. ## RESULTS OF THE ## MAGNETICAL AND METEOROLOGICAL OBSERVATIONS MADE AT ## THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1918. UNDER THE DIRECTION OF SIR FRANK DYSON, M.A., LL.D., F.R.S., ASTRONOMER ROYAL. PUBLISHED BY ORDER OF THE BOARD OF ADMIRALTY, IN OBEDIENCE TO HIS MAJESTY'S COMMAND. #### LONDON: PRINTED AND PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE To be purchased through any Bookseller or directly from H.M. STATIONERY OFFICE at the following addresses: Imperial House, Kingsway, London, W.C.2, and 28 Abingdon Street, London, S.W.I; 37 Peter Street, Manchester; I St. Andrew's Crescent, Cardiff; and 23 Forth Street, Edinburgh. 1922 Price 12s. 6d. net. | | | l<br>I | |--|---|--------| | | | 1 | | | - | 1 | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | <br> | | | | 1 | | | | 1 | Ī 1 I I 1 1 1 | 1 ì 1 ## INDEX. | RODUCTION. | | | | | | | | | | ] | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|-------------------|--------------------------|----------|----------|----------|-----|-----|---| | PERSONAL ESTABLISHMENT | AND ARRA | NGEME | NTS | • • | | • • | • • | • • | • • | | | GENERAL DESCRIPTION OF T | THE BUILD | DINGS A | AND IN | STRUME | NTS | | • • | | •• | | | New Magnetograph Hous | E | • • | • • | | | • • | | | | | | Subjects of Observation | •• | •• | •• | • • | • | • • | •• | •• | •• | | | MAGNETIC INSTRUMENTS— | | | | | | | | | | | | DECLINATION MAGNET FO | R ABSOLUT | re Dea | TERMIN | ATIONS | •• | | | •• | •• | | | Absolute Horizontal F | ORCE INST | RUMEN | NT ' | •• | • • | | | • • | • • | | | DIP INDUCTOR | | | | | | | | | | | | THE DECLINATION VARION | METER | | | • • | | | | • • | • • | | | THE NORTH FORCE VARIO | OMETER | | •• | | | | •• | • • | • • | | | THE QUARTZ-THREAD VEI | RTICAL FO | RCE V | ARIOME | TER | •• | •• | •• | •• | •• | | | j. | | | | | | | | | | | | MAGNETIC REDUCTIONS . | | | | • • | | | | | | | | Magnetic Reductions . Table of Magnetic Ele | · ·· MENTS DE | <br>TERMIN | <br>NED AT | <br>Green | <br>WICH | <br>FROM | <br>1841 | •• | | | | | | ··<br>TERMIN | <br>NED AT | <br>Green | <br>WICH | FROM | <br>1841 | | | | | Table of Magnetic Ele | NTS | <br>TERMIN | <br>NED AT | <br>Green | wich | FROM | | | | | | Table of Magnetic Ele | nts— | | | | | FROM | | •• | •• | | | Table of Magnetic Ele- | NTS<br> | | | | •• | | •• | | •• | | | Table of Magnetic Ele<br>Meteorological Instrume<br>Standard Barometer .<br>Photographic Baromete | NTS— ERMOMETE | <br><br>RS | | | •• | | | | | ] | | Table of Magnetic Electronic Meteorological Instruments Standard Barometer . Photographic Barometer Dry and Wet Bulb This | NTS— R ERMOMETE WET BUL | <br><br>RS | | | •• | | •• | | | ] | | Table of Magnetic Electric Meteorological Instruments Standard Barometer . Photographic Barometer Dry and Wet Bulb This Photographic Dry and | NTS— R ERMOMETE WET BUL RS | ···<br>···<br>rs<br>в Тне | <br><br><br>RMOME | ··<br>··<br>··<br>TERS | | | | | | ] | | Table of Magnetic Electronic Meteorological Instrument Standard Barometer . Photographic Barometer Dry and Wet Bulb The Photographic Dry and Radiation Thermometer | NTS— | <br>rs<br>B The | <br><br>RMOME | ···<br>··<br>ters | | | | | | - | | Table of Magnetic Electronic Elec | NTS— R ER ERMOMETE WET BUL RS | rs B The | <br><br>RMOME | ···<br>···<br>TERS<br>·· | | | | | •• | - | | Table of Magnetic Electronic Standard Barometer . Photographic Barometer Dry and Wet Bulb The Photographic Dry and Radiation Thermometer Earth Thermometers . Osler's Anemometer . | NTS— R R R ERMOMETE WET BUL RS | <br>rs<br>B The | <br><br>RMOME<br> | <br><br>TERS<br> | | | | | •• | | | Table of Magnetic Electronic Standard Barometer . Photographic Barometer Dry and Wet Bulb The Photographic Dry and Radiation Thermometer Earth Thermometers . Osler's Anemometer . Robinson's Anemometer | NTS— R R ERMOMETE WET BUL RS | rs B The | <br><br>RMOME<br> | ··· ·· TERS ·· ·· | | | | | •• | | ## INDEX. | RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS IN | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | TABULAR ARRANGEMENT:— | PAGE | | Results of Magnetical Observations | E 1 | | Table I.—Hourly Means of Magnetic Declination West for each Civil Day | E 2 | | Table II.—Hourly Means of North Component of Magnetic Force | E 8 | | Table III.—Hourly Means of Vertical Component of Magnetic Force | E 14 | | Table IV.—Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West | E 20 | | Table V.—Diurnal Range of Declination on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers | E 20 | | Table VI.—Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West from Hourly Ordinates, on Five Selected Quiet Days in each Month | E 21 | | Table VII.—Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West from Hourly Ordinates, on Five Selected Disturbed Days in each Month | E 21 | | TABLE VIII.—Monthly and Annual Mean Diurnal Inequalities of Magnetic North Force | E 22 | | Table IX.—Diurnal Range of Magnetic North Force on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers | E 22 | | Table X.—Monthly and Annual Mean Diurnal Inequalities of Magnetic North Force from Hourly Ordinates, on Five Selected Quiet Days in each Month | E 23 | | Table XI.—Monthly and Annual Mean Diurnal Inequalities of Magnetic North Force from Hourly Ordinates, on Five Selected Disturbed Days in each Month | E 23 | | TABLE XII.—Monthly and Annual Diurnal Inequalities of Vertical Magnetic Force | E 24 | | Table XIII.—Diurnal Range of Vertical Magnetic Force on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers | E 24 | | Table XIV.—Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force from Hourly Ordinates, on Five Selected Quiet Days in each Month | E 25 | | Table XV.—Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force from Hourly Ordinates, on Five Selected Disturbed Days in each Month | E 25 | | Table XVI.—Values of the Coefficients and Phase Angles in the Periodical Expression— $ V_t = m + a_1 \cos t + b_1 \sin t + a_2 \cos 2t + b_2 \sin 2t + a_3 \cos 3t \\ + b_3 \sin 3t + a_4 \cos 4t + b_4 \sin 4t $ $= m + c_1 \sin (t + a_1) + c_2 \sin (2t + a_2) + c_3 \sin (3t + a_3) \\ + c_4 \sin (4t + a_4) \qquad \dots \qquad \dots \qquad \dots \qquad \dots $ | E 26 | | TABLE XVII.—Results of Observations of Magnetic Declination, with Deduced Values of the Base-Line of the Declination Magnetograms | E 27 | | TABLE XVIII.—Results of Determinations of the Absolute Value of Horizontal Magnetic Force in the Year 1918, from Observations made with the Gibson Instruments in the Magnetic Pavilian with Deduced Values of the Base-Line of the North Force | | | Magnetic Pavilion, with Deduced Values of the Base-Line of the North Force Magnetograms | E 29 | ## INDEX. | RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS—continued. | PAGE | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------| | Table XIX.—Results of Observations of Magnetic Dip made with the Dip Inductor in the Year 1918, with Deduced Values of the Base-Line of the Vertical Force | | | Magnetograms | E 30 | | TABLE XX.—Annual Summary of the Magnetic Elements | E 30 | | Magnetic Disturbance | E 31 | | Brief description of Magnetic Movements (superposed on the ordinary diurnal movement) exceeding 3 in. in Declination, 20 $\gamma$ in North Force, or 12 $\gamma$ in Vertical | | | Force, taken from the Photographic Register | E 32 | | Explanation of the Plates | E 46 | | PLATES I.—IV., photo-lithographed from tracings of the Photographic Registers of Magnetic Disturbances. | | | RESULTS OF METEOROLOGICAL OBSERVATIONS | E 47 | | Daily Results of the Meteorological Observations | E 48 | | Highest and Lowest Readings of the Barometer | E 72 | | Highest and Lowest Readings of the Barometer for each Month | E 72 | | Monthly Results of Meteorological Elements | E <b>7</b> 3 | | Monthly Mean Reading of the Barometer at every Hour of the Day | E 74 | | Monthly Mean Temperature of the Air at every Hour of the Day | E 74 | | Monthly Mean Temperature of Evaporation at every Hour of the Day | E 75 | | Monthly Mean Temperature of the Dew-Point at every Hour of the Day | E 75 | | Monthly Mean Degree of Humidity at every Hour of the Day | E 76 | | Total Amount of Sunshine registered in each Hour of the Day in each Month | E 76 | | Readings of Thermometers on the ordinary stand in the Magnetic Pavilion Enclosure | E 77 | | Amount of Rain collected in each Month by the different gauges | E 80 | | Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest | E 80 | . # GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1918. #### Introduction. In the present volume a brief account is given of the instruments and methods of reduction now in use. Fuller information, principally of an historical nature, may be found in the Introductions to the volumes for 1909 and previous years. ### § 1. Personal Establishment and Arrangements. During the year 1918 the personal establishment in the Magnetical and Meteorological Department of the Royal Observatory consisted of Walter William Bryant, Superintendent, aided generally by three Computers. The Computers employed during the year were:—S. W. Palmer until May 22, G. F. Wells, E. H. Tibbitts, and Miss E. W. Clack. ## § 2. General Description of the Buildings and Instruments of the Magnetical and Meteorological Observatory. The Magnetic Pavilion is constructed of non-magnetic materials, and stands in an enclosure in Greenwich Park, 350 yards to the east of the Observatory, on a site carefully chosen for its freedom from abnormal magnetic conditions. In the enclosure there are two sets of thermometers used for ordinary eye observations, thermometers for solar and terrestrial radiation, and two rain-gauges. The anemometers, three rain-gauges, and the sunshine recorder are fixed above the roof of the Octagon Room (the ancient part of the Observatory). GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1918. For a detailed description of the New Magnetograph House, which was completed in 1914, reference should be made to the Greenwich Observations for 1915. The New Magnetograph House stands 50 feet north-west of the Magnetic Pavilion in which the absolute magnetic observations are made. The recording instruments are situated in a small inner chamber 15 feet long, 12 feet wide, and 8 feet high. This chamber is supported on small concrete piers and surrounded by an outer chamber, whose walls of non-conducting material are nearly 2 feet thick. Between the walls of the two chambers is an air space of from 2 to 3 feet. The inner chamber is electrically heated by about 50 suitably insulated low-temperature non-magnetic metallic resistance strips, each consuming 25 watts. The current used is alternating, and is therefore without effect upon the magnetic registration. The temperature is controlled by a thermostat placed in the centre of the room, at the same level as the magnetic instruments. This actuates a relay, which switches the electric current into or out of the heating circuits. The centres of the three instrument piers are situated as follows: For the north force instrument, 2 feet south and 2 feet 6 inches east of the north-west angle of the room; for the declination instrument, 5 feet 6 inches south and 5 feet east of the same angle; for the vertical force instrument, 2 feet north and 3 feet west of the south-east angle. The two piers which support the recording mechanism occupy the north-east and south-west corners of the room, their longer sides being in the direction of the meridian. The clocks can be wound and the recording drums inserted or removed through shuttered openings in the wall of the inner chamber. The temperature in the chamber is read daily from a thermometer attached to the north force instrument, by means of a small telescope, projecting into the room. The Magnetograph House contains also the photographic and standard barometers. The former is mounted on the south wall of the instrument room, $5\frac{1}{2}$ feet from the south-east corner of the room. The standard barometer is situated in the passage way, being supported on a board screwed to the north-west corner pillar of the inner room. The north force and declination instruments record on the north-east drum; the vertical force instrument and the barometer record on the other drum. Both drums are horizontal and are 10 inches long by $5\frac{1}{2}$ inches in diameter. Their normal period of revolution is 30 hours and the scale 15 mm. to the hour. The registering beams of light are focussed on the drum by an adjustable cylindrical lens. Two horizontal straight filament lamps mounted at suitable heights on the east and west walls of the chamber provide the time registration for the photographic sheets. The lamps are illumined for a period of one second centred at each exact hour of Greenwich time, the current being controlled by a relay connected to the Mean Solar clock in the Clock Room of the Observatory. The effect is to produce narrow dark hour lines right across the photographic records. ## § 3. Subjects of Observation in the year 1918. The observations comprise determinations of absolute magnetic declination, horizontal force, and dip; continuous photographic record of the variations of declination, horizontal force, and vertical force; eye observations of the ordinary meteorological instruments, including the barometer, dry and wet bulb thermometers, radiation and earth thermometers; continuous photographic record of the variations of the barometer, dry and wet-bulb thermometers, and electrometer (for atmospheric electricity); continuous automatic record of the direction, pressure, and velocity of the wind, and of the amount of rain; registration of the duration of sunshine; general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud, special cloud observations in connection with the International Balloon ascents, and occasional phenomena. Since 1885, Greenwich civil time, reckoning from midnight to midnight, and counting from 0 to 24 hours, has been employed throughout the magnetical and meteorological sections, except in regard to the sunshine registers (see p. E xvii). #### § 4. Magnetic Instruments. Declination Magnet for Absolute Determinations.—Since 1899 January 1, regular observations of declination have been made in the Magnetic Pavilion. The hollow cylindrical magnet Elliot No. 75 is used in conjunction with a telescope by Troughton and Simms, placed on a pier about 2 feet south of the magnet. The magnet is about 4 inches long, and at one end is an engraved glass scale for collimation. The telescope is 21 inches long, and the aperture of its object-glass is 2 inches; its horizontal circle is 16·6 inches in diameter, divided to 5' and read by verniers to 5". It has no vertical circle. The eye-piece has one fixed horizontal wire and one vertical wire, moved by a micrometer screw, the value of one revolution of which is 1' 34"·2. The adopted collimation reading was $100^{\circ} \cdot 140$ . (6436) 3 B 2 The vertical axis of the telescope is adjusted by means of a fixed level, one division of which corresponds to $1'' \cdot 15$ . The level correction for inequality of the pivots of the axis of the telescope was found in 1898 to be $-6^{\text{div}} \cdot 0$ or $-6'' \cdot 9$ . Since 1913 September the magnet has been suspended by a tungsten wire of 0.02 mm. diameter, and about 25 cm. length. The effect of $90^{\circ}$ of torsion is to turn the magnet through about 4'. The torsion is found to change little or not at all; it is checked at intervals, and a correction on this account is made when necessary. The collimation error is eliminated by reversing the magnet in the middle of each month, so that half the observations are made with the scale direct and half with the scale reversed (by turning the magnet through $180^{\circ}$ in its carrier, about the longitudinal axis). The reading of the azimuth circle corresponding to the astronomical meridian is determined by observations of Polaris, taken once a week whenever practicable. Declination observations have been made at least thrice weekly throughout 1918. ABSOLUTE HORIZONTAL FORCE INSTRUMENT.—This instrument is of the Kew pattern, and rests on a slate slab in the Magnetic Pavilion. A full account of its construction and use is given in earlier volumes, and will not be repeated here. Observations of the absolute horizontal magnetic force are made twice weekly. Observations of the moment of inertia of the deflecting magnet are made occasionally. DIP INDUCTOR.—The dip inductor is used in conjunction with a Broca mirror galvanometer, with electric light and scale. Observations are made in four positions to eliminate any small errors arising from slight asymmetry in the instrument. After the first adjustment, the ring is reversed about a horizontal axis and a second adjustment obtained: the instrument is then reversed in azimuth and two further adjustments made. The circles for the measurement of inclination and azimuth are each 8 inches in diameter, and are read by means of screw micrometers to one second of arc. The levels on the base can likewise be read to one second. A detailed description of the dip inductor will be found in the volume for 1915. The observations are made thrice weekly. THE DECLINATION VARIOMETER.