 | | | +0.7 | +8.5 | +1 • 2 | -4 · 2 | +2.0 | +1 - 5 | -1.2 | | -5·3 | -1 - 1 | +0.3 | +1 • 8 | -0.9 | -0.5 | | Summer | +14 • 1 | -10-1 | -8 · 2 | +4 • 2 | +1 · 3 | -0.8 | 10.7 | +0.9 | -14.4 - | -16 · 1 | +2.9 | +11 • 4 | -0.4 | -1 · 7 | +2.9 | +1 · 2 | -1.3 | -17・9 | -9.0 | $-2 \cdot 1$ | +0.2 | -0.6 | -1.6 | -1.0 | ## HARMONIC COMPONENTS OF THE DIURNAL INEQUALITY OF GEOMAGNETIC FORCE Values of c_n , α_n in the series $\Sigma c_n \sin(15nt + \alpha_n)$, t being mean local time, reckoned in hours from midnight | 33 F | ESKDALE | MUIR | 19 | 965 | |----------|---------|------|-------|--------|---------|------------|-------|----------|-------|------------|-------------|----------------|------------|------------------|----------------------|------------|-------|------------|------------|-------|--------------------|--------------|----------------|------------------| | | | | N | orth c | omponer | nt | | | | | We | st co | nponent | : | | | | | Ver | tical | compone | ent | | | | | c, | α, | С, | a, | c_3 | α_3 | c. | 4 | c, | a 1 | C 2 | a ₂ | c, | $a_{\mathbf{q}}$ | c_{\blacktriangle} | 4 | c, | α, | c, | α, | $c_{\mathfrak{s}}$ | α_{a} | c ₄ | α_{ullet} | | | γ | ۰ | γ | ۰ | γ | ۰ | γ | ۰ | У | 0 | γ | • | y | ۰ | 1 | ۰ | У | 0 | γ | • | γ | 0 | γ | 0 | | | J | | | | | | | | | | | ALL I | DAYS | | | | | | | | | | | | | Jan. | 4.3 | 35 | 2.8 | 238 | 2.6 | 111 | 0.3 | 125 | 7.7 | 261 | 5.0 | 348 | 2.3 | 230 | 1.0 | 50 | 4 · 1 | 176 | 1.6 | 262 | 0.7 | 164 | 0.8 | 250 | | Feb. | 7.5 | 66 | 4.7 | 250 | 3.0 | 131 | 0.9 | 292 | 9.1 | 253 | 6.3 | 6 | 2 · 2 | 218 | 2.9 | 25 | 6.4 | 180 | 2.9 | 276 | 0.9 | 46 | 1 · 2 | 243 | | Mar. | 9.4 | 77 | 5 · 1 | 256 | 2.1 | 144 | 0.9 | 343 | 10.4 | 237
205 | 8.4 | 26 | 4.6 | 194 | 2 · 5 | 40 | 6.5 | 151 | 4 · 4 | 271 | 2 · 1 | 67 | 0.9 | 259 | | Apr. | 14.5 | 107 | 7.3 | 291 | 2.9 | 136 | 0.4 | 41
23 | 13.9 | 208 | 10·3
9·7 | 29
47 | 4·8
3·6 | 218
252 | 1·5
1·1 | 50
64 | 5.8 | 133
131 | 4 · 4 | 263 | 1.9 | 78 | 0.9 | 288 | | May | 13.3 | 115 | 7.3 | 287 | 1.6 | 113
128 | 0.9 | 50 | 20.4 | 207 | 11.8 | 33 | 3.6 | 267 | 0.6 | 49 | 7.4 | 164 | 6·0
8·1 | 277 | 1 · 7 | 123 | 0.6 | 313 | | June | 15.9 | 126 | 9.2 | 294 | 1 · 2 | 128 | 0.9 | 30 | 2014 | 207 | 11.9 | 33 | 3.0 | 207 | 0.0 | 49 | 7.9 | 104 | 8.1 | 273 | 1 · 4 | 125 | 0.6 | 254 | | July | 14.8 | 121 | 8.6 | 283 | 1.8 | 115 | 0 · 4 | 211 | 20.0 | 202 | 10.1 | 32 | 2.9 | 227 | 0.9 | 25 | 6.9 | 146 | 5 · 7 | 272 | 1.2 | 78 | 0.5 | 254 | | Aug. | 14.6 | 119 | 6.4 | 301 | 1.6 | 166 | 1.0 | 55 | 18.2 | 220 | 11.5 | 48 | 3.6 | 237 | 1.8 | 68 | 6.0 | 149 | 6.7 | 264 | 1 · 4 | 118 | 1.1 | 264 | | Sept. | 11.5 | 102 | 5.7 | 290 | 2.0 | 152 | 0.4 | 89 | 16.5 | 230 | 7 · 3 | 37 | 4 · 4 | 238 | 1.9 | 6 6 | 6 · 2 | 167 | 6 · 4 | 269 | 0.8 | 78 | 0.7 | 271 | | Oct. | 9.8 | 86 | 6 · 2 | 274 | 3.3 | 126 | 0.8 | 359 | 11.1 | 227 | 8.0 | 16 | 4 · 2 | 213 | 2 · 7 | 72 | 4.0 | 153 | 3.0 | 249 | 1 · 2 | 88 | 0.9 | 268 | | Nov. | 5.7 | 58 | 4.5 | 281 | 3 • 2 | 125 | 0 · 4 | 338 | 8 · 1 | 254 | 6 · 1 | 5 | 2 · 3 | 231 | 2 · 1 | 65 | 4.6 | 174 | 1.6 | 219 | 0.5 | 135 | 0.9 | 291 | | Dec. | 3.1 | 34 | 2.9 | 252 | 1.9 | 143 | 0.5 | 18 | 7.8 | 275 | 4 · 4 | 358 | 1 · 4 | 267 | 0.9 | 49 | 4 · 4 | 175 | 1 · 8 | 266 | 0 · 1 | 133 | 0.4 | 264 | | | 1 | Year | 9.4 | 101 | 5 · 7 | 280 | 2 · 2 | 132 | 0.4 | 18 | 12.4 | 225 | 7.9 | 27 | 3 · 1 | 229 | 1.6 | 52 | 5.6 | 157 | 4 · 3 | 267 | 1.0 | 96 | 0.7 | 268 | | Winter | 5.0 | 53 | 3.6 | 257 | 2.7 | 127 | 0.3 | 325 | 8.1 | 260 | 5.4 | 360 | 2.0 | 233 | 1.7 | 44 | 4.8 | 177 | 1.8 | 258 | 0.3 | 109 | 0.8 | 262 | | Equinox | 11.1 | 95 | 5.9 | 279 | 2.5 | 137 | 0.5 | 12 | 12.4 | 226 | 8.3 | 27 | 4.3 | 214 | 2 · 1 | 57 | 5.5 | 151 | 4.5 | 265 | 1.5 | 77 | 0.8 | 270 | | Summer | 14.6 | 121 | 7.8 | 291 | 1.4 | 129 | 0.5 | 53 | 18.9 | 209 | 10.7 | 40 | 3.3 | 247 | 1 · 1 | 55 | 6.9 | 148 | 6.6 | 272 | 1.4 | 114 | 0.6 | 271 | | - Canada | 1 | | , , | | | | | |] | QUIET | DAYS | | | | 1 | | | | | | | | | Year | 8.9 | 105 | 5.7 | 279 | 1.9 | 132 | 0.6 | 360 | 10.2 | 211 | 7.3 | 32 |
4.0 | 233 | 1 · 4 | 47 | 3.3 | 112 | 3.1 | 275 | 1 · 4 | 101 | 0.6 | 284 | | Winter | 3.3 | 83 | 3.8 | 267 | 2 · 1 | 133 | 0.6 | 343 | 5.1 | 239 | 4 · 2 | 7 | 2 · 7 | 240 | 1.5 | 38 | 1.6 | 173 | 0.6 | 269 | 0.7 | 97 | 0.5 | 258 | | Equinox | 10.5 | 99 | 6.4 | 273 | 2.6 | 123 | 0.8 | 353 | 9.6 | 209 | 8 · 4 | 31 | 5.0 | 222 | 2 · 1 | 47 | 3.6 | 97 | 3.3 | 272 | 1.8 | 87 | 0.7 | 280 | | Summer | 13.5 | 116 | 7.0 | 290 | 1 · 2 | 153 | 0.5 | 40 | 16 6 | 204 | 10.0 | 44 | 4 · 4 | 241 | 0.8 | 62 | 5.7 | 106 | 5.5 | 279 | 1.9 | 113 | 0.7 | 301 | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | 1 | | DI | STURBE | D DAYS | | | | | | | | | | | | | Year | 11.6 | 98 | 5.9 | 294 | 1.6 | 145 | 0.5 | 96 | 17.1 | 250 | 9.1 | 12 | 2.2 | 171 | 2.7 | 72 | 14.5 | 187 | 6.3 | 262 | 0.7 | 2 | 1 · 2 | 266 | | Winter | 10.6 | 42 | 2.9 | 246 | 3.0 | 135 | 0.4 | 200 | 15.7 | 279 | 7.2 | 359 | 1.5 | 119 | 2.5 | 64 | 13.3 | 185 | 4.6 | 252 | 1.0 | 315 | 0.9 | 296 | | Equinox | 13.9 | 98 | 6.7 | 299 | 1.0 | 204 | 0.8 | 135 | 17.9 | 255 | 8.5 | 11 | 4.4 | 174 | 2.5 | 67 | 13.0 | 189 | 5.4 | 265 | 1.8 | 20 | 1.0 | 257 | | Summer | 17.3 | 129 | 9.2 | 304 | 1.5 | 132 | 1.2 | 49 | 21.6 | 225 | 11.8 | 21 | 1.7 | 203 | 3.1 | 81 | 17.9 | 187 | 9.3 | 264 | 0.7 | 172 | 1.9 | 249 | | ounie i | 1/3 | | | | | | | | | | | | | | | | | | | 201 | | | | 273 | "Winter" comprises the four months January, February, November, December; "Equinox" the months March, April, September, October; and "Summer" May to August. 34 ESKDALEMUIR 1965 ### (a) Disturbances without sudden commencement All times GMT | Serial | From | 1 | То | |] | Range (7 | γ) | • | |--------|----------|------|----------|------|-----|----------|-----|-------| | Number | Date | Hour | Date | Hour | Н | D | Z | Notes | | 1a | 23 Feb. | 09 | 23 Feb. | 24 | 93 | 119 | 126 | | | 2a | 22 Mar. | 17 | 23 Mar. | 22 | 166 | 160 | 71 | | | 3a | 18 Aug. | 13 | 21 Aug. | 19 | 175 | 183 | 100 | | | 4a | 27 Sept. | 09 | 28 Sept. | 22 | 163 | 141 | 171 | | Note: These are the main examples in a very quiet year. Only in this respect are they noteworthy. ### (b) Disturbances with sudden commencement (ssc) All times GMT | Serial
Number | Date | Time of sudden commence-ment | End disturb | | 1 | h ini
sed s
D | tial
troke
Z | | gnitude
stroke
D | | | e of fol
turbance
D | _ | |------------------|----------|------------------------------|-------------|----|-----|---------------------|--------------------|-----|------------------------|------------|-----|---------------------------|-----| | | | | | | | | | γ | γ | γ | | | | | 1b | 20 Jan. | 16 13 | - | - | No | No | No | +20 | -4 | 0 | | small | | | 2 b | 6 Feb. | 14 15 | 8 Feb. | 02 | No | No | No | +26 | -14 | -2 | 116 | 140 | 122 | | 3 b | 12 Mar. | 12 29 | _ | - | Yes | Yes | Yes | +36 | -22 | -3 | | smal1 | | | 4 b | 17 Apr. | 13 14 | 21 Apr. | 03 | Yes | Yes | Yes | +28 | - 16 | -3 | 284 | 193 | 162 | | 5 b | 15 June | 11 00 | 19 June | 02 | No | No | No | +20 | +12 | - 5 | 268 | 191 | 275 | | 6b | 6 July | 04 52 | _ | - | Yes | Yes | Yes | +14 | -23 | -3 | | smal1 | | | 7b | 18 July | 15 34 | - | - | No | No | No | +77 | -24 | -7 | | smal1 | | | *8b | 15 Sept. | 14 53 | 19 Sept. | 22 | No | No | No | +32 | -17 | -1 | 154 | 197 | 131 | | 9 b | 5 Oct. | 02 40 | - | - | Yes | Yes | No | +22 | -13 | -2 | l | ery smal | 1 | ^{*}ssc not well defined. In the case of an ssc*, that is, an ssc preceded, on at least one component, by one or more small oscillations, timing of the sudden commencement has been made from the main stroke. (c) Disturbances due to solar flare (sfe) Nil. . 35 ESKDALEMUIR Factor 2·20 TANUARY 1965 | 35 E | ESKDALEN | UIR | | | | | | | | | | Fac | tor 2 | 20 | | | | | | | | | | JANUARY | 1965 | | |-----------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------|--|--|---|-------------------|------------------|-------------------|-------------------------|-------------------------------|--|--------------------------------|--------------------------|---------------------------------|--|--------------------------------------|--------------------------------|--------------------------------------|--------------------------------|------------------------|-------------------|------------|--------------| | | Hour 0 | MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mea | n | | | 1 | | | | | | | | | | vo. | lts per | metre | | | | | | | | | | | | - | | | 1
2 0a
3 0a
4
5 | 380
190
100
60 | 395
225
90
60 | 425
220
75
25 | 285
155
75
65 | 440
210
80
130 | 170 ⁺
290
220
90
55 | 145 ⁺
220
190
90
40 | 80 ⁺
215
200
95
25 | 180
195
110 | 230
185
55 | 245
190
125 | 235
225
60 | 190
245
65 ⁺ | 150 ⁺
245
240
100
70 ⁺ | 110 ⁺
385
260 | 110 ⁺ 460 330 | 140
350
320
180
125 | 335
370
310
155
100 ⁺ | 365
330
300 | 370
245
320 | 370
230
275 | 380
170
210 | 380
225
135 | 370
230
110 | 290
227 | (24)
(24) | | 6
7 | 75+ | 70 ⁺ | 100+ | 125 | 120 | 115 | 110 | 90 | 65 | 45
180 | 45
180 | | | | | | | 100 | | | 30 | 125 | 120 | 95 ⁺ | | | | 8
9
10 | 100 ⁺ | 110 | 105 | 105 | 110 | 125 | 105 | 90 | 85 | 120 | 115 | | | | | | 195+ | 120+ | 160 | | 200 | 100 | 155 | 155 | | | | 11
12 | | 90 ⁺ | 70 | 75 ⁺ | | 55 ⁺ | | 05 | 90 ⁺ | 30 ⁺ | 105+ | 90 ⁺ | 115+ | | | 95 ⁺ | | | 105+ | 130 ⁺ | 110 ⁺
120 | 145 ⁺
125 | 80 ⁺
105 | 130 | | | | 13
14
15 | 100 ⁺ | 110+ | 70 | | | 80 | 55 | 95 | 90 | 30 | 105 | | | 275 ⁺ | 260 ⁺ | 170 ⁺ | | | 200 ⁺ | 155 | 195 ⁺
150 ⁺ | 185+ | | 120 ⁺ | | | | 16
17 | 130 ⁺ | 195+ | 105+ | | | | | | | | | | | | | 180 ⁺ | | | 110 ⁺
150 ⁺ | 225+ | | | | ĺ | | | | 18
19 0a
20 | 195 ⁺
190 | 180 | 155 | 130 | 115 | 140 | 85
135
- | 100
120
- | 110
100 | 105
130
- | 130
160
110 | 150
155
120 | 180
155
125 | 190
105
- | 155
115
~ | 115
-
- | 390
-
- | 410
-
85 ⁺ | 340
-
105 | 370
-
125 | 405
-
105 | 390
-
50 | 300
-
90 | 195
-
65 | 139 | (15 | | 21
22
23 | | | 45 | 45 | 40 | 40
15 | 50
25 | 55
35 | 65
50 | 65
60 | 70
70 | 70
80 | 100 | 170
85 | 175
145 | 145
130 | 120 | 95 | 75 | 110 | 150 | 105 | 65 | 60 | | | | 24
25 | 105 | 120 | 120
90 | 110
55 | 105
55 | 120
60 | 125
50 | 130
55 | 85
100 | 90
90 | 130
155 | 175 ⁺
155 | 210
165 | 140
110 | 125
95 | 130
75 | 115
85 | 155 | 180 | 155
170 | 210 | 90 | 115 | 135 | | | | 26
27 | | 105+ | 60 ⁺ | 65 | 110 | 115
85 | 145 | 75
85 | 65 | | | | | | 190 | 155 | 145 | 160 | 170 | + | | 400† | | | | | | 28
29 0a
30 0a | 110 | 90
110 | 75
170 | 75
125 | 100
160 | 170 | 75
225 | 250
235 | 180 | 225 | 280 | 170
300 | 185
425 | 170
370 | 80
160
290 | 90
190
370 | 150
210
520 | 175
185
425 | 155
215
425 | 175 ⁺
185
325 | 275
180
325 | 180 ⁺
150
310 | 185
110
290 | 205
100
285 | 176
277 | (14
(24 | | 31 Oa | 290 | 230 | 140 | 160 | 145 | 130 | 110 | 110 | 100 | 110 | 110 | 170 | 195 | 230 | 275 | 230 | 145 | 120 | 130 | 240 | 520 | 425 | 290 | 225 | 201 | (24 | | ean | 145
(15) | 145
(15) | 124
(16) | 110
(15) | 137
(14) | 115
(18) | 110
(18) | 113
(19) | 105
(15) | 115
(15) | 139
(16) | 154
(14) | 181
(13) | 177
(15) | 181
(16) | 179
(17) | 213
(15) | 213
(15) | 199
(18) | 213
(16) | 230
(17) | 189
(17) | 169
(16) | 161
(16) | 159 | | | air
eather | 169
(9) | 161
(10) | 132
(13) | 113
(14) | 137
(14) | 116
(16) | 108
(17) | 114
(18) | 106
(14.) | 121
(14) | 141
(15) | 157
(12) | 198
(11) | 180
(12) | 180
(14) | 191
(13) | 214
(14) | 241
(12) | 215
(14) | 221
(13) | 247
(14) | 193
(14) | 175
(15) | 169
(14) | 167 | · | | | | | | | | | | | | , | | | | | | | | | | | T | Mean | of Oa | eveh | [218 | (6 | POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | 1 0a : | 0-1
205 | MT
1-2 | | | | | | | | | | | | 20 | | | | | | | | | | EBRUARY | | | |----------------------------|------------------------|-------------------------------|------------------------------------|-------------------------------|-------------------------------|-----------------------------------|-----------------------------|-------------------------------|------------------------------|--------------------------------|---------------------------------|---|---------------------------------|---------------------------------|--|--|---|---|-------------------------------------|-----------------------------------|-------------------|--------------------------|---------------------------------|--------------------------------|-------------------|----------------------| | 2 0a | 205 | | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 |
20-21 | 21-22 | 22-23 | 23-24 | Mea | 1 | | 2 0a | 205 | | | | | | | | | | | lts per | | | | | | | | | | | | | | | | 4 0a | 75
200
85
155 | 140
90
110
85
200 | 135
100
100
75
175 | 135
80
125
70
150 | 140
65
110
65
175 | 125
70
75
80
220 | 95
75
70
90
165 | 120
85
45
100
150 | 145
80
90
90
110 | 175
130
140
95
110 | 135
160
200
110
125 | 165
205
325
120
110 | 190
170
425
140
130 | 170
210
400
125
135 | 165
275
370
120
225 | 165
175
355
90
275 | 155
165
255
75
225 | 140
150
195
100
110 | 110
195
120
85 | 175
155
125 | 175
195
145 | 175
135
120
220 | 120
110
110
155
125 | 115
165
110
145
85 | 148
135
109 | (21)
(24)
(24) | | 6
7
8 | 55 | 55 | 60
60
50 | 25
90
80 | 100
85 | 100 | 100 | 100
65 | 105
60 | 110
80 | 95
80 | 90
95 ⁺ | 85
125 ⁺ | 85
110 | 75
140 | 55
135 | 60
145 | 100
105 ⁺ | -10 ⁺
90 ⁺ | 170
70 | 160
100 | 125 | 150 | 75
120
55 | | | | 9
10 0a | 75
95 | 50
55 | 65
45 | 75
40 | 35
45 | 55
55 | 55 ⁺
40 | 50
40 | 60
50 ⁺ | 55 | 35 | 125
50 ⁺ | 135
80 | 110
100 | 115 ⁺
80 | 75 | 75 | 55 | 70 | 90 ⁺
55 | 95
75 | 90
80 | 55
80 | 105
80 | 63 | (24) | | | 80
120
100 | 75
110
90 | 55
75 ⁺
105
90 | 55
60
85
75 | 70
55
75
80 | 65
90 ⁺
70
80 | 70
120
70
90 | 115
120
80
85 | 105
135
85
80 | 95
140
95
75 | 80 ⁺
130
80 | 65 ⁺
125 ⁺
90 | 130 ⁺
110
85 | 135 ⁺
110
95 | 140 ⁺ 175 ⁺ 100 95 | 105 ⁺ 165 ⁺ 95 80 ⁺ | 80 ⁺
190 ⁺
90
105 ⁺ | 155 [†] 100 [†] 125 130 | 110
120
190
100 | 120
135
80 | 125
75 | 110
110
40 | 125
100
85 | 125
100
40 | 102 | (24) | | 15
16
17
18 | 65
85
50 | 75
90
45 | 60
60
45 | 65
30 | 60
65
20 | 70
80 | 80 | 70 | 70 | 100
100 ⁺ | 125
130 | 105 | 75 | 85
30 | 115
80 ⁺ | 100 | 95
55 | 90
95 ⁺
75 | 75
75
75 | 70
70 ⁺
80 | 75
75
85 | 85
85
85 | 80
70
85 | 100
105
80 | | | | 19
20 | | | 60
70 | 25+ | 10 ⁺ | 15+ | | | | 85 | 80 | 65 | 65 ⁺ | | 70 | 75 | 100 | 85 | 85 | 110 | 125 | 100 | 85 | 75 | | | | 21
22
23
24
25 | 85
30
40 | 65
25
35 | 75
25
60 | 65
20
60 | 60
30
40 | 60
25
55 | 60
30
50 | 60
45
55
65 | 60
15
75 | 60
100 | 75
100 | 60 | 80
65 | 70
75
100 ⁺ | 80
65
70
85 | 95
80
90 | 80
80
90
110 | 95
55 | 75
125
80 | 55
95
70
30 ⁺ | 45
120
60 | 40
100
30 | 35
100
50
55 | 35
60
75 | | | | 26
27
28 | 30
75
50 | 55
95
60 | 60
75
40 | 75
65 | 80
65 | 55
65 | 75
50
100 | 55
80 | 55
70 | 90 | 110 | 135
105 | 140
120 | 140 | 105+ | 105 | 90
65 | 55
55 | 75
35 | 55
40 | 70
4 0 | 75
30 | 85
65 | 80
45 | | | | Mean (| 88
(20) | 80
(20) | 73
(25) | 70
(22) | 70
(22) | 75
(20) | 78
(19) | 79
(20) | 81
(19) | 102
(18) | 109
(17) | 120
(17) | 131
(18) | 127
(18) | 131
(21) | 126
(19) | 114
(21) | 103
(20) | 94
(20) | 93
(20) | 102
(18) | 97
(19) | 92
(21) | 90
(22) | 97 | | | Fair
Weather
Mean | 88
(20) | 80
(20) | 73
(24) | 73
(21) | 72
(21) | 78
(18) | 79
(18) | 79
(20) | 83
(18) | 102
(17) | 111
(16) | 131
(13) | 135
(15) | 128
(16) | 133
(16) | 128
(16) | 112
(18) | 101
(16) | 101
(17) | 98
(17) | 102
(18) | 97
(19) | 92
(21) | 90
(22) | 99 | | The potential gradient is reckoned as positive when the potential increases upwards. The small [†] denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for 0a days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. | 35 ESKDALEMUIR | Factor 2:20 | MARCH 1 | 1965 | |----------------|-------------|---------|------| | | | | | | | Hour (| GMT | | | | | | | | | | | T | | | | | | | | | | | | 1 | | |----------------------|-----------------------|-------------------------|-------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------|-------------------------------|------------------------------|------------------------|--------------------------------|--------------------------------|-------------------------------------|------------------------------|-----------------------------|-----------------|-----------------------------|------------------------------|---|--|------|------| | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | n | | | 1 | | | | | | | - | | | vo | Its per | metre | | | | | | | | | | | | | | | 1
2
3
4 | 85
180 | 80
155
150 | 75 | 65 | 70
105 | 70
90 | 80 | 85 | 105 | 125 | | 125 | 190 | | | 375 | 175
385 | 160
225 | 180
180 | 215
175 | 220
190 | 160
125
145 | 130
90
150 | 130
175 | | | | 5 | ŀ | | | 175 | 155 | | 160 | 135 | 135 | | 245 | 280 | 295 | 355 | 315 | 285 | 190 | 160 | 140 | 130 | 130 | 70 | 100 | 140 | | | | 6 0a
7
8 | 110
60 | 95
75
70 | 65
55 ⁺
20 | 75
30 ⁺
15 | 95
80 ⁺ | 130
20 ⁺ | 155 | 175
30 ⁺ | 155
35 ⁺ | 150
95 ⁺ | 140
150 ⁺ | 155
65
150 ⁺ | 130
80
95 ⁺ | 130
95 ⁺ | 95
65
95 | 75
160 ⁺ | 85 | 90
55 | 165 | 60
30+
80 | 65
100
10 | 75
105
105 | 80
70 | 80 | 105 | (24) | | 9
10 | 30 | 30 | 30 | 40 | 35 | 40 | 20 | 30 | 50 | 65 | 155 | 170 | 140 | 135 | 130 | 185 | 130
110 | 80
35 ⁺ | 65
45 ⁺ | 65
35 ' | 50
45 [†] | 30
20 ⁺ | 15
20 ⁺ | 35
40 ⁺ | | | | 11
12
13 | 35
35 | 40
30 | 55
30 | 55
30 ⁺
30 | 40
35 ⁺
35 | 45
40 ⁺
40 | 50
55
45 | 40
50
45 | 90
45
65 | 100
80
50 | 95
100
75 | 130
130 | 155
100 | 145
100 | 140
90
45 | 125
80
50 | 90
40
55 | 45
30 | 35
70 | 30
25
45 | 20
55 | 55
35 | 45
30 | 40
25 ⁺ | | | | 14
15 | 33 | 30 | 30 | 30 | 33 | 40 | 43 | 73 | 03 | 30 | | | | | 43 | 30 | 33 | | | 43 | | | | 110 | | | | 16
17
18 | 110+ | | 85 ⁺
105 ⁺ | 115 ⁺ | 145+ | 145 ⁺ | 140 ⁺ | 80 [†]
175 [†] | 115+ | 80 ⁺
115 ⁺ | 105 ⁺ | 115+ | 195+ | 135 [†] | | 105 | 65 [†]
130 [†] | 190 + | 225+ | 130 '
190 ' | 210 * | | 135 | 75
65 | | | | 19
20 | 80 | 75 | 55 | 65
70 ⁺ | 65 | 85 | 95
25 | 90
65 | 105
65 | 110 ⁺
75 | 95⁺ | 90 ⁺ | 55 | 65 | | | | | | | | | | | | | | 21
22
23
24 | | | | | | | | 60 | 75 | 75 | 80 | 90 | 75 | 65 | 60 | 75 | 45 | 40 | 60 | 70 | 80 | | | | | | | 25 | | 65 | 120 | 190 | 155 | 110 | 90 | 115 | 145 | | 100 | 70 | | | 145 | 160 | 100 | | | | | | | | | | | 26
27 | | 75 | 105 ⁺ | 160 ⁺ | | | | 1701 | 30 [†]
130 [†] | 110 | | 45 [†] | • | 45 [†] | 40 ' | 30* | 70 [*] | + | 4 | | | 4 | | | | | | 28