—This instrument consists essentially of a magnet and mirror suspended by a fine phosphor bronze strip 30 cm. long. The torsion head to which the top of the fibre is attached is adjusted so that there shall be no torsion in the mean position of the magnet. A quarter revolution of the torsion head deflects the magnet through 8'. The magnet consists of nine short pieces of steel 4.5 cm. long and of 1 mm. diameter, supported in an aluminium holder. The mounting of the movable mirror attached to this holder is also of aluminium. It can be turned relative to the magnet, so that the beam of light can be suitably adjusted in azimuth. The fixed mirror for base-line registration is situated beneath the magnet and mirror system. Both mirrors are of silvered glass, 2.5 cm. long and 1 cm. wide, and possess the necessary adjustments for tilt and orientation. The magnet is surrounded by copper blocks, rendering the instrument almost dead-beat. The instrument rests on three foot-screws, which provide adjustment for level. It is completely enclosed by a tall brass cylinder with lid, resting on the concrete pier; this protects the instrument from dust, draughts, and accidental displacements. The lens which focusses the beam of light passing from lamp to mirror and mirror to drum is mounted in the side of this cylinder, the mirror chamber of the instrument itself being closed by a plane glass window. The distance from the mirrors to the centre of the slit of the drum box is such that the scale value at the middle of the photographic sheets is $0' \cdot 585$ per millimetre; at the present time (1915–20) this angle represents $3 \cdot 17 \, \gamma$ , in terms of force. Since the beam of light, when directed towards the centre of the slit, makes an angle $11^{\circ} \cdot 42'$ with the normal to the drum, the scale value is not the same right across the sheet, the percentage difference of scale between the centre and edges being $0 \cdot 5$ . This is allowed for, when necessary, in measuring the photographic traces. The photographic sheets are changed generally at about 11 a.m. The time scale is 15 mm. per hour. The base-line value is determined from the absolute declination observations. The North Force Variometer.—The general construction of this instrument resembles that of the declination variometer. The suspension is of quartz, however, 20 cm. long, and the magnet system contains a single magnet similar to those in the declination instrument. In other respects the magnet and mirror systems of the two instruments are identical. The torsion head is adjusted so that the magnetic axis of the magnet system is kept in the (geographical) east-west direction. The angle between this direction and the line joining the mirror to the middle of the slit of the drum is 7°·30′. The mirror was adjusted relative to the magnetic axis so that the angle between the latter and the normal to the mirror agreed with the above angle to within a few minutes of arc. The magnet can consequently be maintained in the right direction by keeping the beam of light directed towards the middle of the photographic sheet. The instrument is enclosed in a brass cylinder, in which is mounted the focusing lens, as in the case of the declination variometer. Through apertures in this casing also project two arms, one to the north and the other to the south of the instrument, to which they are attached. These are designed to support a deflecting magnet for the determination of the scale value of the variometer. The deflecting magnet is similar to those in the magnet system itself, but is cased in brass so as to be preserved from rust and made convenient for handling; its external diameter and length are 5 mm. and 7 cm. respectively. Deflections are made at two distances along both north and south arms, and in each position the magnet is used with its axis directed to the north and also to the south. eight deflections are involved in each determination of scale value. The deflected positions are recorded on the photographic sheet, and the measurement is performed subsequently. The two adopted distances of the deflecting magnet from the magnet system are 27 cm. and 32 cm. The deflecting forces at these two distances are determined monthly by deflecting the absolute horizontal force magnet in the same way; the moment of the latter being known, the angle of deflection enables the deflecting force to be calculated readily in absolute measure. It is found that the magnetic moment of the deflecting magnet is slowly diminishing; the deflecting forces at the above two distances were $244.6\,\gamma$ and $148.2\,\gamma$ in the mean of 1918, and the present rates of diminution of their values are 4·4 γ and $2.8 \, \gamma$ per year. The scale value determinations for the north force instrument are made once weekly. Since the instrument was installed the scale value has been found to be slowly diminishing. It has been treated as constant throughout each month, the difference from month to month being very small (about $\cdot 01 \,\gamma$ per mm.). The adopted scale value for the month of 1918 January was $3 \cdot 25 \,\gamma$ per mm., and for 1919 January was $3 \cdot 30 \,\gamma$ per mm. The base-line value of the instrument is determined by means of the absolute horizontal force observations, together with the absolute and photographic declination determinations. The base line is steadily changing (though at a decreasing rate), owing to the gradual diminution of the moment of the magnet system. The mean rate of change of base-line value during 1918 was $0.52 \, \gamma$ , and the mean annual decrease in this rate of change is $0.15 \, \gamma$ . The progressive change of base-line value is allowed for in the reductions. The instrument is kept at a constant temperature, and therefore the records require no temperature correction in general. When the instrument was first set up, however, its temperature correction was determined by electrically heating the interior of the outer casing by heating coils wrapped round the outside of the latter. It was found that a rise of temperature through 1° C. increased the base-line value of the instrument by $2\gamma$ . During the periods when the thermostat was out of order and under repair, the observations were corrected for temperature according to this determination. THE QUARTZ-THREAD VERTICAL FORCE VARIOMETER.—For a detailed description of this instrument reference may be made to the Philosophical Magazine, vol. vii., sixth series, p. 393, 1904. The base of the instrument consists of a metal casting with uprights at the two ends, carrying attachments for the ends of the quartz fibre which supports the magnet system. The latter consists of two magnets, 8 cms. long and 1 mm. in diameter, which are attached by small platinum stirrups to two rods of fused quartz; these are fused to a quartz plate, the upper surface of which is optically worked and platinised to form a plane mirror. The quartz rods are drawn out at their other ends into fibres of about 0.008 to 0.010 cm. diameter; one of these is attached to a coiled quartz spring. The quartz spring and the other fibre are soldered to small brass rods fitting into clamps at the two ends of the metal base. The thread is under sufficient tension to stretch the spring through about two millimetres. A right-angled prism is supported in a frame above the mirror, so as to reflect the light in a horizontal direction; a single lens is placed beneath to focus the light on the recording drum. The prism frame is adjustable in azimuth in order to enable the trace to be brought to any desired part of the sheet. An adjustable mirror beneath the quartz fibre and adjacent to the mirror of the magnet system serves to give a base line. The sensitiveness of the instrument is varied by adjusting the centre of gravity of the movable system. For this purpose a small vertical quartz arm is fixed to one of the rods attached to the mirror and a small piece of brass can slide on this arm, being fixed into any desired position by means of a little shellac. The sensitiveness adopted until the end of 1919 was $3.6 \, \gamma$ per mm. on the sheet. At the beginning of 1920 this was increased to $2.0 \, \gamma$ per mm. The variometer was not at first compensated for temperature changes and was found to possess a temperature coefficient of 25 y per 1° C. The gradual change in the thermostat control temperature necessitated compensation; the adjustment was made by means of a small stirrup sliding on one of the magnets, and the chamber was alternately heated and cooled until, with a range in temperature of 8° C., there was no measurable displacement of the photographic trace. Scale Value of Vertical Force Variometer.—The scale value of the instrument is determined by the methods of deflections, which in this case are produced electro-magnetically. The deflecting coil consists of two equal parallel circular rings of wire separated by a distance equal to their own radii. The wire is laid in V-grooves on a vulcanised fibre framework which rests permanently on the instrument pier. The leads and connections between the two separate rings are laid side by side. With such an arrangement a very uniform magnetic field is produced at the centre of the coil, when an electric current circulates in the same direction round the two circles. The diameter of each circular turn of wire is 55.7 cm., and the distance between their two centres is 27.7 cm. If x, $\rho$ represent axial and radial co-ordinates, measured in cms. from the centre of the coil as origin, the value of the axial force magnetic force at $(x, \rho)$ , due to a current of strength A ampères, is— $$3239 \text{A} [1 - 0.0129 \frac{x^2 - \frac{1}{2}\rho^2}{\text{R}^2} - 1.782 \frac{x^4 - 3x^2\rho^2 + \frac{3}{8}\rho^4}{\text{R}^4} . . .]$$ where R is $31\cdot06$ cms., being the distance from the centre of the coil to a point on the circumference of either ring. The coil is placed so that its centre plane is horizontal, and with its centre as nearly as possible coincident with the vertical force magnets; there is no horizontal magnetic field produced by the coil in the plane of the magnets, and the vertical force produced is constant to within 0.5 per cent. throughout the space occupied by the magnets. Within this limit of error, also, an inclination of the magnets to the horizontal even by several degrees would not affect the vertical force to which they would be subject; and the horizontal forces on them, besides being inappreciable, would have a force and not a couple resultant. In this making scale value determinations, the current is supplied by a small portable battery, and is measured by an ammeter. The current strength used is 100 milliampères, which from the above formula, allowing for the slight noncentrality of the magnets with respect to the coil, is found to produce a deflecting force of 323 $\gamma$ , and a movement of the trace on the photographic sheets through about 92 mm. The scale value is found to be uniform across the sheets. The scale value determinations are made weekly. The scale value was found to be constant. The adopted value is $3.66 \, \gamma$ per mm. The base line value is determined from the dip observations, in conjunction with the recorded values of north force and declination. It is at present slowly decreasing. § 5. Magnetic Reductions. The results given in the magnetic section refer to the civil day, commencing at midnight. Before the photographic records of magnetic declination, horizontal or north force, and vertical force are discussed, they are divided into two groups—one including all days on which the traces show no particular disturbance, and which, therefore, are suitable for the determination of diurnal inequality; the other comprising days of unusual and violent disturbance, when the traces are so irregular that it appears impossible to treat them except by the exhibition of every motion of each magnet through the day. Following the principle of separation hitherto adopted, there are no days in the year 1918 which are classed as days of great disturbance. Days of lesser disturbance are March 7–8, April 11–12, May 16–17, August 15–16, September 21, October 16, December 8 and December 25–26. When two days are mentioned, it is to be understood that the reference is usually to one set of photographic sheets extending from noon to noon, and including the last half and the first half respectively of two consecutive civil days. The mean ordinates for each complete form are measured by the aid of a transparent-celluloid scale, and from the tables of these measures, for each calendar month, are obtained the mean monthly values for each hour of the day, and the mean daily value of the element for each day of the month. The daily mean is taken from the 24 mean ordinates. Tables I to XV contain the results for declination, north force, and vertical force. For each element the mean daily value and daily range are given for every day of the year, together with the monthly and annual mean diurnal inequalities for all days and for quiet and disturbed days (as selected by the International Committee). In the formation of diurnal inequalities it is unimportant whether a day omitted be a complete civil day, or the parts of two successive civil days making together a whole day, although in the latter case the results are not available for daily values. No days were omitted on account of great disturbance in the formation of these Tables. The variations of declination are given in arc and those of north force and vertical force in C.G.S. measure. The magnetic diurnal inequalities of declination, north force, and vertical force, for each month and for the year, as given in Tables IV, VIII, and XII, have been treated by the method of harmonic analysis, and the results are given in Table XVI. (6436) 3 C In Table XVII the absolute determinations of horizontal force are given, both as observed and also as reduced to the mean value for the month. The latter was effected by application of the difference between the north force ordinate at the time of observation and the mean value for the month, as obtained from the photographic register, taking into account also the change of declination. As regards magnetic dip, the result of each observation of dip with the dip inductor is given in Table XVIII; these have not been reduced to the mean value for the month, but a correction has been applied on account of the diurnal variation of dip (as deduced from Tables VIII and XII) in forming the monthly mean values of dip given in Table XIX. Table XIX contains an annual summary of the magnetic elements, giving the mean monthly values, the monthly mean diurnal ranges, and sums of hourly deviations from mean. In Tables VI, X, and XIV are given mean diurnal inequalities of declination, horizontal force, and vertical force derived from five quiet days each month. In Tables VII, XI, and XV are given similar inequalities derived from five disturbed days each month, both sets of days being selected by the International Committee. Reduced copies of the magnetograms for certain disturbed days (mentioned on p. Eix) have been printed in each volume since 1882. The list of these days since the year 1889 has been selected in concert with M. Mascart, or his successor M. Angot, so that the two Observatories of Val Joyeux (formerly of the Parc Saint Maur) and Greenwich should publish the magnetic registers for the same days of disturbance with a view to the comparison of the results. As far as possible the days of greater disturbance are those selected by the International Committee. The plates are followed by a brief description of other significant magnetic motions (superposed on the ordinary diurnal movement) recorded during the year. With regard to the plates, on each day three distinct registers are usually given, viz.: declination, north force, and vertical force. At the foot of each plate, scales, in C.G.S. measure, are given for each of the magnetic registers. The subjoined table gives the values of Magnetic Elements determined at the Royal Observatory, Greenwich:— TABLE ## MAGNETIC ELEMENTS. | Year. | Declination<br>West. | Horizontal<br>Force,†<br>C.G.S. Unit. | Dip.‡ | Year. | Declination<br>West. | Horizontal<br>Force,†<br>C.G.S. Unit. | Dip.‡ | |-------|----------------------|---------------------------------------|-----------------|-------|----------------------|---------------------------------------|-----------------| | | 0 / | | 0 / | i | 0 ' | | 0 / | | 1841 | 23.16.2 | | | 1880 | 18.32.6 | 0.1805 | 67.35.7 | | 1842 | 23.14.6 | | | 1881 | 18.27.1 | 0.1807 | 67.34.7 | | 1843 | 23.11.7 | | 69. 0.6 | 1882 | 18.22.3 | 0.1806 | 67.34.2 | | 1844 | 23.12.3 | | 69. 0.3 | 1883 | 18-15-0 | 0.1812 | 67.31.7 | | 1845 | 22.56.7 | | 68.57.5 | 1884 | 18. 7.6 | 0.1814 | 67.29.7 | | 1846 | 22.49.6 | 0.1731 | 68·58·i | 1885 | 18. 1.7 | 0.1817 | 67.28.0 | | 1847 | 22.51.3 | 0.1736 | 68·5g·0 | 1886 | 17.54.5 | 0.1818 | 67.27.1 | | 1848 | 22.51.8 | 0.1731 | 68.54.7 | 1887 | 17.49.1 | 0.1819 | 67.26.6 | | 1849 | 22.37.8 | 0.1733 | 68.51.3 | 1888 | 17.40.4 | 0.1822 | 67.25.6 | | 1850 | 22.23.5 | 0.1738 | 68.46.9 | 1889 | 17.34.9 | 0.1823 | 67.24.3 | | 1851 | 22.18.3 | 0.1744 | 68·40·4 | 1890 | 17.28.6 | 0.1825 | 67.23.0 | | 1852 | 22.17.9 | 0.1745 | 68.42.7 | 1891 | 17.23.4 | 0.1827 | 67.21.5 | | 1853 | 22.10.1 | 0.1748 | 68.44.6 | 1892 | 17.17.4 | 0.1829 | 67.20.0 | | 1854 | 22. 0.8 | 0.1749 | 68.47.7 | 1893 | 17.11.4 | 0.1831 | 67.17.9 | | 1855 | 21.48.4 | 0.1756 | 68.44.6 | 1894 | 17. 4.6 | 0.1831 | 67.17.4 | | 1856 | 21.43.5 | 0.1759 | 68.43.5 | 1895 | 16.57.4 | 0.1834 | 67.16.1* | | 1857 | 21.35.4 | 0.1769 | 68.31.1 | 1896 | 16.51.7* | 0.1835* | 67.15.1* | | 1858 | 21.30.3 | 0.1762 | 68.28.3 | 1897 | 16.45.8* | 0.1838 | 67.13.5* | | 1859 | 21.23.5 | 0.1761 | 68.26.9 | 1898 | 16.39.2* | 0.1840 | 67.12.1 | | 1860 | 21.14.3 | | 68·30·1 | 1899 | 16.34.2 | 0.1843 | 67.10.5 | | 1861 | | 0.1773 | 68.24.6 | 1900 | 16.29.0 | 0.1846 | 67. 8.8 | | 1801 | 21. 2.2 | 0.1759 | 68.15.8 | 1901 | 16.26.0 | 0.1850 | 67 · 6 · 4 | | 1862 | 20.52.6 | 0.1763 | 68· 9·6 | 1902 | 16.22.8 | 0.1852 | 67. 3.8 | | 1863 | 20.45.9 | 0.1764 | 68· 7·0 | 1903 | 16.19.1 | 0.1852 | 67. 1.2 | | 1864 | | 0.1767 | 68· <b>4</b> ·1 | 1904 | 16·15·0 | 0.1854 | 66.57.6 | | 1865 | 20.33.9 | 0.1767 | 68· 2·7 | 1905 | 16. 9.9 | 0.1854 | 66.56.3 | | 1866 | 20.28.0 | 0.1773 | 68· 1·3 | 1906 | r6· 3·6 | 0.1854 | 66.55.6 | | 1867 | 20.20.5 | 0.1777 | 67.57.2 | 1907 | 15.59.8 | 0.1855 | 66.56.2 | | 1868 | 20.13.1 | 0.1779 | 67.56.5 | 1908 | 15.53.5 | 0.1854 | 66·56· <b>3</b> | | 1869 | 20. 4.1 | 0.1782 | 67.54.8 | 1909 | 15.47.6 | 0.1854 | 66.54.1 | | 1870 | 19.53.0 | 0.1784 | 67.52.5 | 1910 | 15.41.2 | 0.1855 | 66.52.8 | | 1871 | 19.41.9 | 0.1786 | 67.50.3 | 1911 | 15.33.0 | 0.1855 | 66.52.1 | | 1872 | 19.36.8 | 0.1789 | 67.47.8 | 1912 | 15.24.3 | 0.1855 | 66.51.8 | | 1873 | 19.33.4 | 0.1793 | 67.45.8 | 1913 | 15.15.2 | 0.1853 | 66.50.5 | | 1874 | 19.28.9 | 0.1797 | 67.43.6 | 1914 | 15. 6.3 | 0.1853 | 66.51.2 | | 1875 | 19.21.2 | 0.1797 | 67.42.4 | 1915 | 14.56.5 | 0.1851 | 66.52.0 | | 1876 | 19. 8.3 | 0.1799 | 67.41.0 | 1916 | 14.46.9 | 0.1850 | 66.52.8 | | 1877 | 18.57.2 | 0.1800 | 67.39.7 | 1917 | 14.37.1 | 0.1848 | 66.53.0 | | 1878 | 18.49.3 | 0.1802 | 67.38.2 | 1918 | 14.27.8 | 0.1846 | 66.52.8 | | 1879 | 18.40.5 | 0.1802 | 67.37.0 | | | | | | • | 1 | 1 - 1 | - · | l | J | j | 1 | <sup>\*</sup> Corrected for the effect of the iron in the new buildings. <sup>†</sup> The values of the Horizontal Force from 1861 differ from those given in previous volumes, on account of the correction mentioned on p. E iv, 1914 volume. these values of the dip differ slightly in some instances from those given in previous volumes, on account of the correction mentioned on p. E v, 1912 volume. In 1861 the new Unifilar Apparatus for absolute Horizontal Force and the Airy Dip-Circle were introduced, both sets of apparatus being used in that year. In 1864 the excavation of the Magnetic Basement caused the suspension of complete Declination Observations. From 1914 the Dip was determined with the Inductor. ## § 6. Meteorological Instruments. STANDARD BAROMETER.—The standard barometer is Newman No. 64. Its tube is $0^{\text{in.}} \cdot 565$ in diameter, and the depression of the mercury due to capillary action is $0^{\text{in.}} \cdot 002$ , but no correction is applied on this account. The cistern is of glass, and the graduated scale and attached rod are of brass; at its lower end the rod terminates in a point of ivory, which in observation is made just to meet the reflected image of the point as seen in the mercury. The scale is divided to $0^{\text{in.}} \cdot 05$ , subdivided by vernier to $0^{\text{in.}} \cdot 002$ . The barometer was mounted in 1840 on the southern wall of the western arm of the Upper Magnet Room at a height above mean sea level of 159 feet. It was transferred to the New Magnetograph House on 1917 April 3, where the height above mean sea level is 152 feet. The barometer is read at 9<sup>h</sup>, 12<sup>h</sup> (noon), 15<sup>h</sup>, 21<sup>h</sup> (civil reckoning) every day. Each reading is corrected by application of an index-correction, and reduced to the temperature 32°. The readings thus found are used to determine the value of the instrumental base line on the photographic record. THE PHOTOGRAPHIC BAROMETER.—In consequence of the use of a horizontal drum for the new vertical force instrument, it became necessary to modify the lever mechanism of the photographic barometer on its removal to the Magnetograph House in 1916. On account of the optical magnification associated with a moving mirror at some distance from the instrument, the new mechanism had to be such as would reduce the motion of the plunger to a smaller amount at the end of the lever which carried the mirror. In the actual arrangement two levers are used, the one connected to the arm of the plunger resting in the free surface of the mercury, being 12 inches long from plunger to pivot. A pin with a rounded conical point is screwed into this lever at a distance of 1 inch from the pivot. On this pin rests the plane under-surface of a shorter lever, which is 4 inches long from its pivots to this pin, and is set at right angles to the first lever. Both levers are approximately horizontal in their mean position. On the short lever is mounted the moving mirror of the instrument. This mirror is 2.5 cm. long and 1 cm. wide, and is mounted horizontally in a suitable frame attached to the lever, just above its pivots. The first lever lies east and west, so that the axis about which the mirror turns is in the same direction. The motion of the beam of light is transformed so as to be horizontal by a fixed right-angled prism supported above the mirror. A lens of suitable focus is mounted in a vertical plane in front of the prism, and brings the beam of light from the straight filament lamp, which also illuminates the vertical force variometer, to a focus on the drum. A base-line mirror, similar to the moving mirror, is mounted in a vertical plane behind the lower half of this lens. Provision is made for all necessary adjustments of level and azimuth and tilt of the base line and moving beams of light. The barometer is mounted on the south wall of the instrument chamber, at a distance of 3 feet from the vertical force instrument. The levers and optical parts are screwed to a brass plate supported on a small shelf by the side of the barometer. The instrument is 12 feet from the recording drum, and consequently the scale value of the record is 3 cm. on the sheet for 1 cm. change of height of the mercury column of the standard barometer. In the photographic barometer both arms are, near the surface of the mercury, of the same bore, so that the plunger moves through only half the change of height of the standard barometer. The photographic sheets being 24 cm. wide, the whole range of barometric motion can be included without changing the zero, as was formerly necessary, when the scale value was 4 to 1 in place of 3 to 1 as now. The metal parts of the instrument are all of brass or aluminium, except the cast-iron plunger disc (which is 24 mm. in diameter and 4 mm. thick) and four small pivot screws, which are of steel. These are sufficiently far from the vertical force instrument to ensure that they do not affect its records. The weight of the plunger and lever mechanism is relieved by a balance weight on the far side of the pivot, so that the plunger rests on the mercury surface without appreciably depressing it. There is some evidence of a slight difference of behaviour according to whether the barometer is rising or falling. The scale value of the instrument is actually determined experimentally by comparison with the readings of the standard photographic barometer. Readings of the latter are taken four times daily, and from them the base-line value of the barometer is adopted, having regard to the tendency referred to in the preceding paragraph. DRY- AND WET-BULB THERMOMETERS.—The standard dry- and wet-bulb thermometers and maximum and minimum self-registering thermometers, both dry and wet, are mounted on a revolving frame planned by Sir George Airy. This, together with details of the thermometers and the corrections applicable to them, may be found fully described in the volumes for 1912 and previous years. Since 1899 January 4 this stand has stood in an open position in the Magnetic Pavilion enclosure. The corrections to be applied to the thermometers in ordinary use are determined, usually once each year for the whole extent of scale actually employed, by observations at $32^{\circ}$ in pounded ice and by comparison with the standard thermometer No. 515, kindly supplied to the Royal Observatory by the Kew Committee of the Royal Society. The dry-bulb thermometer used throughout the year was Negretti and Zambra, No. 45354. The correction $-0^{\circ}\cdot 4$ has been applied to the readings of this thermometer. The wet-bulb thermometer used throughout the year was Negretti and Zambra, No. 94737. The correction $-0^{\circ}\cdot 2$ has been applied to the readings of this thermometer. The dry- and wet-bulb thermometers are read at 9<sup>h</sup>, 12<sup>h</sup> (noon), 15<sup>h</sup>, 21<sup>h</sup> (civil reckoning) every day. Readings of the maximum and minimum thermometers are taken at 9<sup>h</sup>, 15<sup>h</sup>, and 21<sup>h</sup> every day. Those of the dry- and wet-bulb thermometers are employed to correct the indications of the photographic dry- and wet-bulb thermometers. PHOTOGRAPHIC DRY-BULB AND WET-BULB THERMOMETERS.—The apparatus which has been in use since 1887 was designed by Sir William Christie, and from 1899 to 1917 stood in the same position in the Magnet Ground. It was transferred to the Magnetic Pavilion Enclosure on 1917 February 21. It is placed in a shed 8 feet square, standing upon posts about 8 feet high, and open to the north. The apparatus is screened from the direct rays of the sun, without impeding the circulation of the air. The recording mechanism is similar in general plan to that already described in connection with the magnetometers in the Magnet Basement, the illumination being by gaslight. The traces consist of broad bands, due to the free passage of light to the drum, above the mercury column in the dry-bulb, and through an air-bubble in that of the wet-bulb, crossed by fine lines caused by the shadows of the graduations on the thermometer tubes. The two traces fall on the same part of the cylinder as regards time scale. The stems of the thermometers are placed close together, each being covered by a vertical metal plate having a fine vertical slit, so that light passes through only at such parts of the bore of the tube as do not contain mercury. Further details of the thermometers and recording arrangements may be found in the volume for 1912. The scale value of the records is approximately 10° per inch. RADIATION THERMOMETERS.—These thermometers are placed in the Magnetic Pavilion enclosure, in an open position about 50 feet south-west of the building. The thermometer for solar radiation is a self-registering mercurial maximum thermometer on Negretti and Zambra's principle, with its bulb blackened, and the thermometer enclosed in a glass sphere from which the air has been exhausted. The thermometer employed was Negretti and Zambra, No. 165157. The thermometer for radiation to the sky was a self-registering spirit minimum thermometer, Negretti and Zambra, No. 165654. The thermometers are laid on short grass and freely exposed to the sky; they require no correction for index-error. Earth Thermometers.—These four thermometers, the bulbs of which are sunk to depths of 25.6, 12.8, 6.4, and 3.2 feet below the surface, are fully described in earlier volumes. The shortest thermometer is read daily at noon, the readings being given (subject to an unknown small index correction) in the daily results. The other thermometers are read weekly on Monday at noon, but the results are not published, as the daily readings previously printed for many years seem to offer all the information which these thermometers are likely to afford. A discussion by Professor Everett of the observations up to 1859 was given in an appendix to the volume for 1860. All four thermometers were accidentally broken on September 14, during the removal of the old Magnet House. Osler, for continuous registration of the direction and pressure of the wind and of the amount of rain, is fixed above the north-western turret of the ancient part of the observatory. The direction of the wind is registered by means of a large vane (9ft. 2in. in length), connected by gearing with a rack-work carrying a pencil; the latter marks on a flat horizontally moving sheet of paper. The vane is 25 feet above the roof of the Octagon Room, 60 feet above the adjacent ground, and 215 feet above the mean level of the sea. A fixed mark on the north-eastern turret, in a known azimuth, as determined by celestial observation, is used for examining at any time the position of the direction plate over the registering table, to which reference is made by means of a direction pointer when adjusting a new sheet on the travelling board. A circular pressure plate with an area of 192 square inches is attached 2 feet below the vane; moving with the latter, it is always kept directed against the wind. A light wind causes the plate to compress slender springs, the motion being registered on the horizontal sheet by a pencil connected with the plate by a flexible brass chain, which is always in tension. Higher wind pressures bring stiffer springs into play behind the plate, and the two sets of springs are adjusted by screws and clamps so as to afford fixed scales on the sheet, the scale for light winds being double that for heavy winds. The scale is determined experimentally in lbs. per square foot from time to time. The recording sheet is changed daily at noon. The time scale, ordinarily the same as that of the magnetic registers, can be increased 24-fold by altering the gearing. A self-registering rain gauge of peculiar construction forms part of the apparatus; this is described under the heading "Rain Gauges" in previous volumes. Robinson's Anemometer.—This instrument, for registration of the horizontal movement of the air, is mounted above the roof of the Octagon Room. It was brought into use in 1866, and is of smaller size than that now usual, the four hemispherical cups being 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The cups are 21 feet above the roof of the Octagon Room, 56 feet above the adjacent ground, and 211 feet above the mean level of the sea. A motion of the recording pencil through 1 inch corresponds to horizontal motion of the air through 100 miles. The time scale is the same as for the magnetic registers, and the sheet is changed daily at noon. In preceding volumes the values of wind velocity V given in the tables are three times the actual velocity v of the cups. From some tests of the Browning instrument, made by Mr. W. H. Dines at Hersham in 1889, on his whirling machine, it would appear that the relation between V and v is more correctly given by $$V = 4 \cdot 0 + 2 \cdot 0 v$$ , and that the instrument fails to record wind velocities less than 4 miles per hour. The values of the wind velocity given by the formula V=3 v would thus be too high when V exceeds 12. Since the two formulæ agree, however, for V=12, the mean values of the wind velocity (which seldom differ much from 12) will be approximately correct in either case; therefore, for the sake of continuity and simplicity, the formula V=3 v will continue to be used. In this volume, however, the greatest hourly measures (p. E xix) are given according to both formulæ, and the least hourly measures omitted. RAIN GAUGES.—During the year 1918 three rain gauges were employed, placed at different elevations above the ground, for which see page E 80 of the Meteorological Results. The gauge No. 1 forms part of the Osler Anemometer apparatus, and is self-registering, the record being made on the sheet on which the direction and pressure of the wind are recorded. The apparatus is fully described in earlier volumes. Gauges Nos. 2 and 3 are no longer read, and Nos. 4, 5, and 7 have been removed. Gauge No. 6 is an 8-inch circular gauge placed with the receiving surface 5 inches above the ground in the Magnetic Pavilion enclosure, about 10 feet northwest of the thermometer stand. No. 8 is a new gauge of the same diameter, but of the modified Snowdon pattern adopted by the Meteorological Office, having its receiving surface 1 foot above the ground. It was brought into use 1908 January 1, being fixed SW by W from No. 6 with a clear space of 6 feet between the rims. No. 6 is the Standard gauge, No. 8 is used as a check on the readings of No. 6. No. 6 is read daily, usually at 9<sup>h</sup>, 15<sup>h</sup>, and 21<sup>h</sup> Greenwich civil time, and No. 8 at 9<sup>h</sup> only as a rule. The present height of the Standard gauge above mean sea-level is 5 feet 9 inches less than in its old position in the Observatory Grounds, before its removal to the Pavilion Enclosure. The gauges are also read at midnight on the last day of each calendar month. ELECTROMETER.