29
30 | 30
45 ⁺ | 40
15 ⁺ | 40
45 ⁺ | 30
25 ⁺ | 25 | 25
5 ⁺ | 30
25 | 45
45 | 85
85 | 180
80 | 215
105 | 225
125 | 100 T
180
155 | 145
195
180 | 135 [†]
165
150 | 115 ⁺
150
140 | 75 155
185 | 40 [†]
80
235 | 90 [*]
55
35 | 40
85 | 15 [†]
30
85 | 20 ⁺
25
125 | 30 [†]
25 [†]
120 | 25 [†]
10 [†]
35 | | | | 31 | -15 ⁺ | -25 ⁺ | 10+ | 40 ⁺ | 100+ | 145 | 100 | 130 | 100 | 70 | 85 | 135 | 160 | 170 | 175 | 160 | 130 | 45 | 40 | -30+ | -35 ⁺ | -30 ⁺ | -15 + | -5 ⁺ | | | | ean | 65
(12) | 65
(15) | 60
(15) | 71
(17) | 81
(14) | 71
(14) | 76
(14) | 87
(18) | 90
(18) | 97
(16) | 129
(16) | 131
(16) | 141
(16) | 148
(15) | 138
(16) | 142
(16) | 123
(18) | 101
(15) | 99 (16) | 81
(17) | 82
(17) | 71
(15) | 68
(15) | 65
(15) | 95 | | | ir
eather | 72
(9) | 75
(13) | 54 (9) | 74
(10) | 78
(10) | 78
(10) | 72
(13) | 79
(14) | 93
(14) | 95
(11) | | 142
(12) | 143
(13) | | 158
(12) | 152
(11) | 136
(13) | 104
(12) | 95
(13) | 89
(11) | 89
(13) | 88
(12) | 83
(10) | 89
(10) | 101 | | ### POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | | | | | | | | | | | | | гас | tor 2.2 | | | | | | | | | | | APR | IL 196 | 5 | |-----|------------------------|-----------------|-----------------|------------------|-----------------|-----------------------|-----------------|------------------|------------------------|-----------------|------------------|------------------------------------|------------------------|------------------|------------------------|-----------------------|-----------------|------------------|-----------|-----------------|----------|-----------------|------------------|-------------------------------------|--------|-----| | - 1 | Hour C | EMT | 1 | 0-1 | 1-2 | 2-3 | 3-4 |
4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16 - 17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mea | n | | | | | | | | | | | | | | | metre | | | | | | | | | | | | | | | | 30 | 10 | 40 | 45 | 45 | 55 | 60 | 75 | 90 | 95 | 100 | 145 | 185 | 205 | 125 | 115 | 115 | 80 | | | 0, | 35 | 25 | 15 | | | | 2 | 30 | 25 | 15 | 45 | 45 | 60 | 60 | 110 | 115 | 70 | 110 | 185 | 160 | 115 | 85 | 45 | 40 | 5 | -5 | 30 | 15 | 55 | 50 | 40 | | | | : 1 | 5 | 30 | 65 | 55 | 60 | | | | | 140 | 80 | 110
110 | 180
110 | 165
125 | 95
125 ⁺ | 85
105 | 125
105 | 135
85 | 65
65 | 35
55 | 35 | 75 | 75 | 80 | | | | | 55
35 | 90
40 | 40 | 45 | 35 | 35 | 50 | | | | | 50 | 60 | 45 | 123 | 105 | 70+ | 40 | 55 | 45 | 60
30 | 60
30 | 55
40 | 45
50 | | | | - 1 | 33 | - | | 45 | 55 | - | | | | + | 25+ | | | | | | | | - " | | 0., | 0.0 | • | 0.0 | | | | | 30 | 40 | 30 | | | | | | | 135 + | 35 * | 75 ⁺
70 ⁺ | 100 ⁺ | 115 [†] | 120
60 ⁺ | 90
85 ⁺ | 95* | -15 [*] | 85 | | | | | 25+ | | | | ł | 4- | 20 | | | | | | | | | | 70 | 90 | 90 | 60 | ชอ | 150 | 130
110 | 60
100 | 55
75 | 75
75 | 65
80 | 75
85 | 25
85 | | | | ; | 45
85 | 30
80 | 70 | 75 | 70 | 60 | | | | | 105 | 140 ⁺ | 115* | | | | 130 | 110 | 100 | 7.5 | 7.5 | 70 | 63 | 63 | | | | . | 63 | 80 | , 0 | , 3 | , 0 | • | 150+ | 145 ⁺ | | | | | | | 110 | 105 | | | | | 95+ | 120 | 145 | 120 | | | | | 05+ | 105+ | 75+ | 00+ | 60 | 70 ⁺ | 60 ⁺ | 55 ⁺ | 70 ⁺ | | 90 ⁺ | | | | | | | | | | | | | 155 | | | | . | 95 ⁺
145 | 125 | 75 ⁺ | 90⁺ | 60 | 70 | 00 | 110 ⁺ | 115+ | | 30 | | | | | | 180 | | | 190 | 200 | 190 | 160 ⁺ | 155 | | | | | 110 | 85 ⁺ | | | 85 | 85 | | ••• | 115+ | 135+ | 295 ⁺ | | 125+ | | 110* | 130 | 125 | 125 | 110 | 110 | 130 | 90 | 55 | 60 | [| | | . | 55 | 50 | 30 | 45 | 55 | | | | | | | | İ | | | | | | | | | | • | • • | 1 | | | 0a | | - | 125+ | | | | | | | | 125+ | | | | | | | | | 185 | 205 | 175 | 140 | 130 | 155 | (7 | | | 110 | 75 | 85 ⁺ | 65 | | | 125+ | 115+ | 100* | 90 ⁺ | 115+ | 120 | 115 | 90 ⁺ | 65 | 60 | | | | | | | | | | | | İ | 110 | 75 | 0.5 | 05 | | | | | 100 | 80 ⁺ | | | | | | | 90 ⁺ | | | | | | 155 | 130 | | | | | 135 | 125 | 110 | | | 100 | 105 | 105 | 100 | | | | | | | | | | 150 | 145 | 140 | 125 | | | | | | İ | 110 | 110 | | | | 110 | | | | | • • • • | | 125 | 250 ⁺ | | | | | | | | | 180 | 150 | | | | 0a | 130 | 120 | 100 | 115 | 100 | 110 | 135 | 150 | 145 | 130 | 100 | 105 | 1 45 | 150 | 125 | 115 | 140 | 130 | 105 | 80 | 55 | 60 | 50 | 50 | 110 | (24 | | | 55 | 40 | 50 | 50 | 60 | 50 | 75 | 95 | 90 | 85 | 90 | 90 | 90 | 85 | 95 | 105 | 90 | 70 | 60 | 20 | 25 | 40 | 45 | 30 | | | | 1 | 40 | 40 | 35 | 35 | 50 | 40 | 65 | 105 | 90 | 80 | 105 | 95 | 110 | 120 | 115 | 120 | 125 | 115 | 70 | 55 | 10 | 20 | | | | | | | | | | | | | 30 | | | 85 ⁺ | 75 ⁺ | 60 ⁺ | 75 ⁺ | 80* | 120 | 115 | 165 | | | 95 | 75 | 75 | 110 | 55 | | | | | 60 | 70 | 55 | 50 | 80
60 | 85
60 | 100
85 | 95
90 | 115
90 ⁺ | 85 | 90+ | 90 | 95+ | 75 ⁺ | 50 ⁺ | | | | | 65 ⁺ | 0.5 | 30 ⁺ | 40 | 55 | | | | | 60 | 5 5 | 65 | 75 | 60 | 80 | 03 | 90 | 30 | 20 | 90 | 90 | 93 | /5 | | | | | | | 85 | 40 | 65 | | | | | | | | | 80 | | | | | | | | | | | 40* | | | | | | | | | 120 | | | | 1 | 80 | 80 | | | 50 ⁺ | 45+ | 70 ⁺ | | | | | | | 115 | | 95 [†] | | | | 70 | 100 | 9 5 | 95 | 95 | | | | | 120 | 75 | 60 | 55 | 50 ⁺ | 45 ⁺
65 | 70
60 | | | | | 210 | 175 | 105 | | 70 ⁺ | | | 100 | 0.5 | 05 | 110 | 75 | 45 ⁺
180 ⁺ | | | | 0a | 195+ | 115+ | 120+ | 160 ⁺ | 120 | 145 | 105 | 90 | 90 | 70 | 75 | 70+ | 175
70 ⁺ | 70+ | 70 ⁺ | 65 ⁺ | 65 | 55 | 100
45 | 85
40 | 85
35 | 110
50 | 90
55 | 40 | 84 | (24 | | Ua | 193 | 113 | 120 | 100 | | | | | | | | , , | , , | , , | | 50 | 00 | 00 | | ,, | 55 | 50 | 33 | 10 | 04 | (27 | | | 79 | 69 | 65 | 68 | 64 | 73 | 83 | 103 | 102 | 98 | 106 | 108 | 118 | 118 | 94 | 94 | 112 | 82 | 76 | 80 | 77 | 77 | 85 | 80 | 88 | | | | (23) | (22) | (18) | (16) | (10) | (10) | (16) | (13) | (14) | (13) | (13) | (10) | (18) | (17) | (10) | (10) | (15) | (13) | (14) | (18) | (20) | (21) | (22) | (22) | | | | | 73 | 62 | 55 | 60 | 65 | 73 | 77 | 102 | 104 | 94 | 94 | 120 | 138 | 124 | 105 | 98 | 119 | 90 | 82 | 81 | 80 | 79 | 81 | 79 | 89 | | | her | | | | | (15) | | (12) | (9) | (8) | (8) | | (10) | (8) | | | (10) | | | | (17) | (18) | (20) | (21) | | ~ | | | | (/ | () | , | ` ′ | | | | | | | | | | | | | | | | . , | . / | , | , | / | | | Mean of 0a days [116 (3)] The potential gradient is reckoned as positive when the potential increases upwards. The small *denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for 0a days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. 35 ESKDALEMUIR Factor 7·39 to 28th then 2·19 MAY 1965 | 35 | ESKDALE | MUIR | | | | | | | | | Factor | r 7·39 | to 28th | n then | 2.19 | | | | | | - | | | | MAY 19 | 65 | |----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|------------------------|------------------------------------|-------------------------------------|--|-------------------------|------------------------------------|------------------------|-------------------------------------|--|--|-------------------------------------|--|------------------------------------|--|-----------------------------|-----------------------------|------------------------------------|----------------------|--------|------| | | Hour | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7 -8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Me | an | | 1 2 | 20 20 | 30
30 | 30
15 | 30
15 | 5 | 105
35 | 140 | 100 | 100
15 | 105 | 75 | Its per
55 | #etre
40
50 | 55 | 50
45 | 55 | 55 | 55 | 65 | 5.5
5 | 40
25 | 20 | 5 | 25 | | | | 3
4
5 | 50 | 40 | 40 | 40 | 80 | 120 | 60 ⁺ | 15 | 10 | 15+ | 40 ⁺ | 65 ⁺
55 ⁺ | 70 ⁺ | | | 30 ⁺ | 70 ⁺
75 ⁺ | 85 ⁺
35
85 ⁺ | 85 [†] | 60 ⁺
75
85 ⁺ | 60
60
80 ⁺ | 40
50
50 ⁺ | 35
55 | 50 | | | | 6
7
8 | 75
25 ⁺ | 85
75 ⁺ | 65 | 85 | 70 | 55 | 50 | 55 | 35 ⁺
245 ⁺ | 60 [†]
150 [†]
75 [†] | 65
120 ⁺ | 65 ⁺ | | | | | | | | 135 ⁺ | 70 ⁺ | 120 | 65 | 50 | | | | 9
10 | 115 | 105 | 90 | 50 | 100 ⁺ | 105 | 90 ⁺
105 | 90+ | 80 | 100 ⁺
75 ⁺ | 80+ | 55 | 55 | 70 | 75 ⁺ | 95 | 80 | 85 | 65 | 165 ⁺
45 | 35 | 20 | 125
50 | 130
30 | | | | 11
12
13 | 25
10 ⁺ | 30
30 ⁺ | 55
25 ⁺ | 40
40 ⁺ | 60
15 ⁺ | 70
50 ⁺ | 75
45 ⁺ | 100
105 | 115
100 ⁺
75 | 130
145 | 165
150 | 200 ⁺ | 85 ⁺ | 85 ⁺ | 115 | 50 ⁺ | 155 | 80 ⁺
130 | 75 ⁺
50
75 | 30
20
10 | 45
15 ⁺
50 | 70
30 ⁺
35 | 110
25 ⁺
30 | 55
5 ⁺ | | | | 14
15 | 10 | 25 | 40 | 45 | 45 | 85 | 100 | 145
280 ⁺ | 160
90 ⁺ | 155 | 180
115 ⁺ | 185
85 ⁺ | 130
65 ⁺ | 130
55 ⁺ | 120
85 ⁺ | 155 ⁺
90 ⁺ | 130
90 ⁺ | 130 ⁺
115 ⁺ | 70 ⁺
85 ⁺ | 50
70 ⁺ | 50 | 33 | 50 | 55 ⁺ | | | | 16
17
18 | | | | 40+ | | | | | | 75 ⁺ | 100 ⁺ | 100 ⁺ | 45
85 ⁺ | 85 ⁺ | | | 45 ⁺ | 15 ⁺ | | | 55 | .40 | 45 | 40 | | | | 19
20 0a | 35
35 | 40
45 | 55
35 | 45
40 | 40
30 | 50
40 | 6 5
55 | 70 ⁺
110 | 45 ⁺
120 | 95 ⁺
120 | 110
120 | 65 ⁺
120 | 80 ⁺ | 75 ⁺
120 ⁺ | 70 ⁺
115 ⁺ | 55 ⁺
105 ⁺ | 45 ⁺
110 ⁺ | 20
110 | 10
110 | 25
50 | 5
55 | -5 ⁺ | 15
40 | 5
30 | 79 | (24) | | 21 | 20 | 25 | 15 | - | - | | | | | | - | - | 100+ | | | | | | | | - | - | - | - | | | | 22
23
24
25 | 105
50 | 130
75 | 35
195
40 | 260 | 260
90 | 55
255
100 ⁺ | 285
130 | 220 | | | | 130 ⁺ | 180+ | 75 ⁺ | 100+ | 45 ⁺ | | 55
85 ⁺ | 50 ⁺ | 15 ⁺
50 ⁺ | 50
45 | 50 | 70
40 | 90
45 | | | | 26
27
28 | 80 | 85
50 | -90 ⁺ | 60 ⁺ | 75 | 45
60 | 75
65 ⁺ | 75 ⁺
70 ⁺ | 70 ⁺ | 60 ⁺ | 50 ⁺ | -
70 ⁺ | _
60 ⁺ | _
35 ⁺ | 125 ⁺
-
40 ⁺ | 170 ⁺
-
20 ⁺ | 155 ⁺
-
30 | 135+ | 20 ⁺ | 50+ | 20+ | 30 ⁺ | 40 ⁺ | 40 | | | | 29
30 | 40
-5 ⁺ | 55 +
20 | 45 ⁺
35 | 0 ⁺
25 | 5 ⁺
30 | 5 ⁺
30 | 5+
50+ | 15 ⁺
70 ⁺ | 20
65 ⁺ | 60
60 | 80 ⁺
45 | 105
35+ | 120
35 | 120 ⁺
60 | | 115
30 ⁺ | 105
20 | 105
80 | 75
115 | 60
120 | 35
145 | 30
150+ | 40 ⁺
40 ⁺ | 20
60 | | | | 31 | 60 ⁺ | 40+ | 30 ⁺ | 40 | 55 | 65 | 65 | 75 | 55 | 45 | 40 | 35 | 50 | 60 ⁺ | | 80 ⁺ | 85 | 85 | 95 | 85 | 80 | 60 | 30 | 30 | | | | lean | 43
(18) | 53
(19) | 43
(19) | 53
(16) | 64
(15) | 74
(18) | 86
(17) | 100
(16) | 82
(17) | 88
(18) | 94
(17) | 94
(18) | 84
(18) | 83
(14) | 85
(13) | 83
(15) | 83
(15) | 84
(19) | 69
(17) | 60
(21) | 51
(19) | 51
(17) | 48
(18) | 45
(17) | 71 | | | air
eather
ean | 49
(14) | 54
(15) | 54
(15) | 60
(12) | 70
(12) | 78
(15) | 104
(11) | 103 | 75
(10) | 103 (8) | 106 | 100 (7) | 66
(8) | 89
(5) | 90
(5) | 104
(4) | 83
(8) | 76
(10) | 73
(9) | 48 (13) | 52
(15) | 50
(12) | 51
(14) | 47
(15) | 74 | Mean | of Oa | days | [79 | (1)] | POTENTIAL GRADIENT (close to the ground, over an
open level surface). Mean values for hours without hydrometeors and for fair weather hours | 35 E | SKDALEN | (UIR | | | | | | | | | | Fac | tor 2. | 19 | | | | | | | | | | JUN | E 196 | 55 | |------|------------------------------|--|---|---|---|---|----------------------------|-----------------------------|---|--|---|--|---|--|---|--|---|---|--|--|--|---|--|--|-------|----| | | Hour C | MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6 - 7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Me | an | | 1 | | | _ | _ | _ | | | | | | | lts per | | | | | | | | | | | _ | | | | | | 50
5+
0+
15 | 40
0 ⁺
0 ⁺
15 | 25 ⁺
0 ⁺
0 ⁺
5 ⁺ | 95 [†]
5 [†]
5 [†]
5 [†] | 45 [†]
0 [†]
5 [†]
5 [†] | -5 ⁺
5 ⁺
30 | 15
60
50 | 30
45
50 | 40
50
80 | 70
45 ⁺
95 | 65 ⁺
50
60 ⁺
110
395 ⁺ | 60 ⁺
40
5 0
105
135 ⁺ | 75 ⁺
45
30 ⁺
95 | 65 [†]
30
35
80
130 [†] | 75
45 ⁺
40
80
50 ⁺ | 55 [†]
25
30 [†]
95
30 | 50
40
50 ⁺
105
45 | 50
40
45
95
60 | 45
35
40
105
30 | 30
30
20
80
0 ⁺ | 20 ⁺
20 ⁺
10 ⁺
-5 ⁺ | 15 ⁺
5 ⁺
5 ⁺ | 10 ⁺
0 ⁺
15 ⁺
0 ⁺ | -5 ⁺
0 ⁺
15 ⁺ | | | | | 45
30 | 30 | 45 | 40 | 50 | 50
50 | 0 ⁺
70
60 | 20 ⁺
75
65 | 55 ⁺
205 ⁺
60 | 80 [†]
135 [†]
60 [†]
50 | 50 ⁺
60
60
55 | 45 ⁺
50
65 ⁺
45 | 45 ⁺
60
60 ⁺
50 ⁺ | 75 ⁺
45 ⁺
55 ⁺
60 ⁺ | 85 ⁺
110 ⁺
40
60 ⁺
50 ⁺ | 70 ⁺ 60 55 ⁺ 45 ⁺ | 15 ⁺ 50 40 ⁺ 30 | 0 ⁺
80
40 ⁺
45 | 35
95
45
60 | 40
75
35 ⁺
50 | 35
40
30
10 | 20 ⁺
50
20
20 | 20
60
25
20 | 20
45
30
15 | | | | | 20 | 20 | 15 | 15 | 15 | 30 | 55 | 65
245 ⁺ | 90
135 ⁺ | 95 | 115 | 100
80 ⁺ | 95+ | 70
95 ⁺ | 75
95 ⁺ | 115
80 | 50
15 ⁺
90 | 75
40 ⁺
85 | 85
80 | 85
40 | 40
35 | 40 | 25 | 25 | | | | | 10+ | 5+ | | | | | | | 85 | 110+ | 95 ⁺ | 80+ | 105 | 135 | 105 | 95 | 20+ | 190+ | 90 ⁺ | 70 ⁺ | 65 ⁺ | | | 95+ | | | | | 30 ⁺ | 15 ⁺ | | | | | | | 120 ⁺
25 ⁺
150 ⁺ | 95 ⁺
25 ⁺ | 45 ⁺ | 100 ⁺
40 ⁺ | | 85 ⁺ | 60 ⁺
105 ⁺ | 60 ⁺ | 60 ⁺ | 75
15 ⁺ | 75
10 ⁺ | 75
10 ⁺ | 75 | 60 | 75 | 40
95 ⁺ | | | | ļ | 140 | 105 | 100 | 100 | 80
120 ⁺ | 180 ⁺ | 165 ⁺ | 160
125 ⁺ | 90
105 ⁺ | 90 ⁺
175 ⁺ | | 90 | 90 | 75 ⁺ | 90 ⁺ | 75 ⁺ | 75 ⁺ | 90 ⁺ | 35 ⁺ | 35 ⁺ | | 165 | | 50 | | | | | 40
130 | 60 | 85
70
90 | 60
85 | 70
85 | 100
50
95 | 135 | 165 ⁺ | 85 ⁺ | 80 | 85 | 90 ⁺ | 225+ | 145 ⁺ | 55 ⁺
55 | 75 ⁺
55 ⁺ | 40 ⁺
40 ⁺
85 ⁺ | 65 [†]
25 [†] | 35 | 40
330 ⁺ | 70
175 | 60
165 | 90
15 | 90
10
150 ⁺ | | | | | | 115 | | | | | | | | | | | | | | | | | 90 | 45 ⁺ | 15+ | | 150+ | 290+ | | | | | 350
10 ⁺
80 | 215 ⁺
10 ⁺
75 | 105 ⁺
10 ⁺
90 | 60 ⁺ | 10 ⁺
55 ⁺ | 15 ⁺
-20 ⁺ | 35 ⁺ | 55 ⁺ | 65 ⁺ | 45 ⁺
30 ⁺
10 ⁺ | 80 ⁺
20 ⁺ | 40+ | 125+ | | 5 [*] | 90 ⁺
35 ⁺ | 100 ⁺
55 ⁺ | 45 [†]
55
115 [†] | 15 ⁺
45
50 ⁺ | 15 ⁺
45
85 ⁺ | 15 ⁺
25 | 10 ⁺ | 10 ⁺
95
130 | 10 [†]
75
150 | | | |)a | 170
105 | 135
95 | 75
95 | 95
85 | 125
100 | 145
135 ⁺ | 105
135 ⁺ | 100
80 | 115 | 120
120 ⁺ | 130
75 ⁺ | 150
10 ⁺ | 145
0 ⁺ | 140
-10 ⁺ | 125
105 | 125
115 ⁺ | 135
90 ⁺ | 145
75 | 115
55 ⁺ | 155 | 160 | 155 | 115
65 ⁺ | 75 ⁺ | 129 | (2 | | | 72
(17) | 58
(16) | 54
(1 5) | 54
(13) | 55
(14) | 61
(14) | 74
(12) | 91
(14) | 91
(17) | 81
(19) | 91
(17) | 72
(19) | 83
(15) | 77
(18) | 74
(22) | 69
(20) | 58
(22) | 67
(23) | 58
(22) | 63
(22) | 46
(18) | 53
(16·) | 51
(18) | 66
(21) | 67 | - | | ner | 98
(12) | 69
(10) | 74
(9) | 69
(7) | 75
(7) | 69
(8) | 6 9
(8) | 74
(9) | 76
(8) | 81
(7) | 83
(8) | 79
(8) | 90
(6·) | 82
(6) | 78
(9) | 78
(8) | 66
(9) | 71
(13) | 63
(16) | 59
(13) | 63
(11) | 79
(10) | 61
(11) | 56
(12) | 73 | of Oa | | [129 | | The potential gradient is reckoned as positive when the potential increases upwards. The small [†] denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for 0a days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. 35 ESEDALEMUIR Factor 7:39 to 5th then 2:24 TITT V 1065 | eather 20 (18) (14) (18) (19) (20) (18) (15) (11) (12) (9) (7) (9) (10) (12) (10) (11) (11) (12) (12) (11) (14) (20) (19) | 35 | ESKDALE | MUIR | | | | | | | | 1 | Factor | 7.39 | to 5th | then 2 | 24 | | | | | | | | | Jt | LY 196 | i 5 | |--|----------------------|-----------------------|-----------------------|----------|-----------|-----------------------|-----------------------------|-----------------------------|------------------------------|-------------------------------------|-------------------------------------|--|------------------------------|-----------------------|------------------------|------------------|------------------------------|-----------------------|-----------------------|-----------------|-----------------|---|--|----------------|----------------|--------|------------| | \$\begin{array}{c c c c c c c c c c c c c c c c c c c | | | | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mes | an | | 7 | 2
3
4 0a | 60
35 | 20 ⁺
45 | 40
45 | 70
35 | 10 ⁺
35 | 15 ⁺
35
35 | 10 ⁺
60
85 | 10 ⁺
100
55 | 15 ⁺
120 ⁺ | 30 ⁺
135 ⁺ | 135
70 ⁺
100 ⁺ | 120
60 ⁺
70 | 75
65 ⁺ | 70 ⁺ | 60 ⁺ | 55 ⁺
130
80 | 25 ⁺
50 | 25 [†]
70 | 20 ⁺ | 15+ | 15 [†]
10 [†]
15 [†] | 20
10 ⁺
10 ⁺ | 35
35
50 | 65
40
90 | 56 | (22) | | 12 | 7
8
9 | 50
85
130 | 40
80
120 | 75
85 | 65
125 | 95
125 | 195
135 | 160
135 | 110
165 | 85 ⁺ | 120 | | | | | 85 | 75
⁺ | | | | 90 | 80 | 85 | 55
140 | 60
120 | 93 | (14 | | 14 | 12 | 50 | | 30 | 30 | 40 | 105 | 140 | 140 | 90 | 115+ | 120+ | 120+ | 85+ | | 100 ⁺ | | | | | | | | 85 | 160 | | | | 18 | 14 | 25 | 30 | | 15 | 15 | 30 | 55 | 85 | 100 | 80 | 65 | 100 | | 95 | 115 | | | | | 120 | 30 | | | | | | | 21 | 17
18
19 | 85
120
40 | | | | 30 | 90 | 145
75 | 105
80 | 35 ⁺
70 | 5 ⁺
60 | 15 [†] | 10 ⁺ | -15 ⁺ | 30 ⁺
110 | 50
120 | 55
110 ⁺ | 60
85 | 55
80 | 60
85 | 80
90 | 100
120 | 50
90 | 45 | 40 | | | | 225 75 75 76 75 76 76 76 76 76 76 76 76 76 76 76 76 76 | 21
22
23 | 20
15 ⁺ | 20 ⁺ | 125 | | 55 | 40
50 ⁺ | 65
55 ⁺ | 60 ⁺ | 55 ⁺ | 75 | 65 | 60 ⁺ | | 50 ⁺ | | 60 ⁺ | 55 ⁺ | 30 ⁺ | 10+ | 10 ⁺ | 20 ⁺
30 ⁺ | 15 ⁺
10 ⁺ | 5+ | 10 | | | | 29 170 275 275 225 185 170 225 230 250 210 ⁺ 140 ⁺ 135 ⁺ 100 ⁺ 110 90 70 100 100 140 120 110 90 90 65 153 131 40 40 55 60 90 135 120 ⁺ 130 ⁺ 100 ⁺ 130 ⁺ 100 ⁺ 120 ⁺ 110 120 120 110 70 90 60 153 120 ⁺ 130 ⁺ 120 12 | 25
26
27 | 123 | | | 15 | 50 | 225
105 | 195 | 185+ | 140+ | 120+ | | 160 ⁺ | 150 ⁺ | 140 ⁺ | 125+ | 110+ | 80 ⁺ | | 75 ⁺ | | | | | • | | | | ean 67 65 72 67 66 92 101 104 99 95 93 85 82 95 78 76 74 72 73 64 51 51 68 70 77 (21) (20) (15) (18) (20) (23) (23) (22) (20) (20) (18) (15) (17) (17) (17) (20) (18) (17) (17) (19) (21) (22) (23) (23) (23) (23) (23) (23) (23 | 29 | 170 | 275 | 275 | 225 | 185 | 170 | 225 | 230 | 250 | 210+ | 140 ⁺ | 135+ | 100+ | 110 | 90 | 70 | 100 | 100 | 140 | 120 | 110 | 90 | 90 | | 153 | (24) | | ean (21) (20) (15) (18) (20) (23) (23) (22) (20) (20) (18) (15) (17) (17) (17) (20) (18) (17) (17) (19) (21) (22) (23) (23) (23) (23) (23) (23) (23 | 31 | 40 | 40 | 55 | 60 | 90 | 135 | 120+ | 130+ | | | | | | | | 100+ | 120+ | 110 | 120 | 120 | 110 | 70 | 90 | 60 | | | | eather (20) (18) (14) (18) (19) (20) (18) (15) (11) (12) (9) (7) (9) (10) (12) (10) (11) (11) (12) (12) (11) (14) (20) (19) (20) (20) (20) (20) (20) (20) (20) (20 | ean | 77 | | | | air
eather
ean | 86 | | | | | | | | | | | | | | | ~ | | | | | | | | | | | Mean | of Oa | days | [101 | (3) | POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | 35 E | SKDALE | MUIR | | | | | | | | | | Fa | ctor 2 | 26 | | | | | | | | | | AUGU | ST 196 | 5 | |-------------------------------|-------------------------|-------------------------|----------------------|-------------------------|-------------------------|--|------------------------------|-------------------------------------|--|---|--|---|---|--|---|--|--|---|---|--|---|-----------------------------|------------------------------------|--|----------|--------------| | | Hour (| CMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Meas | 1 | | 1
2
3 0a
4
5 | 10
65
15 | 5
95
20 | 5
90
20 | 90
10 | 85
5 | 65
15 | 120
105 | 145
135 | 120
60
175 ⁺ | 120 ⁺
100
140 ⁺ | 130 ⁺
110 ⁺
150 ⁺ | lta per
125 ⁺ | 100 ⁺ | 100 ⁺
95 ⁺ | 95 ⁺
105 ⁺ | 100 ⁺
50 ⁺
85 ⁺
45 ⁺ | 105
120 ⁺
60 ⁺ | 180 ⁺
115 ⁺
60 ⁺ | 100
125
90 ⁺ | 105
105
60 | 120
110
65 | 70
40 ⁺
65 | 20 ⁺
60
35 | 5 ⁺
70
20 | 96. | (24) | | 6
7
8
9 0a
10 | 55
65
120 | 65
160 | 90 | 135 | 115 | 75 ⁺
120 ⁺
75
205 | 85 ⁺
40
170 | 95 ⁺
60
115
270 | 125 ⁺
65
135
165 | 85
145 ⁺
140 | 135 ⁺ 120 ⁺ 140 ⁺ 60 | 90 ⁺
125 ⁺
35 | 125 ⁺
85 ⁺
100 ⁺ | 145 ⁺ | 75 ⁺
70 | 60 ⁺
85 ⁺
95
80 | 120 ⁺
75
65 | 80 ⁺
85
75 | 75 ⁺
70
75 | 40 [†]
35 [†]
35
75 | 230
30 ⁺
5 ⁺
110
55 | | 165
5 ⁺
100
60 | 40 ⁺
0 ⁺
135
55 | 107 | (24) | | 11 0a
12 0a
13
14 | 55
65
75
55 | 55
65
75
65 | 70
55
85
75 | 65
90
60 | 75
110
80 | 95
185
35 | 80
185
105 | 125
140
115 | 90
185
165
50
95 | 75
170
175
15 | 135 ⁺
150
175
50
165 ⁺ | 150 ⁺
155
185
65
130 ⁺ | 120 ⁺
150
180
60
70 ⁺ | 90 ⁺
140
175
65
50 ⁺ | 85
120
95
50 | 65
95
125
30 | 60 ⁺
80
105
60 ⁺
90 ⁺ | 60
65
95 | 75
70
215
10 ⁺ | 70
40
160
55
50 ⁺ | 60
30
90 ⁺
20
85 | 70
35
55
60
75 | 90
50
110
40
95 | 85
80
70
95 | 82
93 | (19)
(24) | | 16
17 0a
18
19
20 | 240
85
165
185 | 85
180
190 | 80
150
185 | 60
155
125
170 | 65
135
155
210 | 100
165
305 | 80
230
360 | 105
245
345 | 35 ⁺ 195 195 ⁺ | 145
60 ⁺
170
155 | 180
185
145 | 110 ⁺
225 ⁺
195
145 ⁺ | 75
190 ⁺ | 75
155 ⁺
190
210
180 ⁺ | 45
125 ⁺
200
195
170 | 25 ⁺
180 ⁺
205 ⁺
145
150 ⁺ | 40
150
200 ⁺
120 | 205
165 | 180
160 ⁺
155 | 145
215 | 165
200 | 180
255
235 | 185
205
270 | 175
145
205
185 | 163 | (20) | | 21
22
23 0a
24
25 | 55
120
120 | 40
110
150
125 | 35
130
105 | 75
90
120 | 60
60
125 | 90
80
110 ⁺ | 80
145 ⁺ | 140 ⁺
95
180 | 110 ⁺
185 ⁺
150 ⁺ | 110 ⁺
60 ⁺
125 ⁺ | 85 ⁺
85 ⁺ | 80 ⁺
90 ⁺
105 ⁺ | 90 ⁺
60 ⁺
145 ⁺ | 90 [†]
120 [†] | 140 | 165 ⁺ | 145 ⁺
140 | 95 ⁺
80 ⁺
150
70 | 125 ⁺
50 ⁺
175
185 | 125 ⁺
50
130
170
110 | 125
55
145
220
90 ⁺ | 90
110
180 | 135
105
150 | 255
100
135 | 113 | (23) | | 26
27
28
29 | 105 | 75
90 | 95
75 | 50
75 | 110 ⁺
75 | 80
510 ⁺ | 90
345 ⁺
55 | 100
195+ | 100
175 ⁺ | 135 [†]
140
120 [†] | 100 ⁺
155
115 ⁺ | 95 ⁺
150
100 ⁺ | 90 ⁺
165
95 ⁺ | 120
195
125 ⁺
80 ⁺ | 115
130 | 120
120 | 120
125 | 115
155
100 ⁺ | 130
145 | 135
110 ⁺ | 120
150
115 ⁺ | 115
150
120 | 120
95 | 130
95 | | | | 30
31 | 85 | 85 | 125 | 80
140 | 130 | 00 | 33 | | 210 | 170 | 110 | 135 ⁺ | 60 | 80 | 150+ | | 130 ⁺ | 165+ | 120 | 120 | 200 | 175 | 185 | 165
100 | | | | ean | 95
(20) | 91
(19) | 86
(17) | 94
(17) | 97
(17) | 132
(18) | 142
(16) | 153
(17) | 133
(21) | 122
(21) | 128
(22) | 123
(21) | 110
(20) | 125
(20) | 116
(17) | 104
(21) | 105
(20) | 111
(19) | 113
(21) | 97
(22) | 108
(24) | 104
(24) | 106- | 107
(22) | 113 | | | air
eather
ean | 95
(20) | 91
(19) | 86·
(17) | 94
(17) | 97
(16·) | 111
(14) | 131
(13) | 155
(14) | 126
(13) | 128
(12) | 134
(9) | 131
(6·) | 106
(5) | 146
(8) | 118
(12) | 103
(10) | 102
(11) | 113
(11) | 124
(15) | 105
(17) | 119
(19) | 115
(21) | 115
(20) | 121
(19) | 115 | | | | | | | | | | | | | | _ | | | | | - | | | | | | Mean | of Oa | days | [109 | (6)] | The potential gradient is reckoned as positive when the potential increases upwards. The small * denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for Oa days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. 35 ESKDALEMUIR Factor 2.30 SEPTEMBER 196 | 35 E | SKDALE | MUIR | | | | | | | | | | F | actor | 2.30 | | | | | | | | | , | SEPTEMB | ER 196 | 5 | |--|-----------------------------|------------------------------|------------------
----------------------|-----------------------------|--------------------------------------|-------------------------|-------------------------|------------------------|--|--|---|--|---|--|--|------------------------------------|-------------------------------------|-------------------------------|---|-------------------------------|------------------|------------------|---------------------------|-----------------------|--------------| | | Hour (| GMT | T | | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mea | n
 | | 1 0a
2 0a
3
4 | 125
100
90 | 170
90
100 | 155
80
130 | 160
80
80 | 205
65 | 220
70 | 290
85 | 235
105 | 235 ⁺
90 | 170 ⁺
95 | 150 ⁺
105 | 185 ⁺
125
125 | 150 ⁺
90
50 ⁺
110 ⁺
35 ⁺ | 145 ⁺
80
75 ⁺
130 ⁺ | 105 ⁺
100 ⁺
120 ⁺ | 170 ⁺
90 ⁺
100
25 | 145 ⁺
100
105 | 130
95
100 | 105
75 ⁺
125 | 105
55 ⁺
70 ⁺ | 130
80
105 | 95
100 | 135
85 | 125
100 | 161
89 | (24)
(24) | | 6.
7
8
9 | 90
120
65 | 65
135 | 55
95
180 | 70
145 | 60
60
1 4 0 | 80
80
135 | 125
105 ⁺ | 180
105 ⁺ | 60
220 ⁺ | 65
175 ⁺
185 ⁺ | 150 ⁺
175 ⁺
95 | 150+ | 145+ | | 140 ⁺
110 | 120 ⁺
120 | 125+ | 65 ⁺
125 ⁺ | | 115
110 | 105 | 55 | 95 | 70
125 | | | | 10
11
12 0a
13 0a
14
15 | 60
155
90
50
65 | 100
210
90
55
55 | 70
60
40 | 90
55
50
30 | 85
105
55
55
25 | 90
55
65
30 | 85
90
45 | 85
100
65 | 120 | 80
150
85
90 | 90 ⁺ 110 ⁺ 95 90 ⁺ | 75 ⁺
85 ⁺
60
85 ⁺ | 55 ⁺
85 ⁺
95 ⁺ | 125 ⁺ | 75 ⁺
95 ⁺ | 135
90 | 85 ⁺
120
125 | 90 [†]
125
115 | 65 ⁺
50
135 | 65
40
135 | 80
45
115 | 80
40
125 | 95
40
110 | 85
50
85 | 74 ⁻
93 | (21)
(24) | | 16
17
18
19 0a
20 0a | 20
110
90 | 25
100
95+ | 15
65
80 | 15
75
95 | 20
80
130 | 15 ⁺
90
115 | 335 ⁺ 110 95 | 100 ⁺ | 15
65 ⁺ | 170 ⁺
20 ⁺
125 | 110 ⁺
10 ⁺
105 ⁺
160 | 125 | 130 ⁺
105 ⁺
165 ⁺ | 155 ⁺
135 ⁺
185 ⁺ | 150+ | 150+ | 125 ⁺ | 170 | 195 | 65
190
130 ⁺ | 30
185
150 ⁺ | 160
135 | 125
120 | 15 ⁺ 130 95 75 | 126
94 | (22)
(10) | | 21
22
23
24
25 | 235
355 | 170
285 | 150
290 | 150
235 | 110
220 | 115
145 | 125
110 | 135
175
295 | 90
230
180 | 140 ⁺
115
455 ⁺ | 90
250 | 150 ⁺
85 | 95 [†]
110 | 50 ⁺ | 90 | 130
190 | 140
110 | | 145 | 310 | 390 | 355 | 285 | 250 | | | | 26
27 0a
28
29
30 | 125
140 | 120
185 | 150
100 | 190
70 | 165
100
110 | 160
100
95
310 ⁺ | 200
90 | 100 | 180
135
215 | 180 ⁺
175 ⁺
160
135 | 130 ⁺
160 ⁺
90 ⁺ | 150 ⁺ | 130 ⁺
115 ⁺
50 ⁺ | 130 ⁺
115 ⁺ | 115 ⁺
110 | 110
105 | 80
95
135
90 ⁺ | 110
70
130
80 | 160
75
125
110 | 175
75
190 | 70
180 | 85
215
100 | 155
195
95 | 150
125
65 | 128 | (21) | | Mean | 116
(18) | 121
(17) | 106
(17) | 98
(17) | 98
(19) | 109
(18) | 131
(15) | 135
(13) | 138
(14) | 141
(20) | 119
(20) | 111
(17) | 101
(17) | 109
(15) | 109
(16) | 120
(16·) | 116
(15) | 108
(15) | 113
(16) | 122
(15) | 128
(13) | 129
(12) | 133
(13) | 107
(16·) | 117 | | | Pair
Weather
Mean | 116
(18) | 122
(16·) | 106 (17) | 98
(17) | 98
(19) | 103
(16·) | 118
(13) | 141 (11) | 129
(11) | 105 (11) | 133
(6) | 90 (3) | 100 (2) | 73
(2) | 91
(4) | 115
(10) | 112
(9) | 113
(10) | 120
(13) | 131
(12) | 126
(12) | | | | 113 | (7)] | Mean | of Oa | dave | [109 | | POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | 35 E | SKDALEN | UIR | | | | | | | | | | Fac | tor 2.5 | 39 | | | | | | | | | | остове | R 1965 | | |--|---|---|---|---|---|---|--|---|---|--------------------------------|---|--------------------------------|-------------------------------|--|--------------------------------|---------------------------------|--|---|--|---|--|---|---|---|--------------------------|--------------------------| | | Hour C | MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mea | 1 | | 1 2 3 | 70
105 | 85 | 140 ⁺ | | | 95 ⁺ | | | 265 ⁺ | 210 ⁺ | vo.
285 | 230 | metre | 215
150 | 155 | 185
160 | 230 ⁺
120
95 | 420
95
80 | 270
65 | 235
110 | 165 ⁺ | 135 ⁺ | 70 ⁺ | 100 ⁺
235 ⁺
80 ⁺ | | | | 5 | 80 ⁺ | 90
85 ⁺ | 35 ⁺ | 85 ⁺ | 125+ | 165 ⁺ | | 170 ⁺ | 65 ⁺ | 15+ | 110 ⁺ | 155
20 ⁺ | 155
100 ⁺ | 195
190 | 80
95 | 180 | 210
80 | 240 | | | | 65 | 65+ | 55+ | | | | 6
7
8 0a
9 0a
10 | 85 ⁺
85 | 105 ⁺
80 | 55 ⁺
75 | 60 ⁺
90 | 65 ⁺
95 | 70 ⁺
75 | 100 ⁺
80 | 180
90
90 | 175
85
70 | 140
75
105 | 100
95
95 | 105
100
105 | 115
95
115 | 120
130
150 | 130
135
170 | 135
155
180 | 130
180
160 | 145
230
95 | 155
275
115 | 155
295
135 | 180
300
65 | 170 ⁺
185
60 | 95 [†]
110
60 | 95 ⁺
85
60 | 137
132 | (17)
(24) | | 11 0a
12 0a
13
14 | 40
75
225 ⁺
80 | 30
65
155
75 | 40
65 ⁺
140
85 ⁺ | 45
75 ⁺
105
90 | 30
55 ⁺
80
60
155 ⁺ | 25
65 ⁺
85
65 | 100
70
90
50 ⁺
120 ⁺ | 100
70 ⁺
115 ⁺
35 ⁺
180 ⁺ | 90
85 ⁺
115 ⁺
210 ⁺ | 110
105
160 | 110
110
135
155 ⁺ | 115
130
120 ⁺ | 120
135
205 | 110
145
175 ⁺ | 100
130
110 ⁺ | 115
70
180 ⁺ | 75
90 ⁺
140 ⁺
95 ⁺ | 95
170 ⁺
115 ⁺ | 105
210 ⁺
90 ⁺ | 55 [†]
130 [†]
145 [†] | 50
75 ⁺
195 ⁺
225 | 70
160 ⁺
180 ⁺ | 150 ⁺
140 | 75
265
100 ⁺
180 | 79
118 | (24)
(24) | | 15
16
17
18 Oa
19 Oa
20 | 105
180 ⁺
145
85
115 | 90
115
110
115 | 65
170 ⁺
95
105
115 | 70
175
75
100
110 | 60
170
60
100
95 | 130
55
195
65
90
120 | , 55
210
65
115
130 | 60
270
75
120
155 | 70
225
85
130
200 | 55
185
130
125
195 | 40
155
110
130
230 ⁺ | 95
115
255 | 205
130
120
305 | 125
220
135
130 ⁺
270 | 285
150
120
260 | 215
165
135
140
230 | 165 ⁺ 215 110 165 105 | 155
140 ⁺
195
120
140
155 | 245
295
215
125
140
135 | 215
245
220
120
145
215 | 200 ⁺
200
135
120
205 | 185
225 ⁺
180
130
125
220 | 210
235 ⁺
180
100
125
305 | 165
220 ⁺
170
95
115
305 | 108
121 | (24
(24 | | 21 0a
22 0a
23
24 0a
25 0a | 260
135
95
175
80 | 295
130
95
170 ⁺
100 | 240
140
105
160 ⁺
80 | 260
125
105
110 ⁺
130 ⁺ | 210
160
105
95
110 ⁺ | 245
155
110
160 ⁺
115 ⁺ | 215
150
120
95 ⁺
115 | 295
165
130
95 ⁺
130 | 320
165
165
95
85 | 305
195
175
80 | 290
175
185
80 | 195
155
165
80 | 190
150
145
90
65 | 190
155
190
105
85 | 180
175
290
90
135 | 165
155
310
105
160 | 145
140
250
140
165 | 150
145
250
140
210 | 170
150
135
115
200 | 170
190
120
130
170 | 170
155
210
130
180 | 135 ⁺
135
240
100
160 | 140
105
285
100 | 140
115
255
90 | 211
151
114
134 | (24
(24
(24
(21 | | 86
27
28
19 | | 125+ | | 115+ | 105+ | | | 115+ | 115 ⁺ | 110+ | 45 ⁺ | 150+ | 180+ | 7 5 ⁺ | 105 | 95
170 ⁺ | 170
145 ⁺ | 185 | | | 140 | | | | | | | 31 | | 65 | 50 ⁺ | 70 | 6.5 | 95 | ean | 115
(20) | 109
(20) | 103
(19) | 106
(20) | 100
(20) | 110
(21) |
111
(17) | 132
(20) | 139
(21) | 138
(19) | 134
(20) | 136
(19) | 148
(20) | 155
(21) | 151
(20) | 156
(23) | 147
(24) | 167
(22) | 169
(19) | 168
(19) | 161
(20) | 152
(19) | 148
(20) | 143
(21) | 137 | | | air
eather
ean | 110
(15) | 106
(16) | 109 ·
(11) | 110
(14) | 99
(14) | 108
(14) | 117
(13) | 143
(13) | 140
(14) | 140
(15) | 140
(15) | 145
(15) | 149
(17) | 162
(17) | 153
(19) | 154
(21) | 147
(18) | 171
(19) | 171
(17) | 179
(16) | 161
(16) | 144
(13) | 159
(14) | 151
(14) | 140 | | The potential gradient is reckoned as positive when the potential increases upwards. The small [†] denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for 0a days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. Mean of Oa days [187 (7)] | 35 I | ESKDALE | MUIR | | | | | | | | | | | ctor 2 | | | | | | _ | | | | | NOVEMB | ER 196 | < | |---------------------------|-------------------|-------------------|-------------------|------------------------|------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------------|---------------------------------------|--|--|---------------------------------------|---------------------------------------|--------------------------|--------------------------------------|--------------------------|--------------------------|-------------------------|--------------------------------|-------------------------|-------------------------|-------------------|---------------------------------------| | | Hour | CMT | | | | | | | | | | | | | | | | | ********** | | | | | NOVERB | ER 190 | | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mea | n | | 1 | | 125+ | | | | | | | | | vo | its per | metre | | | | | | | | | | | | | | | 2
3 0a
4 0a
5 0a | 115
290
125 | 120
275
140 | 80
270
110 | 85
230
155 | 110
130
195 | 110
85
155
200 | 145
105
120
215 | 180
135
110
175 | 145
120
130
165 | 110
145
155
135 | 195
135
140 | 215 ⁺
165
105
135 | 210 ⁺
180 ⁺
115
145 | 155 ⁺
180 ⁺
130
135 | 170 ⁺
145
150
110 | 140 ⁺
145
195
130 | 185
125
175
120 | 190
200 ⁺
145
85 | 280
150
160
125 | 255
155
170
100 | 300
220
175
75 | 400
350
180
75 | 235
350
135
70 | 165
340
105
85 | 167
164
131 | (24)
(24)
(24) | | 6 0a | 70 | 75 | 70 | 70 | 75 | 130 | | | | | 235 | 105 | 90+ | 75 ⁺ | 135 | 175 | 185 | 220 ⁺ | | 185 | 150 | 110 | 60 ⁺ | | 159 | (22) | | 7
8
9 0a
10 | 135 | 105 | 130 | 130 | 145 | 190 | 410 | 425 | 160
42 0 | 240 ⁺
465 | 305 ⁺
300
75 | 320 ⁺
395
95 | 290
470
105 | 290
375
105 | 180
170
115 | 120
95 | 180
135
120 | 150
145
115 | 190
225
105 | 240
235
100 | 240
350
145 | 175
275 ⁺
200 | 145
155 | 145
120 | 268 | (21) | | 11
12 | 110
170 | 105
130 | 90 | 95 | 85
80 | 90 | 100 | 110 | 80 | 110 | | | 120 ⁺ | | | | 165+ | 165 | 210 | 235 | 190 ⁺ | 200
220 | 170 | 210
195 | | | | 13
14 Oa
15 Oa | 135
125
155 | 145
155
150 | 110
135
105 | 240
80 | 205
80 | 105
270
75 | 355
90 | 85 | 145
105 | 125 | 125 | 115 | 195
135 | 220
170 | 215
210 | 200
200 | 220
255 | 350
365 | 140
350
420 | 325 | 110
455 | 135
255
320 | 190
205
395 | 155
195
185 | 224
197 | (18)
(24) | | 16
17
18
19 | 105
85 | 175
100 | 170
60 | 145
20 ⁺ | 155
15 ⁺ | 125
60 ⁺ | 125
50 ⁺ | 135
30 | 135 | 155 | 110 | 200 | 175 | 185 | 190 ⁺ | | | | | | 80 ⁺ | | | 150 | | , , , , , , , , , , , , , , , , , , , | | 20 | | | | | | | | | | | | | | | 160 | | | 165 | 180 | 210 | | | | } | | | | 1 2 | | 125 | | | | 110 | 105 | 115 | 135 | | | 145 | 300 | 340 | 330 | 385 | 435 | 610 | 420 | 445 | 515 | 505 | 445 | 620 | | | | 3
4 | 170 | 195 | | | 140 ⁺ | 185 | 195 | 155 | 140 | 155 | 145 | 230 | 270 | 260 | | | | | | | | 160 | 120 | 95 | | | | 25
26 | 155 | 130 | 105 | 80 | 65 | | | | 280 | 350 | 340 | 395 | 380 | 315 | | | 255 | 280 | 305 | 225 | 220 | | | | | | | 17
18
19
10 | | | 295 | | | | 160 ⁺ | | | | | | 280 | 215 | 295 | 355 | 485 | 300 | 325 | 255 | | | | | | | | an | 139
(14) | 141
(16) | 133
(13) | 121
(11) | 114
(13) | 135
(14) | 167
(13) | 150
(11) | 166
(13) | 195
(11) | 182
(11) | 202
(13) | 216
(16) | 210
(15) | 184
(14) | 185
(11) | 217 (14) | 232
(15) | 239
(15) | 224
(14) | 230
(14) | 237
(15) | 206
(13) | 197
(14) | 184 | | | ir
ather | 139
(14) | 142
(15) | 133
(13) | 131
(10) | 120
(11) | 141
(13) | 179
(11) | 163
(10) | 166
(13) | 191
(10) | 180
(10) | 190
(11) | 238
(12) | 228
(12) | 185
(12) | 200
(10) | 221
(13) | 236
(13) | 239
(15) | 224 (14) | 246
(12) | 235
(14) | 218
(12) | 197
(14) | 189 | | POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours Mean | 35 I | SKDALE | MUIR | | | | | | | | | | ги | ctor 2 | | | | | | | | | | | DECEMB | ER 1965 |) | |----------------|--------------------------|------------------------|-------------------------|-------------------------|------------------|------------------|-------------------------|-------------------------|------------------|-------------------------|-------------------------|-------------------------|--------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------|-------------------|-------------------------------------|--------------------------|-------------------------|---|-------------------|----------------------| | | Hour
0-1 | GMT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | 1 | | 0a | 200 | | | 225 | 275 | 400 | 425 | 255 | 285 | 155 | | ts per
255 | metre
265 | 335
215 ⁺ | 300 | 190 | 190 | 305 | 300 | 310 | 415 | 305
250 | 260 | 250 | 281 | (21) | | | 370
195 | 165 | 195 | 155 | 170
365 | 140
380 | 140
355 | 145
335 | 165
220 | 230
180 | 190 | 190+ | 230 | 215
220 ⁺ | 200 ⁺ | | | | 370 | 380 | 300 | 275 | 320 | 260 | | | | | 355 | 37 0 | 365 | 860 | 505 | 255 | 290 | 495 ⁺
300 | 310 | 780 ⁺
550 | 690 ⁺
300 | 270 ⁺
335 | 230 ⁺
505 | 255 ⁺
435 | 240 ⁺
505 | 390 ⁺
505 | 540 ⁺
400 | 390 | 610 | 370 | 460
400 | 640
310 | 920
265 | 600 ⁺
255
135 ⁺ | | | | | | | | | | | | | 155 | 210 | 220 | 300 | 320 | 220 | 185 | 260 | 240 | 235 | 310 | 300 | 210 | 220 | 150 | 125 | | | | | 100
130 | 85
135 | 80
115 | 95
100 | 85 | 65 | 70 | | | | | | | | | 145 | 155 | 175
85 ⁺ | 195+ | 150+ | 175 ⁺
30 ⁺ | 175 | 220 | 115
40 ⁺ | | | | | 25+ | 115 | 140 | 120 | 105 | | 55 | | | | | | | | 215
400 | 190 ⁺
370 | | | | 290 | 225 | 170 | 175
220 ⁺ | 285+ | | | | | 265
355 | 220 | | 255 | | 200 ⁺ | | | | | | 240 ⁺ | | | 155+ | 195+ | 170 ⁺ | 190 ⁺ | 185 ⁺ | 120+ | | | 220 | 415 | | | | 3 | 155 | 185 | 225 | 175 | 95
170 | 110
140 | 1 20 | 135 | 150 | 170 | 170 | 150 | 125 | 110 | 120 | 135 | 70
130 | 120
145 | 165
165 | 205
200 | 175
155 | 195
145 | 120
155 | 120
165 | | | | , | 200 | 120 | 155 | 130
115 | 100 | 85 | 85 | 150 | 160 | 105 | 120
60 | 115 | 115 | 125 | 190+ | 195
145 | 155
160 | 230
235 | 275
205 | 275
230 | 260
135 | 235
130 | 245
120 | 205
95 | | | | | 170
85 | 70 | 60 | 25 ⁺ | 20 ⁺ | | 100 | 35 | 205 | 310 | 00 | | 300 | 265 | 320 | 143 | 100 | 265 | 203 | 230 | 133 | 130 | 120 | 95 | | | | | | | 50 ⁺ | 80 ⁺ | 180+ | 1 50 | 150 ⁺
105 | 80 | 75 | 130 | 210 ⁺
165 | 230
175 | 275
220 | 290
200 | 290 ⁺ | 285
130 ⁺ | 275 ⁺
175 | 280 [†]
170 | 170
275 | 220
305 | 310 | 125
305 | 170
300 | 115
265 | | | | 0a
0a
0a | 225
270
105
115 | 280
285
95
60 | 225
205
80
110 | 255
155
85
130 | 200
110
85 | 110
95
85 | 85
85
85 | 85
80
85 | 115
125
90 | 130
130
105 | 125
135
140 | 115
140
175 | 140 [†]
170
165 | 140
230
135 | 165
285
155 | 200
380
115 | 335
255
120 | 320
275
150 | 315
300
145 | 375
235
135 | 385
155
145
360 | 435
150
175
370 | 285
155
125 | 275
115
105 | 222
188
120 | (24)
(24)
(24) | | 9 | 205 | 205 | 185 | 130 | 125 | | | | 95 | 115 | 110 | 115 | 155 | 155 | 185 | 245 | | | 225 | | 300 | 3,0 | | | | | | . | | | | 170 | 160 | 85 | 195 | | | | | | | | | | | | | 570 | 450 | 320 | 280 | 220 | | | | n | 196
(18) | 171
(14) | 156
(14) | 181
(18) | 172
(16) | 164
(14) | 160
(14) | 187
(12) | 152
(13) | 228
(14) | 213
(16) | 200
(14) | 224
(13) | 224
(15) | 241
(16) | 244
(18) | 225
(15) | 220
(15) | 263
(17) |
275
(17) | 264
(18) | 259
(19) | 249
(18) | 208
(20) | 211 | | | r
ther | 206
(17) | 171
(14) | 165
(13) | 197
(16) | 182
(14) | 162
(13) | 161
(13) | 159
(11) | 152
(13) | 186
(13) | 172
(13) | 191
(11) | 231
(11) | 223
(12) | 253
(11) | 249
(14) | 199
(12) | 229
(12) | 273
(15) | 293
(15) | 284
(16) | 259
(19) | 251
(17) | 194
(16·) | 210 | T | Mean | of 0a | days | [203 | (4). | The potential gradient is reckoned as positive when the potential increases upwards. The small [†] denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for 0a days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. 36 ESKDALEMUIR | | Hour (| T | |-----------------|------------|-----------------|-------------------------|-----| | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | | 11-12 | | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mea | | | | | | | | | | | | | | lts per | No | hydrom | eteors | | | | | | | | | | | | | | Jan.