—The electric potential of the atmosphere is measured by means of a Thomson self-recording quadrant electrometer, made by White, of Glasgow. It is situated in a small hut in the Magnetic Enclosure and has the usual arrangements for photographic registration. The time scale is the same as for the magnetic registers, the hourly break of trace being made by the driving-clock itself. The Electrometer is connected by a fine wire directly with a small radium collector, carried on an insulated support, at a height of about 7 feet. SUNSHINE RECORDER.—The instrument in use is of the Campbell-Stokes pattern, with 4-inch glass globe. The recorded durations are those of *bright* sunshine, no register being obtained when the sun shines faintly through fog or cloud, or is very near the horizon. The hourly results relate to *apparent* time. ### E xviii Introduction to Greenwich Magnetical Observations, 1918. ### § 7. Meteorological Reductions. The results given in the Meteorological Section refer to the civil day, commencing at midnight. All results in regard to atmospheric pressure, temperature of the air and of evaporation with deductions therefrom, are derived from the photographic records, excepting that the maximum and minimum values of air temperature are those given by eye observation of the ordinary maximum and minimum thermometers at 9<sup>b</sup>, 15<sup>h</sup>, and 21<sup>h</sup> (civil reckoning), reference being made, however, to the photographic register when necessary to obtain the values corresponding to the civil day from midnight to midnight. The hourly readings for the elements mentioned are measured direct from the photographic curves, and reduced so as to be based fundamentally, both as regards scale and zero, on the readings of the standard barometer and dry- and wet-bulb thermometers. The barometer results are not reduced to sea-level, neither are they corrected for the effect of gravity, by reduction to the latitude of 45°. The mean daily temperature of the dew-point and degree of humidity are deduced from the mean daily temperatures of the air and of evaporation by use of Glaisher's *Hygrometrical Tables*. The table of factors for this purpose may be found in the Introductions for 1910 and previous years. In the same way the mean hourly values of the dew-point temperature and degree of humidity in each month (pages E 75 and E 76) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pages E 74 and E 75). The excess of the mean temperature of the air on each day above the average of 65 years, given in the "Daily Results of the Meteorological Observations," is found by comparing the numbers contained in column 6 with a table of average daily temperatures found by smoothing the accidental irregularities of the daily means deduced from the observations for the sixty-five years 1841–1905. In this series the mean daily temperature from 1841 to 1847 depends usually on 12 observations daily, in 1848 on 6 observations daily, and from 1849 to 1905 on 24 hourly readings from the photographic record. The smoothed numbers are given in Table VII, Reduction of the Greenwich Meteorological Observations, Part IV, and also in the Introduction for 1910. The daily register of rain contained in column 16 is that recorded by the gauge No. 6, whose receiving surface is 5 inches above the ground. This gauge is read at 9<sup>h</sup>, 15<sup>h</sup>, and 21<sup>h</sup> Greenwich civil time. The continuous record of Osler's self-registering gauge shows whether the amounts measured at 9<sup>h</sup> are to be placed to the same, or to the preceding civil day; and in cases in which rain fell both before and after midnight, also gives the means of ascertaining the proper proportion of the 9<sup>h</sup> amount which should be placed to each civil day. The number of days of rain given in the footnotes, and in the abstract tables, pages E 73 and E 80, is formed from the records of this gauge. In this numeration only those days are counted on which the fall amounted to or exceeded 0·in·005. The indications of atmospheric electricity are derived from Thomson's Electrometer. No particular explanation of the anemometric results seems necessary. It may be understood generally that the greatest pressures usually occur in gusts of short duration. The "Mean of 24 Hourly Measures" was in former years the mean of 24 measures of pressure taken at each hour; but commencing with 1887 January 1, it is the mean of measures, each one of which is the average pressure during the hour of which the nominal hour is the middle point. The mean amount of cloud given in the footnotes on the right-hand pages E 49 to E 71, and in the abstract table, page E 73, is the mean found from observations made at $9^h$ , $12^h$ (noon), $15^h$ , and $21^h$ of each civil day. For understanding the divisions of time under the headings "Clouds and Weather" and "Electricity," the following remarks are necessary:—In regard to Clouds and Weather, the day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is subdivided into two or three parts by colons (:). Thus, when there is a single colon in the first column, it denotes that the indications before it apply (roughly) to the interval from midnight to 6<sup>h</sup>, and those following it to the interval from 6<sup>h</sup> to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column. In regard to Electricity, the results are included in one column; in this case the colons divide the whole period of 24 hours (midnight to midnight). #### E xx Introduction to Greenwich Magnetical Observations, 1918. As regards the notation for clouds and weather, the following are the symbols which denote actual phenomena:— | a, | aurora | h, | haze | s, | stratus | |------|---------|------------|------------|----------|------------| | ci, | cirrus | ha, | halo | sc, | scud | | cl, | clouds | hl, | hail | sh, shs, | shower (s) | | co, | corona | l <b>,</b> | lightning | sl, | sleet | | cu, | cumulus | m, | mist | sm, | storm | | d, | dew | n, | nimbus | sn, | snow | | f, | fog | prh, | parhelion | sq, sqs, | squall (s) | | fr, | frost | prs, | paraselene | t, | thunder | | g, | gale | r, | rain | w, . | wind | | glm, | gloom | | | | | The following are qualifying symbols used in conjunction with the above :— | c, | continued | li, | light | so, | solar | |-----|-----------|-------|------------------|-----|---------------| | fq, | frequent | lu, | lunar | st, | strong | | fr, | frozen | m, | misty | th, | thin | | gt, | great | oc, | occasional | tk, | thick | | ho, | hoar | p-cl, | partially cloudy | v, | variable | | hy, | heavy | slt, | slight | vv, | very variable | These symbols are used in combination: thus c-hy-r denotes continued heavy rain; t-sm, thunderstorm; p-cl, partially cloudy; m-r, misty rain; and so on. In regard to clouds, cl is omitted when the type is specified: thus ci-cu denotes cirro-cumulus clouds. Howard's nomenclature is used for clouds, and the figure indicates the proportion of sky covered by cloud, an overcast sky being represented by 10. The following is the notation employed for electricity:— | N, | negative | m, | moderate | s, | strong | |-----|-------------|-----|--------------------|-----|---------------| | Ρ, | positive | w, | weak | v, | variable | | SS, | very strong | ww, | ve <b>r</b> y weak | vv, | very variable | Zero potential is indicated by 0, and a dash (—) indicates accidental failure of the apparatus. F. W. DYSON. ROYAL OBSERVATORY, GREENWICH, 1922 October 2. ROYAL OBSERVATORY, GREENWICH. ## RESULTS OF ## MAGNETICAL OBSERVATIONS, 1918. | | | | | | | | TA | BLE | I.—Н | OURL | у Ме | ANS ( | of MA | AGNET | nc D | ECLIN | ATION | · . | - | | | | | | | |----------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|---------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------| | 0 | h 11 | n 2 <sup>1</sup> | h 31 | h 4 | h 5 | h 6 | h 7 | h 8 | h 9 | h 10 | h 1 | 1h No | oon. 1 | 3h 1 | 4h 15 | 5h 16 | 6h 1' | 7h 18 | 8h 19 | 9h 20 | 0h 2 | 1h 2 | 2h 23 | 3h 24 | <br><b>1</b> h | | Janua | ry. | | | | | | | | | 14 | °+Ta | bular | Quant | ities. | | | | | | | | | | Ŋ | Mean. | | 1<br>2<br>3<br>4<br>5** | 31·2<br>30·9<br>31·5<br>25·2<br>26·7 | 31·2<br>30·7<br>31·2<br>26·7<br>28·9 | 31·7<br>29·5<br>30·9<br>23·7<br>31·2 | 31·7<br>30·9<br>32·0<br>29·7<br>32·2 | 31·6<br>31·7<br>30·9<br>29·2<br>32·7 | 32·2<br>31·7<br>31·2<br>30·2<br>32·2 | 32·2<br>31·9<br>32·0<br>30·7<br>31·9 | 31·7<br>31·9<br>32·2<br>32·2<br>31·9 | 31·2<br>31·5<br>31·9<br>31·9<br>32·7 | 30·8<br>31·2<br>32·2<br>31·5<br>32·5 | 30·2<br>32·2<br>32·9<br>32·2<br>33·3 | 32·7<br>33·2<br>34·7<br>33·2<br>33·7 | 34·2<br>34·7<br>36·7<br>34·5<br>35·3 | 35·5<br>35·2<br>37·5<br>36·4<br>35·4 | 35·5<br>35·4<br>38·1<br>35·7<br>36·5 | 34·7<br>35·4<br>37·7<br>34·5<br>34·9 | 34·1<br>35·3<br>37·5<br>34·7<br>34·0 | 32·9<br>36·0<br>39·7<br>34·0<br>26·2 | 32·7<br>35·7<br>36·2<br>32·9<br>32·2 | 32·2<br>33·2<br>34·7<br>31·9<br>33·7 | 31·7<br>31·9<br>32·2<br>32·7<br>32·0 | ,<br>29·7<br>31·5<br>30·9<br>30·9<br>30·7 | ,<br>30·7<br>30·9<br>27·7<br>26·2<br>29·7 | ,<br>31.0<br>30.9<br>26.7<br>24.7<br>27.9 | 32·2<br>32·6<br>33·3<br>31·1<br>32·0 | | 6<br>7<br>8*<br>9 | 27.0<br>30.9<br>31.1<br>28.9 | 26·9<br>29·2<br>31·7<br>30·9 | 27·4<br>29·2<br>31·1<br>29·2 | 29·2<br>31·3<br>31·2<br>20·2 | 31.9<br>31.5<br>31.6 | 30·7<br>31·5<br>31·4<br>31·9 | 31·5<br>31·3<br>31·3 | 31·7<br>31·3<br>31·3 | 31·9<br>31·3<br>32·7<br>34·7 | 32·9<br>30·7<br>30·7<br>33·3 | 32·7<br>32·2<br>32·2 | 35·2<br>34·1<br>33·7<br>32·9<br>32·9 | 37·2<br>35·2<br>35·5<br>34·2<br>34·7 | 37·7<br>35·7<br>36·1<br>35·2<br>35·2 | 36·7<br>34·2<br>34·9<br>35·5<br>37·2 | 36·7<br>33·2<br>33·5<br>33·7<br>36·2 | 32·7<br>32·9<br>32·7<br>32·7<br>35·2 | 32·3<br>32·7<br>32·1<br>32·7<br>34·4 | 32·5<br>32·5<br>32·2<br>31·5<br>30·0 | 32·1<br>32·0<br>31·9<br>31·9 | 31·7<br>32·4<br>31·7<br>32·2<br>31·2 | 30·7<br>31·7<br>31·2<br>30·4 | 30·7<br>31·2<br>31·5<br>30·9<br>30·0 | 27·7<br>31·5<br>31·7<br>29·5<br>30·7 | 32·0<br>31·9<br>32·3<br>32·6 | | 11*<br>12**<br>13<br>14 | 31·9<br>31·7<br>23·7<br>30·5 | 32·3<br>31·9<br>26·9<br>27·2 | 32·5<br>32·3<br>30·7<br>26·2<br>31·9 | 32·5<br>32·1<br>31·7<br>29·2<br>30·9 | 32·9<br>31·7<br>32·7<br>29·7<br>32·7 | 31·7<br>31·5<br>32·2<br>30·5<br>31·7 | 31.2<br>30.9<br>31.4<br>31.4 | 31·5<br>30·7<br>31·2<br>31·2 | 30·7<br>30·7<br>30·7<br>30·7 | 30·5<br>30·0<br>29·7<br>29·7<br>30·4 | 32·2<br>30·7<br>31·2<br>31·2 | 33.9<br>32.7<br>34.4<br>32.5 | 32·7<br>35·5<br>35·2<br>35·2<br>33·7 | 34·5<br>37·2<br>37·7<br>37·7<br>36·2 | 34·1<br>36·7<br>34·7<br>37·2<br>35·9 | 33.7<br>34.2<br>34.2<br>36.2<br>34.7 | 32·7<br>34·7<br>34·7<br>34·9<br>34·0 | 32·2<br>36·7<br>33·7<br>32·2<br>33·7 | 32·2<br>34·7<br>32·2<br>32·9<br>33·2 | 31·9<br>33·2<br>31·7<br>31·2<br>28·9 | 31·7<br>31·2<br>27·7<br>31·0<br>31·1 | 31·5<br>29·2<br>27·7<br>29·7<br>27·7 | 31·7<br>27·9<br>29·7<br>29·2<br>25·7 | 31.7<br>20.2<br>29.7<br>29.7 | 32·2<br>31·4<br>31·5<br>31·5 | | 16<br>17*<br>18*<br>19*<br>20 | 29·2<br>29·7<br>28·9<br>31·5<br>31·2 | 30·7<br>30·4<br>30·0<br>31·7<br>31·5 | 29·2<br>31·0<br>30·7<br>31·9<br>31·7 | 29·9<br>31·7<br>31·5<br>32·2<br>32·4 | 31.0<br>32.2<br>32.1<br>32.2 | 30·7<br>31·7<br>31·9<br>32·2 | 30·2<br>31·9<br>31·3 | 30·7<br>31·5<br>31·5<br>31·7 | 30·7<br>30·7<br>30·7<br>31·1 | 29·9<br>29·5<br>30·7 | 32·2<br>31·5<br>32·2<br>31·5 | 34.0<br>32.9<br>34.2<br>32.7<br>34.9 | 35.7<br>35.0<br>35.5<br>34.5<br>36.9 | 36·7<br>35·9<br>36·5<br>36·3<br>38·5 | 36·2<br>35·7<br>36·1<br>36·2<br>37·7 | 33.9<br>34.7<br>35.4<br>34.2<br>36.i | 33·2<br>33·7<br>34·0<br>33·7<br>35·0 | 33.0<br>33.0<br>32.7<br>33.5<br>34.0 | 32·9<br>32·9<br>33·2<br>33·2<br>33·2 | 31.9<br>32.0<br>32.2<br>32.5<br>32.5 | 31·2<br>31·7<br>32·0<br>31·7 | 30·7<br>30·9<br>31·4<br>31·2 | 30·7<br>28·5<br>31·2<br>30·9<br>31·2 | 29.7<br>27.7<br>31.5<br>30.9<br>31.2 | 31.9<br>32.4<br>32.4<br>31.9 | | 2 I<br>2 2<br>2 3<br>2 4<br>2 5 | 30·5<br>28·5<br>31·2<br>31·7 | 29.0<br>28.9<br>29.2<br>31.7 | 30·7<br>30·7<br>32·0<br>32·2<br>31·2 | 31·9<br>34·7<br>30·9<br>32·2<br>32·0 | 32·4<br>31·5<br>31·2<br>31·7 | 31·9<br>31·2<br>31·3 | 31·7<br>31·7<br>31·2<br>31·7<br>30·7 | 30·5<br>31·7<br>30·9<br>31·2<br>30·9 | 29·7<br>30·2<br>30·3<br>30·5 | 29·9<br>29·9<br>29·5<br>29·9<br>31·2 | 30·9<br>31·7<br>30·2<br>30·9<br>32·5 | 32·5<br>33·2<br>31·9<br>33·5 | 34·3<br>35·2<br>33·2<br>35·7<br>34·7 | 36·9<br>36·0<br>34·2<br>35·9<br>35·7 | 37·9<br>35·2<br>34·2<br>36·1<br>35·2 | 36·7<br>34·2<br>33·9<br>35·9<br>34·3 | 35.7<br>33.7<br>33.5<br>35.2<br>33.5 | 32·7<br>33·0<br>32·7<br>34·2<br>32·9 | 32·9<br>33·0<br>32·7<br>32·0<br>32·5 | 32·5<br>32·5<br>32·2<br>31·7<br>31·5 | 31·2<br>31·3<br>31·2<br>26·9 | 29·7<br>31·4<br>31·2<br>30·4<br>29·5 | 28·2<br>31·2<br>30·7<br>30·4 | 27·7<br>31·2<br>31·2<br>30·7<br>30·7 | 32·0<br>32·2<br>31·7<br>32·5<br>31·9 | | 26<br>27<br>28<br>29**<br>30** | 31·7<br>29·7<br>31·7<br>30·2<br>29·7 | 31·7<br>27·7<br>31·7<br>36·2 | 32·2<br>29·7<br>31·9<br>31·7 | 33.9<br>31.7<br>31.9<br>30.2 | 32·2<br>32·7<br>31·7<br>32·7<br>30·7 | 30·9<br>31·2<br>31·5<br>32·0<br>31·2 | 30·9<br>30·9<br>30·9<br>31·7 | 30·2<br>31·9<br>30·5<br>31·4 | 29·2<br>31·5<br>29·2<br>30·5<br>32·7 | 28·9<br>31·5<br>28·9<br>30·2<br>34·2 | 31·7<br>31·3<br>30·5<br>30·7<br>33·7 | 33.5<br>32.9<br>31.9<br>34.7 | 34·7<br>36·0<br>33·5<br>32·9<br>37·5 | 35.4<br>37.9<br>35.5<br>36.2<br>36.9 | 35.0<br>37.9<br>35.5<br>37.7<br>36.9 | 34·5<br>35·5<br>34·7<br>37·2<br>37·2 | 33.7<br>33.4<br>33.5<br>38.5<br>36.9 | 32·9<br>32·5<br>32·2<br>41·7<br>34·9 | 32·3<br>32·7<br>32·9<br>40·2<br>32·7 | 31·7<br>31·2<br>32·4<br>35·7<br>31·7 | 29·7<br>30·7<br>31·7<br>33·2<br>22·2 | 26·9<br>29·7<br>31·5<br>24·7<br>11·9 | 30·5<br>30·5<br>30·9<br>23·7<br>12·7 | 31·2<br>31·2<br>29·9<br>29·7 | 31·9<br>32·2<br>31·9<br>32·8<br>30·5 | | 31** | | 23.2 | 25.2 | 27.5 | | 29.2 | 29.9 | 30.7 | 31.0 | 30.2 | 31.5 | 33.7 | 36.7 | 38.7 | 41.7 | 37.9 | 36.5 | 35.9 | 34.7 | 32.9 | 33.7 | 28.5 | 25.9 | 25.2 | 30.9 | | Mean<br>Mean* | | 30.5 | 30.2 | 31.8 | 31.7 | 31.2 | 31.2 | 31.4 | 31.1 | 30.4 | 31.2 | 33.2 | 34.6 | 36.3 | 36.2 | 35.2 | 34.4 | 33.6 | 33.1 | 32.1 | 31.8 | 31.3 | 30.8 | 30.7 | 32.2 | | Mean** | | | | | | | | | | | | | <b>!</b> | | | 36.3 | 36.1 | 35.1 | 34.9 | 33.4 | 30.2 | 25.0 | 24.0 | 22.7 | 31.7 | | Februa | ary. | | | | | | | - | | 14 | °+Ta | bular | Quant | ities. | | , | | | | | | | | <u>N</u> | Mean. | | 1<br>2<br>3<br>4<br>5** | 27·7<br>29·2<br>29·2<br>30·9<br>30·9 | 29·7<br>27·7<br>29·2<br>31·7<br>31·7 | 34·7<br>29·7<br>29·7<br>31·2.