Peb. | 145
88 | 145
80 | 124
73 | 110
70 | 137
70 | 115
75 | 110
78 | 113
79 | 105
81 | 115
102 | 139
109 | 154
120 | 181
131 | 177
127 | 181
131 | 179
126 | 213
114 | 213
103 | 199
94 | 213
93 | 230
102 | 189
97 | 169
92 | 161
90 | 1 | | Mar. | 65 | 65 | 60 | 71 | 81 | 71 | 76 | 87 | 90 | 97 | 129 | 131 | 141 | 148 | 138 | 142 | 123 | 101 | 99 | 81 | 82 | 71 | 68 | 65 | | | lpr.
lay | 79
43 | 69
53 | 65
43 | 68
53 | 64
64 | 73
74 | 83
86 | 103
100 | 102
82 | 98
88 | 106
94 | 108
94 | 118
84 | 118
83 | 94
85 | 94
83 | 112
83 | 82
84 | 76
69 | 80
60 | 77
51 | 77
51 | 85
48 | 80
45 | | | une | 72 | 58 | 54 | 54 | 55 | 61 | 74 | 91 | 91 | 81 | 91 | 72 | 83 | 77 | 74 | 69 | 58 | 67 | 58 | 63 | 46 | 53 | 51 | 66 | 6 | | uly | 67 | 65 | 72 | 67 | 66 | 92 | 101 | 104 | 99 | 95 | 93 | 85 | 82 | 95 | 78 | 76 | 74 | 72 | 73 | 64 | 51 | 51 | 68 | 70 | | | ug.
Sept. | 95
116 | 91
121 | 86
106 | 94
98 | 97
98 | 132
109 | 142
131 | 153
135 | 133
138 | 122
141 | 128
119 | 123
111 | 110
101 | 125
109 | 116
109 | 104
120 | 105
116 | 111
108 | 113
113 | 97
122 | 108
128 | 104
129 | 106
133 | 107
107 | 1 | | ct. | 115 | 109 | 103 | 106 | 100 | 110 | 111 | 132 | 139 | 138 | 134 | 136 | 148 | 155 | 151 | 156 | 147 | 167 | 169 | 168 | 161 | 152 | 148 | 143 | 1. | | lov.
Dec. | 139
196 | 141
171 | 133
156 | 121
181 | 114
172 | 135
164 | 167
160 | 150
187 | 166
152 | 195
228 | 182
213 | 202
200 | 216
224 | 210
224 | 184
241 | 185
244 | 217
225 | 232
220 | 239
263 | 224
275 | 230
264 | 237
259 | 206
249 | 197
208 | 1 2 | ear | 102 | 97 | 90 | 91 | 93 | 101 | 110 | 119 | 115 | 125 | 128 | 128 | 135 | 137 | 132 | 131 | 132 | 130 | 130 | 128 | 127 | 123 | 119 | 112 | 1 | | inter | 142 | 134 | 121 | 121 | 123 | 122 | 129 | 132 | 126 | 160 | 161 | 169 | 188 | 185 | 184 | 183 | 192 | 192 | 199 | 201 | 207 | 195 | 179 | 164 | 1 | | quinox
ummer | 94
69 | 91
67 | 83
64 | 86
67 | 86
71 | 91
90 | 100
101 | 114
112 | 117
101 | 119
97 | 122
101 | 121
93 | 127
90 | 133
95 | 123
88 | 128
83 | 125
80 | 115
83 | 114
78 | 113
71 | 112
64 | 107
65 | 109
68 | 99
72 | 1 | | | | | | | | | | | | | | , | Fa | ir weat | her | | | | | | | | | | | | | | an. | 169 | 161 | 132 | 113 | 137 | 116 | 108 | 114 | 106 | 121 | 141 | 157 | 198 | 180 | 180 | 191 | 214 | 241 | 215 | 221 | 247 | 193 | 175 | 169 | 16 | | eb.
ar. | 88
72 | 80
75 | 73
54 | 73
74 | 72
78 | 78
78 | 79
72 | 79
79 | 83
93 | 102
95 | 111
134 | 131
142 | 135
143 | 128
162 | 133
158 | 128
152 | 112
136 | 101
104 | 101
95 | 98
89 | 102
89 | 97
88 | 92
83 | 90
89 | 1 | | pr.
ay | 73
49 | 62
54 | 55
54 | 60
60 | 65
70 | 73
78 | 77
104 | 102
103 | 104
75 | 94
103 | 94
106 | 120
100 | 138
66 | 124
89 | 105
90 | 98
104 | 119
83 | 90
76 | 82
73 | 81
48 | 80
52 | 79
50 | 81 | 79 | 1 1 | | une | 98 | 69 | 74 | 69 | 75 | 69 | 69 | 74 | 76 | 81 | 83 | 79 | 90 | 82 | 78 | 78 | 66 | 71 | 63 | 59 | 63 | 79 | 51
61 | 47
56 | | | uly | 69 | 69 | 76 | 67 | 69 | 102 | 115 | 117 | 118 | 100 | 93 | 91 | 91 | 89 | 74 | 77 | 74 | 85 | 90 | 90 | 89 | 70 | 76 | 76 | | | ug.
ept. | 95
116 | 91
122 | 86
106 | 94
98 | 97
98 | 111
103 | 131
118 | 155
141 | 126
129 | 128
105 | 134
133 | 131
90 | 106
100 | 146
73 | 118
91 | 103
115 | 102
112 | 113
113 | 124
120 | 105 | 119
126 | 115 | 115 | 121 | 1 | | ct. | 110 | 106 | 109 | 110 | 99 | 108 | 117 | 143 | 140 | 140 | 140 | 145 | 149 | 162 | 153 | 154 | 147 | 171 | 171 | 131
179 | 161 | 129
144 | 133
159 | 114 ⁻
151 | 1. | | ov. | 139
206 | 142
171 | 133
165 | 131
197 | 120
182 | 141
162 | 179
161 | 163
159 | 166
152 | 191
186 | 180
172 | 190
191 | 238
231 | 228
223 | 185
253 | 200
249 | 221
199 | 236
229 | 239
273 | 224
293 | 246
284 | 235
259 | 218
251 | 197
194 | 1 2 | | | 200 | 1,1 | 100 | 237 | 101 | 202 | 101 | 100 | 102 | 100 | 1,2 | 1,51 | 201 | 225 | 233 | 243 | 133 | 223 | 2/3 | 293 | 204 | 239 | 231 | 194 | | | ear | 107 | 100 | 93 | 96 | 97 | 102 | 111 | 119 | 114 | 121 | 127 | 131 | 140 | 141 | 135 | 137 | 132 | 136 | 137 | 135 | 138 | 128 | 125 | 115 | 1: | | inter | 151 | 139 | 126 | 129 | 128 | 124 | 132 | 129 | 127 | 150 | 151 | 167 | 201 | 190 | 188 | 192 | 187 | 202 | 207 | 209 | 220 | 196 | 184 | 163 | 10 | | quinox
ummer | 93
78 | 91
71 | 81
73 | 85
73 | 85
78 | 91
90 | 96
105 | 116
112 | 117
99 | 109
103 | 125
104 | 124
100 | 133
88 | 130
101 | 127
90 | 130
91 | 129
81 | 119
86 | 117
87 | 120
75 | 114
81 | 110
79 | 114
76 | 108
75 | 11 | Annual mean for Oa days [133] "Winter" comprises the four months January, February, November, December; "Equinox" the months March, April, September, October; and "Summer" May to August. # **KEW** 37 KEW OBSERVATORY Factor 4.34 JANUARY 1965 | Hour C | CMT |---|---|--|---|---|---|---
--|--|--|---|---|--|---|--|--|---
---|---|--|---|--
---|--|---|--| | | | | | | | | | | more and a memory | | | | | | | | | | | | | | | | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mea | n | 425
370
445
195
565 | 370
310
480
175
380 | 320
265
240
90
380 | 390
150
175
175
425 | 400
205
140
160
415 | 445
285
80
135
380 | 530
445
135
240
345 | 620
565
150
450
495 | 675
610
250
600
585 | 815
585
265
770
830 | 830
585
300
760
805 | 795
550
380
665
920 | 630
540
400
815
840 | 665
725
480
875
565 | 620
715
435
885
595 | 665
700
255
975
600 | 675
770
275
990
745 | 675
645
255
1045
805 | 620
620
115
905
715 | 620
520
275
460
585 | 565
595
125
275
445 | 565
495
150
460
435 | 320
335
105
370
380 | 175
495
175
635
450 | 570 | (24) | | 480
175
10 ⁺
335
220 | 400
20 ⁺
400
195 | 405
35 ⁺
335
135 | 450
-95 ⁺
80 ⁺
195
150 | 470
-30 ⁺
105 ⁺
325
205 | 445
55 ⁺
105 ⁺
370
175 | 505
45 ⁺
210 ⁺
425
185 | 600
80 ⁺
540 | 735
105 ⁺
630 | 250 ⁺ | 250 ⁺ | 885
370 ⁺ | 760
405 ⁺ | 680
325 ⁺
70 ⁺ | 770
575 ⁺
0 ⁺ | 760
370 ⁺
480
175 ⁺
90 ⁺ | 595
310 ⁺
575
210 ⁺
175 ⁺ | 445
310 ⁺
760
250 ⁺
125 ⁺ | 390
135 ⁺
655
175 ⁺
70 ⁺ | 445
-100 ⁺
665
250 ⁺
70 ⁺ | 460
335
240
60 ⁺ | 370
250
300
0 ⁺ | 240
-10 ⁺
290
370
70 ⁺ | 265
60
⁺
275
275
275
35 ⁺ | 452 | (24) | | 20 ⁺
195
205
290 | 0 ⁺ 185 205 250 | 0 ⁺ 220 275 | 0 ⁺ 170 220 285 | 0 ⁺
0 ⁺
175
195 | 210
240 | 310
240+ | 115 ⁺ 415 335 ⁺ 290 ⁺ | 115
575
425 ⁺
390 ⁺ | 265 ⁺
170
585
480 ⁺
320 | 300 ⁺
210
515
405 ⁺
405 | 390 ⁺
380 ⁺
435 | 495 ⁺
345
355 | 425 ⁺
135
390
355 | 380 ⁺
205
390
345 | 390 ⁺
390
480
370 | 320 ⁺
585
565
405 | 600
595
495 | 575
540
645 | 630
495
830 | 750 | 575 | 485 | 205
135
250
365 | | | | 4 00 | 4 80 | 400 | 335
140 ⁺
95 ⁺
230 | 290 | 105 ⁺
290 | 185 ⁺
160 ⁺
425 | 230 ⁺
125 ⁺
480 | 275 ⁺
300
575 | 370 ⁺
365
665 | 405
700 | 425 ⁺
380
595 | 390 ⁺
380
550 | 335
515 | 445
460 | 210 ⁺ | 335 ⁺
460
520 | 140 ⁺ 530 530 | 230 ⁺
600
515 | 160 ⁺
210 ⁺
635
595 | 345 ⁺
285 ⁺
620
415 | 345 ⁺
310 ⁺
585
230
115 | 320 ⁺
300 ⁺
495
285
185 | 240 ⁺
265
195
170 | 361 | (24) | | 60
345 | 70
335 | 70
160 | 35
-110 ⁺
255 | 125
185
320 | 140
425
320 | 175
645
425 | 450
400
565
210 ⁺ | 575
445
725 ⁺ | 920 ⁺
470
860 ⁺ | 965 ⁺
450
955 ⁺
345 | 975 ⁺
520
1025 ⁺
565 | 850 ⁺
620
850
610 | 860 ⁺
550
620
555
435 | 710 ⁺
710
485
415
645 | 600 ⁺
760
445
515
530 | 505
805
380
450
565 | 450
675
370
370
435 | 425
600
405
345
285 | 275
565
435
335
255 | 255
550
425
265 | 140
515 | 435
70 | 415
95 | 485 | (24) | | 35
275
195 | 20
195
140 | 90
290
80 | 60
275
210 | 60
115
210 | 60
140 ⁺ | 135
195 ⁺ | | 515+ | | 655 ⁺ | 875 ⁺ | 710 ⁺
815 ⁺ | 655 ⁺
690 ⁺ | 700 ⁺
620 ⁺
630 ⁺ | 710 ⁺
630 ⁺ | 610
600 ⁺ | 480
635 ⁺ | 485
610 | 370
600 ⁺
575 | 345
405 ⁺
445 | 405
530 ⁺
445 | 355
405 ⁺
390 | 285
275 ⁺
380 | 445
380 | (24)
(24) | | 150 | 90 | 45 | 90 | 60 | 115 | 230 | 325+ | 370 ⁺ | 380 ⁺ | 520 ⁺ | 520 ⁺ | 470 ⁺ | 400 ⁺ | 415 ⁺ | 425+ | 425 ⁺ | 485 ⁺ | 505 ⁺ | 530 ⁺ | 550 ⁺ | 565 ⁺ | 495 ⁺ | 495+ | 361 | (24) | | 415 ⁺ | 325+ | 265+ | - | - | _ | _ | - | - | - | | - | 480 ⁺ | 495 ⁺ | 445+ | 460 ⁺ | 520 | 540 | 575 | 735 | 750 | 690 | 725 | 530 | | | | 257
(24) | 232
(23) | 192
(24) | 175
(26) | 188
(23) | 225
(21) | 291
(22) | 360
(23) | 474
(20) | 527
(19) | 545
(20) | 583
(20) | 559
(22) | 513
(23) | 525
(24) | 499
(25) | 514
(26) | 506
(25) | 470
(25) | 445
(27) | 413
(23) | 380
(23) | 322
(23) | 282
(26·) | 395 | | | 272
(21) | 250
(20) | 218
(19) | 222
(20) | 224
(19) | 254
(17) | 335
(16) | 439
(14) | 513
(13) | 540
(12) | 527
(13) | 608
(11) | 592
(13) | 525
(15) | 541
(15) | 560
(15) | 579
(19) | 563
(19) | 531
(20) | 515
(20) | 437
(18) | 389
(18) | 343
(17) | 296
(21) | 428 | Mean | for se | lected | quiet | days | [438 | (7)] | | | 445
195
565
480
175
107
335
220
20 ⁺
195
205
290
400
70
60
345
35
275
195
285
150
415 ⁺
257
(24) | 370 310 445 480 195 175 565 380 480 400 175 10+ 20+ 335 400 220 195 20+ 0+ 195 185 205 205 290 250 400 480 70 80 60 70 345 335 35 20 275 195 140 285 240 150 90 415+ 325+ 257 232 (24) (23) | 370 310 265 445 480 240 195 175 90 565 380 380 480 400 405 175 10+ 20+ 35+ 335 400 335 220 195 135 20+ 0+ 0+ 195 185 205 205 220 290 250 275 400 480 400 35 20 400 480 400 35 5+ 60 70 70 345 335 160 35 20 90 275 195 290 195 140 80 35 20 90 275 195 290 195 140 80 195 140 80 195 140 80 195 140 80 195 150 90 45 415+ 325+ 265+ 257 232 192 (24) (23) (24) 272 250 218 | 370 310 265 150 445 480 240 175 195 175 90 175 565 380 380 425 480 400 405 450 175 90 335 80 335 400 335 195 220 195 135 150 20+ 0+ 0+ 0+ 0+ 195 185 170 205 205 220 220 290 250 275 285 400 480 400 335 400 335 400 335 195 20+ 10+ 0+ 0+ 0+ 195 185 170 205 205 220 220 290 250 275 285 400 480 400 335 140+ 55+ 95+ 70 80 175 230 95+ 60 70 70 35 -110+ 345 335 160 255 35 20 90 60 275 195 290 275 195 140 80 210 285 240 175 160 150 90 45 90 415+ 325+ 265+ - 257 232 192 175 (24) (23) (24) (26) 272 250 218 222 | 370 310 265 150 205 445 480 240 175 140 565 380 380 425 415 480 400 405 450 470 175 90 105 335 400 335 195 325 220 195 135 150 205 20+ 0+ 0+ 0+ 0+ 0+ 195 185 170 175 205 205 220 220 195 290 250 275 285 400 480 400 335 400 335 195 325 20+ 0+ 0+ 0+ 0+ 195 185 170 175 205 205 220 220 195 290 250 275 285 400 480 400 335 400 335 55+ 95+ 70 80 175 230 290 95+ 60 70 70 35 125 -110+ 185 345 335 160 255 320 35 20 90 60 60 275 195 290 275 115 195 140 80 210 210 285 240 175 160 195 150 90 45 90 60 415+ 325+ 265+ 257 232 192 175 188 (24) (23) (24) (26) (23) | 370 310 265 150 205 285 445 480 240 175 140 80 195 175 90 175 160 135 565 380 380 425 415 380 480 400 405 450 470 445 175 -95 -30 105 105 335 400 335 195 325 370 220 195 135 150 205 175 20+ 0+ 0+ 0+ 0+ 0+ 195 185 170 175 210 205 205 220 220 195 240 290 250 275 285 400 480 400 335 400 335 195 325 370 20 195 135 150 205 175 20+ 0+ 0+ 0+ 0+ 195 185 170 175 210 205 205 220 220 195 240 290 250 275 285 400 480 400 335 55+ 95+ 105+ 70 80 175 230 290 290 90+ 60 70 70 35 125 140 -110+ 185 425 345 335 160 255 320 320 35 20 90 60 60 60 275 195 290 275 115 140+ 195 140 80 210 210 285 240 175 160 195 210 150 90 45 90 60 115 415+ 325+ 265+ 257 232 192 175 188 225 (24) (23) (24) (26) (23) (21) 272 250 218 222 224 254 | 370 310 265 150 205 285 445 445 480 240 175 140 80 135 195 175 90 175 160 135 240 565 380 380 425 415 380 345 480 400 405 450 470 445 505 10^+ 20^+ 35^+ 80^+ 105^+ 105^+ 210^+ 335 400 335 195 325 370 425 220 195 135 150 205 175 185 20^+ 0^+ 0^+ 0^+ 0^+ 0^+ 0^+ 195 185 170 175 210 310 290 250 220 220 195 240 240^+ 290 250 220 220 195 240 240^+ 290 250 < | 370 310 265 150 205 285 445 565 445 480 240 175 140 80 135 150 195 175 90 175 160 135 240 450 565 380 380 425 415 380 345 495 480 400 405 450 470 445 505 600 175 10+ 20+ 35+ 80+ 105+ 105+ 210+ 335 400 335 195 325 370 425 540 220 195 135 150 205 175 185 115+ 20+ 0+ 0+ 0+ 0+ 0+ 115+ 125+ 540 335+ 425 540 240+ 335+ 425 540 240+ 335+ 425 540 240+ 335+ 425 540 240+ | 370 310 265 150 205 285 445 565 610 445 480 240 175 140 80 135 150 250 195 175 90 175 160 135 240 450 600 565 380 380 425 415 380 345 495 585 480 400 405 450 470 445 505 600 735 10^+ 20^+ 35^+ 80^+ 105^+ 105^+ 210^+ 335 400 335 195 325 370 425 540 630 20^+ 0^+ 0^+ 0^+ 0^+ 115^+ 105^+ | 370 310 265 150 205 285 445 565 610 585 445 480 440 175 140 80 135 150 250 265 195 175 90 175 160 135 240 450 600 770 565 380 380 425 415 380 345 495 585 830 480 400 405 450 105 55 45 45 80 105 250 175 10 20 35 80 105 105 105 210 105 220 195 135 150 205 175 185 105 205 265 265 205 220 220 195 135 150 205 175 185 105 205 205 205 220 220 195 240 240 335 425 480 400 335 195 325 370 425 540 630 645 290 250 275 285 140 290 390 390 320 425 480 575 665 95 105 105 105 105 105 105 105 105 105 10 | 425 370 320 390 400 445 530 620 675 815 830 370 310 265 150 205 285 445 565 610 585 585 445 480 240 175 140 80 135 150 250 265 300 195 175 90 175 160 135 240 450 600 770 760 565 380 380 425 415 380 345 495 585 830 805 480 400 405 450 470 445 505 600 735 76 760 10* 20* 35* 80* 105* 105* 210* 105* 250* 250* 250* 250* 250* 250* 250 275 285 105* 115* 265* 300* 405* 400* 415* 575*< | 425 370 320 390 400 445 530 620 675 815 830 795 370 310 265 150 205 285 445 565 610 585 585 585 585 585 300 380 480 240 175 140 80 135 150 250 265 300 380 195 175 90 175 160 135 240 450 600 770 760 665 565 380 380 425 415 380 345 495 585 830 805 920 480 400 405 450 470 445 505 600 735 — — — 885 175 20° 35° 80° 105° 105° 210° 300° 400° 30° 30° 30° 30° 30° 30° 30° 30° 30° | 370 310 265 150 205 285 445 565 610 585 585 550 540 445 480 240 175 140 80 135 150 250 265 300 380 400 405 600 770 760 665 815 565 380 380 425 415 380 345 495 585 830 805 920 840 480 400 405 450 470 445 505 600 735 — — 885 760 405* 175 — 35* 80* 105* 105* 210* 10* 20* 250* 250* 250* 250* 250* 370* 405* 200 195 135 150 205 175 185 10* 665* 300* 390* 495* 20* 0* 0* 0* 0* | 425 370 320 390 400 445 530 620 675 815 830 795 630 665 370 310 265 150 205 285 445 565 610 585 585 550 540 725 445 480 240 175 140 80 135 150 250 266 300 380 400 480 195 175 90 175 160 135 240 450 600 770 760 666 815 875 565 380 380 425 415 380 345 495 585 830 805 920 840 565 880 400 405 450 470 445 505 600 735 885 760 680 175 100 20 35 80 105 105 210 210 310 415 170 210 310 415 170 210 310 415 185 425 645 400 480 400 335 150 205 175 185 290 275 285 200 220 195 135 150 205 175 185 200 290 425 480 405 405 380 380 380 380 380 380 380 380 380 380 | 425 370 320 390 400 445 530 620 675 815 830 795 630 666 620 370 310 265 150 205 285 445 565 610 585 585 550 540 725 715 445 480 240 175 160 135 240 450 600 770 760 665 815 875 885 565 380 380 425 415 380 345 495 585 830 805 920 840 565 595 480 400 405 450 470 445 505 600 735 — — 885 760 680 770 175 10 35 80 105 105 106 105 210 300 300 300 300 300 300 300 300 300 | 425 370 320 390 400 445 530 620 675 815 830 795 630 666 620 665 445 480 240 175 140 80 135 150 250 265 300 380 400 480 435 255 195 175 90 175 160 135 240 450 600 770 760 665 815 875 885 975 480 400 405 450 470 445 505 600 770 760 666 815 875 885 975 480 400 405 450 470 445 505 600 770 760 666 815 875 885 975 480 400 405 450 470 445 505 600 735 - | 425 370 320 390 400 445 530 620 675 815 830 795 630 665 620 665 675 675 815 830 795 630 666 620 665 675 675 815 830 310
310 310 310 310 310 310 310 310 310 310 310 310 310 315 310 310 315 | 425 370 320 390 400 445 530 620 675 815 830 795 630 665 620 665 675 675 675 815 830 380 380 425 715 700 770 645 675 675 675 775 785 775 785 775 785 785 775 785 785 785 785 785 775 785 | 425 370 320 390 400 445 530 620 675 815 830 795 630 666 620 665 675 675 675 620 445 480 240 175 140 80 135 150 250 266 300 380 400 480 435 255 275 255 115 195 175 90 175 160 135 240 450 600 770 760 665 815 875 885 975 990 1045 905 565 380 380 425 415 380 345 495 585 830 805 920 840 565 595 600 745 805 715 480 400 405 450 470 445 505 600 735 70 70 760 665 815 875 885 975 990 1045 905 10 [†] 20 [†] 35 [†] 80 [†] 105 [†] 105 [†] 250 [†] 250 [†] 250 [†] 370 [†] 405 [†] 325 [†] 370 310 [†] 310 [†] 310 [†] 315 315 320 335 | 425 370 320 390 400 445 530 620 675 815 830 795 630 665 620 665 675 675 675 620 620 | 425 370 320 390 400 445 530 620 675 815 830 795 630 666 620 666 675 675 620 620 595 445 480 240 175 140 80 135 150 250 265 300 380 380 425 415 380 345 495 585 | 425 370 320 390 400 445 530 620 675 815 830 795 630 665 665 675 675 620 620 585 | 425 370 320 390 400 445 530 620 675 815 830 795 630 666 620 666 675 675 675 620 620 620 565 566 320 330 448 480 240 175 140 80 135 150 250 265 300 380 400 480 435 255 255 255 115 275 125 150 105 | 425 370 320 390 400 445 530 620 675 | 425 370 370 370 390 400 445 530 620 675 815 830 795 630 665 620 660 675 675 620 620 505 585 5865 320 175 175 185 170 175 140 80 135 150 250 256 300 380 400 480 483 255 275 255 115 275 125 150 105 175 150 155 155 585 485 80 775 786 665 815 830 805 920 840 585 585 586 585 586 586 587 586 587 586 587 586 587 586 587 586 587 586 587 586 587
587 | POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | -i | | ERVAT | | | | | | | | | | | ctor 4 | | | | | | | | | | | FEBRUA | RY 196 | | |------------------------------|--|--|---|---|--|---------------------------------------|--|--|--|---|--|--|---|--|---------------------------------------|--|---|---------------------------------|---------------------------------------|---|--|---------------------------------|--|---|-------------------|----| | | Hour C | MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Miea | n | | 1
2
3
4 | 385
465
345 | 260
415
325 | 165
380
190 | -
430
25 ⁺ | 380
10 [†] | 540
-55 [†] | 385
535
140 ⁺ | 395
455
190 ⁺ | 600
660
225 ⁺ | 740 ⁺
845 | 825 [†]
540 | 775 ⁺
540 | 695 ⁺
620
670 ⁺ | 540
445 | 490 ⁺
415
445 | 445 [†]
515
465 | 515 [†]
630
475 | 540 ⁺
440
440 | 585
585
515 | 755
445
430 | 875
445
285 | 815
505
525 | 740
170 | 740
205
-35 ⁺ | | | | 5 | -20+ | -20+ | -100+ | -65 + | -90+ | - 70 ⁺ | -105+ | .,, | | | 265 ⁺ | 200 ⁺ | 70+ | 10+ | | | 70 ⁺ | | 155+ | 240 ⁺ | 250 ⁺ | 260 ⁺ | 165 | 190 | | | | 5,
7
8 S
9 S
0 S | 110
70 ⁺
225 ⁺
320
260 | 120
-20 ⁺
265
145 | 130
25 ⁺
370 | 155
110 ⁺
440 | 180
50 ⁺
500 | 180
155 ⁺
655
105 | 200
190 ⁺
145
620
225 | 275
260
755
300 | 345
360
1000
355 | 335
385
990
480 | 440
990
430 | 240
835
480 | 705
505 | 190
465
550 | 500
570 | 535
575 | -45 ⁺ 405 ⁺ 475 490 | 95 ⁺ 440 455 | 190
465
445
420 | 190
360
420
325
325 | 240
345
445
130
325 | 275
355
430
145
265 | 180
360
465
205
215 | 140
250
360
225
225 | 560 | (2 | | s
s
s | 105
170
190 | 180
215
140
205 | 215
205
130
130
120 | 225
200
140
95 | 230
265
155
145 | 240
265
190
180 | 325
240
155 ⁺
225
200 | 415
250
325 ⁺
260
275 | 480
335
420 ⁺
300
290 | 430
285
320
335 | 480
250
265
335 | 535
285
385 ⁺
225
310 | 505
285
355 ⁺
155 | 465
370
345 ⁺
170 | 385
265
275 ⁺
120 | 380
225
325
120
190 | 415
250
325
145
240 | 445
275
290
205
265 | 310
285
275
250
170 | 310
275
320
265
215 | 265
225
275
230
180 | 250
290
290
190
140 | 120
290
240
285
120 | 145
230
155
335
15 | 344
260
218 | (2 | | s | 45
395
380 ⁺ | -80
360
180 ⁺ | -10
345
85 ⁺ | 60
290
75 ⁺ | 95
200
60 ⁺ | 170
275 | 205
325 | 345 ⁺
- | - | 250 [†]
790 [†]
705 | 300
7 55 ⁺
670 | 300
635 ⁺
500 | 320
455
440 | 335
695 ⁺
345
260 | 325
730 ⁺
345 | 360
680 ⁺
380
215
370 | 420
285
445
370 | 415
325
490
385 | 370
655 ⁺
575
380 | 75 [†]
610 [†]
370
385 | 670 ⁺
200
360 | 570 ⁺ 310 335 | 110 ⁺
535 ⁺
480
275 | 505 ⁺
15 ⁺
515
300 | | | | s
s
s | 240
260 ⁺
275
320
430 | 155
165 ⁺
200
370
440 | 155
240 ⁺
130
26.5
335 | 130
290 ⁺
70
250
320 | 130
395 ⁺
190
260
310 | 155 ⁺
180
335
360 | 225 ⁺ 385 380 | 325 ⁺
380
445
430 | 430
465
600 | 525
535
515
600 | 630
535
585
620 | 250
575
560
655
630 | 260
575
560
575 | 300
480
420
635 ⁺
445 | 325
420
455 | 265
385
540 | 275
380
500
480 ⁺ | 345
310
405 | 320
380
415
430 | 290
370
325
680 ⁺ | 260
265
230
380
600 ⁺ | 345
140
370
430
465 | 380
85
355
500
475 | 405
225
225
370
380 | 244
444 | (2 | | S
S
S | 385
170
430 | 380
130
385 | 310
85
320 | 230
105
265 | 275
145
290 | 360
215
335 | 355
320
145 | 455
205
225 | 610
370
380 | 670
480
575 | 645
585
325 | 500
585
285 | 360
430
300 | 360
360
290 | 380
290
230 | 355
250
230 | 415
260
275 | 335
325
285 | 380
385
370 | 395
260
225 | 525
325 | 500
430
260 | 360
395
260 | 215
405
290 | 406
360 | (2 | | n | 263
(24) | 214
(23) | 183
(23) | 183
(21) | 199
(21) | 239
(20) | 265
(22) | 348
(20) | 457
(18) | 539
(20) | 523
(20) | 464
(23) | 434
(21) | 385
(22) | 386-
(19) | 372
(21) | 354
(24) | 358
(21) | 388
(24) | 354
(25) | 347
(24) | 356
(25) | 311
(25) | 270
(26·) | 341 | | | r
ther | 284
(19) | 243
(19) | 209
(19) | 213
(16) | 234
(16·) | 287
(16) | 307
(17) | 361
(16) | 474
(16·) | 530
(17) | 507
(17) | 456
(19) | 431
(17) | 377
(18) | 365
(16·) | 352
(19) | 372
(19) | 362
(19) | 386
(22) | 345
(21) | 324
(21) | 350
(23) | 310
(23) | 285
(23) | 349 | | The potential gradient is reckoned as positive when the potential increases upwards. The small [†] denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for selected quiet days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. 37 KEW OBSERVATORY Factor 4-27 MARCH 1965 | | | JEKYA! | | | | | | | | | | | ictor 4 | •• | | | | | | | | | | MARCE | 1965 | | |----------------------|--|---|--|--|--|---|--|--|---------------------------------------|---|---|---|---|---|---|---------------------------------|--------------------------------------|--|---|---------------------------------|--|---|---|--|-------------|--------------| | | Hour | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | | | 1
2
3 | 240
205
395
120 ⁺ | 215
140
265
170 ⁺ | 155
165
360
145 ⁺ | 75
105
325 | 95
120
345 | 105
105
200 | 260
225
275 | 385
420
395 | 465
585
720 ⁺ | 480 ⁺
620
595 ⁺ | 535 ⁺
415 ⁺ | | metre
260 ⁺ | 205 ⁺ | 190 ⁺ | 240 ⁺ | 550 ⁺ | 540 ⁺
360 | 525 ⁺
585
300 | 505 ⁺
490
335 | 480
380
215 | 385
165 | 120
140 ⁺
130
50 ⁺ | 310
215
110
165 ⁺ | | | | 5 | 260 | 230 | 190 | 250 | 240 | 205 | 345 | 445 | 620 | 755 ⁺ | 500 ⁺ | 550 ⁺ | | | | 670 ⁺ | 620 ⁺ | 620 ⁺ | 620 ⁺ | 360 | 200 | 265 |
310 | 445 | | | | 6
7 S
8 S
9 | 335
200 ⁺
575
-10 ⁺
60 | 190
165 ⁺
465
0 ⁺
70 | 190
260 ⁺
260
145 ⁺
25 | 190
170 ⁺
215
95 ⁺
60 | 140
190
240
120 ⁺ | 0
145
170 ⁺ | 15
165
• 165+ | 225
205
415 | 200
515 | 165
595
430
515 | 430
775
445
300 | 430
750
440
285 | 430
690 ⁺
655
560
265 | 380
500
515
635
285 | 385
385
465
550
300 | 360
360
445
430
325 | 445
275
480
155
355 | 310
240
420
60
360 | 480
415
455
170
335 | 395
440
415
240
430 | 345
505
260
140
505 | 395
610
335
190
500 | 550
645
300
165
420 | 635
635
105
95
370 | 4 80 | (24) | | S | 405
275
355 | 300
275
225 | 285
275
215
75 ⁺
180 ⁺ | 230
200
165
140 ⁺ | 230
215
165 | 265
240
75 [†]
110 [†] | 260
200
140 ⁺
130 ⁺ | 440
310
170 ⁺ | 570
455
265 ⁺ | 475
455
370
260 ⁺
265 ⁺ | 325
335
300
250 ⁺
300 ⁺ | 335
320
240
250 ⁺
360 ⁺ | 325
300
205
190 ⁺
310 ⁺ | 310
320
170
240 ⁺
325 ⁺ | 310
300
170
325 ⁺ | 320
290
130 | 370
300
95
320 ⁺ | 395
335
35* | 380
370 | 380
370
380 ⁺ | 415
285
205
355
170 ⁺ | 385
250
165
300
170 | 360
420
95
35
190 | 325 | 363
318 | (24)
(24) | | 5
7
8 S
9 S | 225
500
345 ⁺
190
15 ⁺ | 215
430
225 ⁺
140
85 ⁺ | 205
430
225 ⁺
140
85 ⁺ | 215
475
335 ⁺
205
45 ⁺ | 240
345
190
70 ⁺ | 250
265
85 ⁺ | 275
275 [†]
265 [†]
325
130 [†] | 265
290 ⁺
415 | 290 ⁺
655 | 325 ⁺
265 ⁺
610 ⁺ | 300 ⁺
170 ⁺
635 ⁺ | 320 ⁺
310 ⁺
660 ⁺ | 310 ⁺ | | 455 | 395 | 500
85 [†] | 395 ⁺ 455 480 ⁺ 120 ⁺ | 385
535 ⁺
0 ⁺ | 575
415
345 ⁺ | 445
310
445 ⁺ | 505
395 ⁺
190
50 ⁺
385 ⁺ | 455
420 ⁺
205
75 ⁺
325 ⁺ | 525
360 ⁺
165
105 ⁺
275 ⁺ | 376 | (24) | | | 215 [†]
120 [†]
230 [†]
130 [†] | 180 ⁺
95 ⁺
215 ⁺
190 ⁺ | 310 ⁺
35 ⁺
165 ⁺
170 | 260 ⁺ 165 ⁺ 180 | 45 ⁺
-20 ⁺
170 ⁺
190 | 165 ⁺ 215 ⁺ 230 | 225 ⁺
230 ⁺
250 ⁺
285 | 260 ⁺
310 ⁺
380 ⁺ | 345 ⁺
465 ⁺ | 420
355 [†] | 570
420 ⁺ | 415
360 ⁺
290 ⁺ | 355
290 ⁺ | 240 ⁺
335
355 ⁺
430 ⁺
260 ⁺ | 230 ⁺
355
380 ⁺
260 ⁺ | 345 ⁺ | 420 ⁺
300 ⁺ | 455 ⁺
300 | 320 | 405 | 240 ⁺
415 | 265
505 | 105
570 | 140 ⁺
240 ⁺
120
465 | | | | S | 155
320
225 ⁺ | 105
275
275 ⁺ | 155
155
285
275 ⁺ | 145
120
265
190 ⁺ | 140
155
300
240 ⁺ | 180
170
310 | 285
240
345 | 360
285
395
465 ⁺ | 380
275
385
380 ⁺ | 415
290
325
570 | 405
260
310
585 | 355
205
260
575 | 360
205
320
320 | 360
200
405
225 | 320
200
325
200 | 325
230
275
180 | 275
200
230
140 | 230
215
240
140 | 260
290
355
145 | 345
335
395
120 | 225
405
205 | 225
310
500 | 155
230
240
405 | 310
310 | | (24)
(24) | | o s | 260 | 165 | 120 | 200 | 215 | 320 | 230 | 775 | 845 | 875 | 790 | 585+ | 660 ⁺ | 540 ⁺ | 535+ | 505 ⁺ | 505 ⁺ | 395 ⁺ | 480 [*] | 480 [*] | 360 [™] | 310 ⁺ | 370 ⁺ | | 396 | (24) | | S | 200 ⁺ | 205 | 205 | 250 | 260 | 285 ⁺ | 445 | 440 | 465 [†] | 480 ⁺ | 505 ⁺ | 585 ⁺ | 655 [†] | 620 ⁺ | 515 | 550 ⁺ | 515 | 405 | 360 | 300 | 200 | 120 | -105 ⁺ | -285 ⁺ | | | | ın | 242
(27) | 204
(27) | 196
(30) | 195
(27) | 186
(25) | 186
(22) | 239
(25) | 366
(22) | 467
(19) | ,455
(24) | 429
(23) | 404
(24) | 395
(21) | 357
(22) | 341
(21) | 352
(19) | 340
(21) | 326
(23) | 373
(22) | 384
(22) | 321
(24) | 315
(25) | 264
(28) | 256
(30) | 316 | | | r
ther | 297
(16) | 230
(17) | 210
(19) | 204
(19) | 211
(19) | 199
(15) | 261
(16) | 386
(16) | 496
(12) | 466
(14) | 448
(13) | 384
(12) | 358
(12) | 357
(13) | 337
(14) | 313
(13) | 310
(14) | 298
(15) | 356
(17) | 375
(18) | 325
(20) | 321
(21) | 291
(21) | _ | 322 | | | 1 | | | | | | | | | | | | | ~ | | | | | | | | | | | | 353 | (7) | POTENTIAL GRADIENT (close to the ground, over an open level surface), Mean values for hours without hydrometeors and for fair weather hours | 3/ I | KEW OBS | L 1965 | | |------|-------------------------|------------------|------------------|-----------------|-----------------|------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------------------|-------------------------|---------------------------------|-------------------------|-------------------------|-------------------------|------------------|------------------|------------|-------------------------|-------------------------|------------|------------| | | Hour (| | | 1 | | | e 7 | 7-8 | 8-9 | 0 10 | 10-11 | 11.12 | 12-13 | 12.14 | 14-15 | 15 16 | 16 17 | 17 10 | 10 10 | 10 20 | 20 21 | 21 22 | 22 22 | 22 24 | M | | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-0 | | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-13 | 13-10 | 10-17 | 1/-18 | 10-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | | | | | | | | | | | | | | | lts per | | | | | | | | | | | | | | | | | -55 | -20 | -105 | 15 | -10 | -55 | 130 | 300 | 525 | 635 | 800 | 910 | 875 | 790
755 ⁺ | 740
630 ⁺ | 670
42 0 ⁺ | 560
230 ⁺ | 500
140 ⁺ | 380
120 | 610
120 | 430
240 | 335
360 | 230
260 ⁺ | 60 ⁺ | | | | s | 240+ | 240 ⁺ | 205+ | 170+ | 205+ | 155+ | 230 ⁺ | 360 ⁺ | 310 ⁺ | 500 | 405 | 335 | 285 | 170 | 120 | 130 | 110 | 215 | 215 | 250 | 275 | 260 | 265 | 250 | 246 | (24 | | ۱ ٔ | 180 | 95 | 110 | 140 | 205 | 200 | | | | | | | | | | | 180 ⁺ | 145 ⁺ | 180 | 325 | 455 | 480 | 515 | 525 | 240 | (24 | | s | 100 | | 225+ | 215+ | | | 275 ⁺ | 480 ⁺ | 680 ⁺ | 645+ | 620 ⁺ | 395+ | 285 ⁺ | 2 4 0 ⁺ | 240 ⁺ | 230 | 225 | 225 | 260 | 260 | 325 | 260 | 240 | 265 | | | | s | 165 | 165 | 155 | 155 | 205 | 250 | 395 | 550 | 595 | 505 | 355 | 265 | 200 | 200 | 165 | 190 | 155 | 170 | 155 | 225 | | | | - 1 | 263 | (24 | | 3 | 105 | 105 | 133 | 133 | 203 | 250 | 215 ⁺ | 550 | 0.00 | 240 | 335 | 345 | 310 | 335 | | 355 ⁺ | 200 | 1,0 | 133 | 75 | 310 | 395 | 360 | 240 | | | | | 145 | 105 | 140 | 25⁺ | | | | 395 ⁺ | 465 ⁺ | 560 ⁺ | 310 ⁺ | 260 ⁺ | 225+ | 230 ⁺ | | | | | | 465 ⁺ | 260 | 475 | 260 | 75 | | | | | 25 | 0 | 70 | 25 | 190 | 370 | 600 | 635 | 800 | 825 | 570 | 445 | 320 | 260 | 250 | 240 | 260 | | | | | | | i | | | | 1 | | 60 ⁺ | 35+ | 140+ | 140+ | | | | | | | 225 ⁺ | 290 ⁺ | | | 165 | 240 | 250 | 240 | 230 | 265 | 285 | 325 | 265 | | | | | 215 | 200 | 200 | 225 | 250 | 325 | 310 | 335 | 265 | 260 | 200 | | | | 70 ⁺ | 260 ⁺ | | | | 355 | 455 | 475 | 395 | 355 | | | | 1 | 260 | 250 | 240 | 225 | 250 | 290 | 385 | 480 | 415 [†] | | | 345+ | 310+ | 300+ | | | | | 440 ⁺ | | | 480 | 440 | 360 | | | | l | 335 | 320 | 310 | 345 | 395
430 | 415
490 | 575
560 | 635
655 | 620
550 | 405
370 | 285 | | 370 ⁺ | | | | 260 | 275 | 310 | 345 | 405 | 385 | 370 | 345 | | | | - 1 | 320
180 ⁺ | 310 | 415 | 475 | 430 | 200+ | 370 ⁺ | 500 ⁺ | 490 + | 275 | 355 | 380 | 345 | 335 | 355 | 360 | 380 | 370 | 380 | 370 | 380 | 335 | 325 | 415 [†]
290 | | | | İ | 180 | S | 265 | 230 | 200 | 190 | 200
45 | 310
95 | 360
190 | 320
225 | 285
200 | 275 | 215 | 215 | 155 | 165 | 170 | 180 | 215 | 230 | 260
290 ⁺ | 325 | 275 | 310 | 275
200 ⁺ | 165
120 ⁺ | 241 | (24 | | | 110 | 145 | 140 | 145
180 | 190 | 190 | 230 | 225 | 200 | 205 | | | 155 ⁺ | 170 ⁺ | | | 205 ⁺ | 225+ | 290 | 250 ⁺ | 240 ⁺ | | 225+ | 120 | | | | ł | | | 170 ⁺ | 140+ | | | 230 ⁺ | 225+ | | | | | | | | | | | | 200 | 120+ | 335 | 440 | 370 | | | | l | 215 | 225 | | | | | | | | | | | | 225+ | 250 ⁺ | 225+ | 260+ | 230+ | 215+ | 165 | 140 | 105 | 105 | 95 | | | | s | 130 | 120 | 120 | 130 | 155 | 265 | 345 | 355 | 385 | 360 | 355 | 370 | 310 | 320 | 265 | 275 | 240 | 240 | 250 | | | | 75 | 70 | 235 | (24 | | s | 140 | 120 | 95 | 50 ⁺ | 25 ⁺ | | | | | 345 | 360 | 360 | 325 | 325 | 310 | 310 | 300 | 265 | 265 | 250 | 225 | 230 | 155 | 145 | 224 | (24 | | s | 230 | 260 | 205 | 145 | 60 | 105 | 170 | 500 | 455 | 405 | 465 | 465 | 325 | 36 0 | 325 | 275 | 405 | 345 | 320 | 290 | 355 | 380 | 360 | 355 | | | | S | 335 | 345 | 250 | 310 | 320 | 395 | 100 | 415 | 420 | 380 | 345 | 285 | 250 | 230 | 200 | 200 | 225 | 225 | 250 | 205 | 240 | 290 | 345 | 265 | 355
232 | (24
(24 | | s | 275 | 240 | 230 | 240 | 325 | 190 | 190 | 155 | 215 | 230 | 180 | 170 | 145 | 85 | 155 | | | | 310 ⁺ | 205+ | | | 165+ | i | 202 | (24 | | - 1 | | | 180 | 290 | 310 | 300 | 385 | 430 | 430 | | | | | | | | | 380 ⁺ | | | | | | | | | | - 1 | | | | | _ | _ | | | _ | | _ | | _ | _ | | | | | - | | | - | _ | - (| | | | | - | - | - | _ | _ | _ | _ | _ | · _ | _ | _ | | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - 1 | | | | | _ | _ | _ | _ | - | - | - | - | - | - | 505 | 490 | 600 | 550 | 405 | | | 260 | 200 | 265 | 105 | -20 | 35 | -25 | | | | 1 | 1 | | | | | 195 | 179 | 171 | 181 | 205 | 252 | 323 | 409 | 437 | 412 | 392 | 368 | 320 | 318 | 291 | 280 | 262 | 261 | 265 | 279 | 289 | 324 | 277 | 238 | 289 | | | | (19) | (19) | (21) | (22) | (18) | (17) | (19) | (20) | (19) | (18) | (17) | (17) | (19) | (19) | (16) | (16) | (17) | (18) | (19) | (20) | (19) | (19) | (23) | (22) | 209 | | | | 194 | 183 | 174 | 202 | 221 | 262 | 345 | 414 | 425 | 388 | 382 | 387 | 342 | 317 | 288 | 269 | 275 | 275 | 252 | 274 |
302 | 324 | 290 | 245 | 293 | | | her | | (17) | | (16) | | | (14) | (15) | (14) | (16) | | (13) | (13) | | (12) | (12) | | (13) | | (17) | (17) | (19) | (19) | Mean | for se | lected | quiet | davs | [257 | (7 | The potential gradient is reckoned as positive when the potential increases upwards. The small * denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for selected quiet days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. | | ALW ODE | BERVAT | DRY | | | | | | | | | Fa | ctor 4 | • 47 | | | | | | | | | | ¥ | AY 196 | 5 | |------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--|-------------------------------------|--|--|--|--------------------------------------|--|---|--|---|---|--------------------------------------|--|--------------------------------------|---|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|--|------------|--------------| | | Hour C | T., | | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mea | n | | 1 2 3 | -25
-55 ⁺ | -145
230
90 | -180
205
135 | -75
150 | -155
125 | -110
180 | -10
230
330 ⁺ | 20
250
295 ⁺ | 240
205
345 ⁺ | 320
265
285 ⁺ | 205 [†]
250
275 [†] | 170 [†]
170 [†]
180 | 140 ⁺
135
240 ⁺ | 105
230 ⁺ | 105
195 ⁺ | 125 | 35
140 | 140
160 | 355
185 | 295
240 | | 100 ⁺ | | | | | | 4
5 S | | | | | 135+ | 150 ⁺
140 | 225 ⁺
230 | 345 | 320 | 275 | 275 | | | 260 | 230 | 320 | 275 | 310 | 240
295 | 275
305 | 240
295 | 250
285 | 260 | 230
205 | | | | 6 S
7
8 | 225
115 ⁺
160 | 205
100 ⁺
160 | 215
195 | 230
205 | 260
100 ⁺
185 | 320
205 ⁺
205 | 385
330 ⁺
265 | 455
275 ⁺
260 | 400
185 | 240
310 ⁺
215 | 205
320 ⁺
170 | 240
320 ⁺
180 | 225
160 ⁺ | 225
140 ⁺ | 250
90 ⁺ | 215
55 ⁺ | 240
-10 ⁺ | 240
275 ⁺ | 125
265 ⁺ | 135 | 275
-10 ⁺ | 265
285
-20 ⁺ | 150
310
25 ⁺ | 55
265
90 ⁺ | 267 | (24) | | 9 S
10 S | 25 ⁺
225 | 265 | 260 | 260 | 265 | 260 | 140 ⁺
435 | 215 ⁺
455 | 240
445 | 260
295 | 240
265 | 240
275 | 230
240 | 225
225 | 225
225 | 195
225 | 170
195 | 170
185 | 275
180 | 320
125 | 185
60 | 125
35 | 185
20 | 230
80 | 262 | (24) | | 11
12 S
13 S
14 | 90
100 ⁺
70
150 | 80
105 ⁺
90
125 | 55
70 ⁺
105
135 | 105
60 ⁺
115
185 | 100
115 ⁺
150
215 | 105
0 ⁺
180
250 | 135
80 ⁺
375
375 | 330
105 ⁺
410
455 | 340
275
385
525 | 320
260
310
285 | 265
275
260
375
275 | 225
260
225
330 | 195
240
230
275 | 185
265
215
260 | 180
250
215
205 | 150
250
205
240 | 170
195
205
215 | 160
225
185
195 | 150
285
215
170 | 170
250
195
225 | 170
275
205
215 | 105
285
185 | 25 ⁺
170
240
185 | 60 ⁺
90
230
260 | 229 | (24) | | 15 S
16
17 | 205
160 | 195
195 | 205
180
160 ⁺ | 185
180
60 ⁺ | 185
195 | 275 | 365
180 ⁺ | 275
265 ⁺ | 355 | 320
250 ⁺ | 275
230 ⁺ | 230
140 ⁺
215 ⁺ | 215
160 ⁺
205 ⁺ | 265
125 ⁺
230 ⁺ | 195
265 ⁺ | 140
260 ⁺ | 140 | 140
160 | 160
230 | 195
265 | 305 | 225 | 225 | 195 | 228 | (24) | | 18 S
19 S
20 S | 180
105 | 195
70 | 250
80 | 305
80 | 340
160 | -
465
225 | 445
305 | 330
425
365 | 310
410
375 | 250
320
275 | 250
320
230 | 205
215 | 195 | 285 ⁺
185 | 170 | 150 ⁺
230
195 | 215
275
185 | 225
205
170 | 215
135
195 | 230
100
225 | 180
150
305 | 230
170
180 | 230
160
105 | 215
160
80 | 284
195 | (24)
(24) | | 21
22 S
23
24
25 | 80
100
170 | 100
90
80 ⁺ | 140
90
170 | 80
100 | 70
115
105 ⁺
-
125 ⁺ | 90
140
265
-
205 | 180
195
275
265 ⁺
215 | 285
240
265
285 ⁺
265 | 285
260
265
265 ⁺
250 | 230
225
205
250 | 215
225
160
250 ⁺
250 | 185
180
170 | 170
185
180 | 160
160
150
240 ⁺ | 170
140
180
240 ⁺
240 ⁺ | 140
135
140 | 100
150
140
260 | 115
150
195
260 | 70
170
180
250
150 ⁺ | 180
185
105
265
320 | 215
205
185
310
365 | 180
195
225
310
365 | 160
160
305
260
355 | 135
170
285
195
340 | 165 | (24) | | 26
27 | 285 | 240
160 ⁺ | 230
215 | 240
215 | 305
225 | 320
0 ⁺ | 390 | 445 ⁺
400 | | 340 ⁺
275 ⁺ | 320 ⁺ | orot. | 10#t | | - | _
215 ⁺ | _
- | 4 4 0 † | 4-a+ | 260 ⁺ | 375 ⁺ | | | | | | | 28
29 S
30 | 60
195 | 80
185 | 80
170 | 80
170 | 105 | 125 | 135 ⁺
215 | 160 ⁺
230
160 ⁺ | 250 | 275 | 285 [†]
250
150 [†] | 250 ⁺
215 | 195 [†]
185 [†]
140 [†] | 215 ⁺
140 ⁺ | 215 ⁺
180 ⁺
160 ⁺ | 125 ⁺
195 ⁺ | 180 ⁺
160 ⁺
115 ⁺ | 140 [†]
160 [†] | 160 [†]
185
240 [†] | 215
230 ⁺ | 140 [†]
265 | 80 ⁺
265 | 70 ⁺
260 | 100 ⁺
230
70 ⁺ | 182 | (24) | | 31 | | | 195 ⁺ | 125+ | 215+ | | | | 305 ⁺ | 425 ⁺ | 340 ⁺ | 340+ | 305 ⁺ | 340 ⁺ | 345 ⁺ | 265 ⁺ | 320 ⁺ | 305 ⁺ | | 305 | 310 | 375 | | | | | | lean | 125
(22) | 132 (23) | 146
(23) | 145
(21) | 158
(23) | 182
(22) | 257
(26) | 295
(28) | 315
(23) | 279
(26) | 255
(28) | 227
(22) | 202
(22) | 210
(23) | 203
(23) | 190
(22) | 177
(23) | 194
(23) | 203
(25) | 225
(25) | 227
(23) | 204
(23) | 184
(21) | 173
(23) | 205 | | | Tair
Veather | 143
(18) | 136
(19) | 147
(20) | 156
(18) | 167
(17) | 202
(18) | 278
(18) | 319
(19) | 316
(20) | 268
(20) | 250
(19) | 222
(16) | 209
(13) | 206
(14) | 196
(14) | 194
(15) | 184
(18) | 189
(19) | 203
(21) | 223
(23) | 236
(20) | 227
(20) | 208
(18) | 192
(19) | 211 | $\neg \neg$ | Mean | for se | lected | quiet | days | [227 | (8)] | POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | 37 | KEW OB | SERVAT | ORY | | | | | | | | | Fe | ctor 4 | ∙50 | | | | | | | | | | Ju | NE 1965 | | |-----------------|-------------------------|-----------------|-------------------------|------------------|-------------------------|-----------------|-------------------------|-------------------------|------------------|------------------|------------------------|------------------|-------------------------|------------------|------------------|-------|------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------------------|-------------------------|--------------------------------------|---------|-------| | | Hour | 0-1 | 1-2 | 2+3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | | | | | | | | 4 | | + | | | | vo. | its per | metre | | | | | | | | | | | | | | | 1 S | | 95+ | 185 [†]
175 | 185 | 245 ⁺
190 | 185 | 315 ⁺
350 | 515 ⁺
480 | | 565 | 530 | 400 | 385 | 385 | 355 | 270 | 245 | 100 | 210 | 150
175 | 120
210 | 115
165 | 105 | 85 | 270 | (24) | | 2 S
3 | 140 | 165
45 | 45 | 140
115 | 225 | 235 | 305 | 365 | 555
460 | 390 | 410 | 425 | 385 | 390 | 400 | 410 | 245
340 | 190
260 | 175
225 | 260 | 175 | 190 | 150