<br>31·2 | 32·7<br>30·7<br>30·5<br>31·2 | 31·7<br>29·7<br>30·9<br>31·2<br>31·3 | 31·7<br>30·7<br>31·2<br>30·9<br>31·5 | 30·9<br>31·2<br>30·9<br>30·7<br>31·1 | 30·9<br>31·2<br>30·7<br>30·3<br>30·7 | 30·7<br>30·2<br>30·2<br>29·7<br>29·9 | 30·9<br>30·2<br>30·2<br>29·7<br>30·7 | 33·7<br>30·7<br>31·7<br>30·7<br>33·2 | 33·2<br>31·9<br>32·7<br>31·7<br>35·7 | 34·7<br>33·2<br>34·7<br>33·2<br>33·7 | 35·7<br>34·5<br>35·5<br>34·4<br>35·4 | 35·7<br>33·7<br>35·2<br>34·2<br>37·0 | 33·7<br>33·7<br>33·5<br>33·7<br>37·4 | 34·2<br>34·2<br>32·7<br>32·2<br>37·7 | 23·7<br>30·7<br>32·7<br>33·7<br>35·0 | ,<br>26·2<br>26·2<br>32·2<br>32·9<br>34·1 | 30·7<br>27·2·<br>31·7<br>32·0<br>32·7 | 27·7<br>30·2<br>31·2<br>31·5<br>32·3 | 31·7<br>29·7<br>30·7<br>30·9<br>31·5 | 27·2<br>30·7<br>29·7<br>30·4<br>30·9 | 26·7<br>31·2<br>29·9<br>30·0<br>30·7 | 31·1<br>30·8<br>31·5<br>31·6<br>32·8 | | 6**<br>7<br>8*<br>9 | 30·9<br>31·4 | 31·5<br>30·7<br>31·2<br>30·7<br>25·4 | 22·7<br>31·0<br>31·4<br>29·5<br>26·2 | 19·7<br>29·9<br>31·5<br>29·9<br>28·5 | 22·7<br>29·7<br>31·3<br>30·5<br>29·7 | 30·7<br>30·5<br>30·9<br>30·7<br>30·7 | 32·9<br>30·7<br>30·7<br>29·5 | 32·7<br>31·2<br>30·2<br>30·7<br>29·2 | 32·7<br>33·7<br>29·2<br>29·9<br>29·7 | 34·2<br>30·5<br>29·7<br>30·7<br>30·5 | 33·2<br>32·2<br>30·7<br>33·2<br>31·7 | 34·2<br>32·7<br>32·2<br>35·0<br>33·7 | 36·2<br>34·5<br>33·7<br>36·5<br>35·4 | 36·9<br>36·7<br>34·7<br>36·9<br>36·7 | 37·5<br>35·7<br>34·4<br>35·7<br>35·7 | 34·7<br>34·2<br>34·0<br>33·7<br>35·9 | 34·5<br>33·5<br>33·5<br>32·7<br>36·0 | 33.7<br>32.7<br>32.7<br>30.7 | | 31·9<br>31·7<br>32·5<br>31·9 | 31·5<br>31·2<br>30·5<br>26·7 | 31·5<br>30·2<br>31·2<br>27·7<br>25·2 | 30·9<br>30·7<br>31·2<br>27·9<br>24·2 | 27·9<br>29·7<br>30·7<br>28·9<br>25·2 | 31.7<br>31.7<br>31.7<br>31.5 | | 11<br>12**<br>13**<br>14<br>15** | 24.7 | 13.7 | 29·2<br>20·7<br>17·2<br>29·2<br>24·7 | 28·2<br>24·2<br>22·7<br>25·7<br>26·7 | 29·2<br>29·2<br>20·7<br>23·7<br>28·5 | 29·7<br>29·7<br>27·7<br>29·2<br>29·7 | 30·2<br>28·2<br>29·7<br>29·2<br>29·7 | 29·2<br>30·2<br>29·7<br>31·7<br>28·9 | 28·9<br>30·2<br>32·2<br>28·5 | 29·0<br>30·7<br>31·7<br>34·2 | 31·9<br>33·2<br>32·5<br>33·7 | 33·2<br>31·7<br>34·7<br>34·7 | 35·5<br>32·2<br>30·2<br>36·9<br>34·2 | 38·2<br>31·7<br>30·7<br>37·7<br>36·2 | 37·7<br>30·9<br>30·7<br>37·0<br>37·7 | 34·7<br>34·7<br>30·9<br>35·5<br>38·2 | 34·7<br>35·9<br>31·7<br>33·7<br>40·2 | 33.9<br>34.7<br>33.5<br>33.2<br>38.7 | 34·5<br>33·2 | 33·2<br>35·7<br>34·9<br>33·7<br>36·7 | 30·0<br>30·7<br>36·2<br>32·4<br>33·7 | 27·7<br>28·9<br>31·9<br>30·7<br>30·7 | 27·7<br>20·7<br>29·9<br>29·7 | 25·5<br>22·7<br>26·7<br>29·2<br>27·2 | 31·3<br>29·5<br>28·8<br>31·2<br>32·1 | | 16<br>17<br>18<br>19*<br>20 | 26·9<br>30·2<br>30·2<br>30·7 | 29·2<br>30·5<br>31·2<br>29·9<br>30·7 | 30·2<br>30·7<br>30·7<br>29·7<br>30·7 | 30·9<br>30·5<br>29·5<br>30·5 | 30·9<br>31·5<br>30·7<br>29·9<br>30·2 | 31·5<br>31·7<br>31·2<br>29·9<br>30·2 | 31·2<br>31·7<br>31·2<br>30·0 | 31·2<br>31·1<br>31·7<br>30·5<br>29·7 | 31·5<br>29·5<br>30·9<br>29·7<br>28·9 | 31·7<br>29·0<br>28·9<br>30·5<br>29·1 | 34·2<br>30·2<br>32·2<br>31·2 | 37·2<br>32·5<br>32·9<br>33·5<br>32·9 | 33.9<br>34.2<br>34.0<br>33.5<br>34.0 | 35·7<br>35·9<br>33·9<br>34·9 | 36·2<br>35·7<br>34·7<br>34·7<br>34·9 | 35.7<br>35.5<br>34.2<br>33.9<br>34.5 | 34·5<br>34·2<br>33·5<br>33·9 | 33·2<br>31·7<br>32·7<br>33·5<br>32·7 | 32·9<br>32·7<br>30·9<br>32·5 | 32·0<br>32·2<br>32·7<br>32·5<br>32·7 | 29·2<br>31·9<br>31·9<br>31·9 | 26·7<br>29·2<br>31·2<br>30·7<br>30·9 | 29·7<br>29·7<br>30·9<br>30·7<br>24·7 | 29·7<br>29·9<br>30·7<br>30·7<br>26·7 | 31·9<br>31·8<br>31·6<br>31·2 | | 2 I<br>22*<br>2 3<br>2 4<br>2 5* | | 31·2<br>30·5<br>31·2<br>27·7<br>30·7 | 31·7<br>30·7<br>30·7<br>28·2<br>30·9 | 30·9<br>30·5<br>30·7<br>26·2<br>30·9 | 30·7<br>30·3<br>30·2<br>26·2<br>30·7 | 26·2<br>30·0<br>30·2<br>29·2<br>30·7 | 29·7<br>29·9<br>29·9<br>29·5 | 30·7<br>29·2<br>29·2<br>29·7 | 30·5<br>28·9<br>28·2<br>29·2 | | 34·2<br>31·0<br>30·2<br>31·7 | 34·5<br>32·9<br>32·9<br>34·2<br>32·9 | 34·7<br>33·7<br>34·9<br>36·2<br>34·7 | 35·2<br>33·9<br>35·7<br>34·5<br>34·5 | 34·7<br>33·5<br>36·2<br>34·9<br>34·7 | 33·5<br>32·7<br>35·1<br>33·7<br>34·2 | 31·9<br>32·9<br>33·7<br>32·4<br>32·7 | 31.7<br>32.7<br>33.7<br>31.7<br>32.5 | 32·2<br>32·5<br>32·2<br>31·2 | 31·7<br>30·0<br>30·7<br>30·0 | 30·7<br>30·7<br>31·2<br>27·2<br>30·9 | 31·2<br>31·2<br>26·7<br>27·7<br>30·7 | 30·7<br>30·9<br>19·2<br>28·2<br>30·7 | 30·7<br>30·7<br>23·2<br>30·2<br>30·5 | 31·7<br>30·6<br>30·2<br>31·5 | | 26*<br>27<br>28 | 30·5<br>26·5 | | 30·4<br>30·7<br>27·9 | 30·4<br>30·9<br>27·5 | 30·7<br>30·2<br>28·7 | 30·7<br>29·7<br>28·4 | 30·0<br>29·7<br>28·2 | 29·2<br>29·2 | 29.0<br>28.9<br>32.2 | 28·9<br>29·5<br>29·7 | 31·2<br>31·4<br>30·2 | 33·7<br>34·7<br>33·7 | 36·2<br>35·5<br>37·9 | 36·7<br>36·4<br>40·7 | 36·2<br>36·7<br>40·7 | 34·7<br>35·0<br>40·7 | 33·2<br>34·2<br>39·7 | 32·7<br>33·9<br>36·5 | 31·9<br>33·2<br>34·2 | 31.0 | 30·7<br>29·4<br>25·7 | 30·2<br>28·9<br>26·2 | 30·2<br>25·2<br>28·2 | 30·2<br>26·7<br>29·2 | 31·6<br>31·4<br>32·0 | | Mean<br>Mean* | | 30.6 | | | 30.6 | 30.4 | 30.3 | 30.4 | 30.1 | 30.3 | 31.3 | 33.4 | 34.4 | 35.5 | 35.4 | 34.7 | 34.2 | 32.8 | 32.3 | 31.7 | 31.1 | 30.8 | 30.7 | 30.6 | 31.9 | | Mean** | | | | | | | | | | | | | | | | 35.2 | | | | 34.4 | 32.0 | 30.9 | 28.4 | 27.0 | <u> </u> | | TABLE I.—HOURLY MEANS OF MAGNETIC DECLINATION.—continued. 0h 1h 2h 3h 4h 5h 6h 7h 8h 9h 10h 11h Noon. 13h 14h 15h 16h 17h 18h 19h 20h 21h 22h 23h 24h | | | | | | | | | | | | | | ıc De | CLINA | TION. | con | tinue | <i>ī</i> . | | | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | Op | 1 | h 2h | 31 | 1 4 <sup>1</sup> | h 5 <sup>1</sup> | h 6 | ßь 7 | 'h 8 | h 9h | 10 | h 11 | h Noo | on. 13 | 3h 14 | h 15 | h 16 | h 17 | 7h 18 | 3h 19 | )h 2 | 0 <sup>h</sup> 2 | 1 <sup>h</sup> 2: | 2h 2 | 3h 2 | 4 h | | March | | | | | | | | | | 14 | <br>4° + Ta | bular | Quant | ities. | | | | | | | | | | 7 | Iean. | | 1 | | , | | , | , | , | <u> </u> | , | , | | , | , | | , | , | | , | , | , | , | , | , | , | , | , | | 1<br>2<br>3<br>4<br>5* | 28·5<br>27·2<br>28·9<br>22·2<br>30·7 | 27·5<br>26·7<br>29·2<br>27·9<br>30·2 | 29·7<br>28·2<br>30·2<br>32·9<br>30·7 | 30·9<br>29·2<br>28·2<br>30·7<br>30·5 | 29·2<br>30·2<br>28·5<br>29·7<br>30·5 | 29·9<br>28·2<br>27·7<br>29·7<br>30·1 | 29·9<br>30·2<br>27·7<br>29·2<br>29·7 | 30·7<br>29·7<br>28·2<br>28·9<br>29·2 | 30·5<br>30·2<br>28·7<br>28·9<br>28·2 | 30·4<br>30·9<br>29·7<br>30·2<br>29·2 | 31·2<br>31·7<br>31·7 | 32·2<br>33·7<br>35·7<br>33·5<br>34·2 | 33.9<br>35.5<br>38.2<br>34.9<br>36.2 | 34·5<br>35·4<br>39·7<br>34·9<br>36·4 | 33.9<br>34.0<br>37.0<br>34.5<br>35.2 | 32·0<br>32·7<br>35·0<br>32·9<br>33·7 | 31·7<br>36·7<br>32·7<br>32·0 | 31.9<br>30.2<br>34.7<br>31.9<br>32.7 | 31·7<br>31·9<br>33·4<br>32·7<br>32·7 | 31·5<br>28·2<br>31·9<br>32·0<br>30·7 | 27·7<br>24·7<br>30·9<br>31·2<br>27·7 | 29·2<br>28·2<br>26·5<br>30·2<br>29·2 | 28·9<br>29·7<br>24·7<br>29·9<br>29·2 | 28·2<br>28·2<br>22·2<br>29·7<br>30·2 | 30·7<br>30·3<br>31·0<br>31·2 | | 6*<br>7<br>8**<br>9 | 29·7<br>30·5<br>20·7<br>29·7<br>30·2 | 29·7<br>30·2<br>15·2<br>34·2<br>29·7 | 29.7<br>29.9<br>2.2<br>30.7<br>29.2 | 29·7<br>30·2<br>11·7<br>29·2<br>29·5 | 29.7<br>30.2<br>22.7<br>29.7<br>29.2 | 29·9<br>30·2<br>29·7<br>29·7<br>28·9 | 30·2<br>30·2<br>29·7<br>28·2<br>28·9 | 31·5<br>30·2<br>29·2<br>26·7<br>27·7 | 31·2<br>30·2<br>30·2<br>26·7 | 30·7<br>30·9<br>30·7<br>27·7<br>28·2 | 32·7<br>33·2<br>31·7<br>30·2 | 35.0<br>35.2<br>33.7<br>33.5<br>34.9 | 35.7<br>36.2<br>34.7<br>35.2<br>37.5 | 37.4<br>35.7<br>34.2<br>35.5<br>38.9 | 36·5<br>34·9<br>34·2<br>35·2<br>39·2 | 33.9<br>33.7<br>34.7<br>33.2<br>38.7 | 32·7<br>32·5<br>31·2<br>32·2<br>33·7 | 32·5<br>32·2<br>31·7<br>33·9 | 32·0<br>32·2<br>16·7<br>31·5<br>32·7 | 30.9 | 31·7<br>31·2<br>30·7<br>30·2 | 30·2<br>30·7<br>25·7 | 29·2<br>29·2<br>31·2<br>30·7<br>24·9 | 29·2<br>25·2<br>29·7<br>30·7<br>26·5 | 31.6<br>31.5<br>31.0<br>31.0 | | 13 | 27.7<br>28.5<br>26.2<br>29.7<br>29.7 | 28·2<br>27·7<br>27·5<br>29·7<br>30·7 | 31.7<br>27.7<br>28.2<br>29.5<br>29.2 | 30·7<br>27·7<br>28·9<br>28·5<br>29·2 | 26·7<br>26·7<br>28·9<br>27·7<br>28·9 | 25.7<br>28.2<br>28.7<br>27.9<br>28.5 | | 27·7<br>29·7<br>27·5<br>29·7<br>30·7 | 28·2<br>28·9<br>27·7<br>26·7<br>29·7 | 29·2<br>30·9<br>29·2<br>28·9<br>29·7 | 31·7<br>35·7<br>31·2<br>31·7 | 34·7<br>37·2<br>34·7<br>35·7<br>34·2 | 36·9<br>39·7<br>37·7<br>38·7<br>35·5 | 36·7<br>39·4<br>38·2<br>39·2<br>40·2 | 38·4<br>38·7<br>35·7<br>37·7<br>36·7 | 35.0<br>32.7<br>33.9<br>36.5<br>33.7 | 34.7<br>31.7<br>32.2<br>33.7<br>31.2 | 34·2<br>32·2<br>31·7<br>30·7 | 30·7<br>31·2<br>31·7<br>32·5<br>32·5 | 27·2<br>30·7<br>31·2<br>32·7<br>31·2 | 27·7<br>29·2<br>30·7<br>31·7<br>30·9 | 27·2<br>28·2<br>30·2<br>29·7<br>30·7 | 26·7<br>28·5<br>29·9<br>28·5<br>29·9 | 26·2<br>27·7<br>29·9<br>28·9<br>29·7 | 30·4<br>31·4<br>31·4 | | 16**<br>17<br>18<br>19*<br>20 | 28·9<br>30·2<br>29·7<br>29·2 | 25·2<br>29·9<br>29·7<br>29·7 | 23·2<br>29·7<br>29·7<br>29·9 | 23.7<br>29.5<br>29.2<br>29.2<br>29.7 | 24.5<br>29.2<br>29.0<br>29.0<br>29.5 | 27·7<br>28·9<br>28·9<br>28·7<br>28·9 | 29.2 | 27·7<br>28·7<br>26·9<br>26·7<br>28·5 | 26·7<br>28·9<br>25·5<br>25·7<br>28·9 | 27.5<br>30.2<br>26.7<br>27.2<br>29.7 | 29·7<br>31·7<br>30·7<br>30·7<br>33·2 | 33.9<br>35.0<br>35.7<br>33.7<br>35.7 | 40·2<br>36·7<br>37·2<br>35·5<br>38·2 | 39.7<br>36.7<br>37.7<br>36.2<br>37.7 | 41·7<br>35·2<br>34·9<br>34·2<br>36·0 | 39.7<br>33.5<br>33.7<br>32.2<br>33.7 | 36·7<br>31·5<br>31·5 | 29.7<br>31.9<br>30.5<br>30.7 | 31·2<br>30·9<br>31·2<br>30·9 | 30·2<br>30·7<br>30·7<br>30·7 | 28·2<br>31·2<br>30·7<br>29·2<br>30·7 | 30·7<br>30·2<br>30·7<br>29·7<br>30·2 | 30·5<br>27·2<br>30·2<br>28·9<br>29·9 | 30·2<br>29·7<br>30·2<br>29·0<br>29·9 | 30.8<br>30.8<br>31.3 | | 2 I<br>22<br>23<br>24*<br>25* | 29.7<br>29.9<br>30.2<br>29.7<br>30.2 | 29·7<br>30·7<br>27·7<br>29·7<br>30·4 | 29·7<br>30·7<br>32·2<br>30·5<br>30·2 | 29·5<br>29·7<br>28·2<br>29·9<br>30·0 | 28·9<br>29·7<br>26·7<br>30·5<br>29·7 | 29·2<br>31·3<br>29·7<br>29·5 | 28·5<br>30·7<br>27·5<br>28·2<br>28·5 | 26·5<br>27·7<br>25·9<br>26·2<br>26·4 | 25·7<br>26·7<br>25·2<br>25·7<br>24·7 | 27·2<br>27·7<br>27·2<br>26·9<br>26·2 | 31·2<br>30·7<br>30·7<br>29·2<br>29·7 | 35.7<br>35.2<br>33.7<br>32.7<br>33.7 | 38·2<br>38·2<br>37·2<br>35·9<br>36·3 | 41·2<br>39·2<br>37·7<br>37·4<br>37·4 | 40·2<br>38·7<br>36·9<br>36·0<br>36·1 | 39.7<br>37.2<br>34.7<br>34.2<br>34.0 | 35·2<br>31·7<br>33·2<br>31·7 | 32·7<br>29·7<br>32·2<br>30·7<br>30·5 | 29·7<br>33·2<br>30·7<br>30·2<br>29·9 | 26·2<br>31·7<br>26·7<br>29·9<br>29·7 | 25.7<br>30.9<br>27.7<br>29.7<br>27.5 | 28·2<br>30·5<br>27·2<br>29·7<br>27·4 | 27·7<br>30·2<br>29·2<br>29·9<br>28·9 | 29·7<br>30·2<br>29·7<br>29·7 | 30·3<br>30·6<br>30·3 | | | 29·9<br>29·9<br>28·2<br>29·7<br>28·9 | 30·7<br>30·5<br>27·7<br>29·2<br>30·0 | 30·5<br>29·9<br>28·2<br>27·2<br>29·7 | 29·5<br>29·7<br>27·2<br>27·7<br>29·7 | 28·9<br>28·2<br>27·7<br>27·2<br>30·2 | 28·2<br>27·2<br>27·2<br>26·2<br>29·2 | | 24.7<br>25.7<br>27.2<br>26.7<br>25.7 | 24·9<br>23·7<br>25·7<br>27·2<br>25·9 | 28·2<br>27·2<br>26·7<br>27·2<br>26·2 | 32·7<br>30·2<br>30·2<br>30·3 | 38·5<br>35·7<br>35·2<br>35·5<br>34·2 | 39.9<br>40.2<br>39.2<br>37.9<br>37.2 | 39.7<br>42.7<br>41.0<br>37.7<br>37.7 | 38·5<br>42·5<br>39·9<br>35·7<br>36·5 | 37.5<br>40.9<br>37.2<br>32.7<br>32.2 | 35.5<br>36.0<br>31.2<br>30.7 | 33.7<br>31.7<br>34.2<br>29.7<br>30.2 | 32·2<br>29·9<br>32·5<br>29·7<br>30·2 | 30·7<br>29·7<br>31·4<br>29·7<br>25·7 | 30·2<br>23·9<br>30·7<br>29·7<br>26·2 | 29·7<br>24·2<br>28·2<br>30·2<br>29·9 | 27·7<br>27·7<br>29·2<br>29·2<br>29·7 | 26·7<br>28·2<br>28·9<br>26·2<br>29·7 | 31.0<br>31.1<br>30.0<br>30.2 | | 31 | 29.7 | 29.7 | 29.2 | 29.2 | 29.2 | 28.9 | | 24.7 | 25.2 | 26.2 | 29.7 | 34.7 | 38.7 | 39.7 | 36.7 | 34.7 | 32.9 | 30.2 | 27.7 | 25.7 | 27.7 | 29.7 | 29.7 | 29.7 | 30.3 | | Mean | 28.8 | 28.9 | 28.7 | 28.6 | 28.6 | 28.8 | 28.9 | 27.8 | 27.4 | 28.5 | 31.3 | 34.7 | 37.2 | 37.0 | 36.8 | 34.9 | 32.8 | 31.4 | 30.9 | 30.4 | 29.2 | 29.0 | 29.2 | | 30.8 | | Mean*<br>Me an** | 30.1 | 30.0 | 30.2 | 29.9 | 29.9 | 28.0 | | 29.0 | 28.7 | | | 33.9 | 35.9 | | 37.9 | | | 31.9 | | | 29.4 | | | 28.7 | 30.5 | | April | 2/ 1 | ~3 <del>~</del> 1 | | <del> </del> | 5 / | | | | | | | bular. | | | | - | | | | | | | | | lean. | | 1 2 3 4 5* | 29·7<br>30·7<br>29·2<br>29·2<br>27·7 | 29·7<br>26·7<br>29·2<br>26·9<br>31·2 | 29·7<br>24·7<br>29·2<br>23·7<br>22·2 | 29·5<br>26·2<br>29·2<br>25·9<br>23·7 | 27.2 | 28·9<br>26·7<br>28·9<br>29·7<br>30·2 | 27.2 | 25·7<br>24·7<br>25·7<br>26·7<br>27·7 | 25·2<br>24·2<br>24·9<br>27·2<br>25·2 | ,<br>27·2<br>26·2<br>26·2<br>27·2<br>26·7 | 30·7<br>30·7<br>28·9<br>31·2<br>30·7 | 36·2<br>34·2<br>33·2<br>34·2<br>34·7 | 39.2 | 40·2<br>39·2<br>39·2<br>42·2<br>38·2 | 38·2<br>38·2<br>38·7<br>41·2<br>38·2 | 35.7<br>35.2<br>35.5<br>36.7<br>36.7 | 33·2<br>32·9<br>33·7<br>33·7<br>35·5 | 30·2<br>30·7<br>31·7<br>30·2<br>31·7 | 29·2<br>30·7<br>30·7<br>29·7<br>25·2 | 27·7<br>29·7<br>30·2<br>30·2<br>26·2 | 27·7<br>29·7<br>30·2<br>29·2<br>23·7 | 27·2<br>29·9<br>29·2<br>24·7<br>24·7 | 26·9<br>29·7<br>26·7<br>22·2<br>23·7 | 28·2<br>29·5<br>24·7<br>25·7<br>17·7 | 30.6<br>30.0<br>30.3<br>30.2<br>28.9 | | 6**<br>7<br>8<br>9 | | 13·9<br>26·7<br>28·2<br>27·7<br>29·2 | 17·2<br>20·2<br>27·7<br>27·7<br>28·5 | 20·7<br>23·2<br>27·2<br>27·7<br>27·7 | | 26·2<br>25·2<br>28·2<br>28·2<br>27·7 | 26·7<br>24·7<br>26·7<br>27·2<br>26·7 | 25.7<br>26.2<br>24.7<br>23.7<br>24.7 | 23.7<br>29.2<br>23.7<br>23.7<br>22.7 | 27.7<br>29.2<br>25.2<br>26.7<br>24.2 | 34·7<br>31·2<br>28·2<br>30·7<br>29·2 | 38·2<br>34·7<br>32·7<br>34·7<br>32·7 | 41·2<br>38·2<br>36·2<br>39·2<br>37·2 | 44·2<br>38·7<br>37·2<br>40·2<br>38·2 | | 37·7<br>35·2<br>34·2<br>34·2<br>35·7 | 36·7<br>32·2<br>33·5<br>32·2<br>32·7 | 35.7<br>29.7<br>32.5<br>30.7<br>30.2 | 32·2<br>29·7<br>31·5<br>29·7 | 30·2<br>29·7<br>24·7<br>28·9<br>29·7 | 29.7<br>30.2<br>27.7<br>28.2<br>29.7 | 34·2<br>30·7<br>29·7<br>26·7<br>30·2 | 23·2<br>30·7<br>29·2<br>29·2<br>29·2 | 29.2 | 29·1<br>29·8<br>29·7<br>30·0<br>30·0 | | 11** 12 13* 14* 15* | 27·7<br>24·7<br>29·7<br>29·7<br>29·2 | 24·2<br>26·7<br>29·2<br>29·2<br>29·7 | 25.7<br>23.9<br>29.2<br>28.9<br>29.9 | 26·7<br>25·7<br>28·9<br>28·7<br>31·7 | 26·7<br>26·7<br>28·7<br>28·5<br>27·5 | 27·7<br>26·7<br>28·2<br>28·7<br>27·2 | 23·7<br>26·7<br>27·9 | 26·2<br>21·7<br>24·5<br>26·2<br>25·2 | 23·7<br>24·2<br>23·7<br>24·7<br>24·7 | 24.7<br>27.2<br>26.7<br>26.7<br>26.7 | 29.7<br>28.2<br>31.2<br>29.7<br>30.2 | 35·2<br>30·7<br>35·2<br>31·7<br>33·7 | 39·2<br>33·2<br>37·7<br>34·2<br>37·7 | 38·7<br>32·7<br>37·7<br>34·7<br>38·4 | 33.7 | 39.7<br>31.7<br>32.7<br>31.7<br>35.2 | 35·2<br>31·7<br>30·2<br>39·7 | 35.7<br>31.2<br>29.7<br>31.0 | 30·7<br>27·9<br>29·2<br>29·7<br>30·7 | 29·2<br>29·7<br>30·2<br>29·7<br>31·2 | 26·2<br>30·5<br>29·7<br>29·7<br>30·7 | 30·7<br>29·7<br>29·7<br>30·2 | | 29.2 | 29·3<br>28·4<br>30·1<br>29·8<br>30·7 | | 16<br>17<br>18<br>19**<br>20* | 28·9<br>29·7<br>22·2<br>18·7<br>29·2 | 28·7<br>29·2<br>19·9<br>25·7<br>28·9 | 28·7<br>28·9<br>22·7<br>25·7<br>28·2 | 28·2<br>28·5<br>24·7<br>25·7<br>27·7 | 28·2<br>28·2<br>25·7<br>30·7<br>27·4 | 27·9<br>27·7<br>26·5<br>37·2<br>27·5 | 27·2<br>26·7<br>25·7<br>31·7<br>26·5 | 25.7<br>25.7<br>24.7<br>29.7<br>25.3 | 24·7<br>24·7<br>25·7<br>27·7<br>24·1 | 25.7<br>24.7<br>27.4<br>28.9<br>25.2 | 27·5<br>25·7<br>29·7<br>32·7<br>27·7 | 30·2<br>30·7<br>32·2<br>37·2<br>30·7 | 34·2<br>33·7<br>36·2<br>38·2<br>33·2 | 35.7<br>35.2<br>40.9<br>36.5<br>33.7 | 34·7<br>34·7<br>39·5<br>35·5<br>32·7 | 32·7<br>38·2<br>33·3<br>31·7 | 31·2<br>36·5<br>31·7<br>36·5 | 30·7<br>31·2<br>34·7<br>29·7<br>30·2 | 30·5<br>30·7<br>33·2<br>27·7<br>29·7 | 30·2<br>30·7<br>32·7<br>28·2<br>29·5 | 30·2<br>30·7<br>29·2<br>28·5<br>29·2 | 28·5<br>27·2<br>24·2<br>28·9<br>28·9 | , | 23·5<br>21·7<br>29·7<br>29·2 | 29·6<br>29·0<br>29·4<br>30·3<br>29·0 | | 2 I<br>2 2<br>2 3<br>2 4 *<br>2 5 | 29·2<br>26·2<br>26·7<br>28·9<br>25·7 | 28·9<br>28·5<br>22·2<br>28·9<br>29·2 | 27·9<br>27·5<br>24·2<br>29·0<br>22·2 | 27·5<br>26·9<br>25·7<br>28·5<br>23·7 | 27·2<br>26·7<br>22·7<br>27·7<br>23·2 | 27·2<br>26·7<br>24·7<br>27·4<br>23·2 | 26·7<br>26·2<br>24·7<br>26·5<br>22·7 | 25·2<br>25·2<br>23·9<br>25·5<br>23·7 | 24·2<br>25·7<br>26·2<br>26·7<br>23·7 | 24·7<br>27·7<br>29·7<br>26·5 | 26·7<br>30·7<br>29·2<br>31·7<br>30·2 | 31·7<br>34·9<br>32·7<br>35·9<br>32·7 | 34·7<br>37·5<br>35·9<br>38·2<br>35·2 | 35.7<br>37.7<br>37.5<br>37.7<br>35.5 | 35.7<br>36.5<br>35.7<br>35.2<br>33.9 | 34·2<br>34·5<br>34·7<br>33·2<br>33·4 | 32·9<br>32·9<br>31·5<br>31·7 | | 31·7<br>29·2<br>26·5<br>29·2<br>30·7 | 31·2<br>29·7<br>29·5<br>29·7 | 27·7<br>28·2<br>28·2<br>29·7<br>28·2 | 24·5<br>27·2<br>29·5<br>28·9<br>27·7 | 25·2<br>28·9<br>28·2<br>25·2 | 13.2 | 29·2<br>29·5<br>28·7<br>30·2<br>27·6 | | 26**<br>27<br>28<br>29<br>30 | 15.7<br>28.5<br>28.9<br>28.2<br>28.7 | 28.2 | 23·2<br>27·2<br>28·6<br>28·2<br>28·5 | 28·5<br>27·7<br>28·5<br>28·2<br>28·4 | 28·2<br>25·2<br>27·7<br>27·9<br>28·9 | 24·7<br>24·7<br>27·2<br>27·7<br>29·7 | 23.7<br>24.2<br>26.9<br>26.7<br>29.7 | 24·7<br>24·2<br>24·7<br>25·9<br>29·2 | 26·7<br>24·9<br>23·7<br>25·3<br>28·2 | | | 38·2<br>31·2<br>29·7<br>28·9<br>32·2 | 40·5<br>34·2<br>32·7<br>31·7<br>33·7 | 41·2<br>34·7<br>34·9<br>32·9<br>34·7 | 39·2<br>34·9<br>34·0<br>32·7<br>36·2 | 37.4<br>34.0<br>33.7<br>32.7<br>34.2 | 35.7<br>32.2<br>32.7<br>32.7<br>33.2 | 31.9 | 30.7<br>29.2<br>28.9<br>30.5<br>27.7 | 23.7<br>28.9<br>28.2<br>29.5<br>24.7 | 26·7<br>29·2<br>25·7<br>29·2<br>27·7 | 27.2 | 27.7 | 28.7 | 29·0<br>28·7<br>29·0<br>29·5 | | Mean | 27.2 | 27.0 | 26.3 | 27.0 | 27.2 | 27.6 | 26.6 | 25.4 | 25.1 | 26.8 | | 33.4 | 36.5 | 37.5 | 36.4 | | 31.2 | 31.3 | 29.8 | 30.0 | 28.7 | <u></u> | | 26.2 | 30.0 | | Mean*<br>Mean** | 29.3 | 29.2 | 29.0 | 29.1 | 28.0 | 27.8 | 26.8 | 25.3 | 24.8 | 27.0 | | 33.4 | 36.2 | 1 | | 32.9 | | | | 27.5 | | | | | | | | | | <del></del> . | | | T. | ABLE | I.