15 | 105
105 | | () | | 4 | 50 | 45 | 10 | 70 | 60 | 130 | 200 | 330 | 505 | 645 | 565 | 575 | 495 | 425 | 375 | 340 | 390 | 385 | 120 | 105 | 85 | 70 | 80 | 70 | | | | 5 | 130+ | 85+ | 15+ | 10+ | 25 ⁺ | 105+ | 155+ | 245 ⁺ | 155+ | 140+ | 185 | 155 | 140 | 140 | 115 | 85 | | | 85 | 85 | 80 | 95 | 105 | 140 | Į | | | 6 | 190 | 200 | 105 | 150 ⁺ | 25 ⁺ | 45 ⁺ | 105 | 150 | 130 | 155 | 130 | 115 | 115 | 115 | 120 | | 175 | 165 | 150 | 165 | 175 | 190 | 270 | 260 | | | | 7 | 175 | 190 | 150 | 190 | 120 | 175 | 225 | 340 | 245 | 235 | 140 | 140 | 115+ | 95+ | 85+ | 80+ | | | | 100 | | | | 200 | | | | 8 | l | | - | | 95 | | | | | _ | _ | | 1 | | | | | | | 225 ⁺ | 315+ | | 165 ⁺ | 330 ⁺ |) | | | 9 S | 260+ | 245+ | 225+ | 250+ | 175+ | 50 ⁺ | | 250+ | | 155+ | 200+ | 245+ | 40.0 | | | 225 | 225 | 210 | 175 | 185 | 200 | 175 | 140 | 120 | 277 | (24) | | 10 S | 115 | 95 | 80 | 70 | 140 | 340 | 435 | 54 0 |
515 | 530 | 450 | 470 | 425 | 375 | 330 | 280 | 235 | 235 | 190 | 175 | 190 | 85 | 85 | 50 | 2// | (47) | | 11 S | 45 | 60 | 80 | 50 | 45 | 60 | 175 | 225 | 245 | 250 | 155 | 130 | 140 | 130 | 165 | 200 | 190 | 200 | 190 | 210 | 210 | 190 | 190 | 200 | 100 | (04) | | 12 S | 235 | 235 | 235 | 235 | 260 | 165+ | 155+ | 200 | + | + | + | | l | 175* | | | 295 | 210 | 210 | 245 | 190 | 250 | 315 | 295 | 198 | (24) | | 13 S | 405 | 212 | 245 | 270 | 225+ | 225 | 205 | 225 | 235+ | 175+ | 85 ⁺
245 | 225 | 168 | 155 | 245
140 | 215 | 235
140 | 175 | 155 | 155 | 165 | 140 | 105 | 120 | 173 | (24) | | 14 S
15 S | 185
225 | 210
155 | 130
165 | 120
140 | 185
150 | 235
150 | 225
140 | 305
235 | 340
280 | 225
260 | 270 | 270 | 165
190 ⁺ | 133 | 140 | 150 | 140 | 130
80 ⁺ | 175
140 ⁺ | 185
105+ | 185
215 ⁺ | 185
175 ⁺ | 270
175 ⁺ | 225
165 ⁺ | 199 | (24) | | 12.2 | 225 | 155 | 103 | 140 | 130 | 130 | 140 | 233 | 200 | | 2/0 | 2/0 | 130 | | | | | 00 | 140 | 103 | 213 | 1/3 | 1/3 | 103 | 170 | (24) | | 16 S | 140 | 120 | 150 | 150 | 155 | 165 | 250 | 280 | 260 | 200+ | | | | | | | | | | | | | | | 1,0 | () | | 17 | -45 ⁺ | 60 ⁺ | 115 | 155 | 225 | 250 | 330 | 365 | 295 | 250 | 245 | 215 | 200 | 175 | 190 | 210 | 190 | 235
190 ⁺ | 225
215 ⁺ | 150
245 ⁺ | 285 ⁺ | t | 190 ⁺ | + | | | | 18 S | 140 | 140 | 0 ⁺ | 0, | 15 [†]
155 | 185 | 215 ⁺ | 245 ⁺ | 245+ | 225+ | 210 ⁺ | 185 ⁺ | 155+ | 140 ⁺ | 130 ⁺ | 115+ | 115 ⁺ | 120 ⁺ | 130 ⁺ | 245
85 ⁺ | 285
130 ⁺ | 225 ⁺
200 ⁺ | 235 | 150 ⁺
225 ⁺ | 161 | (24) | | 19 S
20 S | 140
225 | 140
165 | 140
185 | 130
200 | 210 | 225 | 270 | 280 | 320 | 260 | 165 | 155 | 140 | 140 | 115 | 105 | 95 | 95 | 105 | 105 | 150 | 175 | 250 | 105 | 181 | (24) | | | 223 | | | | | 223 | | 200 | 320 | 200 | 200 | 100 | | | | | | - | 100 | 100 | 100 | 1.0 | 250 | 103 | | | | 21 | 155 | 215 | 215 | 210 | 140 | | - | - | - | | | | - | - | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | | | 22
23 | 1 - | _ | _ | _ | _ | _ | 210 ⁺ | 235 ⁺ | 210 ⁺ | 190 ⁺ | | |] | | _ | _ | 190 ⁺ | 190 ⁺ | 185+ | 185 | 225 | 250 | 225 | 235 | | | | 24 | 200 | 200 | 155 | 155 | 185 | 225 | 250 | 350 ⁺ | 210 | 230 | _ | _ | - | _ | _ | _ | _ | - | - | - | - | - | - | - | | | | 25 S | | - | | 100 | - | | | - | 235+ | 185 ⁺ | 155+ | 105+ | 95 ⁺ | 70 ⁺ | | 115+ | | | | | | 155+ | 140+ | 140 ⁺ | | | | 06 5 | 105 | 140 | 175 | 200 | 200 | 215 | 225 | 280 | 280 | 260 | 215 | 225 | 175 | 155 | 155 | 150 | 155 | 165 | 185 | 210 | 225 | 235 | 260 | 225 | 186 | (24) | | 26 S
27 S | 105
190 | 140
190 | 175
155 | 200
130 | 200
120 | 215
155 | 235
225 | 245 | 210 | 200 | 200 | 175 | 155 | 150 | 155 | 130 | 140 | 150 | 150 | 175 | 175 | 245 | 175 | 60 | 181 | (24) | | 28 | 105 | 175 | 155 | 115 | 130 | 175 | 320 | 575 ⁺ | 375 | 355 | 280 | 250 | 235 | 225 | 215 | 210 | 200 | 190 | 190 | 190 | 210 | 235 | 200 | 95 | | • • | | 29 | 95 | 50 | 60 | 130 | 185 | 210 | 270 | 385 | 530 | 515 | 450 | 330 | 425 | 460 | 410 | 420 | 435 | 355 | 340 | 305 | 355 | 340 | 330 | 270 | | | | 30 | 185 | 225 | 150 | | | 295 | 410 | 550 | 520 | 530 | 470 | 520 | 445 | 355 | 390 | | | 435 | 260 | 245 | 155 | 80 | Mean | 143 | 146 | 135 | 143 | 149 | 181 | 251 | 328 | 325 | 300 | 274 | 265 | 241 | 224 | 227 | 206 | 222 | 208 | 182 | 180 | 192 | 184 | 182 | 164 | 211 | | | | (23) | (24) | (26) | (25) | (26) | (22) | (23) | (25) | (22) | (23) | (21) | (20) | (19) | (19) | (18) | (18) | (18) | (21) | (23) | (24) | (23) | (24) | (23) | (23) | | | | air | 147 | 151 | 136 | 142 | 162 | 201 | 262 | 335 | 357 | 352 | 300 | 281 | 268 | 252 | 242 | 227 | 230 | 223 | 184 | 183 | 183 | 179 | 182 | 154 | 222 | | | Weather
Wean | (20) | (20) | (20) | (19) | (19) | (18) | (18) | (16) | (17) | (16) | (17) | (17) | (15) | (15) | (16) | (15) | (16) | (17) | (18) | (20) | (19) | (19) | (18) | (18) | | | | -can | L | | | | | | | | | | | | | | | | | | | | | | | - 1 | Mean | tor se | elected | I quiet | days | [200 | (10)] | The potential gradient is reckoned as positive when the potential increases upwards. The small * denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for selected quiet days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. mean values for hours without hydrometeors and for fair weather hours | 111 | 37 | KEW OB | SERVAT | ORY | | | | | | | | | F | ctor 4 | •53 | | | | | | | | | | Ju | LY 1965 | | |--|---------|------------------|--------|------------------|-------------------|------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-------------|------------------|------------------|------------------|-------|---------|-------| | 1 | | Hour | GMT | | | | | | | | | | | T | | | | | | | | | | | | | | | 1 - 10 | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | | | 2 S 100 80 145 190 215 180 325 385 340 305 370 270 3 | | | | | | | | | | | | vo. | Its per | metre | | | | | | | | | | | | | | | 3 S 135 55 145 155 200 180 250 430 430 380 290 250 180 115 110 90 125 160 155 160 55° 250 235
235 23 | | | - | | | | | | | 485 | | 425 | 395 | 370 | 335 | 295 | 325 | 280 | 245 | 200 | 155 | 65 | 55 | 155 | 90 | | | | 4 S S 180 135 155 200 160 225 330 325 148 200 180 170 090 125 110 70 70 00 90 135 180 225 223 235 167 (24) 5 S 180 145 145 155 155 160 290 340 390 340 290 250 205 160 145 200 250 225 290 235 260 290 280 235 260 290 280 235 6 170 170 180 160 170 190 200 270 270 270 200 205 180 145 200 250 270 180 155 135 160 180 170 245 200 250 270 270 270 270 270 270 270 270 270 27 | 170 | 160 | 190 | | | 105 | (04) | | S S 180 145 145 155 160 250 340 395 340 290 290 250 205 160 145 200 205 25 250 235 260 290 280 235 236 245 2 | , , | | 6 170 170 180 160 170 190 200 270 270 260 270 200 245 200 215 235 215 205 205 216 235 215 205 205 216 235 216 235 217 225 205 217 205 205 205 217 205 205 217 205 205 217 205 205 217 205 205 217 205 205 217 205 205 217 205 205 217 205 205 217 205 205 217 205 205 217 205 205 217 205 205 217 205 205 217 205 205 217 205 20 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | 7 8 8 7 1-40 - 30 - 45 55 180 295 395 385 385 387 332 325 200 200 100 215 250 270 305 385 385 385 385 385 385 385 385 385 38 | 3 3 | 190 | 145 | 145 | 155 | 100 | 250 | 340 | 395 | 340 | 290 | 290 | 250 | 205 | 160 | 145 | 200 | 250 | 225 | 250 | 235 | 260 | 290 | 280 | 235 | 236 | (24) | | 7 8 8 7 1-40 - 30 - 45 55 180 295 395 385 385 387 332 325 200 200 100 215 250 270 305 385 385 385 385 385 385 385 385 385 38 | 6 | 170 | 170 | 180 | 160 | 170 | 190 | 200 | 270 | 270 | 260 | 270 | 200 | 245 | | | | 170 ⁺ | 145+ | | | | | _ | _ | | | | 8 S 9 | 7 | - | - | - | | - | | - | - | 290+ | 245 ⁺ | 205+ | 215+ | | 200 ⁺ | 215+ | | - | | | | | | | | | | | 10 235 170 215 245 250 280 325 | 8 S | | -140+ | - 301 | - 45 ⁺ | 55 ⁺ | 180 | 295 | 395 | 385 | 370 | 325 | 250 | 250 | | | | 205 | 180 | 155 | 135 | 160 | 160 | 170 | 245 | | | | 111 | 9 S | 170 | 245 | 200 | 200 | | 215 | 250 | 270 | 350 | 350 | 290 | 295 | 290 | | 270 ⁺ | | | | 235+ | 180+ | | 190+ | 125+ | 200+ | 231 | (24) | | 12 | 10 | 235 | 170 | 215 | 245 | 250 | 280 | 325 | | | 260 | 250 | 270 | 225 | | | 180 | 170 | 160 | 125 | 170 | 280 | 260 | 250 | 270 | | | | 12 | 11 | 260 | 190 | 160 | 155 | 170 | 205 | 80 | 90 | 115 | | | 160+ | 190+ | 135+ | | 70+ | | | | | | | -75+ | -110+ | | | | 13 | | | 130 | 100 | 133 | 170 | 203 | 00 | • | 113 | | | 100 | 130 | 133 | | ,, | | | 65+ | 70+ | 145+ | 170+ | 115+ | 145+ | | | | 14 S 205 200 245 215 145 290 405 325 290 245 290 290 215 235 200 200 200 190 215 135 110 180 180 180 180 145 90* 90* 45* 55* 50* 405 350* 340* 335* 370* 180* 135* 270* 180* 215* 270* 205* 200 200 200 235 235 190 235 247 (24) 180 190 180 125 315 295 350 215 145 110 115 145 110 70 65 90 110 155 120 70 90 90 90 235* 200* 170* 160* 200* 145* 100* 160* 170* 100* 180* 100* 125* 110* 125* 205* 205* 200* 200 100 100* 125* 110* 100* 180* 100* 125* 110* 125* 205* 205* 200* 200* 100* 125* 110* 125* 205* 205* 200* 170* 160* 200* 145* 160* 170* 270* 270* 215* 125* 125* 125* 125* 125* 125* 125 | | | 90+ | 90+ | 90+ | 80+ | 25 ⁺ | 155+ | 215+ | 235+ | 245+ | 250+ | 235+ | 235+ | 245 ⁺ | 270+ | 115+ | 225+ | | - | ,, | 143 | 1,0 | 113 | | | | | 15 | | | | | | | | | | | | | | | | | | | 200 | 190 | 215 | 135 | 110 | 180 | | 229 | (24) | | 17 S 190 190 180 215 315 295 350 215 145 110 115 145 145 135 145 | 15 | | | | | 55+ | | | | | | 370 ⁺ | | | | | | | | | | | | | | | (-1) | | 17 S 190 190 180 215 315 295 350 215 145 110 115 145 145 135 145 | | | | | | | | | 450 | 118 S 115 110 70 65 90 110 110 115 245 315 235 200 170 125 205 215 200 170 205 255 160 205 145 160 160 125 70 80 100 70 100 100 80 45 126 200 110 125 205 215 225 215 200 170 205 255 200 110 25 110 125 170 190 270 250 250 250 260 280 205 215 155 160 80 155 170 200 215 205
205 | 247 | (24) | | 19 | | 1 | | | | | | 330 | 213 | | | | | | | | | | | | | | | | | 126 | (24) | | 20 | | | | | | | | _ | _ | 110 | | | | 233 | | | | | | | /0 | 100 | | | 45 | 120 | (-7) | | 115 110 100 100 125 110 125 170 190 270 250 250 260 280 205 215 155 160 80 155 170 200 215 205 205 205 205 205 205 205 205 205 20 | _ | - 55 | | | 70 | 90 | 90 | | | 575 [†] | | 200 | 170 | | 100 | 200 | | | | 170 | | | | | 160+ | | | | 100 100 125 110 125 170 190 270 250 250 260 280 205 215 155 160 80 155 170 200 215 205 205 215 270 315 325 315 270 245 225 225 170 155 160 215 225 200 110 70 225 225 278 205 235 235 235 235 235 235 235 235 235 23 | 20 | ŀ | 03 | 123 | | | | | | | | | | | | | 703 | 210 | 333 | | | | 110 | 03 | 100 | | | | 215 | 21 | 115+ | 110+ | 100 ⁺ | 180+ | 100+ | 125+ | 205+ | 215 ⁺ | 245 ⁺ | | 215 ⁺ | 245 ⁺ | 245 ⁺ | | | | | | | | | 205 | 155 | 135 | | | | 125 125 160 205 215 270 315 325 315 270 280 325 180 270 290 245 260 250 215 215 200 225 250 280 235 278 205 235 235 235 235 235 235 235 235 235 23 | 22 | 100 | 100 | 125 | | | | | 270 | 250 | 250 | 260 | 280 | 205 | - | - | 215 | 155 | 160 | 80 ⁺ | 15 5 | 170 | 200 | 215 | 205 | | | | 25 | 23 | | | | 215 ⁺ | 280 ⁺ | | | | | | | | | | | | | | | | 250 | 200 | 110 | 70 | | | | 26 | 24 | 125 | | | | | 270 | 315 | | | | | 225 | 225 | | 170 | 155 | 160 | 215 | 225 | | | | | 1 | | | | 27 S 205 235 235 235 230 280 325 360 385 290 340 250 260 260 245 245 200 190 200 245 280 270 205 245 261 (24) 280 280 280 250 250 250 250 250 250 250 250 250 25 | 25 | | 315 | 245 | 235 | 225 | | | 200 | 235 | 215 | 180 | | | | | | | | | - | - | - | - | - | | | | 27 S 205 235 235 235 230 280 325 360 385 290 340 250 260 260 245 245 200 190 200 245 280 270 205 245 261 (24) 280 280 280 250 250 250 250 250 250 250 250 250 25 | 26 | - | _ | - | - | | | | - | 350 | 270 | 280 | 270 | 290 | 245 | 260 | 250 | 215 | 215 | 200 | 250 | 205 | 250 | 280 | 235 | | | | 288 190 ⁺ | 27 S | 205 | 235 | 235 | 235 | 270 | 280 | 325 | 360 | | _ | | | | | | | | | _ | | | | | | 261 | (24) | | 280 \$ 155 160 180 135 145 200 | 28 | | | | | | | | 100+ | 145+ | | | 180 | 160 | 180 | 160 | 155 | 160 | 170 | 145 | 170 | 155 | | | | | (, | | 30 S 155 160 180 135 145 200 440 | 29 S | | | 45+ | 55 ⁺ | 70 ⁺ | | 190 ⁺ | | | 280 ⁺ | 325 ⁺ | 280+ | | 235 | 235 ⁺ | | | 245 ⁺ | 235+ | 235 | | 200 | 200 | 180 | 242 | (24) | | 138 127 140 146 159 204 280 313 297 290 265 243 222 213 201 205 196 178 154 179 183 189 170 162 (24) (25) (25) (25) (26) (26) (23) (22) (25) (27) (26) (25) (26) (25) (26) (21) (21) (24) (24) (23) (22) (19) (19) (19) (22) (24) (25) (26) (27) (27) (28) (28) (28) (28) (28) (28) (28) (28 | 30 S | 155 | 160 | 180 | 135 | 145 | 200 | | 440 ⁺ | | 460 ⁺ | | | 260 ⁺ | 3 5 0* | | 430 ⁺ | 515* | | | | 260 ⁺ | 205 ⁺ | 180 ⁺ | 180+ | 243 | (27) | | 24) (25) (25) (26) (26) (26) (27) (26) (27) (26) (27) (26) (27) (26) (27) (28) (28) (28) (28) (28) (28) (28) (28 | 31 S | 200 ⁺ | 115+ | | 135+ | 170 | 205 | 295 | 315 | 260 | 260 | 215 | 205 | 155 | 155 | 145 | 155 | 125 | 135 | 100 | 190 | 160 | 160 | 180 | 205 | 190 | (24) | | 24) (25) (25) (26) (26) (26) (27) (26) (27) (26) (27) (26) (27) (26) (27) (28) (28) (28) (28) (28) (28) (28) (28 | | 120 | 107 | 140 | 146 | 150 | 204 | 280 | 313 | 297 | 290 | 26.5 | 243 | 222 | 213 | 201 | 205 | 196 | 178 | 154 | 170 | 183 | 180 | 170 | 162 | 202 | | | 11r 146 141 157 164 175 210 298 326 295 278 266 251 222 206 192 191 171 166 157 185 181 189 188 181 206 18) (18) (18) (18) (19) (20) (20) (17) (17) (19) (19) (20) (19) (14) (14) (16) (16) (16) (17) (17) (17) (17) (17) (17) | Mean | 202 | | | Tather (18) (18) (19) (20) (20) (17) (17) (19) (19) (20) (19) (19) (14) (16) (16) (16) (16) (17) (17) (17) (17) (17) (17) (17) (17 | | (27) | (20) | (==) | (20) | (==) | (==) | | | | | / | `' | | | / | / | ,/ | / | / | ·/ | () | ·/ | `/ | | | | | ean (16) (16) (17) (17) (17) (17) (17) (17) (17) (17 | Fair | 146 | 141 | 157 | 164 | 175 | 210 | 298 | 326 | | | | | 222 | | | | | 166 | 157 | | 181 | | | 181 | 206 | | | an l | leather | (18) | (18) | (18) | (19) | (20) | (20) | (17) | (17) | (19) | (19) | (20) | (19) | (19) | (14) | (14) | (16) | (16) | (16) | (14) | (17) | (17) | (17) | (17) | (17) | | | | Mean for selected quiet days [213 (10)] | iean | | . , | ł | Mean | for se | lected | quiet | days | [213 | (10)] | POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | 37 : | KEW OBS | BERVAT | DRY | | | | | | | | | | ctor 4 | | | | | | | | | | | AUGU | ST 1965 | | |----------------------------------|--|--|---|---|---|---|---|--|---------------------------------|--|--|--|--|---|--|--|--|---------------------------------------|--|--|---|---|---|---|-------------------|----------------------| | | Hour C | MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17:-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | | | 1
2
3 S
4 S
5 S | 200
310
190
280
170 | 215
260
170
235
165 | 210
260
145
225
215 | 200
235
135
225
180 | 200
190
245
245 | 235
155 ⁺
255
345
270 | 280
260
455
470 | 270
270 ⁺
390
480
470 | 255
435
435
345 | 255 ⁺ 315 345 290 | 200 ⁺
280
260
290 | 200 ⁺
270
270
270 | 170 ⁺ 245 260 180 ⁺ | 165 ⁺ 235 225 200 | 145 ⁺ 235 225 235 | 210
245
235 | 200
235
235 | 125 ⁺
190
280
310 | 135 ⁺
280
345
390 | 155 ⁺
255
390
335 | 260 ⁺
210 ⁺
255
360
255 | 325
190 ⁺
280
325
165 | 355
100 ⁺
370
225
280 | 315
180 ⁺
335
200
310 | 255
296
267 | (24)
(24)
(24) | | 6 S
7
8 S
9 | 315
310
90
55
165 | 260
225
70
45
110 | 245
225
70
65
120 | 210
235
100
35
145 | 260
245
100
70 | 360
270
225
70 | 460
355
325
165 | 505
455
390
415 | 445
455
325
435 | 360
310
235
415 | 280
235
200
360
255 | 255
190
200
210
235 ⁺ | 270
170
165
235 ⁺
260 ⁺ | 255
165
165
335 ⁺
235 ⁺ | 255
135
210 | 215
110
200
180 ⁺ | 180
90
170
215 ⁺ | 125
120
165
245 | 155
155
155
280
245 | 200
190
165
235
200 ⁺ | 200
125
315
145
165 ⁺ | 215
90
235
235
110 ⁺ | 260
100
245
165
255 ⁺ | 245
110
120
210
310 ⁺ | 272
193 | (24)
(24) | | 11 S
12 S
13
14 | 155
0
125 ⁺
325 ⁺ | 100
-65
100 ⁺
170 ⁺ | 90
-120
120 ⁺
90 ⁺ | 100
20
100 ⁺
110 ⁺ | 90
65
90 ⁺ | 125
155
90 ⁺ | 455
310
155 ⁺ | 415 ⁺
535
325
215 ⁺ | 525 ⁺
595
345 | 560 ⁺
435
390
170 ⁺
155 ⁺ | 360
290
400
215 | 255
315
455 | 190
270
470
135
165 | 225
215
380
215
145 | 145
310
500
155
155 | 145
290
500
165
145 | 110
315
560
170
170 | 145
200
455
155
165 | 145
180
270
90
180 | 370
90
325
165
210 | 360
-75
325
360
235 | 380
-150
145
300
325 | 290
-160
65
390
270 | 235
-20
65
400
125 | 251 | (24) | | 16
17
18 S
19 S | 170
125 ⁺
190
155 | 65
145 ⁺
165
135 | 90
135 ⁺
210
165
70 | 215
125 ⁺
125
210
65 | 165
110 ⁺
165
180
55 | 165
210 ⁺
235
215
65 | 270
480
455
255
110 | 470
560
545
310
270 | 550
690
535
260
455 | 525
590
415
315
455 | 515
595
310
260
370 | 415
470
225
210
280 | 390
370
90
190
235 | 325
280
70
255
225 | 290
280
80
190 ⁺
190 | 255
235
225
210 ⁺
190 | 190
255
245
215 ⁺
145 | 155
165
235
165 | 255
70
210
200 | 200
110
280
180 | 100
100
315 | 65
125
270
155 | 110
120
260
245 | 125
80
235
255 | 232 | (24) | | 21
22
23 S
24 S
25 S | 315
145
155
225 | 245
135
165
215 | 165
155
200
190 |
155
200
170
210 | 215
70
170
215 | 210
200
235
290 | 255
370
345
415 | 310
470
380
590 | 380
425
380
560 | 280
455
445 | 225
345
380 | 325
335 | 335 | 335
170 ⁺
280 ⁺ | 310
310 ⁺ | 145 ⁺
215
255 | 270
170 | 210 ⁺
290
180 | 280
225
180 | 280
200 ⁺
165 | 325
120 ⁺
180
190 | 180
345 ⁺
135
180 ⁺
200 | 270
280 ⁺
165
245 ⁺
170 | 245
235 ⁺
200
225 ⁺
180 | 233 | (24) | | 26 S
27
28
29 S
30 S | 125
165
280
155 | 155
180
310
180 | 100
135 ⁺
280
155 | 155
135 ⁺
290
165 | 210
135 ⁺
180 ⁺
280
180 | 225
290 ⁺
165 ⁺
290
180 | 300
405 ⁺
180 ⁺
335
225 | 455 ⁺
200 ⁺
315
235 | 325
370+
335
300 | 300
605 ⁺
260 ⁺
300 ⁺
225 | 290
535 ⁺
245 ⁺
225 ⁺
190 | 225
270 ⁺
170 ⁺
170 ⁺
170 | 145 ⁺
315
200 ⁺
125 ⁺
110 | 260
110 ⁺
165 ⁺
125 | 245
165 ⁺
110 ⁺
125 | 255
200 ⁺
125 ⁺
135 | 200
135 ⁺
120 ⁺
100 | 190
120 ⁺
45 | 80
90 ⁺
200 ⁺
155 | 45
215 ⁺
155 | 155
335
70 | 170
270 ⁺
355
125 | 235
290 ⁺
255
180 | 200
290 [†]
200
200 | 201
194 | (24) | | 31 | | | | | | 90 ⁺ | 155 ⁺ | 210 ⁺ | 315 ⁺ | 355 ⁺ | | 335 ⁺ | | | 270 ⁺ | 260 ⁺ | | | | | | 255 ⁺ | 235+ | 235+ | | | | ean | 188
(26) | 160
(26) | 149
(27) | 157
(27) | 165
(25) | 208
(27) | 317
(26) | 387
(27) | 419
(25) | 361
(27) | 312
(26) | 265
(25) | 228
(25) | 222
(26) | 220
(24) | 214
(25) | 204
(23) | 193
(23) | 198
(25) | 211
(25) | 212
(26) | 207
(29) | 216
(29) | 208
(29) | 234 | | | air
eather
ean | 188
(23) | 163
(23) | 153
(23) | 164
(23) | 172
(21) | 220
(21) | 334
(22) | 414
(21) | 421
(22) | 374
(19) | 317
(21) | 277
(19) | 243
(18) | 226
(19) | 227
(18) | 222
(19) | 211
(19) | 197
(19) | 204 (21) | 215
(21) | 216
(22) | 202 (23) | 212
(23) | 199
(23) | 240 | Mean | for se | lected | quiet | days | [239 | (10)] | 'The potential gradient is reckoned as positive when the potential increases upwards. The small [†] denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for selected quiet days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. The state of s | 37 | KEW OBS | ERVATO | RY | | | | | | | | | F | actor 4 | 1-47 | | | | | | | | | 8 | EPTEMB | ER 196 | .5 | |-------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------|--------------------------------------|------------------------------|--|--|--|--|--|--------------------------------------|--------------------------------|-------------------------------|---|--|---|---|--|--|---|--------|------| | | Hour C | T | | | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mea | ເກ | | 1
2
3 | 225
45 ⁺ | 305
35 ⁺ | 330
55 ⁺ | 240
70 ⁺ | 180
25 ⁺ | 285
65 ⁺ | 500
100+ | 485
-10 ⁺ | 455
-10 ⁺ | 420
45 ⁺ | 360
80 ⁺ | 305
150 ⁺ | metre
145 [†]
125 [†] | -20 ⁺ | 145 [†]
135 [†] | 45 ⁺ | -45 ⁺ | -25 ⁺ | 65 [†]
0 [†] | | -10 ⁺ | 10 ⁺
-155 ⁺ | 90 ⁺
-155 ⁺
-45 ⁺ | 35 ⁺ | | | | 4 S
5 S | -10 | 10 | 100 | 125 | 180 | 235 | 275 | 350
500+ | 340
375 ⁺ | 285
320 ⁺ | 275
225 ⁺ | 240
205 ⁺ | 190
195 ⁺ | 195
145 ⁺ | 190
145 ⁺ | 145
145 ⁺ | 190
150 ⁺ | 160
305 | 190
205 | 305
240 | 455
190 | 360
225 | 360
225 | 320
225 | 248 | (24) | | 6
7 S
8 S
9 | 160
250 ⁺
260
270 | 180
45 ⁺
235
275 | 145
90 ⁺
180
330 | 150
135 ⁺
205
315 | 145
150 ⁺
235
260 | 250
190 ⁺
295
260 | 350
340
360 | 360
385
360 | 375
420
530
305 | 360
445
475
295 | 320
275
375
195 | 275
260
320 | 215 ⁺
235
250
190 ⁺ | 215
285 | 270 ⁺
190
235 | 195
160 | 195
260 ⁺
90 | 250 ⁺
240
240 ⁺ | 180 ⁺
315
70 ⁺ | 45 ⁺
270
65 ⁺ | -55 ⁺
305
90 ⁺
- | 105 ⁺
315
35 ⁺ | 150 ⁺
320
190 ⁺ | 235 ⁺
270
275 ⁺ | 275 | (24) | | 1 2 | _ | 90+ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | - | <u>-</u> | - | - | - | - | | | | 3 S
4 S
5 S | 195 | -
145
- | 160 | 275
- | 270
- | 170 | 250 ⁺ | 520 ⁺
-
410 | 660 ⁺
-
330 | 430
-
320 | 455
-
260 | 440
-
240 | 430
-
160 | 365
-
180 | 340
-
215 | 330
-
205 | 340
-
215 | 340
-
170 | 275
-
215 | 305
-
340 | 240
-
430 | 205
-
340 | 190
-
275 | 205
-
190 | 314 | (24) | | 6 S
7 | 145 | 105 | 105 | 100 | 145 | 160 | | 225 [†]
590 [†] | 535 ⁺ | 535 ⁺ | 205+ | 340 ⁺ | | 115+ | 150 ⁺ | | 180 ⁺ | 205+ | 145 ⁺ | 180 ⁺
205 ⁺ | 160 ⁺
250 ⁺ | 170 ⁺
150 ⁺ | 215 ⁺
180 ⁺ | 135 ⁺
115 ⁺ | 207 | (24) | | 8
9 S
0 S | 100 ⁺
320 | 90 ⁺
250 | 65 [†]
195 | 45 ⁺
160 | 10 [†]
160 | 65 ⁺
115 | 105
190
285 | 215
305
500 | 215
320
620 | 205
410
545 | 160
340
430 | 240
270
330 | 170
275 | 150
285 | 145
260 | 135 ⁺
150
270 | 190
160
195 | 195
190
215 | 270
190
225 | 365
270
195 | 385
295
250 | 420
-260
270 | 295
285
205 ⁺ | 235
235
205 ⁺ | 231 | (24) | | 1 S
2
3
4
5 | 160+ | 170+ | | | 170+ | 180 ⁺ | 235 ⁺ | 270 ⁺
135 ⁺ | 340
330 ⁺ | 375
545
340
215
240 ⁺ | 305
565
320
260
205 ⁺ | 315
455
330
190
170 ⁺ | 320
410
275
180
150 ⁺ | 285
385
305
240
145 ⁺ | 270
385
360
250 | 305
320
385
305 | 260
320
330
315 | 305
350
360
305 | 235
315
440
275 | 205
320
305
250 | 285
430
385 | 285
330
275
35 ⁺ | 160
375
225
90 ⁺ | 270
340
295
105 ⁺ | 294 | (24) | | 6
7
8 S | 145 | 170 ⁺
145 | 145
170 ⁺ | 135
190 ⁺ | 180
215 ⁺ | 145
215
295 ⁺ | 215
360 | 240
520 | 235
490 | 190 ⁺
410 | 240 ⁺
350
485 | 520 ⁺
465 | 320 | 365
340 | 295
340 | 275
385 | 295
385 | 330 ⁺
350
375 | 500 ¹
475
440 | 455 ⁺
330
410 | 160 ⁺
330 | 125 ⁺
240 | 195 | 190 | | | | 9 S
0 | 180
150 ⁺ | 215
160 ⁺ | 250 | 275 | 260 | 275 | 320 | 420 | 420 | 375 | 330 | 270 | 240 | 235 | 205 | 250 | 195 | 225 | 180 | 160+ | 330 | 240 | 115+ | 205+ | 311 | (24) | | an | 173
(15) | 154
(17) | 166
(14) | 173
(14) | 173
(15) | 200
(16) | 278
(14) | 357
(19) | 383
(19) | 354
(22) | 305
(23) | 301
(21) | 236
(19) | 227
(19) | 238
(19) | 236
(17) | 222
(19) | 243
(21) | 248
(21) | 234
(22) | 233
(19) | 200
(20) | 188
(21) | 205
(20) | 239 | | | ir
ather
an | 189
(10) | 187
(10) | 194
(10) | 198
(10) | 201
(10) | 219
(11) | 300
(11) | 379
(12) | 385
(14) | 379
(17) | 337
(18) | 309
(16) | 266
(13) | 274
(14) | 263
(14) | 263
(14) | 245
(15) | 272
(15) | 283
(15) | 294
(14) | 332
(12) | 294
(12) | 264
(11) | 252
(11) | 274 | | | | | | | | | | | | | | | | | | | | | | | Maan | for 00 | leated | quiet | dava | [269 | (7) | POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | 37 | KEW OBS | SERVATO | RY | | | | | | | | | F | actor 4 | 1.55 | | | | | | | | | | OCTOB | ER 1965 | | |---------------------------|--|---|--|---|--|--|--|---------------------------------------|---------------------------------------|---------------------------------------|---|--|--|--|--|--|--|--|---|---
---|---------------------------------------|---------------------------------------|--------------------------------|------------|------| | | Hour C | MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | | | 1
2
3 S
4 S
5 | 365
215 | -
375
195 | 250 ⁺
195 | 170 [†]
260 | 170 ⁺
215 | 240 ⁺
195 | 145 ⁺
240 ⁺
275 | 170 ⁺
270
475 | 285
545 | 285
520 | 305 ⁺
535 ⁺
235
465
540 | 1ts per
340 ⁺
430 ⁺
250
455
595 | 250
320 ⁺
205
455
505 | 215
225
410
615 | 205
270 ⁺
240
375
605 | 115
270 ⁺
275
405
660 | 215
305
430
670 | 240
455 ⁺
350
580
615 | 365
485
350
500
450 | 360
465
340
410
175 | 330
410
330
315
275 | 340
410
360
275
185 | 445
320
270 ⁺
175 | 385
250
145 | 279
362 | (24) | | 6
7
8
9 S
0 S | 140
215
340 | 140
195
275 | 70
195
240 | 155
215
235 | 240
240 | 305
250 | 420
285 | 555
315 | 295
520
295 | 420
410
275 | 435
395
295 | 435
545
315
340 | 420
390
275
285 | 490
320
320
350 | 380
280
360
340 | 350
310
330 ⁺
410
375 | 280
365
430
485
465 | 310
210
430
520
465 | 435
195
360
485
535 | 380
195
330
455
555 | 195
365
430
600 | 170
285
420
535 | 110
250
395
580 | 140
250
375
565 | 373
376 | (24) | | 1 S
2
3
4 | 465
420
105
285 ⁺ | 375
375
195
45 ⁺
20 ⁺ | 395
340
105 | 330
375
170
150 ⁺ | 275
365
170
235 | 445
420
160 | 600
555
150 | 770
565
260
645 | 785
625
445
810 | 770
680
375
620 | 760
590
180
610 | 750
645
250
160 ⁺
520 | 645
620
235
315
375 | 600
625
205
285
385 | 545
580
215
275
350 | 610
620
215
315
285 | 545
510
275
365
330 | 420
580
180
330 | 275
535
215 | 430
250
235
420 | 350
125
170
365 | 445
180
285
360 | 520
145
195
285 | 420
80
350 | 522 | (24) | | 6
7
8
9 | 305
20 ⁺
20 ⁺
90 | 250
20 ⁺
20 ⁺
225 | 180
10 ⁺
20 ⁺
250 | 80
20 ⁺
10 ⁺
205 | 105 ⁺ 25 ⁺ 0 125 | 105 ⁺ 25 ⁺ 10 ⁺ 190 | 170 ⁺ 55 ⁺ 55 ⁺ 320 | 225+ | 365
160 ⁺
645 | 405
555 1
680 | 500
580
590 | 375
555
405 ⁺
510 | 320
305
520
375 ⁺
555 | 260
285
600
465 ⁺
445 | 205
205
660
575
465 | 215
240
705
645
445 | 225
285
645
705
530 | 235
190
645
620
610 | 125 [†]
170 [†]
660
490
565 | 45 [†]
25 [†]
635
270
565 | 35 [†]
10 [†]
555
195
535 | 20 ⁺
485
215
465 | 305
160
455 ⁺ | 125
145
620 ⁺ | | | | 1 S
2
3
4
5 S | 375 ⁺
320 ⁺
520
360 | 315 ⁺
315 ⁺
395
350 | 305 ⁺
305 ⁺
375
330 | 275 ⁺ 405 315 | 190 ⁺ 315 ⁺ 330 | 250 ⁺
330 | 250 ⁺
365 | 340 ⁺
475 | 365 ⁺
545 | 555 ⁺ 215 ⁺ 660 | 670
205
645 | 680
250
680 | 520
440
190
625 | 475
500 ⁺
360
195
440 | 445
250 ⁺
350
215
410 | 350
465 ⁺
360
260
500 | 305
500 [†]
340
285
575 | 145
305 ⁺
405
340
520 | 105
315 ⁺
575
385
430 | 375
330 ⁺
575
375
375 | 340
645
395
320 ⁺ | 430
555
385
285 ⁺ | 405
500
350
320 ⁺ | 340
535
360 | 438 | (24 | | 5
7 S
3
9 S | 270
250
250 | 250
170
285 | 225
145
285 | 180
150
240 | 115
225
215 | 105
285
180 | 105
340
190 | 385 ⁺
215
430
205 | 500 ⁺
305
465
235 | 320
520
215 ⁺ | 295
445
205 ⁺ | 285 | 320
330 | 360 ⁺
295
320 | 410 ⁺
340
270 | 430 ⁺
365
365
320 | 420
420
455
235 ⁺ | 430
430
485
215 | 430
490
445
205 | 385
575
410
235 | 395
500
445
250 | 320
440
430
240 | 320
440
420
250 | 275
315
445
225 | 321
359 | (24 | | 1 | 195 | 145 | 145 | 125 | 115 | 125 | 125 | 135 | 125 | | | 320 ⁺ | | | | | | | | | | | 35 ⁺ | 65 ⁺ | | | | an | 263
(21) | 224
(22) | 211
(21) | 203
(20) | 193
(19) | 222
(18) | 271
(19) | 357
(20) | 438
(19) | 471
(18) | 451
(21) | 437
(24) | 392
(25) | 388
(26) | 364
(27) | 387
(29) | 414
(28) | 402
(28) | 390
(28) | 363
(28) | 341
(26) | 341
(25) | 319
(24) | 302
(22) | 339 | | | r
ther | 282
(16) | 262
(16) | 232
(15) | 229
(15) | 205
(14) | 259
(13) | 326
(13) | 409
(14) | 45 6 (16) | 496
(14) | 462
(17) | 465
(19) | 396
(23) | 379
(23) | 370
(24) | 389
(25) | 418
(26) | 404
(26) | 413
(25) | 391
(25) | 370
(23) | 357
(23) | 329
(20) | 298
(20) | 358 | | The potential gradient is reckoned as positive when the potential increases upwards. The small [†] denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for selected quiet days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. | | Mean values for hours without hydrometeors and for fair weather hours | |---------------------|---| | .37 KEW OBSERVATORY | Factor 4.61 | | | | DERINI | O | | | | | | | | | | Factor | 4.61 | | | | | | | | | | NOVEMB | ER 196 | 5 | |------------------------------------|---|--|--|---------------------------------------|---------------------------------|---------------------------------------|---------------------------------------|---|---|--|--|--|--|--|--|---------------------------------------|--|--|---------------------------------|---------------------------------|--|---------------------------------|--|---|-------------------|----------------------| | | Hour | CMT | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18 - 19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mea | n | | 1 S
2 S
3 4
5 | 90 ⁺
200
-55
55
90
155
25 ⁺ | 55 ⁺
180
-55
110
250
200
155 ⁺ | -10 ⁺ 155 110 200 280 225 20 ⁺ | 135
350
250
340
260
80 | 155
235
260
430
290 | 160
190
290
430 | 65 [†] 200 325 380 335 325 | 125 ⁺ 290 630 505 370 | 380
790
565
515
450 | 270 ⁺
360
665
610
650 | | 235 ⁺
325
740
575
820
160 ⁺ | 380
530
485
955
245 ⁺ | 385
360
460
685
280 ⁺ | 245 ⁺
470
405
430
620
385 ⁺ | 430
340
385
755 | 280 ⁺
665
360
460
610
470 ⁺ | 290 ⁺ 740 650 370 1000 380 ⁺ | 295
685
685
350
650 | 295
205
505
180
430 | 305
25
70
250
-55 ⁺ | 280
25
80
125 | 250
65
250 ⁺
55
-55 | 235
0
-95 ⁺
55
110
-30 ⁺ | 241 | (24) | | 8
9
10 | 280 | 180 ⁺
160 | 170 ⁺
135 | 80 | 305 | 305 | 305
125 ⁺ | _
215 ⁺ | - | 325+ | 295+ | 290 ⁺
450 ⁺ | 280 ⁺ | 260 ⁺
440 ⁺ | 245 ⁺ | _ | 430 ⁺
-
290 ⁺ | | | 405 | 385
-
90+ | 340
90 ⁺ | 350
180 ⁺ | 315
305 ⁺ | | | | 11
12 S
13 S
14 S
15 S | 155
235
730
875
180 | 245
205
710
460
80 | 170
235
515
405
125 | 200
200
470
485
115 | 20
250
450
530
160 | 100
305
460
515
305 | 215
350
520
630
325 | 360
620
790
765
550 | 865
965
710
700 | 595
955 ⁺
1000
710
810 | 720
800 ⁺
910
685
880 | 470
650 ⁺
425
630
965 | 595
720 ⁺
385
460
1060 | 790
610 ⁺
470
470
1060 | 565 ⁺
430
425
980 | 565 ⁺
325
430
865 | 720
380
520
775 | 740
460
640
515 | 800
740
610
810 | 830
865
650
720 | 775
630
630
650 | 775
800
605
595 | 845
865
425
485 | 745
875
270
415 | 678
630
468 | (24)
(24)
(24) | | 16 S
17
18
19
20 | 305
225 ⁺
485 ⁺ | 270
205 ⁺
485 ⁺ | 235
-20 ⁺
560 ⁺ | 235
505 ⁺ | 235
450 ⁺ | 245 | 290
280 ⁺ | 540 | 495
360 ⁺
720 ⁺ | 565 ⁺
560 ⁺
745 ⁺ | 540 ⁺
740 ⁺
880 ⁺ | 520 [†]
720 [†]
910 [†] | 630 ⁺
450 ⁺
485 ⁺ | 565 [†]
595 [†]
325 [†] | 250 ⁺ | 685 ⁺ | 380 ⁺
520 ⁺ | 485 ⁺ | 395
155 ⁺ | 505
235 ⁺ | 395 | 350
20 ⁺ | 340
0 ⁺ |
270
360 ⁺ | 612 | (24) | | 21
22 S
23 S
24
25 | -45 ⁺
540
380
260
730 ⁺ | -40 ⁺ 515 450 235 360 ⁺ | -55 ⁺
385
520
235 | 395
450
200 | 325
550
215 | 425
505
270
160 ⁺ | 505
515
325
340 ⁺ | 100 ⁺
665
790
430
430 ⁺ | 190 [†]
865
990
530 | 295 [†]
765
980
650 | 260 [†]
790
990
5 60 | 245 ⁺
790
835
665 | 270 ⁺
755
575 | 245 ⁺
610
515 | 540
665 | 270 ⁺
340
450
685 | 415 ⁺
370
880 | 470 ⁺
340
935 | 415
305
1000 | 560
340
855 | 560
395
900 | 650
470
250
740
205 | 470
335
270
775
170 | 540
305
290
765
335 | 549 | (24) | | 26
27 S
28 S
29 | 360
395
90 | 360
360
110 | 270
315
125 | 290
305
200 | 380
260 ⁺
315 | 450
315
305 | 610
340 ⁺
325
360 | 865
430 ⁺
350 | 1045
665
460
450 | 1100
505
515 | 1080
460 | 1135
460 | 1240
425
450 | 1150
440
360 | 1025
430 ⁺
440
370 | 1000
380 ⁺
505 | 1100
430
685
475 | 575
800
430 | 560
800 | 605
810 | 595
790
180
200 | 530
610
200
340 | 475
450
110
280 | 450
55 | 436 | (24) | | ean | 281 | 250 | 221 | 277 | 289 | 316 | 347 | 485 | 635 | 637 | 640 | 592 | 560 | 527 | 492 | 487 | 534 | 573 | 554 | 505 | 409 | 385 | 321 | 296 | 442 | | | air
eather | 291
(18) | 269
(18) | 258
(18) | 276
(18) | 296
(18) | 325
(18) | 380
(18) | 555
(16) | 673
(16) | 687
(15) | 690
(14) | 680 | 638
(13) | 597 | 567
(12) | 532
(13) | 602
(14) | 630
(13) | 607
(15) | (18)
547
(16) | (19)
455
(17) | (21)
419
(19) | 366
(19) | (23)
349
(18) | 487 | Mean | for se | lected | quiet | days | [516 | (7) | POTENTIAL GRADIENT (close to the ground, over an open level surface). Mean values for hours without hydrometeors and for fair weather hours | 37 | KEW OBS | ERVAT | DRY | | | | | | | | | F | actor 4 | • 56 | | | | | | | | | | DECEMB | ER 1965 | | |-----------------|---|---|-------------------------------------|-------------------------------------|--------------------------------|------------------------------|-------------------------|---|-------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|--------------------------------|--------------------------------|-------------------------------|--------------------------------|-------------------------|-------------|--------------| | | Hour (| MT
1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Mean | | | 1
2 | 295 | 250 | 240 | 305 | 340 | 445 | 445 | 535 | 675 | 820 | 870 | 765
480 ⁺ | 535
420 ⁺ | 570
400 ⁺ | 650
445 ⁺ | 765 | 810 | 800 | 835 | 390 ⁺ | | | | 285+ | | | | ! | 305 ⁺
115
105 ⁺ | 185
60 ⁺ | 170
80 ⁺ | 180
230
160 ⁺ | 215
260
225 ⁺ | 225
390 | 260
390 | 365
535 | 550
695 | 515
785 | 500
890 | 500
945 | 730 | 140 ⁺ | 355 | 340 | 445 | 550 | 215 ⁺
425 | 570 | 320
445 | 390
425 ⁺ | 105 | 125
140 ⁺ | | | | s
s | 260
240
410 | 285
260
305 | 275
285
445 | 265
275
465 | 260
320
390 | 295
375
390 | 345
480
515 | 445
625
675 | 585
705
570 | 490
710
775 | 435
660
730 | 410
585
685 | 340
500 | 305
615 | 285
660 | 330
650 | 345
605 | 375
675 | 375
595 | 310
435 | 320
455 | 340
435 | 265
320 | 215
480 | 340
498 | (24)
(24) | | s | 180+ | 160 | 20 ⁺
180 ⁺ | 60 ⁺
170 ⁺ | 90 ⁺ | 80 ⁺ | | 225 ⁺ | 465 ⁺ | 470 ⁺ | 465 ⁺ | 425+ | 385 | 435 | 420 | 550 | 550 | 505 | 375 ⁺
480 | 390 ⁺
425 | 385 ⁺
535 | 340 ⁺
320 | 260 ⁺
330 | 215 ⁺
320 | 400 | (04) | | s | 420
480 ⁺ | 365
385 | 330 | 345 | 295 | 295 | 160 | 285 | 250 | 285 | 265 | 240 ⁺ | 195 ⁺ | £05 | 275+ | 285 ⁺
525 | 470 ⁺
535 | 545 ⁺
365 | 625 ⁺
490 | 675 ⁺
480 | 785 ⁺
490 | 640 | 585 | 515 | 400 | (24) | | SS | 105 ⁺
365
150 ⁺ | 170 ⁺
365
100 ⁺ | 365
125 ⁺ | 320
00+ | 140
225
45 ⁺ | 100
45 ⁺ | 160
55 ⁺ | 285 | 250 | 285 | 205 | 365
160 ⁺ | 435
250 ⁺ | 605
375 ⁺ | 525
310 ⁺ | 605
285 ⁺ | 625
410 | 630
455 | 605
425 | 585
375
295 ⁺ | 505
260
340 ⁺ | 515
10
305 ⁺ | 410
230
125 ⁺ | 385
170 | 418 | (24) | | 5
7
3 | 570 ⁺ | 480 ⁺
35 ⁺ | | 20 ⁺ | | | | | | 66 0⁺ | 480 | 465
100 ⁺ | 490 | 465
180 [†] | 480 | 515 | 595 | 550 | 585 | 570 | 515 | 550 | 560 | 630
00 ⁺ | | | | S | 525+ | 595 ⁺ | 545 ⁺ | 410 ⁺ | 410 | 320 | 310 | 425 | 420 | 480 | 515 | 275
560 | 425
580 | 455
420 | 455
425 | 480
410 | 505
480 | 550
525 | 535 ⁺
500 | 765 [†]
605 | 535 | 410 | 390 | 320 | 493 | (24) | | s
s | 310
275 | 355
295 | 390
240 | 260
205 | 180
230 | 70
285
35 ⁺ | 260
135 ⁺ | 425
265 ⁺
230 ⁺ | 640 | 570
665 [†] | 750
480 ⁺ | 730
505 ⁺ | 710
425 | 570
455 | 545
535 | 550
525 | 595
355
425 | 470
340
545 | 455
310
465 | 425
230 | 365 | 330
650 | 330
695 | 340
605 | 441 | (24) | | 3
3
5 | 375
80 ⁺ | 275
-20 ⁺ | 250
55 ⁺ | | 140+ | 115+ | 180+ | 225 ⁺
180 ⁺ | | | 305 ⁺ | 550 | 730 | 710 | 580
205 ⁺ | 515
160 ⁺ | 390
275 | 375 | 515 | 140 ⁺
340 | 140 ⁺
340 | 135 | 115 | 170 | | | | 5
7
3 | 60
585 | 195
550 | 265
640 ⁺
305 | 285
535 ⁺
180 | 295
275
250 | 320
465
420 | 410
605
535 | 525
470
605 | 640
345
675 | 710
275
800 | 750
265
910 | 830
390
820 | 880
505
830 | 785
695
665 | 710
595
820 | 830
605
790 | 820
425
765 | 640
375
945 | 605
465
960 | 675
980 | 580
870 | 585
630 | 625
640 | 730
585 | | | | 9 | 535
265 | 425
240 | 545
215 | 695
195 | 615
215 | 625
265 | 560
330 | 545 | 500
410 | 435
480 | 425
425 | 455 | | | 295 ⁺ | 445 | 470 | 515 | 535 | 480 | 515 | 205 ⁺
425 | 260 [*]
385 | 195 ⁺
320 | | | | 1 | 345 | 285 | 265 | 240 | 265 | | | 250 ⁺ | 445 ⁺ | 765 ⁺ | | | | | | 535 ⁺ | 625 ⁺ | | | 525 ⁺ | - | | 100 ⁺ | | | | | en. | 294
(25) | 275
(24) | 283
(22) | 264
(22) | 258
(22) | 278
(20) | 351
(17) | 412
(19) | 536
(16) | 594
(18) | 541
(19) | 511
(22) | 520
(18) | 491
(18) | 479
(20) | 509
(21) | 524
(22) | 537
(20) | 517
(22) | 485
(22) | 458
(19) | 402
(19) | 354
(19) | 337
(20) | 425 | | | r
ther
in | 324
(15) | 300
(16) | 306
(15) | 296
(15) | 288
(18) | 330
(16) | 400
(14) | 497
(13) | 547
(14) | 581
(14) | 591
(15) | 583
(16) | 567
(15) | 554
(14) | 536
(15) | 555
(17) | 521
(20) | 536
(19) | 535
(18) | 499
(15) | 470
(15) | 424
(15) | 399
(15) | 394
(15) | 46 0 | Mean | for se | lected | quiet | days | [432 | (6) | The potential gradient is reckoned as positive when the potential increases upwards. The small * denotes a non-fair weather hour (see Introduction). No entry is made for hours with hydrometeors and dashes are inserted for hours of defective record. The number of hours or days used in computing each mean is shown in round brackets. The mean for selected quiet days (see Introduction) and the figure in round brackets, which is the number of days used in computing this mean, are entered in square brackets. 38 KEW OBSERVATORY | | Hour (| GMT | | | | | | | | | | | } | | | | | | | | | | | | Т | |-----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|----------| | | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | 5-6 | 6-7 | 7-8 | 8-9 | 9-10 | | 11-12 | <u> </u> | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | Me | | | | | | | | | | | | | vo | lts per | metre | No | hydrom | eteors | | | | | | | | | | | | | | an. | 257 | 232 | 192 | 175 | 188 | 225 | 291 | 360 | 474 | 527 | 545 | 583 | 559 | 513 | 525 | 499 | 514 | 506 | 470 | 445 | 413 | 380 | 322 | 282 | 39 | | eb.