—H | OURL | y Me | ANS ( | of M | AGNET | ıc Dı | ECLIN | ATION | con | tinue | $\overline{d}$ . | | | | | | | |----------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | ( | )h 1 | h 2 | h S | 3h 4 | 1 h | 5h ( | 6ь | 7h 8 | gh 9 | ь 1 | 0 <sup>h</sup> 1 | 1h No | on. I | 3h 14 | [h 1 | 5h 16 | 3h 1' | 7ħ 18 | 3h 19 | 9h 2 | 0h 2 | 1 <sup>h</sup> 2: | 2h 2 | 3h 24 | 1 h | | May. | | | | | | | | | | 14 | <b>4°</b> +Ta | ıbular | Quant | ities. | | | | | | | | | - | N | Mean. | | τ**<br>2<br>3<br>4<br>5 | 20·7<br>28·9<br>29·2<br>28·2<br>28·2 | 22·7<br>30·2<br>26·7<br>27·9<br>27·7 | 25·7<br>27·7<br>27·7<br>27·7<br>27·7<br>26·7 | 21·2<br>26·7<br>26·2<br>27·5<br>27·7 | 22·2<br>25·2<br>24·7<br>25·2<br>26·7 | 24·2<br>25·2<br>25·2<br>25·7<br>26·2 | 26·7<br>23·5<br>23·2<br>27·2<br>26·2 | 26·7<br>25·2<br>22·7<br>25·2<br>25·2 | 26·2<br>24·7<br>23·5<br>24·7<br>27·7 | 26·7<br>26·7<br>25·7<br>24·7<br>27·2 | 30·2<br>28·5<br>29·7<br>29·2<br>29·2 | 30·5<br>31·7<br>31·7<br>34·2<br>33·7 | 33.7<br>34.2<br>34.0<br>38.2<br>35.2 | 35·2<br>34·7<br>34·4<br>39·7<br>36·5 | 33.9<br>34.2<br>36.5<br>38.5<br>34.5 | 31.7<br>32.7<br>34.0<br>36.2<br>31.7 | 30.0<br>31.2<br>30.7<br>32.9<br>30.7 | 29·2<br>30·5<br>30·2<br>30·2<br>29·2 | 27·7<br>29·9<br>29·2<br>27·7<br>28·2 | 24·7<br>29·2<br>29·5<br>28·2<br>30·7 | 27.7<br>28.9<br>28.9<br>28.9<br>28.9 | 27.9<br>28.9<br>29.2<br>28.9<br>28.9 | 28·2<br>29·2<br>28·9<br>28·5<br>28·5 | 28·9<br>30·7<br>27·7<br>28·2<br>28·2 | 29·1<br>28·7 | | 6<br>7*<br>8*<br>9* | | | 27·2<br>27·9<br>27·9<br>25·7<br>28·7 | 25·9<br>26·9<br>30·7<br>26·5<br>28·2 | 27·2<br>25·7<br>32·7<br>25·2<br>27·7 | 25·5<br>24·7<br>34·2<br>24·2<br>24·7 | 24·7<br>23·7<br>34·5<br>22·7<br>22·2 | 24·2<br>23·7<br>35·2<br>22·2<br>20·2 | 26·2<br>24·2<br>33·7<br>23·2<br>22·7 | 28·2<br>26·2<br>30·7<br>25·7<br>26·2 | 30·7<br>30·2<br>31·2<br>29·7<br>29·7 | 33.7<br>32.7<br>36.7<br>34.2<br>32.7 | 37·7<br>34·2<br>39·7<br>37·2<br>35·7 | 36·7<br>35·2<br>40·7<br>36·9<br>35·2 | 34·7<br>33·7<br>36·7<br>36·0<br>33·9 | 33.7<br>31.2<br>33.9<br>32.9 | 31·7<br>29·2<br>30·7<br>31·7 | 30·2<br>28·2<br>29·5<br>29·7<br>30·3 | _ | 28.7 | 29.7<br>29.7<br>30.2<br>28.7<br>29.2 | 29·2<br>29·7<br>29·9<br>28·2<br>29·5 | 29·2<br>28·7<br>29·7<br>27·9<br>29·2 | 28.7 | 29·7<br>29·0 | | 11<br>12<br>13<br>14<br>15 | 27·7<br>24·2<br>26·7<br>28·9<br>25·7 | 26.7 | 27·7<br>27·7<br>27·7<br>28·2<br>27·7 | 27·5<br>28·7<br>26·7<br>27·7<br>27·9 | 26·7<br>26·7<br>27·7<br>27·2<br>26·9 | 24·7<br>24·7<br>27·5<br>24·7<br>25·5 | 23·7<br>24·2<br>24·7<br>21·7<br>24·2 | 23·7<br>23·9<br>23·7<br>23·2<br>23·7 | 25.7<br>27.2<br>24.5<br>23.7<br>23.7 | 27·7<br>27·2<br>27·2<br>25·7<br>27·2 | 30·2<br>30·2<br>29·7<br>30·2 | 32·7<br>33·2<br>33·2<br>33·9 | 34·2<br>34·7<br>35·7<br>36·2<br>37·2 | 35·2<br>34·2<br>35·7<br>37·2<br>40·5 | 34·7<br>34·7<br>34·7<br>35·2<br>40·5 | 34.7<br>33.7<br>32.2<br>32.7<br>37.7 | 33.5<br>32.2<br>30.2<br>31.7<br>33.7 | 30·9<br>30·7<br>29·7<br>29·7 | 29.9<br>29.7<br>29.2<br>29.7<br>30.2 | 29·2<br>29·9<br>30·2<br>29·5<br>30·2 | 22·7<br>30·0<br>30·2<br>29·7<br>27·2 | 26·2<br>29·2<br>29·2<br>29·2<br>23·7 | 28.7 | 27·7<br>26·2<br>29·2<br>29·2<br>27·7 | | | 16**<br>17**<br>18**<br>19** | 25·7<br>13·2<br>24·7<br>30·7<br>29·2 | 22·2<br>20·7<br>27·7<br>30·7<br>29·2 | 24·2<br>22·7<br>28·2<br>29·2<br>27·2 | 24·2<br>25·2<br>28·7<br>28·2<br>25·7 | 24·2<br>24·2<br>28·7<br>26·7<br>27·7 | 23.7<br>21.2<br>30.2<br>26.7<br>26.2 | 23·2<br>20·2<br>24·7<br>25·2<br>26·2 | 21·2<br>23·2<br>25·2 | 24·9<br>25·7<br>21·7<br>25·7<br>23·7 | 26·7<br>29·7<br>25·2<br>28·2<br>25·7 | 28·2<br>29·7<br>27·7<br>29·7<br>29·2 | 32·2<br>31·9<br>31·2<br>30·7 | 34·2<br>34·7<br>31·7<br>32·7<br>33·7 | 34·7<br>36·7<br>31·7<br>33·2<br>35·9 | 36·0<br>34·2<br>34·2<br>33·7<br>35·0 | 35.7<br>32.2<br>32.7<br>31.2<br>31.9 | 35.4<br>32.0<br>31.2<br>31.0 | 35.4<br>30.7<br>29.7<br>30.7<br>30.2 | 34·7<br>29·7<br>30·2<br>28·5<br>27·7 | 29.0<br>22.2<br>28.7<br>28.5<br>26.2 | 20·7<br>27·2<br>29·2<br>28·7<br>27·7 | 17·7<br>28·2<br>30·7<br>29·2<br>28·2 | | 12·7<br>23·7<br>26·7<br>30·2<br>25·2 | 26·8<br>27·0<br>28·6<br>29·5<br>28·6 | | 21<br>22<br>23<br>24<br>25 | 26·2<br>25·9<br>28·7<br>29·2<br>29·2 | 29·2<br>23·7<br>26·7<br>28·2<br>29·2 | 25.7<br>24.2<br>29.7<br>29.9<br>29.2 | 26·7<br>26·7<br>30·2<br>30·7<br>30·7 | 28·2<br>25·7<br>27·2<br>30·9<br>31·7 | 26·2<br>24·9<br>25·7<br>31·7<br>33·7 | 25.7<br>23.5<br>24.7<br>32.7<br>33.7 | 23.7<br>25.2<br>23.7<br>33.7<br>32.7 | 25·2<br>25·4<br>24·2<br>32·9<br>31·2 | 26·2<br>26·5<br>24·7<br>30·7<br>29·7 | 27·7<br>29·7<br>26·9<br>29·7<br>33·7 | 30·2<br>32·5<br>30·5<br>32·2<br>35·2 | 33.9<br>33.9<br>34.2<br>32.2<br>35.7 | 32·0<br>33·9<br>35·2<br>32·2<br>34·7 | 33.7<br>33.4<br>35.2<br>32.2<br>33.7 | 31·9<br>31·7<br>34·2<br>31·7<br>31·2 | 30·7<br>30·5<br>31·2<br>31·2<br>29·2 | 30·5<br>29·9<br>29·7<br>30·7<br>28·2 | 29.7<br>29.5<br>29.5<br>30.2<br>26.7 | 28·5<br>29·0<br>29·7<br>29·2<br>28·2 | 29.4<br>29.5<br>28.9 | 27·9<br>29·4<br>28·9<br>29·0<br>28·7 | 27·2<br>28·9<br>28·7 | 28.7 | 28·5<br>28·3<br>29·1<br>28·8<br>29·0 | | 26*<br>27*<br>28<br>29<br>30 | 27·9<br>28·5<br>28·5<br>28·7<br>26·7 | 27·9<br>28·7<br>27·7<br>29.2<br>26·2 | 29.7<br>27.9<br>27.7<br>28.5<br>25.2 | 30·7<br>27·5<br>26·9<br>27·7<br>28·2 | 31·7<br>26·2<br>25·7<br>25·7<br>29·7 | 33·1<br>25·7<br>23·9<br>25·7<br>27·7 | 34·7<br>25·2<br>23·7<br>24·7<br>25·7 | 35.5<br>24.7<br>23.5<br>24.5<br>24.5 | 34·7<br>24·7<br>24·7<br>24·2<br>24·7 | 32·2<br>26·2<br>25·2<br>23·2<br>25·9 | 28·7<br>29·2<br>27·2<br>25·7<br>27·7 | 34·2<br>33·2<br>31·2<br>29·2<br>32·2 | 34·7<br>35·7<br>33·7<br>32·5<br>34·5 | 35·2<br>35·2<br>36·2<br>34·9<br>34·9 | 33·2<br>34·2<br>35·7<br>34·7<br>36·2 | 31·2<br>32·7<br>34·7<br>34·2<br>35·2 | 29·2<br>31·7<br>33·7<br>34·2<br>34·9 | 28·2<br>29·2<br>31·7<br>33·2<br>33·2 | 28·2<br>28·7<br>29·2<br>32·7<br>30·0 | 28·5<br>28·2<br>28·7<br>31·2<br>27·7 | 28·7<br>29·2<br>28·9<br>27·7<br>28·5 | 28·7<br>29·2<br>28·9<br>25·9<br>28·4 | 28·7<br>28·9<br>28·9<br>26·7<br>28·2 | 28·7<br>29·0<br>28·7<br>27·5<br>28·2 | 28·3<br>29·2<br>29·0<br>28·9<br>29·3 | | 3 I<br>Mean | <b> </b> - | 27.3 | 27.2 | 26.9 | 26.3 | 25·9<br>25·1 | 24.5 | 24.7 | 23.7 | 25.2 | 29.7 | 31.9 | 33.7 | 34.7 | 34.5 | 33.7 | 31.7 | 30.4 | 29.3 | 28.5 | 28.2 | <u> </u> | 29.2 | 28.2 | 28.8 | | Mean* | 28.8 | 28.3 | 27.4 | 26.8 | 25.5 | 24.4 | 23.4 | 22.9 | 23.7 | 26.0 | 29.8 | 34.2 | 36.3 | 36.6 | 34.8 | 32.5 | 30.2 | 29.0 | 28.6 | 28.9 | 29.3 | 29.3 | 29.1 | 29.0 | 29.0 | | Mean** | 23.0 | 24.8 | 26.0 | 25.5 | 25.2 | 24.8 | 24.0 | 24.0 | 24.8 | | | | 33.4 | | 34.4 | 32.7 | 32.0 | 31.1 | 30.2 | 26.6 | 26.7 | 26.7 | 26.3 | | 27.9 | | June. | 1 | 1 | | | 1 | | | | | 14 | +1a | bular | Quanti | ities. | <del></del> | <u> </u> | 1 | 1 | ) | 1 | ī | 1 | <u> </u> | 1 | Mean,<br><br> | | 1<br>2*<br>3*<br>4* | 28·7<br>28·2<br>27·5<br>28·2<br>27·2 | 28·2<br>27·7<br>27·2<br>27·7<br>26·7 | 26·7<br>27·7<br>26·7<br>27·2<br>26·7 | 26·2<br>27·2<br>26·2<br>26·7<br>26·2 | 24·7<br>25·7<br>24·7<br>25·7<br>26·2 | 24·2<br>24·2<br>23·7<br>24·5<br>24·9 | 23.2 | ,<br>22·2<br>22·9<br>23·7<br>24·5<br>23·2 | ,<br>21.7<br>22.5<br>23.2<br>24.9<br>23.7 | 23·7<br>24·2<br>24·7<br>26·9<br>26·7 | 26·7<br>26·7<br>28·2<br>28·7<br>29·7 | 31·2<br>30·2<br>30·2<br>33·2<br>34·2 | 35.7 | 34·2<br>35·5<br>33·2<br>37·2<br>38·2 | 34·2<br>35·1<br>33·2<br>35·7<br>37·2 | 32·2<br>33·0<br>32·7<br>34·7<br>35·7 | 31·2<br>31·4<br>30·2<br>31·7<br>33·2 | 29·7<br>30·0<br>28·9<br>30·7<br>30·7 | 29·2<br>29·4<br>28·9<br>29·9<br>29·2 | 29·7<br>29·2<br>29·2<br>29·5<br>28·2 | 29·2<br>29·5<br>29·2<br>28·7<br>29·2 | 29·2<br>29·3<br>28·7<br>29·2 | 29·7<br>29·2<br>28·7 | 28.7 | 28·5<br>28·1 | | 6<br>7<br>8<br>9**<br>10** | 28.9 | 27·7<br>26·7<br>28·7<br>28·2<br>26·7 | 27·7<br>25·7<br>29·2<br>28·2<br>24·7 | 27·2<br>25·2<br>28·2<br>27·5<br>21·7 | 25.7<br>24.2<br>25.7<br>26.7<br>18.2 | 24·2<br>22·5<br>24·7<br>24·2<br>20·2 | 24·7<br>22·9<br>24·2<br>23·7<br>23·2 | 25·7<br>23·2<br>24·7<br>23·7<br>23·7 | 24·2<br>23·7<br>25·2<br>23·9<br>28·2 | 25·2<br>26·7<br>27·2<br>26·2<br>31·7 | 27·7<br>30·7<br>30·2<br>30·7 | 33·7<br>33·2<br>37·2<br>32·7<br>32·7 | 37·2<br>36·2<br>39·2<br>35·2<br>33·7 | 38·7<br>37·5<br>38·2<br>36·0<br>35·7 | 37.7<br>36.2<br>36.2<br>35.2<br>37.7 | 35.7<br>34.2<br>32.7<br>33.9<br>37.2 | 32·2<br>30·7<br>29·7<br>32·2<br>34·2 | 30·2<br>29·2<br>28·2<br>31·7<br>30·7 | 28·5<br>27·7<br>27·2<br>31·2<br>29·2 | | 28·7<br>28·2<br>28·2<br>25·7<br>28·7 | 28·9<br>28·5<br>29·9<br>24·7<br>30·2 | 29·7<br>28·7<br>28·7<br>24·7<br>27·2 | 29·7<br>28·9<br>28·2<br>22·7<br>26·7 | 28.6 | | 11**<br>12**<br>13<br>14<br>15** | 27·7<br>24·7<br>23·7<br>26·7<br>26·2 | 28·2<br>29·2<br>23·7<br>24·7<br>28·2 | 30·2<br>28·7<br>27·7<br>22·2<br>24·7 | 29·2<br>25·2<br>24·7<br>24·7 | 26·2<br>26·7<br>24·9<br>22·7<br>22·2 | 25·2<br>24·2<br>24·7<br>23·2<br>24·2 | 24·2<br>23·7<br>24·5<br>24·7<br>24·7 | 25·7<br>21·9<br>23·5<br>25·7<br>25·2 | 22·2<br>23·5<br>22·7<br>24·7<br>23·9 | 25.2 | 26·7<br>27·7<br>27·2<br>30·5<br>27·7 | 32.2 | 31.2 | 33·7<br>35·2<br>32·2<br>33·7<br>34·7 | 35·7<br>34·7<br>33·2<br>34·7<br>34·2 | 34·7<br>34·2<br>32·2<br>34·2<br>33·7 | 34·2<br>33·2<br>31·2<br>31·7 | 31·7<br>29·7<br>30·2<br>30·2 | 30·2<br>28·7<br>28·7<br>29·7<br>30·2 | 29.2 | 1 6 | 28·2<br>28·5<br>26·7<br>28·7<br>27·7 | 27·7<br>27·7<br>26·2<br>28·5<br>25·7 | 25·2<br>26·7<br>22·7<br>28·7<br>25·2 | 28·4<br>27·1<br>28·4 | | 16<br>17<br>18<br>19<br>20 | 26·2<br>23·7<br>25·5<br>27·7<br>27·7 | 24·7<br>26·9<br>25·9 | 23·7<br>23·7<br>28·2<br>24·7<br>27·2 | 22·7<br>26·7<br>27·2<br>24·5<br>25·7 | | | 24·7<br>25·2<br>23·2<br>22·7<br>22·2 | 21·2<br>22·9<br>21·2<br>24·2<br>24·4 | 22·2<br>23·7<br>23·9<br>25·7<br>24·7 | 24·2<br>25·2<br>26·2<br>28·2<br>27·2 | 26·7<br>28·7<br>28·2<br>30·2<br>29·7 | 31.7 | 31·7<br>32·2<br>31·7<br>32·2 | 32·0<br>34·7<br>33·2<br>31·2<br>33·2 | 32·7<br>34·7<br>32·7<br>30·2<br>32·7 | 32·7<br>31·7<br>31·2<br>28·9<br>30·7 | 31·4<br>30·7<br>30·2<br>29·5<br>29·2 | 29·2<br>30·7<br>30·2<br>29·2<br>28·2 | 27·7<br>29·7<br>29·5<br>28·7<br>27·7 | 25·7<br>27·7<br>27·9<br>27·2<br>27·7 | 27·2<br>28·2<br>28·2<br>27·9<br>27·7 | 25.7<br>29.2<br>28.2<br>28.2<br>28.7 | 27·2<br>26·7<br>28·2<br>28·2<br>27·2 | 23·7<br>24·7<br>27·7<br>27·9<br>24·2 | 27·2<br>27·9<br>27·9<br>27·5<br>27·6 | | 21<br>22<br>23<br>24<br>25 | | 27·5<br>26·7<br>29·0 | 25·2<br>26·1<br>26·9<br>28·2<br>26·9 | 24·2<br>24·7<br>26·3<br>26·7<br>26·0 | 22·9<br>23·4<br>24·7<br>25·2<br>23·7 | 20·5<br>22·5<br>22·7<br>23·9<br>22·7 | 19·2<br>22·5<br>22·7<br>24·2<br>22·7 | 19·7<br>23·7<br>23·2<br>25·7<br>23·2 | 20·9<br>23·9<br>24·7<br>26·2<br>25·7 | 26·4<br>27·2 | 27·7<br>26·5<br>31·7<br>31·7 | 34.5 | 34·2<br>31·2<br>35·7<br>33·7<br>33·7 | 34·7<br>32·5<br>35·9<br>34·7<br>33·5 | 33.7<br>31.7<br>34.7<br>34.0<br>33.7 | 32·7<br>30·2<br>31·5<br>32·5<br>32·5 | 30·2<br>28·7<br>28·7<br>30·2<br>29·7 | 30·7<br>27·7<br>26·7<br>28·5<br>28·5 | | 28·2<br>27·7<br>27·5<br>27·7<br>28·7 | 28·7<br>28·2<br>27·7<br>27·9<br>28·7 | 28·7<br>27·9<br>27·7<br>28·5<br>28·5 | 29·2<br>27·7<br>27·7<br>28·2<br>28·1 | 28·7<br>27·5<br>27·9<br>27·4<br>27·7 | 27·2<br>28·2<br>28·9 | | 26<br>27<br>28<br>29*<br>30* | 27·5<br>23·0<br>26·5<br>27·5<br>27·2 | 25·7<br>25·7<br>26·9 | 26·4<br>25·9<br>25·9<br>26·7<br>26·7 | | : : - | 24·2<br>21·7<br>23·7<br>23·7<br>23·7 | 22·7<br>21·2<br>22·4<br>23·2<br>23·2 | 22.7 | 21·2<br>22·7<br>21·7<br>22·2 | 23.4<br>25.7<br>23.7<br>24.0<br>24.7 | 27·2<br>28·2<br>26·7<br>26·4<br>27·2 | 31·2<br>30·7<br>29·2<br>31·2 | 35.0<br>34.7<br>32.2<br>31.9<br>34.7 | 37·4<br>34·7<br>34·2<br>33·7<br>35·7 | 36·9<br>33·7<br>34·2<br>33·0<br>35·2 | 35.7<br>32.2<br>32.7<br>31.9<br>34.2 | 34·0<br>30·7<br>30·7<br>30·7<br>32·7 | 30·7<br>29·2<br>29·2<br>30·7 | 28·9<br>28·9<br>28·7 | | 28·2<br>28·2<br>27·9<br>28·7<br>27·7 | 27·2<br>28·2<br>28·2<br>28·7<br>27·7 | 25.7<br>26.7<br>27.9<br>28.7<br>27.9 | 24·2<br>25·7<br>27·5<br>27·7<br>28·5 | 27·2<br>27·6<br>27·8 | | Mean | | 27.1 | | | | | | | 23.7 | 25.9 | 28.6 | 31.9 | 33.9 | 34.8 | 34.5 | | 31.5 | 29.7 | 28.9 | 28.2 | 28.2 | 28.3 | 27.9 | 26.9 | 28.2 | | Mean* Mean* | 27.7 | | | | 25.5 | | | 23.4 | 23.3 | 24.9 | í—— | 30.8 | 33.7 | 32.1 | 34.4 | 33.3 | 31.3 | 29.9 | 29.2 | 28.4 | | 28.9 | 28.8 | 28.2 | 28.4 | | | | | | | | TAE | LE I. | —Но | URLY | MEA | NS OF | MAG | NETIC | DEC | LINAT | NOI. | -conti | nued. | *** | | | | | | | |---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------| | 0; | h 1 <sup>h</sup> | 21 | 3 | h 41 | 51 | 6 | h 7 | h 8 | h 91 | 10 | h 11 | h No | on. 13 | 3h 14 | h 15 | h 16 | ь 17 | h 18 | h 19 | h 20 | h 21 | h 22 | h 23 | h 2 | 1 h | | July | | | | | | | | | | 14° | +Tab | ular Q | uantit | ies. | | | | | , | | | | | | Mean | | | , | , | , | , | , | , | , | , | , | 1. | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | | 1<br>2<br>3<br>4<br>5 | 27·7<br>30·7<br>26·7<br>28·7<br>26·5 | 26·7<br>27·2<br>25·9<br>27·5<br>26·7 | 26·4<br>25·7<br>26·5<br>25·7<br>25·4 | 25·5<br>25·5<br>27·2<br>24·2<br>24·7 | 24·7<br>23·4<br>25·9<br>23·4<br>23·7 | 23.9<br>21.7<br>22.2<br>21.9<br>22.2 | 23.0<br>22.5<br>23.7<br>23.2<br>22.7 | 22·7<br>23·5<br>24·7<br>25·7<br>23·7 | 23·7<br>23·7<br>23·9<br>24·7<br>23·7 | 25·2<br>25·7<br>25·7<br>26·7<br>26·7 | 28·2<br>26·7<br>28·2<br>27·7<br>27·2 | 32·7<br>28·5<br>30·2<br>30·9<br>29·2 | 33.5<br>30.7<br>32.2<br>34.5<br>32.7 | 34·2<br>31·9<br>33·7<br>33·7 | 34·9<br>31·9<br>32·7<br>34·7<br>32·2 | 35.7<br>31.5<br>30.7<br>33.7<br>29.7 | 34·2<br>30·9<br>28·2<br>33·5<br>29·2 | 31·5<br>27·2<br>31·5<br>29·2 | 31·2<br>30·7<br>27·2<br>30·5<br>29·2 | 29.7<br>29.7<br>27.9<br>29.7<br>28.9 | 29·5<br>30·7<br>26·9<br>29·2<br>28·7 | 30·2<br>28·2<br>28·2<br>28·2<br>28·7 | 29·7<br>26·2<br>29·2<br>27·7<br>28·5 | 29·2<br>24·7<br>28·7<br>27·7<br>26·2 | 28·<br>27·<br>27·<br>28·<br>27· | | 6<br>7*<br>8**<br>9 | 26·2<br>26·7<br>27·2<br>21·2<br>23·9 | 26·2<br>26·7<br>26·7<br>21·5<br>26·2 | 25.9<br>26.5<br>25.7<br>23.9<br>26.2 | 25.0<br>25.9<br>16.7<br>24.7<br>25.5 | 23.7<br>24.7<br>18.2<br>24.9<br>25.9 | 22·7<br>23·7<br>18·5<br>24·2<br>21·7 | 22·7<br>21·7<br>16·9<br>22·5<br>20·9 | 23·2<br>20·7<br>20·7<br>21·7 | 24.7<br>21.7<br>22.7<br>22.5<br>23.2 | 26·7<br>25·2<br>27·2<br>23·9<br>25·7 | 30·2<br>29·7<br>28·7<br>26·7<br>27·7 | 31·9<br>31·5<br>31·5 | 34·7<br>35·7<br>33·2<br>33·5<br>33·7 | 34·7<br>35·7<br>33·7<br>34·7<br>34·7 | 33·2<br>34·5<br>33·9<br>34·5<br>34·2 | 32·7<br>32·7<br>33·9<br>33·2<br>33·2 | 31·2<br>31·5<br>32·7<br>31·5<br>31·5 | 30·2<br>29·7<br>30·2<br>28·9<br>29·9 | 29·2<br>28·7<br>28·5<br>28·2<br>29·5 | 28·2<br>28·7<br>26·7<br>27·7<br>28·7 | 27·7<br>28·7<br>26·9<br>20·7<br>27·9 | 27·7<br>28·9<br>27·2<br>24·2<br>27·5 | 28·2<br>29·2<br>26·7<br>25·2<br>20·7 | 27·2<br>29·0<br>23·2<br>24·9<br>25·7 | 28·<br>28·<br>26·<br>26·<br>27· | | 11**<br>12<br>13<br>14 | 19.7<br>23.7<br>25.2<br>26.5<br>24.5 | 26·7<br>22·7<br>24·2<br>24·5<br>28·2 | 24·2<br>23·2<br>24·7<br>25·5<br>25·9 | 25·9<br>24·5<br>23·7<br>24·9<br>22·7 | 27.5<br>25.2<br>21.7<br>23.1<br>21.7 | 27.5<br>23.2<br>21.2<br>21.7 | 25·2<br>21·4<br>20·7<br>21·7 | 20·7<br>22·7<br>21·2<br>21·7<br>25·7 | 21·7<br>23·2<br>21·7<br>23·2 | 22·7<br>25·7<br>23·7<br>25·5<br>27·2 | 25·2<br>27·2<br>27·2<br>28·2<br>27·2 | 29·7<br>28·7<br>31·9<br>31·5 | 30·7<br>31·9<br>35·7<br>33·5<br>32·7 | 32·7<br>33·7<br>34·2<br>34·2<br>33·2 | 34·2<br>33·2<br>35·7<br>34·5<br>34·2 | 33.9<br>31.7<br>33.7<br>33.7<br>32.2 | 31·5<br>30·5<br>31·2<br>32·7 | 30·2<br>30·7<br>31·2<br>31·7 | 28·7<br>29·2<br>30·2<br>31·2<br>27·7 | 23·7<br>28·2<br>29·7<br>29·2<br>27·7 | 22·9<br>27·2<br>29·2<br>28·2<br>27·7 | 23·5<br>25·7<br>28·2<br>27·2<br>27·7 | 23·2<br>23·7<br>27·2<br>21·7<br>27·2 | 25·9<br>24·2<br>26·7<br>22·7<br>27·7 | 26·<br>26·<br>27·<br>27· | | 16<br>17<br>18<br>19* | 28·7<br>24·9<br>25·2<br>27·2<br>26·5 | 25·7<br>25·7<br>26·7<br>26·9<br>26·7 | 25·2<br>25·7<br>24·7<br>26·7<br>26·2 | 25·5<br>25·7<br>22·7<br>25·7<br>25·7 | 26·5<br>24·7<br>22·5<br>23·7<br>24·5 | 24·2<br>23·5<br>20·5<br>21·7<br>23·2 | 23·9<br>22·7<br>21·7<br>21·5 | 23·7<br>22·7<br>23·2<br>21·2<br>23·7 | 24·7<br>23·7<br>24·7<br>21·2 | 26·5<br>25·7<br>25·7<br>22·7<br>24·7 | 27·7<br>27·7<br>28·1<br>24·7<br>26·4 | 29·7<br>31·5<br>32·2<br>29·2<br>29·2 | 31·9<br>33·5<br>33·7<br>31·7<br>32·9 | 32·5<br>34·9<br>34·7<br>31·7<br>34·7 | 32·7<br>34·5<br>33·5<br>31·5<br>34·0 | 32·7<br>33·7<br>31·9<br>29·7<br>32·2 | 31·7<br>31·5<br>30·7<br>28·7 | 29·2<br>30·4<br>29·9<br>27·7<br>28·7 | 26·7<br>29·7<br>28·7<br>27·2<br>27·9 | 26·2<br>29·2<br>28·2<br>27·2<br>27·2 | 28·2<br>28·7<br>27·7<br>26·7<br>26·9 | 27·7<br>28·7<br>27·5<br>27·5<br>27·7 | 27·2<br>27·2<br>27·7<br>27·5<br>27·5 | 25·7<br>25·5<br>26·9<br>26·7<br>26·9 | 27 · · · · · · · · · · · · · · · · · · · | | 2 I* 2 2* 2 3 2 4 2 5** | 26·7<br>26·9<br>26·9<br>26·2<br>26·5 | 26·5<br>26·7<br>26·2<br>25·2<br>26·4 | 26·2<br>26·2<br>25·9<br>24·7<br>26·9 | 26·2<br>25·5<br>24·7<br>23·5<br>27·0 | 26·7<br>23·7<br>23·7<br>23·2<br>26·5 | 26·2<br>22·2<br>20·7<br>21·9 | 25·7<br>22·7<br>19·7<br>22·2<br>19·3 | 24·7<br>23·2<br>19·7<br>24·2<br>22·2 | 23·9<br>24·7<br>22·2<br>23·7<br>23·7 | 24·9<br>26·7<br>23·7<br>24·9<br>26·2 | 26·7<br>29·2<br>26·7<br>26·7<br>30·2 | 30·7<br>32·7<br>30·9<br>34·2 | 31·2<br>35·2<br>33·5<br>33·7<br>36·2 | 33·5<br>35·2<br>34·4<br>35·2<br>37·5 | 32·7<br>34·7<br>34·9<br>34·7<br>39·7 | 30·7<br>32·7<br>34·0<br>33·7<br>38·2 | 29·2<br>30·7<br>31·9<br>31·2<br>36·7 | 28·5<br>27·7<br>29·7<br>29·7<br>30·9 | 27·9<br>27·5<br>28·2<br>28·7<br>22·7 | 28·5<br>27·9<br>27·2<br>26·7<br>21·5 | 28·2<br>28·5<br>26·2<br>26·7<br>26·9 | 27·7<br>28·2<br>26·7<br>26·7<br>27·7 | 27·2<br>27·7<br>26·2<br>26·7<br>26·2 | 27·2<br>27·2<br>27·2<br>26·7<br>25·4 | 27 · 28 · 27 · 4<br>28 · 27 · 4<br>27 · 4<br>28 · 4 | | 26<br>27<br>28**<br>29** | 24·7<br>25·5<br>23·7<br>23·2<br>32·7 | 24·2<br>25·5<br>26·7<br>22·2<br>28·2 | 23·7<br>25·7<br>25·7<br>25·7<br>22·7 | 23·7<br>24·2<br>25·2<br>28·7<br>22·7 | 26·7<br>23·7<br>26·7<br>30·7<br>21·7 | 21·2<br>23·9<br>23·2<br>25·9<br>21·0 | 19·2<br>23·7<br>24·2<br>23·5<br>24·7 | 21·2<br>22·7<br>21·5<br>24·1<br>26·7 | 22·2<br>24·4<br>20·7<br>25·2<br>20·7 | 24·7<br>26·2<br>20·4<br>26·2<br>22·7 | 27·7<br>27·9<br>23·5<br>27·5<br>24·7 | 30·7<br>31·2<br>28·2<br>30·5<br>28·9 | 32·7<br>34·2<br>33·2<br>32·7<br>30·7 | 34·7<br>35·2<br>34·7<br>33·7<br>31·7 | 35·2<br>34·7<br>34·7<br>31·7<br>32·7 | 33·2<br>32·7<br>32·7<br>30·5<br>30·7 | 30·7<br>32·2<br>32·2<br>29·7<br>29·2 | 27·9<br>29·7<br>28·7<br>29·2<br>28·2 | 23.5<br>28.7<br>23.2<br>26.5<br>26.7 | 25·9<br>26·7<br>23·7<br>24·7<br>25·7 | 27·5<br>27·7<br>20·7<br>20·9<br>23·9 | 28·2<br>27·5<br>19·7<br>24·9<br>25·7 | 26·2<br>27·7<br>24·2<br>27·5<br>25·7 | 24·7<br>27·4<br>16·7<br>28·5<br>26·2 | 26·27·3 | | 31 | 27.7 | 25.9 | 25.5 | 24.9 | 26.7 | 24.2 | 22.2 | 21.2 | 22.2 | 24.7 | 26.7 | 30.7 | 32.5 | 33.7 | 31.7 | 30.5 | 29.7 | 28.5 | 27.9 | 26.7 | 23.7 | 27.7 | 27.7 | 27.2 | 27. | | Mean | 26·I | 25.9 | 25.4 | 24.8 | 24.5 | 22.7 | 22.4 | 22.8 | 23.2 | 25.2 | 27.4 | 30.8 | 33.2 | 34.5 | 33.9 | 32.6 | 31.2 | 29.6 | 28.1 | 27.4 | 26.8 | 27.1 | 26.6 | 26.2 | 27 | | Mean* | 26.8 | 26.7 | 26.4 | 25.8 | 24.7 | 23.4 | 23.1 | 22.7 | 23.0 | 24.8 | 27.3 | 30.8 | 33.3 | 34.5 | 33.2 | 31.6 | 30.1 | 28.5 | 27.8 | 27.9 | 27.8 | 28.0 | 27.8 | 27.5 | 