ar. | 263
242 | 214
204 | 183
196 | 183
195 | 199
186 | 239
186 | 265
239 | 348
366 | 457
467 | 539
455 | 523
429 | 464
404 | 434
395 | 385
357 | 386
341 | 372
352 | 354
340 | 358
326 | 388
373 | 354
384 | 347
321 | 356
315 | 311
264 | 270
256 | 34 | | pr. | 195 | 179 | 171 | 181 | 205 | 252 | 323 | 409 | 437 | 412 | 392 | 368 | 320 | 318 | 291 | 280 | 262 | 261 | 265 | 279 | 289 | 324 | 277 | 238 | 28 | | ау | 125 | 132 | 146 | 145 | 158 | 182 | 257 | 295 | 315 | 279 | 255 | 227 | 202 | 210 | 203 | 190 | 177 | 194 | 203 | 225 | 227 | 204 | 184 | 173 | 20 | | une | 143 | 146 | 135 | 143 | 149 | 181 | 251 | 328 | 325 | 300 | 274 | 265 | 241 | 224 | 227 | 206 | 222 | 208 | 182 | 180 | 192 | 184 | 182 | 164 | 21 | | uly | 138 | 127 | 140 | 146 | 159 | 204 | 280 | 313 | 297 | 290 | 265 | 243 | 222 | 213 | 201 | 205 | 196 | 178 | 154 | 179 | 183 | 189 |
170 | 162 | 20 | | ug. | 188 | 160 | 149 | 157 | 165 | 208 | 317 | 387 | 419 | 361 | 312
305 | 265
301 | 228 | 222
227 | 220
238 | 214
236 | 204
222 | 193
243 | 198
248 | 211
234 | 212
233 | 207
200 | 216
188 | 208
205 | 23 | | ept. | 173
263 | 154
224 | 166
211 | 173
203 | 173
193 | 200
222 | 278
271 | 357
357 | 383
438 | 354
471 | 451 | 437 | 236
392 | 388 | 236
364 | 387 | 414 | 402 | 390 | 363 | 233
341 | 341 | 319 | 302 | 33 | | ov. | 281 | 250 | 221 | 277 | 289 | 316 | 347 | 485 | 635 | 637 | 640 | 592 | 560 | 527 | 492 | 487 | 534 | 573 | 554 | 505 | 409 | 385 | 321 | 296 | 44 | | ec. | 294 | 275 | 283 | 264 | 258 | 278 | 351 | 412 | 536 | 594 | 541 | 511 | 520 | 491 | 479 | 509 | 524 | 537 | 517 | 485 | 458 | 402 | 354 | 337 | 42 | | į | | 404 | 100 | 407 | 100 | 004 | 200 | 260 | 420 | 435 | 411 | 388 | 359 | 340 | 331 | 328 | 330 | 332 | 329 | 320 | 302 | 291 | 259 | 241 | 30 | | ear | 213 | 191 | 183 | 187 | 193 | 224 | 289 | 368 | 432 | | | | | | | | | | | | | | | | | | nter | 274 | 243 | 220 | 225 | 233 | 265 | 313 | 401 | 525 | 574 | 562 | 537 | 518 | 479 | 471 | 467 | 481 | 493 | 482 | 447 | 407 | 381 | 32. | 296 | 40 | | quinox
ummer | 218
149 | 190
141 | 186
143 | 188
148 | 189
158 | 215
194 | 278
276 | 372
331 | 431
339 | 423
307 | 394
277 | 377
250 | 336
223 | 323
217 | 309
213 | 314
204 | 309
200 | 308
193 | 319
184 | 315
199 | 296
203 | 295
196 | 262
188 | 250
177 | 29 | | anune i | 143 | | 110 | 110 | 100 | | 2.0 | 552 | 002 | F | air wea | ther | | | | | | | | | | | | | | an. | 272 | 250 | 218 | 222 | 224 | 254 | 335 | 439 | 513 | 540 | 527 | 608 | 592 | 525 | 541 | 56 0 | 579 | 563 | 531 | 515 | 437 | 389 | 343 | 296 | 42 | | ь. | 284 | 243 | 209 | 213 | 234 | 287 | 307 | 361 | 474 | 530 | 507 | 456 | 431 | 377 | 365 | 352 | 372 | 362 | 386 | 345 | 324 | 350 | 310 | 285 | 34 | | ar. | 297 | 230 | 210 | 204 | 211 | 199 | 261 | 386 | 496 | 466 | 448 | 384 | 358
342 | 357
317 | 337
288 | 313
269 | 310
275 | 298
275 | 356
252 | 375
274 | 325
302 | 321
324 | 291
290 | 294
245 | 32 | | pr.
may | 194
143 | 183
136 | 174
147 | 202
156 | 221
167 | 262
202 | 345
278 | 414
319 | 425
316 | 388
268 | 382
250 | 387
222 | 209 | 206 | 196 | 194 | 184 | 189 | 203 | 223 | 236 | 227 | 208 | 192 | 29
21 | | ine | 147 | 151 | 136 | 142 | 162 | 201 | 262 | 335 | 357 | 352 | 300 | 281 | 268 | 252 | 242 | 227 | 230 | 223 | 184 | 183 | 183 | 179 | 182 | 154 | 22 | | ily | 146 | 141 | 157 | 164 | 175 | 210 | 298 | 326 | 295 | 278 | 266 | 251 | 222 | 206 | 192 | 191 | 171 | 166 | 157 | 185 | 181 | 189 | 188 | 181 | 20 | | ıg. | 188 | 163 | 153 | 164 | 172 | 220 | 334 | 414 | 421 | 374 | 317 | 277 | 243 | 226 | 227 | 222 | 211 | 197 | 204 | 215 | 216 | 202 | 212 | 199 | 24 | | ept. | 189 | 187 | 194 | 198 | 201 | 219 | 300 | 379 | 385 | 379 | 337 | 309 | 266 | 274
379 | 263
370 | 263
389 | 245
418 | 272
404 | 283
413 | 294
391 | 332
370 | 294
357 | 264
329 | 252
298 | 27
35 | | ct. | 282
291 | 262
269 | 232
258 | 229
276 | 205
296 | 259
325 | 326
380 | 409
555 | 456
673 | 496
687 | 462
690 | 465
680 | 396
638 | 597 | 567 | 532 | 602 | 630 | 607 | 547 | 455 | 419 | 366 | 349 | 48 | | c. | 324 | 300 | 306 | 296 | 288 | 330 | 400 | 497 | 547 | 581 | 591 | 583 | 567 | 554 | 536 | 555 | 521 | 536 | 535 | 499 | 470 | 424 | 399 | 394 | 46 | | | 230 | 210 | 199 | 205 | 213 | 247 | 319 | 403 | 447 | 445 | 423 | 409 | 378 | 356 | 344 | 339 | 343 | 343 | 343 | 337 | 319 | 306 | 282 | 262 | 32 | | аг | 230 | | | _ | nter | 293 | 265 | 248 | 252 | 261 | 299 | 355 | 463 | 552
441 | 585
432 | 579
407 | 582
386 | 557
341 | 513
332 | 502
315 | 500
309 | 519
312 | 523
312 | 515
326 | 477
333 | 421
332 | 395
324 | 355
293 | 331
272 | 43 | | quinox
ummer | 241
156 | 215
148 | 203
148 | 208
157 | 209
169 | 235
208 | 308
293 | 397
349 | 347 | 318 | 283 | 258 | 235 | 223 | 214 | 209 | 199 | 194 | 187 | 201 | 204 | 199 | 197 | 181 | 22 | | | | | | | | | | | | | | | L | | | | | Τ. | \ | mean f | 1 | | | 4 | [32 | "Winter" comprises the four months January, February, November, December; "Equinox" the months March, April, September, October; and "Summer" May to August. ELECTRICAL OBSERVATIONS, UNDERGROUND LABORATORY, WILSON METHOD Mean value for periods of twenty minutes about 1430 GMT F = Potential gradient, unit 1 v.cm. $^{-1}$ i = Air-earth current, unit 10^{-10} amp. cm. $^{-2}$ λ + = Conductivity due to positive ions, unit 10^{-10} ohm. $^{-1}$ cm. $^{-1}$ 39 KEW OBSERVATORY 1965 | | | JANUARY | , | | FEBRUAR | RY | | MARCH | | | APRIL | | | MAY | | | JUNE | | |-------------------|--------|---------|------------|---------|---------|---------|--------|-------|-------|---------|---------|---------|--------|-------|---------|--------|-------|------------| | | F | i | λ+ | F | i | λ+ | F | i | λ+ | F | i | λ+ | F | i | λ+ | F | i | λ+ | | 1 | 6.58 | 174 | 26 | 4.41 | 196 | 44 | | • • • | | 7 · 30 | 267 | 37 | ••• | • • • | | • • • | • • • | | | 2 | | • • • | • • • | 3.89 | 214 | 55 | | | • • • | | • • • | | • • • | • • • | • • • • | 3.30 | 238 | 72 | | 3 | | • • • | • • • | | • • • | • • • | 2.19 | 121 | 55 | ••• | • • • | • • • | • • • | | | 4.04 | 263 | 65 | | 4 | 8 · 18 | 275 | 34 | | • • • | | • • • | • • • | | • • • • | • • • | | | • • • | ••• | • • • | • • • | • • • | | 5 | 6 • 56 | 216 | 33 | | • • • | • • • • | 4.93 | 204 | 41 | 2 · 39 | 192 | 80 | 2 · 48 | 188 | 76 | • • • | • • • | • • • | | 6 | | • • • | | | • • • | | | • • • | • • • | 1 · 48 | 134 | 91 | 2.71 | 211 | 78 | • • • | • • • | • • • | | 7 | • • • | • • • | • • • | | • • • | • • • • | • • • | • • • | • • • | 3.11 | 257 | 83 | • • • | • • • | • • • • | • • • | • • • | • • • | | 8 | 4.50 | 185 | 41 | | • • • | ••• | 4.74 | 270 | 57 | ••• | • • • | • • • | • • • | • • • | • • • • | • • • | • • • | • • • | | 9 | • • • | • • • | • • • | 4.80 | 227 | 47 | 4.86 | 171 | 35 | 2.46 | 214 | 87 | • • • | • • • | ••• | • • • | • • • | • • • | | 10 | ••• | • • • | • • • | 5.68 | 240 | 42 | 3.10 | 159 | 51 | ••• | • • • | ••• | 2.12 | 161 | 76 | 3 · 56 | 233 | 6 5 | | 11 | 3.60 | 217 | 60 | 3.80 | 217 | 57 | 2.93 | 244 | 83 | | | | 1.76 | 190 | 108 | 1.69 | 181 | 107 | | 12 | 3.19 | 182 | 57 | 2.45 | 183 | 75 | 2.86 | 260 | 91 | | | • • • | 2.52 | 199 | 79 | • • • | • • • | | | 13 | | | • • • | | | | | | | | | | 2.23 | 228 | 102 | | | | | 14 | 4.05 | 216 | 53 | | | | | | • • • | • • • • | • • • | | 1.98 | 214 | 108 | 1 · 45 | 156 | 108 | | 15 | 3.45 | 219 | 63 | • • • • | • • • | • • • [| 3 · 27 | 264 | 81 | • • • | • • • | • • • | ••• | • • • | • • • | • • • | • • • | • • • | | 16 | ••• | | • • • | 3 · 26 | 206 | 63 | | | | • • • | • • • | | | | | • • • | • • • | • • • | | 17 | | • • • | • • • | 6.89 | 273 | 40 | • • • | • • • | • • • | • • • | • • • | • • • | 2.67 | 216 | 81 | 1 · 78 | 125 | 70 | | 18 | ••• | • • • | • • • | 3 · 57 | 251 | 70 | • • • | • • • | • • • | • • • | • • • | • • • | • • • | • • • | • • • • | • • • | • • • | • • • | | 19 | 4 • 47 | 233 | 52 | ••• | • • • | • • • | • • • | • • • | • • • | • • • | • • • | • • • | 2.79 | 204 | 73 | • • • | • • • | • • • | | 20 | ••• | • • • | • • • | • • • • | • • • | • • • • | • • • | • • • | • • • | • • • | ••• | • • • • | 1.64 | 173 | 106 | • • • | ••• | • • • • | | 21 | | | • • • | | | • • • | • • • | | • • • | | | | 1 · 56 | 164 | 105 | 2.65 | 165 | 62 | | 22 | | | | 4.08 | 193 | 47 | 3 · 39 | 198 | 58 | • • • | | • • • | • • • | | • • • • | | • • • | • • • | | 23 | | | | | • • • | • • • • | • • • | • • • | | • • • | • • • | • • • | • • • | • • • | • • • • | • • • | • • • | | | 24 | | | | | • • • | • • • | • • • | • • • | • • • | • • • | • • • | • • • | • • • | • • • | • • • • | • • • | • • • | | | 25 | 6 • 46 | 242 | 37 | ••• | • • • | • • • | • • • | ••• | • • • | • • • | ••• | • • • | 2 · 25 | 209 | 93 | 1.17 | 117 | 100 | | 26 | • • • | | | 3 · 51 | 255 | 73 | 3.07 | 185 | 60 | | • • • • | • • • | • • • | • • • | ••• | | • • • | • • • | | 27 | 5.86 | 293 | 5 0 | | • • • | • • • | • • • | • • • | • • • | ••• | • • • | • • • | • • • | • • • | • • • • | • • • | • • • | • • • | | 28 | • • • | • • • | • • • | | • • • | • • • • | • • • | • • • | • • • | • • • | • • • | • • • | • • • | • • • | • • • • | 2 · 22 | 174 | 78 | | 29 | • • • | • • • | • • • | | | | 1.81 | 177 | 98 | • • • | • • • | • • • | • • • | • • • | • • • • | 4 · 48 | 247 | 55 | | 30 | • • • | • • • | • • • | | | 1 | 4.76 | 237 | 50 | • • • • | • • • | • • • | • • • | • • • | •••• | 3.68 | 312 | 85 | | 31 | ••• | • • • | • • • | | | | 5 · 09 | 294 | 58 | | | | ••• | ••• | ••• | | | | | Mean | 5 · 17 | 223 | 46 | 4 · 21 | 223 | 56 | 3.62 | 214 | 63 | 3 · 35 | 213 | 76 | 2 · 23 | 196 | 90 | 2.73 | 201 | 79 | | No. of
ys used | 11 | 11 | 11 | 11 | 11 | 11 | 13 | 13 | 13 | 5 | 5 | 5 | 12 | 12 | 12 | 11 | 11 | 11 | | | | JULY | | | AUGUST | | S | EPTEMBE | ER | | OCTOBER | : | | NOVEMBE | R | 1 | DECEMBEI | 2 | |--------------------|---|------|-------|---------|---------|-------|---------|----------|----------|--------|---------|-------|----------|---------|-------|--------|----------|-------| | | F | i | λ+ | F | i | λ+ | F | i | λ+ | F | i | λ+ | F | i | λ+ | F | i | λ+ | | 1 | 2.93 | 224 | 76 | | | • • • | ••• | | • • • | 2.06 | 154 | 75 | • • • • | • • • | • • • | 6.94 | 194 | 28 | | 2 | 1.81 | 187 | 103 | | | | 1 · 56 | 111 | 71 | | • • • | • • • | 4.96 | 204 | 41 | 4 · 57 | 157 | 34 | | 3 | | | | 2 · 27 | 170 | 75 | | • • • | | | • • • | • • • | 4.06 | 246 | 61 | | • • • | | | 4 | | | | 2.34 | 169 | 72 | | •
• • | • • • | 3.75 | 237 | 63 | 4.11 | 135 | 33 | | | | | 5 | | | • • • | 2.63 | 164 | 62 | • • • • | • • • | • • • | 6 · 17 | 150 | 24 | 6.36 | 250 | 39 | ••• | • • • | • • • | | 6 | | | | 2 · 47 | 166 | 67 | 2 · 25 | 167 | 74 | | | | | | | 3.08 | 106 | 34 | | 7 | 1.91 | 189 | 99 | | | • • • | 1.83 | 153 | 84 | 2.80 | 200 | 71 | • • • | • • • | | 7.12 | 226 | 32 | | 8 | | | | | | | | • • • | | | • • • | | 2 · 24 | 157 | 70 | | | | | 9 | | | | 3 · 58 | 243 | 68 | | | | | | | | • • • | | | | | | 10 | | | • • • | | | | ••• | • • • | • • • | | • • • | • • • | | • • • | • • • | 3 · 87 | 125 | 32 | | 11 | | | | 1 · 36 | 111 | 82 | | | | 5.09 | 249 | 49 | | • • • | | | | | | 12 | | | | 3 11 | 165 | 74 | | | | 5.70 | 267 | 47 | 5.19 | 231 | 45 | | • • • | | | 13 | 2.68 | 231 | 86 | 5.11 | 282 | 55 | 3.44 | 185 | 54 | 2 · 27 | 159 | 70 | | | | | | | | | 2.45 | 234 | 96 | | | | 2.03 | 159 | 78 | 2.87 | 186 | 65 | | | | | | | | 14
15 | 2.45 | ···· | ••• | • • • • | • • • | • • • | 2.01 | 108 | 54 | | | ••• | 9.82 | 348 | 35 | ••• | • • • | • • • | | 16 | 2.69 | 286 | 106 | 2.88 | 226 | 78 | | | | | | | | | | | | | | 17 | 2.09 | | | 2.82 | 204 | 72 | | | | | | | | | | | | | | | ••• | | | 1.17 | 106 | 91 | | | | 6 · 25 | 176 | 28 | | | | | | | | 18 | 1.97 | 254 | 129 | 1.75 | 133 | 76 | | | | 5.72 | 298 | 52 | | | | | | | | 19
20 | 1.97 | 254 | | 1.82 | 213 | 117 | 2.58 | 182 | 71 | 4.87 | 195 | 40 | | • • • | | | • • • | • • • | | 21 | | | | | | | 2.76 | 185 | 67 | 4.71 | 158 | 34 | | | | | | | | 22 | 1 · 56 | 146 | 94 | | | | 3.64 | 199 | 55 | | | | | | | | | | | 23 | 1.30 | | | 2.70 | 246 | 91 | 3 · 38 | 231 | 68 | | | | 5.52 | 201 | 36 | | | | | | | | | | | | 2.48 | 161 | 65 | | | | 6.44 | 166 | 26 | | | | | 24
25 | • | | • • • | • • • • | • • • | • • • | | | | 4 · 52 | 212 | 47 | | | | ••• | • • • | • • • | | 26 | 3.05 | 196 | 64 | | | | | | | | | | 9.54 | 235 | 25 | | | | | 27 | 2.35 | 166 | 71 | 2 · 23 | 165 | 74 | 2.90 | 190 | 66 | 3.38 | 187 | 55 | | | | | | | | | 2.33 | | ••• | | | | 3.50 | 174 | 50 | 3.30 | | | | | | | | | | 28 | 2.15 | 182 | 85 | | • • • • | | | | | 2.77 | 163 | 59 | | | | | | | | 29 | 3.88 | 296 | 76 | | | | | | | | | | 3.70 | 153 | 41 | | | | | 30 | | | | | | | | | | 1 | | | 3 / 3 | 155 | ** | | | | | 31 | | | ••• | | ••• | | | | | ••• | | ••• | | | | ••• | | ••• | | Mean | 2.45 | 216 | 90 | 2.55 | 184 | 77 | 2.64 | 170 | 66 | 4 · 20 | 199 | 52 | 5.63 | 211 | 41 | 5 · 12 | 162 | 32 | | No. of
nys used | 12 | 12 | 12 | 15 | 15 | 15 | 13 | 13 | 13 | 15 | 15 | 15 | 11 | 11 | 11 | 5 | 5 | 5 | | | | | | | | | N | lean | | 3.66 | 201 | 64 | | | | | | | | | | | | | | | Year: N | lo. of d | lays use | d 134 | 134 | 134 | | | | | | | AIR POLLUTION: HOURLY MEANS FOR EACH MONTH | .40 R | KEW OBSERVATORY | ERVATO | ORY | | | | | | | | Co | plete | Complete days only | only | | | | | | | | | | | 1965 | 1 | |--------|-----------------|----------|-----|--------|----------------|--------|------------|----------|----|----|-----|---------|--------------------|---------------|------|----|--------|--------|---------|--------|------------|------------|-----|------|--------|---| | | Hour (| GMT | | | | | | , | 0 | - | 7 | က | 4 | w | 9 | | | | | - 11 | 1.2 | | | | | | | | 21 | 22 | 23 | | No. of | | | | ţ, | <u>.</u> | ţ, | ٠
ي | ، د | ٠
ډ | <u>،</u> ډ | <u>.</u> | to | to | to | to | <u>۽</u> ڊ | ٠
: ب | to | to | t
t | to to | to | t
t | <u>۽</u> ڊ | <u>ئ</u> د | \$ | Mean | days | | | | - | 7 | 8 | 4 | 2 | ٥ | _ | | | | | 7 | 13 | | } | | | | | | 22 | 23 | 24 | | nsed | 1 | | | | | | | | | | | | ä | rog | ramme | be | r cubic metre | metr | | | | | | | | | | | | | Jan. | 2 | 20 | 20 | 4 | 30 | 30 | 30 | 20 | 20 | 06 | 06 | 06 | စ္က | 80 | 80 | | 90 13 | 130 14 | 140 140 | 130 | 110 | 6 | 8 | 8 | 30 | | | Feb. | 2 | 20 | 09 | 09 | 20 | 20 | 20 | 09 | | | | 2 | | က္ခ | ည္ | | | | | | | 6 | 8 | 2 | 21 | | | Mar. | 80 | 20 | 09 | 09 | 09 | 09 | 20 | 06 | | | | 20 | | 20 | 9 | | | | | | | 100 | 06 | 2 | 25 | | | Apr. | 20 | 9 | 9 | 90 | ဓ္ဌ | 9 | 20 | 09 | | | | 99 | | 9 9 | 9 9 | | | | | | | 09 | 20 | က္က | 21 | | | May | 8 | 20 | 20 | 2 | 2 | 20 | 20 | 30 | | | | | | 20 | 50 | | | | | | | 30 | 20 | 70 | 22 | | | June | 8 | 50 | 20 | ଥ | 10 | 8 | 20 | | | | | 8 | | 20 | 20 | | | | | | | 20 | 20 | 70 | 21 | | | Tulv | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | | | 20 | 10 | 10 | | | | | | | | 10 | 10 | 10 | 24 | | | Aug. | 8 | 20 | 20 | 20 | 20 | 20 | 30 | | | 30 | 20 | 20 | 10 | 10 | 10 | 10 | 10 | 20 2 | 20 20 | 30 | 30 | 30 | 20 | 20 | 30 | | | Sept. | 30 | 20 | 70 | 20 | 20 | 30 | 40 | | | | | -
20 | 8 | 50 | | | | | | | | 30 | 30 | 30 | 30 | | | Oct. | 6 | 80 | 80 | 8 | 20 | 90 | 20 | | | • | | 80 | 20 | 20 | | | | | | | | 100 | 8 | 80 | 30 | | | Nov. | 6 | 20 | 20 | 40 | 9 | 9 | 40 | | | | | 20 | 90 | 09 | | | • • | | | | | 110 | 80 | & i | 78 | | | Dec. | 08 | 20 | 0 | 0 | 30 | 30 | 30 | | | | | 09 | 3 | 20 | | | | | | | | 110 | 100 | 0.4 | 31 | | | Year | ୟ | 40 | 40 | 40 | 30 | 30 | 40 | 20 | 09 | 09 | 09 | 20 | 40 | 40 | 40 | 40 | 40 | 50 7 | 70 70 | 02 0 | 70 | 70 | 9 | 20 | 313 | | | Winter | 70 | 20 | 20 | 20 | 40 | 40 | 40 | 20 | 70 | 80 | 80 | 70 | 20 | 09 | 09 | 09 | 20 9 | 90 110 | 0 110 | 120 | 110 | 100 | 8 | 70 | 110 | | | Spring | 70 | 20 | 20 | 20 | 20 | 20 | 09 | 20 | 06 | 80 | 70 | 70 | 20 | 20 | 40 | 30 | 40 | 40 7 | 70 90 | 06 (| 6 | 80 | 70 | 09 | 94 | | | Autumn | 99 | ß | 20 | 20 | 20 | 20 | 20 | 70 | 20 | 20 | 20 | 20 | 20 | 30 | 64 | 30 | 20 | 50 7 | 70 70 | 0 70 | 70 | 70 | 9 | 20 | 09 | | | Summer | 8 | 70 | 20 | 70 | 10 | 70 | 70 | 30 | 30 | 20 | 70 | 20 | 10 | 10 | 10 | 10 | 10 | 20 | 20 20 | 20 | 20 | 20 | 70 | 70 | 26 | , |