27. | | Mean** | 24·I | 25.7 | 25.6 | 24.7 | 25.9 | 23.7 | 21.8 | 21.8 | 22.8 | 24.5 | 27.0 | 30.8 | 33.2 | 34.2 | 34.8 | 33.8 | 32.6 | 29.8 | 25.9 | 24.1 | 23.7 | 24.6 | 25.6 | 23.9 | 26. | | August | 1 | 1 | | | | 1 | | 1 | 1 | 14 | ŀ°+Ta | bular | Quant | ities. | ı | | 1 | ı | | ī | ) | 1 | 1 | | Mear | | 1*<br>2<br>3<br>4<br>5 | | 25.2 | 24·7<br>24·2<br>24·2<br>25·2<br>23·7 | 24·7<br>23·7<br>25·9<br>24·2<br>22·7 | 22·7<br>23·5<br>22·9<br>21·9 | 22·7<br>19·7<br>21·4 | ,<br>20·7<br>21·7<br>18·7<br>21·0<br>21·2 | 22·5<br>19·2<br>22·2 | 21·7<br>23·1<br>20·7<br>24·2<br>23·7 | 23.7 | 25·7<br>27·7<br>28·2<br>30·2<br>30·7 | 31.7 | 33·2<br>32·7<br>32·5<br>35·7<br>37·2 | 33.9<br>32.7<br>34.5<br>35.7<br>34.7 | 32·7<br>31·2<br>36·1<br>34·7<br>32·2 | 30·2<br>29·7<br>33·7<br>31·7<br>30·9 | 28·2<br>29·2<br>29·9<br>30·7<br>30·2 | 28.2 | 27.7 | 26·7<br>26·7<br>25·7<br>28·9<br>25·9 | 26·7<br>25·7<br>26·2<br>27·5<br>25·7 | 27·2<br>23·2<br>26·7<br>26·7<br>26·2 | 21·5<br>26·7<br>25·9 | 27·7<br>22·7<br>27·7<br>24·2<br>25·9 | 26·<br>26·<br>26·<br>27·<br>26· | | 6<br>7<br>8<br>9 | 25.7<br>25.2<br>26.9<br>25.2<br>27.7 | 25.2 | 27·7<br>24·7<br>22·7<br>22·7<br>21·7 | 22·9<br>23·9<br>25·3<br>26·7<br>24·7 | 19·5<br>24·5<br>25·7<br>23·2<br>24·2 | 23.5 | 19·9<br>21·7<br>23·7<br>20·9<br>22·7 | _ | 24·5<br>24·9<br>23·7<br>23·5<br>22·2 | 27·2<br>26·7<br>25·2<br>25·7<br>23·4 | 27·9<br>27·9<br>27·7<br>26·7<br>25·0 | 32·2<br>32·5<br>32·2<br>30·7<br>27·7 | 36·5<br>33·7<br>34·9<br>32·7<br>30·2 | 36·9<br>33·5<br>36·7<br>33·7<br>32·2 | 33.7<br>31.9<br>.33.7<br>24.2<br>33.2 | 31·2<br>31·4<br>31·2<br>29·7<br>32·2 | 29·2<br>30·7<br>29·2<br>29·2<br>30·2 | 26·9<br>30·4<br>28·2<br>28·7<br>28·2 | 24·7<br>26·2 | 27·2<br>25·7<br>24·7<br>27·7<br>27·7 | 27·2<br>25·7<br>27·7<br>27·7<br>24·9 | 24·2<br>26·7<br>25·2<br>21·2<br>21·7 | 27.2 | 24·9<br>30·2<br>21·2<br>24·7<br>23·2 | 26·<br>27·<br>26·<br>25· | | 11<br>12<br>13<br>14<br>15** | 23·2<br>24·5<br>25·2<br>22·7<br>23·2 | 23.9 | 23·2<br>23·9<br>24·2<br>22·9<br>24·7 | 24.7 | 23.7<br>27.2<br>23.2<br>23.2<br>23.7 | | 20·5<br>23·2<br>22·9<br>22·9<br>21·7 | 19·9<br>22·7<br>23·0<br>21·7<br>21·7 | 22·2<br>22·7<br>23·7<br>22·2<br>22·0 | 23.0<br>23.7<br>25.4<br>24.9<br>23.2 | 24·4<br>27·7<br>26·7<br>26·9<br>26·2 | | 33.7<br>32.7<br>32.7<br>30.7<br>33.2 | 36·2<br>33·7<br>33·2<br>31·7<br>33·7 | 34·2<br>34·2<br>33·2<br>31·2<br>33·7 | 32·2<br>32·7<br>32·5<br>32·2<br>36·7 | 32·0<br>30·7<br>30·9<br>30·5<br>35·7 | 29·9<br>29·2<br>29·2<br>26·9<br>36·7 | 28·7<br>27·7<br>25·7 | 26·5<br>28·7<br>26·7<br>26·7<br>26·7 | 25·7<br>28·2<br>26·7<br>23·7<br>26·2 | 27·7<br>26·7<br>24·2<br>21·2<br>24·7 | 26.2 | , | 26·<br>27·<br>26·<br>25·<br>26· | | 16**<br>17<br>18*<br>19*<br>20 | 19·9<br>25·7<br>24·7<br>26·2<br>26·2 | 26.2 | 27·2<br>24·2<br>27·7<br>25·2<br>26·7 | 28·2<br>23·7<br>27·7<br>24·7<br>25·7 | 26·2<br>21·7<br>24·7<br>23·7<br>24·2 | 25·7<br>21·9<br>22·9<br>22·7<br>23·2 | 22·9<br>22·5<br>22·5<br>21·7<br>22·2 | 22·7<br>22·7<br>21·7<br>21·7 | 24·9<br>23·2<br>22·2<br>22·7<br>21·9 | 24·7<br>25·2 | 27·7<br>25·7<br>26·2<br>28·7<br>30·2 | 33.7<br>28.7<br>29.7<br>32.7<br>32.7 | 34·9<br>31·7<br>30·2<br>34·5<br>34·7 | 33.7<br>33.7<br>31.2<br>34.7<br>35.9 | 32·2<br>33·5<br>31·2<br>32·7<br>32·2 | 30·7<br>31·2<br>29·7<br>29·9<br>30·0 | 27·7<br>28·7<br>28·2<br>27·7<br>27·7 | 25·2<br>27·7<br>26·7<br>26·9<br>25·4 | · '. | 25·2<br>27·7<br>26·2<br>26·7<br>23·7 | 25·7<br>27·2<br>26·7<br>27·2<br>25·7 | 25·7<br>26·7<br>26·2<br>26·7<br>26·9 | 26·2<br>26·2 | 24.7<br>24.7<br>26.2<br>25.5<br>30.9 | 26·<br>26·<br>26·<br>26·<br>27· | | 2 I* 22 23 24 25** | 31·7<br>26·5<br>26·2<br>19·7 | 25·7<br>26·2<br>25·5 | 29·7<br>24·7<br>25·7<br>25·7<br>23·7 | 26·7<br>23·9<br>25·7<br>24·7<br>30·7 | 24·9<br>22·5<br>22·4<br>22·9<br>20·7 | 22·5<br>21·9<br>21·9<br>21·9<br>20·7 | 21.7<br>23.7<br>20.5<br>21.7<br>18.2 | 20·5<br>22·7<br>19·7<br>23·3<br>20·7 | 20·7<br>22·7<br>20·2<br>23·4<br>26·7 | 24·7<br>26·2<br>22·9<br>26·2<br>26·7 | 28·7<br>31·2<br>26·7<br>27·7<br>28·2 | | 34·2<br>36·7<br>33·7<br>36·9<br>35·2 | 34·7<br>35·7<br>34·2<br>36·0<br>37·2 | 32·7<br>34·2<br>33·2<br>34·2<br>35·9 | 30·2<br>31·9<br>30·7<br>32·7<br>34·5 | 27·2<br>28·7<br>27·9<br>31·7<br>31·9 | 24·7<br>25·7<br>25·2<br>26·5<br>28·7 | 25.7 | 24·7<br>24·7<br>26·7<br>24·7<br>28·2 | 25·7<br>24·7<br>26·7<br>26·2<br>27·7 | 26·7<br>25·7<br>26·7<br>22·9<br>26·7 | 26·9<br>24·7<br>26·2<br>21·7<br>25·7 | | 27·26·26·27·26·27·2 | | 26**<br>27**<br>28<br>29<br>30* | 22·7<br>23·7<br>26·7<br>29·2<br>25·7 | 23.2 | 28·2<br>25·2<br>23·7<br>25·2<br>25·2 | 27·7<br>24·2<br>23·7<br>24·7<br>24·7 | 23·7<br>27·7<br>24·5<br>24·7<br>23·7 | 23·7<br>26·7<br>23·4<br>23·9<br>22·2 | 24·7<br>24·7<br>21·7<br>23·2<br>20·9 | 23·2<br>26·7<br>20·2<br>21·7<br>20·5 | 22·2<br>27·2<br>20·7<br>21·7<br>21·7 | 22·2<br>26·2<br>23·7<br>23·9<br>22·7 | 26·7<br>28·7<br>28·7<br>26·7<br>25·7 | 32·7<br>30·7 | 32·7<br>35·2<br>33·7<br>33·7<br>32·2 | 34·5<br>32·7<br>34·0<br>33·9<br>32·9 | 34·4<br>32·2<br>32·4<br>32·2<br>31·2 | 33.7<br>30.7<br>31.2<br>30.2<br>29.5 | 29·7<br>29·2<br>28·7<br>28·7<br>27·7 | 29·2<br>27·2<br>27·0<br>27·2<br>26·9 | 26·7<br>20·7<br>26·4<br>26·2<br>25·7 | 25.7<br>24.2<br>26.5<br>26.2<br>26.2 | 27·2<br>26·7<br>26·2<br>25·7<br>26·2 | 27·2<br>27·2<br>25·7<br>24·7<br>23·9 | 23·9<br>27·2<br>23·9<br>24·2<br>24·7 | 21·7<br>25·7<br>25·9<br>26·7<br>22·9 | 26·<br>27·<br>26·<br>26·<br>25· | | 31 | 21.7 | 23.7 | 24.5 | 23.7 | 23.2 | 22.2 | 20.7 | 20.7 | 20.7 | 23.7 | 27.7 | 29.7 | 31.9 | 32.7 | 31.7 | 32.5 | 32.2 | 29.2 | 29.2 | 18.7 | 23.2 | 26.7 | 23.7 | 24.2 | 25. | | Mean | 25.0 | 24.9 | 24.9 | 25.1 | 23.7 | 22.5 | 21.8 | 21.8 | 22.8 | 24.9 | 27.6 | 31.2 | 33.7 | 34.5 | 33.1 | 31.2 | 29.7 | 27.8 | 26.6 | 26.1 | 26.3 | 25.5 | 24.7 | 25.0 | 26. | | Mean* | 26.6 | | 26.5 | ļ | 23.9 | 22.4 | 21.5 | | 21.8 | 24.3 | 27.0 | 30.9 | 32.9 | 33.5 | 32.1 | 29.9 | 27.8 | 26.3 | 25.8 | 26.1 | 26.5 | 26.1 | 26.2 | 25.8 | 26. | | Mean** | 121.8 | 22.5 | 25.8 | 26.8 | 24.4 | 23.8 | 1 22.4 | 23.0 | 24.6 | 25.4 | 27.5 | 32.3 | 34.2 | 34.4 | 33.7 | 33.3 | 30.8 | 29.4 | 26.9 | 26.0 | 26.7 | 26.3 | 24.0 | 22.8 | 27. | | | | | | | | T. | ABLE | I.—H | OURL | у Ме | CANS ( | of M | AGNET | ric Di | ECLIN | ATION | —con | tinuea | <i>ī</i> . | • | | | | _ | | |----------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | C | )h 1 | h 2 | 2h & | 3h . | 4h | 5h ( | 3 <sup>h</sup> 7 | 'h 8 | h g | )h 1 | 0h 1 | 1 <sup>h</sup> No | on. 1 | 3ъ 1. | 4 <sup>h</sup> 1 | 5ъ | 16h | 17h 1 | 8h 1 | 9h 2 | 20h 2 | 1h 2 | 22h 2 | 3h 2 | 4h | | Septe | mber. | -, - | | - | | | | -, | | 14 | °+Tal | bular ( | Quanti | ties. | | | | | ··· | | | | | | Mean. | | 1**<br>2<br>3<br>4 | ,<br>16·7<br>26·0<br>22·7<br>22·2<br>27·2 | 12·7<br>24·7<br>22·5<br>27·7<br>22·2 | 24·4<br>22·5<br>20·7 | 17·7<br>23·5<br>21·9<br>20·2<br>23·2 | 1 / / | 22.5 | _ | 23.2 | 25·2<br>26·2<br>23·7<br>25·7<br>23·7 | 27.7 | 30·2<br>30·2<br>29·7<br>33·2<br>30·5 | 32·7<br>31·7<br>34·2 | 32·7<br>31·7<br>36·7 | 38·7<br>32·7<br>31·2<br>33·7<br>33·2 | 31.5 | 29·7<br>30·2<br>29·7 | 28.7 | 28·2<br>26·5<br>25·7<br>25·5<br>26·2 | 27·5<br>26·7<br>25·9 | 21·9<br>27·5<br>25·4<br>24·2<br>21·2 | 24·7<br>26·5<br>24·7<br>21·2<br>23·7 | 24·5<br>26·5<br>23·2<br>24·2<br>24·7 | 26.2 | 24.2 | 26.9 | | 6<br>7<br>8<br>9 | 26·2<br>25·2<br>26·9<br>32·7<br>25·7 | 24·7<br>25·2<br>22·2<br>32·7<br>24·7 | 24·5<br>25·2<br>21·5<br>37·7<br>24·5 | 23·7<br>23·4<br>21·9<br>35·7<br>23·7 | 24.4 | 23·2<br>23·2<br>26·7<br>29·7 | 22·9<br>20·7<br>27·7 | 20·9<br>21·5<br>20·7<br>25·7<br>21·7 | 22·2<br>22·9<br>23·2<br>23·9<br>21·7 | 25.2 | 31·7<br>32·2<br>28·2<br>26·7<br>28·7 | 34.5 | | 32·7<br>32·2<br>36·2<br>31·2<br>33·7 | 31.7 | 28·7<br>29·2<br>36·2<br>28·7 | 28·2<br>25·7<br>36·2<br>27·2 | 23.7<br>23.9<br>35.7<br>27.7<br>26.2 | 24·2<br>25·5<br>32·7<br>27·7<br>25·9 | 26·7<br>22·7<br>28·7<br>26·7<br>25·7 | 24·2<br>25·2<br>27·7<br>25·9<br>26·7 | 23·2<br>25·5<br>30·7<br>24·5<br>22·5 | 21·2<br>25·2<br>31·9<br>24·2<br>21·7 | 22·2<br>24·2<br>33·7<br>23·9 | 26·0<br>26·3<br>28·8<br>28·8<br>26·0 | | 11*<br>12*<br>13<br>14<br>15* | 26·7<br>23·7<br>26·7<br>24·7<br>24·9 | 26·2<br>24·7<br>24·9<br>24·7<br>25·5 | 25·2<br>24·5<br>25·9<br>24·2<br>23·5 | 23·2<br>23·9<br>23·3<br>23·7<br>23·0 | 22·2<br>23·2<br>23·2<br>23·7 | 22·7<br>22·2<br>22·5 | 21.9<br>22.2<br>23.5<br>21.7<br>21.9 | 21·5<br>21·9<br>24·4<br>21·7<br>21·2 | 21·5<br>22·2<br>25·7<br>23·9<br>22·2 | 22·9<br>24·7<br>26·7<br>26·7<br>25·2 | 26·2<br>27·7<br>29·7<br>31·2<br>28·7 | 30·5<br>29·2<br>31·7<br>33·7<br>30·9 | 31·7<br>29·7<br>33·7<br>34·7<br>32·2 | 32·5<br>30·2<br>33·7<br>35·2<br>32·7 | 29·9<br>29·7<br>31·7<br>35·2<br>30·7 | 28·2<br>29·7<br>32·7 | 25·7<br>27·2<br>26·9<br>29·2<br>27·5 | 25·2<br>27·2<br>26·5<br>27·7<br>26·9 | | 26·7<br>27·2<br>26·7<br>23·5<br>26·7 | 24·7<br>27·2<br>26·7<br>25·9<br>26·7 | 24·7<br>26·2<br>26·2<br>26·7<br>25·9 | 23·7<br>24·7<br>25·7<br>26·5<br>23·7 | 22·2<br>24·2<br>25·7<br>25·7<br>21·7 | 25·5<br>25·9<br>26·9<br>27·1<br>26·0 | | 16<br>17<br>18**<br>19**<br>20** | 17·7<br>20·2<br>23·7<br>21·7<br>26·7 | 22·7<br>27·7<br>24·2<br>20·2<br>22·2 | 19·7<br>25·2<br>24·5<br>18·7<br>26·7 | 18·7<br>24·2<br>24·5<br>21·7<br>26·7 | 23·7<br>28·2<br>24·7<br>17·7<br>23·2 | 23·7<br>24·7<br>30·7<br>19·9<br>24·2 | 23·2<br>23·7<br>34·7<br>23·2<br>28·7 | 22·7<br>21·7<br>30·7<br>27·7<br>26·2 | 21·7<br>21·7<br>29·7<br>28·7<br>23·2 | 23·7<br>23·7<br>27·2<br>27·7<br>25·7 | 25·2<br>26·7<br>26·7<br>30·7<br>29·7 | 30·7<br>32·2<br>28·2<br>30·5<br>31·7 | 32·2<br>34·7<br>30·2<br>34·2<br>31·2 | 31·7<br>33·7<br>29·7<br>34·7<br>28·7 | 29·7<br>34·7<br>29·2<br>31·7<br>29·2 | 28·2<br>31·7<br>28·7<br>29·7<br>28·7 | 27·2<br>29·7<br>26·7<br>28·2<br>25·2 | 26·7<br>16·9<br>25·5<br>25·7<br>26·2 | 27·7<br>25·2<br>24·4<br>22·5<br>24·2 | 27·7<br>23·7<br>25·2<br>23·4<br>23·9 | 25.7.<br>22.7<br>19.7<br>24.7<br>23.2 | 16·2<br>23·7<br>23·7<br>15·2<br>25·2 | 27·7<br>22·2<br>23·7<br>23·7<br>21·2 | 23·2<br>21·7<br>21·7<br>24·7<br>21·7 | 24·9<br>26·3<br>26·4<br>25·2<br>26·0 | | 2 I** 22 23 24 25* | 24·7<br>21·7<br>27·2<br>24·7<br>23·7 | 25·7<br>27·7<br>29·2<br>24·2<br>23·9 | 22·9<br>27·2<br>20·7<br>24·2<br>25·5 | 25·7<br>29·7<br>22·7<br>23·9<br>26·7 | 27·7<br>25·2<br>22·7<br>24·2<br>25·7 | 29·7<br>23·9<br>24·2<br>23·7<br>26·2 | 25.7<br>20.5<br>21.7<br>28.2<br>27.5 | 29.7<br>18.7<br>20.2<br>22.7<br>22.9 | 26·7<br>18·2<br>20·5<br>22·7<br>20·7 | 29·7<br>21·2<br>22·7<br>24·2<br>21·7 | 31·2<br>24·7<br>28·7<br>26·2<br>24·7 | 35.7<br>29.7<br>31.7<br>31.2<br>29.2 | 36·2<br>32·7<br>31·7<br>32·2<br>31·2 | 32·2<br>32·5<br>30·7<br>33·2<br>33·5 | 33.7<br>30.9<br>27.2<br>33.2<br>30.9 | 35.7<br>28.7<br>26.2<br>32.2<br>30.2 | 28·7<br>26·7<br>27·2<br>29·2<br>28·2 | 27·7<br>23·2<br>26·7<br>28·2<br>27·2 | 25·2<br>17·7<br>25·9<br>25·2<br>26·5 | 21.7<br>20.2<br>25.5<br>21.7<br>24.9 | 33.7<br>12.2<br>25.2<br>21.7<br>22.7 | 17·7<br>18·7<br>25·2<br>19·7<br>22·7 | 21.7<br>22.2<br>24.7<br>18.7<br>23.2 | 17·7<br>24·7<br>24·7<br>22·7<br>21·7 | 27·8<br>24·1<br>25·6<br>25·6<br>25·9 | | 26*<br>27<br>28<br>29<br>30 | 23·2<br>24·7<br>24·5<br>19·9<br>21·7 | 23·9<br>23·9<br>20·5<br>21·7 | 25·2<br>23·7<br>23·7<br>22·7<br>14·2 | 24·5<br>23·7<br>21·7<br>23·7<br>17·2 | 23·7<br>25·5<br>23·2<br>22·7<br>23·2 | 23.2 23.5 23.2 22.7 | 22·7<br>25·7<br>23·2<br>22·7<br>22·5 | 22·2<br>23·2<br>21·7<br>20·9 | 22·2<br>23·7<br>19·7<br>21·9 | 23.7<br>25.7<br>22.2<br>22.7<br>21.9 | 25.7<br>28.2<br>27.7<br>23.7<br>25.2 | 28·7<br>31·2<br>28·7<br>27·2<br>27·7 | 31·7<br>34·2<br>38·7<br>30·2<br>30·2 | 30·7<br>35·2<br>37·5<br>32·7<br>30·9 | 31·2<br>34·7<br>36·2<br>32·5<br>31·7 | 29·2<br>32·2<br>36·2<br>32·5<br>30:9 | 28·2<br>26·7<br>35·7<br>29·5<br>20·7 | 26·7<br>28·2<br>35·5<br>28·7<br>24·2 | 23.7<br>26.7<br>30.5<br>26.7<br>27.7 | 25.7<br>26.2<br>31.7<br>25.2<br>24.7 | 25.7<br>25.7<br>26.9<br>18.2<br>23.5 | 25.7<br>25.7<br>23.7<br>19.2<br>20.9 | 25·2<br>25·5<br>22·2<br>24·7<br>22·2 | 24·7<br>24·7<br>21·2<br>23·7<br>24·7 | 25·7<br>27·0<br>27·5<br>24·8<br>23·9 | | Mean<br>———<br>Mean* | 24.1 | 24.2 | 23.6 | 23.6 | 23.6 | 23.5 | 23.4 | 23.0 | 23.2 | 23.6 | 28.3 | 29.7 | 31.3 | 31.9 | 30.2 | 30.3 | 27.4 | 27.0 | 25.8 | 26.2 | 25.4 | 23.4 | 24.1 | 24.0 | 26.1 | | Mean** | | 21.0 | | | 22.7 | | 26.8 | | 26.7 | 27.5 | 29.7 | 32.2 | | | 32.1 | | 28.1 | | 24.2 | 23.2 | | | | <u> </u> | 26.2 | | Octobe | r. | | | | | | | | | 14° | +Tab | ular Ç | )uantit | ies. | | | | | | | | | | | Mean. | | 1<br>2**<br>3<br>4<br>5 | 26·2<br>24·2<br>25·2<br>24·7<br>22·7 | ,<br>19·2<br>21·7<br>24·5<br>26·7<br>23·7 | 22·7<br>23·2<br>22·4 | 23.4<br>25.2<br>24.4<br>24.5<br>24.2 | 27·7<br>25·2 | 26.2 | ,<br>23·2<br>24·5<br>22·7<br>22·7<br>22·7 | ,<br>22·2<br>20·7<br>22·2<br>22·7<br>21·7 | ,<br>23·2<br>20·2<br>22·2<br>22·2<br>20·7 | 23.7<br>21.9<br>22.7<br>22.7<br>20.7 | ,<br>26·2<br>24·2<br>24·7<br>23·7<br>23·7 | 28·2<br>28·2<br>28·2<br>26·7<br>27·2 | 30.2 | 31·9<br>32·2<br>32·5<br>33·7<br>33·7 | 31·5<br>28·7<br>32·5<br>32·7<br>33·5 | | ,<br>27·7<br>27·2<br>27·7<br>26·7<br>29·2 | | 26·2<br>23·2<br>25·2 | ,<br>20·7<br>25·7<br>25·7<br>21·7<br>21·7 | ,<br>16·2<br>20·7<br>21·2<br>20·7<br>16·7 | ,<br>21·2<br>24·2<br>23·7<br>23·7<br>15·7 | 24·2<br>24·7<br>21·2<br>25·2<br>20·7 | 24·7<br>25·7<br>21·2<br>22·7<br>26·2 | 25·1<br>25·2<br>25·4 | | 6<br>7<br>8**<br>9 | 13.5 | 26·2<br>26·7<br>25·5<br>16·2<br>24·2 | | 23·7<br>23·2<br>25·7<br>18·2<br>23·2 | 26·7<br>23·7<br>24·9<br>22·2<br>25·2 | 24.7 | 23.7<br>24.2<br>25.5<br>20.2<br>23.7 | - 1 | 20·5<br>21·7<br>23·2<br>19·9<br>21·7 | 20·9<br>22·2<br>25·7<br>21·7<br>22·7 | 24·2<br>24·7<br>23·7<br>27·7<br>24·7 | 27·7<br>28·7<br>31·7<br>30·7<br>29·2 | 29·7<br>34·7<br>31·2 | 30·9<br>30·7<br>33·2<br>32·2<br>30·7 | 30·7<br>31·7<br>31·7<br>29·2 | 29·7<br>28·7<br>30·7<br>30·2<br>28·2 | 28·2<br>23·7<br>33·7<br>28·2<br>26·7 | 23·7<br>28·7<br>27·7 | | 22·2<br>25·2<br>15·2<br>26·2<br>23·2 | 20·7<br>19·7<br>23·2<br>24·7<br>23·7 | 21.9<br>20.7<br>17.7<br>23.2<br>23.9 | 22·7<br>23·7<br>14·2<br>24·7<br>24·0 | 25.7<br>24.7<br>12.2<br>23.9<br>23.7 | 25·2<br>25·1<br>25·2<br>24·2<br>25·2 | | 11*<br>12*<br>13*<br>14* | 24·2<br>24·7<br>23·2<br>24·2<br>24·5 | 23·7<br>23·7 | 23.7 | 24·2<br>23·7<br>24·2<br>23·7<br>23·7 | 24·2<br>23·5<br>24·2<br>23·7<br>24·5 | 23.7 | 23.4<br>22.9<br>23.7<br>23.7<br>24.9 | 23.2 | 2 I · 2<br>2 I · 7<br>2 O · 2<br>2 I · 2<br>2 3 · 5 | 22·2<br>22·2<br>20·7<br>22·7<br>22·7 | 26·7<br>23·7<br>22·7<br>24·2<br>25·7 | 28·7<br>26·9<br>27·7<br>31·7 | 29·7<br>29·7<br>30·2 | 30·7<br>29·2<br>29·7<br>31·2<br>35·2 | 29·7<br>29·7<br>31·2<br>32·2 | 28·7<br>28·7<br>28·2<br>28·7<br>33·7 | 27·7<br>27·2<br>27·2<br>27·7<br>31·7 | 26·7<br>26·7<br>27·7 | 24·7<br>25·5<br>26·7<br>27·2 | 26·2<br>24·9<br>26·7<br>26·7 | 25·2<br>24·7<br>25·7<br>24·7<br>24·9 | 22·7<br>24·7<br>25·2<br>23·9<br>23·2 | 24·7<br>24·2<br>24·7<br>25·2<br>23·7 | 24·7<br>24·2<br>24·2<br>24·2<br>24·2 | 25.6<br>25.0<br>25.0<br>25.5<br>27.0 | | 16** 17** 18 19 | 24·5<br>23·7<br>23·2<br>24·2<br>17·2 | 25·2<br>25·7<br>23·7 | 25.7<br>27.7<br>25.7<br>24.7<br>27.7 | 23·7<br>27·2<br>24·2<br>24·2<br>22·2 | 30·7<br>28·2<br>24·2<br>26·2<br>23·7 | 24·2<br>25·7 | 24.2 | 22.7 | 26·7<br>23·5<br>25·7<br>22·7<br>25·2 | 31·7<br>23·7<br>26·7<br>23·7<br>28·2 | 35.7<br>28.2<br>28.7<br>27.7<br>29.7 | 30·7 | 34.5<br>31.7<br>30.7<br>29.7 | 30·7<br>32·7<br>30·2<br>33·7<br>30·7 | 35.7<br>26.7<br>27.7<br>33.7<br>27.7 | 29·7<br>25·2<br>26·7<br>27·7<br>25·7 | 24.7 | 26·7<br>23·7<br>27·2 | 25·7<br>22·7<br>25·7 | 16·7<br>23·7<br>24·2 | 23.2 | 19.7 | 24·5<br>22·7<br>22·7<br>13·7<br>23·7 | 22·7<br>12·2 | 28·5<br>25·2<br>25·5<br>25·1<br>24·9 | | 2 I<br>2 2<br>2 3<br>2 4<br>2 5 | 19.7 | 19·2<br>21·2<br>29·5<br>20·9 | 21·2<br>20·9<br>23·9<br>18·9<br>21·7 | 22·2<br>20·7<br>24·2<br>20·7<br>22·7 | | 22·9<br>22·7<br>24·5<br>21·7<br>23·7 | 22·7<br>23·2<br>22·7<br>22·9<br>23·6 | 23·9<br>20·9<br>22·2 | 20·9<br>22·7<br>20·2<br>23·2<br>21·2 | 21·7<br>23·5<br>25·7<br>24·5<br>21·5 | 24·7<br>26·7<br>27·7<br>29·2<br>23·7 | | 32.7 | 30·7<br>32·7<br>32·7<br>29·7<br>29·2 | 30·7<br>31·2<br>32·5<br>31·2<br>32·7 | | 27·7<br>27·2<br>28·7 | 25.9 | 24·7<br>26·7<br>26·2 | 24·7<br>22·9<br>26·2 | 23.7 | 22·9<br>20·7<br>24·2 | 21.7<br>22.7<br>17.2<br>23.7<br>23.7 | 21.7<br>20.7<br>19.2<br>23.2<br>20.7 | 25·I<br>24·9 | | 26<br>27*<br>28<br>29<br>30 | 19·2<br>23·7<br>23·2<br>24·7<br>23·0 | 22·7<br>22·9<br>24·2<br>22·2<br>23·7 | 22·2<br>23·7<br>23·5<br>23·7<br>24·7 | 23·2<br>23·9<br>23·5<br>23·7<br>24·2 | 23·2<br>23·7<br>23·7<br>23·7<br>23·2 | 23·7<br>23·2<br>22·7 | 23.7 | 22·5<br>22·2<br>21·9 | 21.7 | 22·7<br>21·7<br>22·5<br>22·2<br>22·2 | 25·7<br>24·2<br>24·2<br>24·2<br>24·7 | 27·7<br>27·2<br>29·7<br>27·7<br>28·2 | 33.7 | 30.7 | 29·2<br>28·2<br>32·7<br>28·7<br>28·2 | 26·7<br>26·7<br>31·2<br>27·7<br>27·2 | 26.9 | 25.0 | 24·9<br>27·2<br>25·2 | 25·2<br>24·7<br>24·2 | 24·5<br>24·7<br>23·9 | 23.9 | 23.7<br>23.5<br>23.2<br>18.7<br>21.9 | 23.7<br>22.7<br>23.7<br>19.7 | 24·7<br>24·6<br>25·5<br>24·2<br>24·4 | | 31**<br>Mean | | 21.2 | 22.2 | 20.7 | 24.7 | 20.7 | | | | 27.7 | 27.7 | 29.7 | | 32.7 | 30.7 | | | 26.2 | | | | | | 26.9 | 25.1 | | Mean<br>Mean* | | 23.1 | 23.5 | 23.4 | 23.9 | 24.5 | 23.4 | | 21.3 | 51.9 | 25.9 | 29.1 | 31.0 | | 30.9 | | | | | | | | 24.5 | 24.2 | 25.2 | | Mean** | | | | | | | | | | | | | | | | | 28.3 | | | | | | | | | | | Table I.—Hourly Means of Magnetic Declination—continued. Oh 1h 2h 3h 4h 5h 6h 7h 8h 9h 10h 11h Noon. 13h 14h 15h 16h 17h 18h 19h 20h 21h 22h 23h 24h | | | | | | | | | | | | | | | ATION | -con | tinue | ₫. | | | | | | | |-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | 01 | 11 | 21 | 3h | 41 | 51 | 6 | h 7 | h 8 | 3h 9: | | )h 11 | h No | on. 1 | 3h 1 | 4h 1 | 5h 1 | 6h 1 | 7h 1 | 8h 19 | 9h 20 | )h 2 | 1 <sup>h</sup> 2 | 2h 2 | 3h 2 | 4h | | Novem | | | | | | | | | | 14 | l°+Ta | bular | Quant | ities. | | | | | | | | | | N | Jean. | | | , | , | , | , | , | , | ., | , | , | , | , | , | , | , | , " | , | , | , | , | , | , | , | , | , | , | | 1<br>2<br>3<br>4<br>5* | 22·9<br>24·7<br>21·5<br>23·7<br>22·9 | 23.5<br>23.7<br>21.9<br>23.5<br>23.9 | 24·2<br>24·5<br>22·7<br>23·7<br>23·7 | 24·5<br>25·5<br>23·7<br>23·7<br>23·3 | 23.9<br>25.1<br>23.7<br>23.9<br>23.5 | 23·2<br>23·7<br>22·9<br>23·5<br>23·2 | 22·7<br>22·9<br>22·7<br>23·2<br>23·2 | 21.7<br>22.2<br>22.7<br>22.7 | 21.7<br>22.2<br>21.5<br>21.7<br>21.2 | 23·2<br>23·7<br>22·2<br>21·9<br>21·7 | 24·7<br>24·7<br>24·7<br>24·7<br>24·7 | 27·7<br>27·7<br>27·2<br>27·2<br>28·2 | 29·2<br>28·7<br>28·7<br>28·5<br>29·2 | 29·2<br>28·2<br>28·7<br>28·2<br>28·7 | 28·7<br>28·2<br>27·7<br>27·9 | 27·2<br>27·7<br>26·7<br>26·7<br>26·7 | 26·2<br>23·2<br>25·7<br>26·2<br>25·9 | 25·7<br>24·9<br>25·2<br>25·7<br>25·7 | 25·5<br>24·7<br>24·9<br>25·2<br>25·5 | 24·9<br>24·2<br>24·5<br>24·7<br>24·9 | 20·5<br>23·7<br>22·2<br>24·2<br>24·5 | 21·9<br>23·2<br>23·7<br>20·7<br>23·7 | 22·7<br>22·7<br>23·2<br>20·9<br>22·7 | 23·2<br>22·7<br>23·7<br>19·5<br>22·7 | 24·4<br>24·8<br>24·3<br>24·2<br>24·6 | | 6*<br>7*<br>8<br>9 | 23·5<br>23·7<br>22·9<br>20·7<br>22·7 | 23.7<br>23.9<br>23.5<br>22.2<br>23.2 | 23·7<br>24·0<br>22·7<br>22·7<br>23·5 | 23.4<br>24.2<br>23.2<br>23.7<br>22.9 | 23.7<br>23.9<br>23.2<br>23.7<br>23.2 | 23·7<br>23·7<br>23·2<br>23·9<br>23·2 | 23·5<br>23·7<br>23·2<br>23·5<br>23·2 | 22·7<br>23·5<br>23·2<br>23·7<br>22·7 | 22·2<br>22·7<br>22·7<br>23·9<br>21·7 | 22·7<br>23·5<br>23·7<br>23·2<br>22·2 | 25·2<br>26·2<br>25·7<br>24·7<br>23·7 | 27·7<br>28·7<br>28·2<br>26·7<br>27·7 | 28·7<br>29·2<br>28·5<br>28·7<br>29·2 | 28·2<br>28·2<br>29·4<br>28·2<br>29·7 | 27·7<br>27·7<br>28·5<br>27·5<br>29·7 | 26·7<br>26·7<br>27·9<br>27·5<br>26·7 | 26·2<br>26·5<br>26·9<br>26·9<br>28·2 | 25.7<br>25.9<br>26.2<br>26.7<br>28.7 | 25·2<br>25·5<br>25·7<br>25·2<br>26·2 | 24·7<br>24·9<br>24·7<br>24·7<br>25·2 | 24·2<br>24·2<br>24·2<br>23·7<br>19·2 | 23.7<br>23.7<br>23.7<br>22.4<br>20.2 | 23.7<br>23.5<br>22.9<br>20.5<br>17.7 | 23.7<br>23.2<br>20.9<br>21.2<br>18.7 | 24·8<br>25·0<br>24·8<br>24·4<br>24·1 | | 11** 12** 13 14 15** | 18·7<br>19·7<br>26·2<br>23·5<br>22·5 | 21.7<br>21.9<br>23.7<br>25.9<br>23.7 | 21·2<br>25·9<br>23·2<br>24·9<br>23·2 | 22·7<br>23·7<br>25·9<br>23·5<br>24·0 | 27.7<br>30.2<br>27.9<br>23.7<br>21.9 | 28·2<br>34·2<br>23·9<br>23·5<br>30·7 | 25·2<br>27·7<br>26·1<br>23·5<br>27·9 | 25.5<br>28.2<br>27.9<br>22.9<br>23.0 | 23·7<br>27·7<br>28·7<br>23·9<br>22·7 | 26·7<br>27·2<br>25·7<br>25·2<br>24·2 | 24·7<br>26·7<br>26·7<br>27·7<br>26·2 | 26·7<br>27·7<br>28·7<br>28·2<br>26·9 | 28·2<br>29·2<br>27·7<br>28·7<br>27·2 | 29·7<br>31·7<br>26·2<br>27·9<br>26·9 | 26·9<br>25·7<br>26·7<br>27·5<br>27·0 | 28·5<br>27·2<br>26·2<br>26·2<br>25·7 | 26·7<br>27·2<br>15·2<br>25·7<br>22·7 | 21·7<br>18·7<br>17·7<br>24·7<br>10·7 | 19·7<br>15·7<br>16·7<br>17·2<br>22·7 | 8·2<br>14·2<br>21·7<br>20·7<br>21·7 | 15.9<br>16.7<br>21.7<br>16.2<br>19.2 | 17·2<br>19·2<br>19·7<br>20·7<br>25·7 | 13.9<br>21.2<br>21.9<br>22.2<br>16.7 | 15.5<br>24.7<br>21.7<br>20.7<br>18.7 | 22·7<br>24·7<br>24·1<br>23·9<br>23·4 | | 16<br>17<br>18<br>19<br>20 | 20·2<br>26·2<br>21·9<br>22·7<br>23·0 | 23.7<br>22.2<br>22.9<br>22.7<br>23.9 | 23·2<br>23·9<br>23·1<br>23·7<br>24·7 | 25·2<br>23·2<br>23·5<br>23·5<br>23·5 | 24·7<br>23·9<br>22·7<br>23·5<br>23·7 | 23.9<br>22.7<br>22.7<br>23.4<br>23.2 | 24·5<br>23·5<br>23·1<br>22·7<br>21·9 | 24·2<br>22·9<br>24·7<br>22·7<br>21·7 | 23·2<br>23·0<br>24·9<br>22·7<br>20·9 | 25·2<br>23·1<br>25·3<br>23·5<br>22·5 | 25.7<br>24.7<br>25.7<br>25.2<br>23.7 | 28·2<br>28·2<br>27·7<br>26·7<br>26·5 | 28·7<br>27·2<br>28·2<br>28·7<br>28·2 | 28·7<br>26·7<br>28·7<br>29·7<br>28·7 | 28·2<br>28·7<br>27·7<br>27·5<br>28·7 | 22·7<br>25·2<br>27·7<br>27·7<br>28·2 | 24·2<br>25·7<br>26·9<br>26·9<br>27·2 | 19.7<br>23.7<br>26.0<br>25.9<br>26.2 | 21·2<br>21·5<br>23·7<br>22·7<br>25·2 | 21·7<br>22·9<br>21·7<br>17·7<br>24·2 | 19·7<br>23·2<br>21·2<br>19·2<br>23·2 | 19·2<br>22·0<br>22·2<br>16·7<br>22·9 | 19·9<br>22·2<br>22·2<br>20·2<br>22·7 | 21·5<br>21·7<br>23·5<br>21·7<br>22·5 | 23.6<br>24.1<br>24.5<br>23.7<br>24.5 | | 21<br>22<br>23**<br>24<br>25 | 23·5<br>22·5<br>17·7<br>22·5<br>22·2 | 24.4<br>23.5<br>17.7<br>20.7<br>23.2 | 24·2<br>23·9<br>14·2<br>19·9<br>23·2 | 24.9<br>24.2<br>18.2<br>21.2<br>23.7 | 25.0<br>24.7<br>21.7<br>19.7<br>21.7 | 25·2<br>23·9<br>19·5<br>19·9<br>22·2 | 22·9<br>23·7<br>24·7<br>21·7<br>22·2 | 22·7<br>23·5<br>24·7<br>22·2<br>22·2 | 22·2<br>23·2<br>26·9<br>22·7<br>22·2 | 23.7<br>22.9<br>28.7<br>22.7<br>23.5 | 25·2<br>24·2<br>26·7<br>24·9<br>24·7 | 27·2<br>24·9<br>33·7<br>30·7<br>25·7 | 29·2<br>26·7<br>31·7<br>32·7<br>25·7 | 29.7<br>27.9<br>33.2<br>30.7<br>25.7 | 28·7<br>27·7<br>31·7<br>29·7<br>25·7 | 27·5<br>26·7<br>31·7<br>25·7<br>25·7 | 25·7<br>26·7<br>32·7<br>26·2<br>25·9 | 25·2<br>25·9<br>27·7<br>26·2<br>22·7 | 24·2<br>25·5<br>24·7<br>16·2<br>25·7 | 23.0<br>25.2<br>23.7<br>11.7<br>24.5 | 21·7<br>24·2<br>19·7<br>21·7<br>23·2 | 22·4<br>24·5<br>19·9<br>22·5<br>22·5 | 22·5<br>18·7<br>22·2<br>22·7<br>22·9 | 21.7<br>16.2<br>22.2<br>22.7<br>23.7 | 24·7<br>24·2<br>24·8<br>23·2<br>23·8 | | 26*<br>27*<br>28<br>29**<br>30 | 23·2<br>19·7<br>22·7<br>11·7 | 22·7<br>22·2<br>22·7<br>23·2 | 22·9<br>21·7<br>22·7<br>22·7<br>26·2 | 23.7<br>23.5<br>23.0<br>22.7<br>22.7 | 22·2<br>20·5<br>22·7<br>23·2<br>22·7 | 21·9<br>21·4<br>22·7<br>23·2<br>22·7 | 21·9<br>22·2<br>22·7<br>23·2<br>22·9 | 22·7<br>22·7<br>23·2<br>23·5<br>22·7 | 22·9<br>22·9<br>22·7<br>23·7<br>22·2 | 23·2<br>22·7<br>22·9<br>23·7<br>24·2 | 24·2<br>23·7<br>23·7<br>24·7<br>25·2 | 25·2<br>25·9<br>26·7<br>26·7<br>25·9 | 27·2<br>26·5<br>27·7<br>26·7<br>27·2 | 26·2<br>26·5<br>27·7<br>27·2<br>27·2 | 25·5<br>25·7<br>27·7<br>26·2<br>27·7 | 25·5<br>24·9<br>26·2<br>25·2<br>28·2 | 24·7<br>24·2<br>24·7<br>25·7<br>27·2 | 24·7<br>23·7<br>24·2<br>27·2<br>28·7 | 24·7<br>23·7<br>23·7<br>29·7<br>28·2 | 24·2<br>23·4<br>23·7<br>32·7<br>23·2 | 23·7<br>22·9<br>23·2<br>28·7<br>19·2 | 23·2<br>22·7<br>23·2<br>23·9<br>17·7 | 22·2<br>22·7<br>19·7<br>11·7<br>20·5 | 20·5<br>22·5<br>19·5<br>11·7<br>21·4 | 23·7<br>23·3<br>23·7<br>24·7<br>23·4 | | Mean | 22.1 | 22.9 | 23.1 | 23.5 | 23.7 | 23.8 | 23.5 | 23.4 | 23.1 | 23.8 | 25.1 | 27.5 | 28.4 | 28.5 | 27.8 | 26.8 | 25.8 | 24.4 | <u> </u> | 22.6 | 21.8 | 21.8 | 21.0 | 21.1 | 24.1 | | Mean*<br>Mean** | 22.6 | 23.3 | 23.2 | 23.6 | 24:0 | 22.8 | 22.9 | 22.9 | 24.0 | 22.8 | 24.8 | 28.3 | 28.2 | 27.6 | 26.9 | 26.1 | | 21.2 | <u> </u> | 24·4<br>20·1 | 23.9 | 23.4 | 23.0 | 18.1 | 24.3 | | Decem | | 21 0 | 21 4 | 22 3 | -+ 9 | | | | <u>- </u> | | 4°+Ta | | | | | | | | · · · | | | | | | Mean. | | | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | | 1**<br>2<br>3<br>4<br>5* | 22·9<br>18·7<br>23·2<br>21·2<br>22·7 | 21·5<br>23·7<br>23·2<br>21·2<br>22·7 | 23·7<br>24·9<br>23·2<br>22·9<br>22·5 | 23·2<br>24·5<br>23·2<br>23·2<br>22·5 | 24·7<br>24·7<br>24·7<br>22·9<br>22·7 | 24·7<br>24·7<br>23·7<br>22·9<br>22·9 | 1 × | 23·9<br>23·5<br>24·5<br>23·2<br>22·9 | 22·9<br>23·2<br>24·9<br>23·7<br>23·0 | 22·I<br>23·4<br>26·7<br>23·7<br>23·7 | 24·3<br>23·7<br>26·7<br>26·2<br>24·4 | 25·7<br>24·9<br>30·2<br>26·2<br>24·9 | 29·7<br>25·9<br>30·7<br>24·7<br>25·5 | 26·2<br>26·5<br>30·2<br>26·2<br>24·7 | 29·7<br>25·7<br>28·9<br>26·7<br>24·7 | 27·9<br>25·2<br>29·9<br>24·7<br>24·5 | 16·2<br>24·7<br>27·7<br>24·7<br>24·2 | 23·7<br>24·2<br>24·5<br>25·2<br>23·7 | 16·2<br>23·2<br>24·2<br>23·7<br>23·7 | | 9·7<br>22·2<br>18·7<br>22·2<br>22·7 | 3·7<br>21·9<br>13·7<br>20·7<br>22·5 | 12·7<br>22·7<br>20·2<br>22·0<br>22·2 | 15.7<br>22.7<br>12.2<br>21.7<br>22.2 | 21·1<br>23·8<br>24·4<br>23·6<br>23·4 | | 6*<br>7<br>8**<br>9** | 22·7<br>22·7<br>11·7<br>20·7<br>22·7 | 22·7<br>22·7<br>13·7<br>21·2<br>21·2 | 22·7<br>22·2<br>11·5<br>26·7<br>21·5 | 23·2<br>22·7<br>15·2<br>25·7<br>22·9 | 23·3<br>23·7<br>18·2<br>23·7<br>23·7 | 23·I<br>22·7<br>24·2<br>25·2<br>24·7 | 22·2<br>27·7 | 23·4<br>22·2<br>27·7<br>25·7<br>26·7 | 23·5<br>23·7<br>25·7<br>26·2<br>28·2 | 24·5<br>25·7<br>28·7<br>24·7<br>26·7 | 25.7<br>25.9<br>30.2<br>26.2<br>28.7 | 25.7<br>25.9<br>30.7<br>28.2<br>22.7 | | 38.7 | 24·7<br>26·7<br>31·2<br>24·2<br>22·7 | 24.7<br>26.2<br>26.2<br>24.7<br>23.2 | 24·7<br>26·2<br>25·7<br>21·2<br>19·7 | 24·7<br>27·2<br>22·2<br>21·7<br>20·7 | 24.7<br>28.2<br>20.2<br>18.2<br>22.9 | 24·2<br>16·7<br>21·2<br>13·7<br>21·7 | 23·5<br>13·2<br>19·2<br>15·7<br>19·2 | 22·7<br>19·2<br>15·7<br>18·2<br>19·7 | 22·2<br>16·2<br>8·7<br>18·2<br>18·9 | 22·7<br>15·7<br>18·7<br>22·7<br>19·9 | 23·9<br>22·8<br>23·1<br>23·1 | | 11<br>12<br>13<br>14 | 22·7<br>21·7<br>20·7<br>21·5<br>21·9 | 22·7<br>21·9<br>22·2<br>21·9 | 21·2<br>23·9<br>23·7<br>22·5<br>23·3 | 21·5<br>23·7<br>22·9<br>22·9<br>22·9 | 23·2<br>24·7<br>23·5<br>23·4<br>22·2 | 23·5<br>25·2<br>25·9<br>23·5<br>22·2 | 23.2 | 25·1<br>23·7<br>24·2<br>24·2<br>23·7 | 23·7<br>23·5<br>23·9<br>24·9<br>23·9 | 23.9<br>22.7<br>23.3<br>25.9<br>24.7 | 23.7<br>23.2<br>22.9<br>25.7<br>25.3 | 23.7<br>23.7<br>26.2<br>24.7<br>25.9 | 25.7<br>25.2<br>28.2<br>26.9<br>26.7 | 26·2<br>26·2<br>26·5<br>24·7<br>25·7 | 25·2<br>22·7<br>25·9<br>25·5<br>26·5 | 18·7<br>25·2<br>24·9<br>27·7<br>24·9 | 21·5<br>24·9<br>22·7<br>24·2<br>24·5 | 23·7<br>23·9<br>16·7<br>24·5<br>23·7 | 21·7<br>20·9<br>24·5<br>22·9<br>23·2 | 10·7<br>22·1<br>23·2<br>22·5<br>22·7 | 18·2<br>19·7<br>13·2<br>22·2<br>22·7 | 18·7<br>21·2<br>17·7<br>21·7<br>22·7 | 16·7<br>20·7<br>20·5<br>19·2<br>22·2 | 18·9<br>20·9<br>20·7<br>21·2<br>22·7 | 21·9<br>23·2<br>22·9<br>23·7<br>23·7 | | 16<br>17<br>18<br>19<br>20 | 23·2<br>23·2<br>18·9<br>21·5 | 23.7<br>23.7<br>23.5<br>16.9<br>20.9 | 23·7<br>23·5<br>22·7<br>18·2<br>22·2 | 23.7<br>23.9<br>22.7<br>16.2<br>23.7 | 22·7<br>21·2<br>22·2<br>18·5<br>21·7 | 22·2<br>22·7<br>22·7<br>20·5<br>22·2 | 21.9 | 22·2<br>22·7<br>22·5<br>22·9<br>23·2 | 23·2<br>24·7<br>23·2<br>24·7<br>23·7 | 23·2<br>24·2<br>24·7<br>25·2<br>23·7 | 23·7<br>25·7<br>24·7<br>27·7<br>25·5 | 24.7<br>25.7<br>25.5<br>28.2<br>23.9 | 26·7<br>26·2<br>25·7<br>28·2<br>25·2 | 26·7<br>25·2<br>25·5<br>31·7<br>25·7 | 27·7<br>25·2<br>23·9<br>28·7<br>25·5 | 26·7<br>23·7<br>23·9<br>24·9<br>26·7 | 28·2<br>23·7<br>23·7<br>25·7<br>23·9 | 26·2<br>23·2<br>23·7<br>26·5<br>22·7 | 24·2<br>19·2<br>24·5<br>25·5<br>21·7 | 20·7<br>21·9<br>22·7<br>27·7<br>23·2 | 19·2<br>21·5<br>21·9<br>20·7<br>22·9 | 19·9<br>22·2<br>21·2<br>18·9<br>22·9 | 20·9<br>21·5<br>19·9<br>20·7<br>19·2 | 22·9<br>23·9<br>17·9<br>21·5<br>18·7 | 23.1 | | 2 I<br>2 2<br>2 3<br>2 4<br>2 5** | 19·9<br>21·2<br>21·5<br>20·5<br>21·7 | 22·5<br>20·7<br>21·7<br>22·5<br>22·0 | 22·7<br>18·7<br>17·7<br>22·1<br>22·2 | 22·2<br>22·2<br>21·7<br>22·5<br>22·5 | 22·7<br>18·2<br>19·5<br>21·9<br>21·1 | 22·7<br>20·7<br>20·5<br>22·I<br>23·2 | 24·7<br>21·2<br>23·7<br>22·2<br>27·9 | 22·7<br>21·7<br>22·9<br>22·1<br>24·7 | 24·2<br>23·2<br>23·9<br>22·5<br>23·7 | 23·9<br>23·7<br>25·2<br>24·2<br>23·7 | 25·7<br>24·7<br>25·2<br>25·2<br>25·2 | 26·2<br>24·7<br>25·7<br>24·7<br>25·5 | 23·7<br>24·7<br>24·5<br>27·7<br>27·2 | 25·2<br>23·7<br>24·7<br>26·7<br>28·7 | 24·7<br>23·7<br>24·9<br>26·5 | 26·2<br>24·9<br>25·9<br>25·1<br>27·9 | 26·2<br>24·5<br>23·9<br>25·1<br>24·7 | | 17.7<br>23.7<br>23.0<br>21.5<br>19.2 | 20·5<br>23·7<br>21·1<br>23·7<br>-0·8 | 22·7<br>18·7<br>21·7<br>22·7<br>9·2 | 22·9<br>18·5<br>16·7<br>21·9<br>7·7 | 21·7<br>21·5<br>18·7<br>21·7<br>17·2 | 21·2<br>19·4<br>21·2<br>24·2 | 22.3 | | 26**<br>27<br>28*<br>29*<br>30* | 25.9<br>21.7<br>22.2<br>22.4<br>22.2 | 24·2<br>18·9<br>22·2<br>22·5<br>22·2 | 21·7<br>22·2<br>22·0<br>22·7<br>22·2 | 21·7<br>20·7<br>21·7<br>22·9<br>22·2 | 21.7<br>21.2<br>21.7<br>22.5<br>22.2 | 21.7<br>21.7<br>21.7<br>21.7<br>22.2 | 21.7 | 23·2<br>22·2<br>21·2<br>22·2 | 23.7<br>22.2<br>22.1<br>21.7<br>22.7 | 24·7<br>22·7<br>22·7<br>22·7<br>23·2 | 26·5<br>24·2<br>23·7<br>23·2<br>23·7 | 25.7<br>24.5<br>24.9<br>24.2<br>24.7 | 27·2<br>24·4<br>25·1<br>24·2<br>24·2 | 24·2<br>23·7<br>25·2<br>25·9<br>24·2 | 26·2<br>22·9<br>24·9<br>24·2<br>23·9 | 25·2<br>22·7<br>23·7<br>23·5<br>23·7 | 23·2<br>22·5<br>21·9<br>23·5 | | 16·7<br>22·4<br>22·3<br>22·5<br>22·5 | 20·2<br>22·5<br>22·3<br>22·5<br>22·0 | 10·7<br>22·2<br>21·9<br>22·2<br>22·2 | 7·2<br>22·5<br>21·9<br>22·2<br>22·1 | 22.2 | 18·7<br>22·2<br>21·9<br>22·4<br>21·5 | 22.7 | | 31<br>Mean | 21.7 | 22.7 | 22.9 | 23.2 | 22.3 | 22.9 | 22.7 | 23.4 | 22.7 | 23.5 | 23.7 | 24.7 | 26.2 | 28.2 | 26.9 | 25.1 | 26.2 | 23.3 | 23.7 | 19.0 | 20.0 | 19.0 | 21.5 | 21.7 | 23.4 | | Mean* | 22.4 | 21.8 | 22.4 | 22.4 | 22.5 | 22.3 | 22.2 | 22.4 | 22.6 | 23.4 | 24.1 | 24.9 | 24.9 | 25.0 | 24.5 | 24.0 | 23.4 | 23.2 | 23.1 | 22.8 | 22.5 | 22.3 | 22.2 | 22.1 | 23.1 | | Mean** | 20:6 | 20.5 | 21.2 | 21.7 | 21.9 | 23.8 | l 25·7 | 25.0 | 24.4 | 24.8 | 26.5 | 27.2 | 29.2 | 29.2 | 28.6 | 26.4 | 22.2 | 20.9 | 18.1 | 13.1 | 12.9 | 10.5 | 14.3 | 20.0 | 22.0 | | | | | | <u></u> | T. | ABLE | II.— | Hour | LY M | EANS | of N | Vorth | Сом | PONE | NT OF | MAG | NETIC | For | CE. | | **** | | | | <u></u> | |-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | Ор | 11 | 2 | h 31 | n 4 | h 51 | 6 | ь 7 | h 8 | h 91 | 10 | h 11 | h No | on. 13 | 3h 1/ | 4h 18 | 5h 16 | 3h 17 | 7h 18 | 3h 1 | 9h 2( | )h 2 | 1h 2 | 2h 2 | 3h 24 | 1 h | | Januai | ry. | | | | | | | | | 1700 | 0γ+ | Tabula | ır Qua | ntities | s. | | | | | | | | | ľ | Mean. | | 1<br>2<br>3<br>4<br>5** | 896y<br>897<br>899<br>898<br>900 | 8977<br>904<br>898<br>899<br>893 | 9017<br>903<br>898<br>922<br>892 | 9027<br>902<br>898<br>905<br>891 | 9037<br>899<br>903<br>915<br>893 | 900y<br>906<br>902<br>900<br>897 | 9017<br>908<br>905<br>899<br>899 | 9017<br>905<br>904<br>904<br>897 | 8997<br>902<br>910<br>908<br>895 | 8937<br>895<br>905<br>906<br>891 | 882y<br>889<br>902<br>899<br>891 | 8747<br>887<br>892<br>889<br>854 | 8747<br>884<br>874<br>886<br>863 | 880y<br>889<br>880<br>884<br>873 | 8837<br>889<br>880<br>881<br>876 | 8877<br>887<br>880<br>886<br>885 | 8897<br>883<br>888<br>889<br>886 | 8937<br>885<br>880<br>891<br>899 | 9027<br>887<br>876<br>891<br>882 | 9037<br>897<br>892<br>896<br>887 | 9037<br>902<br>900<br>895<br>892 | 8977<br>901<br>895<br>893<br>892 | 8947<br>899<br>905<br>896<br>892 | 896y<br>899<br>902<br>901<br>900 | 894}<br>896<br>895<br>897<br>888 | | 6<br>7<br>8*<br>9<br>10 | 906<br>903<br>896<br>899<br>915 | 902<br>898<br>899<br>896<br>900 | 907<br>893<br>899<br>897<br>903 | 897<br>890<br>899<br>901<br>905 | 886<br>891<br>900<br>904<br>907 | 894<br>892<br>902<br>906<br>912 | 897<br>896<br>904<br>910<br>915 | 896<br>895<br>904<br>912<br>915 | 892<br>893<br>902<br>910<br>905 | 889<br>891<br>896<br>910<br>905 | 892<br>893<br>889<br>905<br>903 | 886<br>883<br>882<br>893<br>893 | 874<br>878<br>875<br>887<br>888 | 861<br>884<br>880<br>889<br>877 | 856<br>887<br>887<br>895<br>880 | 871<br>890<br>894<br>895<br>875 | 875<br>895<br>899<br>903<br>880 | 882<br>896<br>902<br>905<br>886 | 898<br>897<br>901<br>905<br>910 | 898<br>898<br>899<br>907<br>904 | 891<br>898<br>904<br>905<br>896 | 891<br>897<br>899<br>900<br>896 | 891<br>899<br>899<br>898<br>900 | 900<br>899<br>910<br>900 | 889<br>893<br>896<br>902<br>899 | | 11*<br>12**<br>13<br>14 | 896<br>900<br>886<br>899<br>891 | 896<br>901<br>882<br>906<br>891 | 896<br>903<br>879<br>903<br>893 | 898<br>904<br>880<br>890<br>897 | 901<br>907<br>880<br>888<br>897 | 906<br>909<br>888<br>886<br>899 | 906<br>911<br>888<br>891<br>899 | 904<br>913<br>888<br>893<br>899 | 908<br>909<br>888<br>891<br>897 | 904<br>910<br>888<br>889<br>897 | 896<br>907<br>882<br>887<br>891 | 890<br>887<br>884<br>875<br>885 | 884<br>854<br>877<br>871<br>882 | 884<br>854<br>875<br>870<br>879 | 886<br>854<br>848<br>868<br>875 | 888<br>856<br>864<br>876<br>871 | 891<br>878<br>877<br>883<br>881 | 896<br>878<br>888<br>891<br>884 | 899<br>887<br>890<br>894<br>884 | 899<br>887<br>891<br>883<br>872 | 900<br>890<br>898<br>883<br>883 | 900<br>894<br>901<br>889<br>893 | 900<br>892<br>890<br>889<br>890 | 899<br>907<br>890<br>897<br>888 | 897<br>891<br>883<br>887<br>888 | | 16<br>17*<br>18*<br>19*<br>20 | 890<br>898<br>897<br>892<br>891 | 890<br>895<br>896<br>892<br>893 | 900<br>894<br>895<br>894<br>893 | 890<br>893<br>895<br>894<br>895 | 888<br>896<br>897<br>895<br>899 | 898<br>898<br>902<br>897<br>903 | 900<br>899<br>902<br>900<br>903 | 898<br>901<br>902<br>900<br>907 | 896<br>901<br>897<br>898<br>903 | 890<br>897<br>886<br>893<br>893 | 884<br>893<br>876<br>877<br>877 | 879<br>885<br>867<br>870<br>865 | 877<br>880<br>869<br>867<br>857 | 877<br>873<br>875<br>872<br>860 | 879<br>872<br>879<br>877<br>865 | 888<br>880<br>881<br>882<br>866 | 890<br>885<br>885<br>887<br>871 | 892<br>896<br>890<br>891<br>878 | 893<br>896<br>892<br>889<br>885 | 895<br>899<br>894<br>893<br>885 | 897<br>899<br>894<br>893<br>892 | 898<br>899<br>894<br>893<br>896 | 897<br>908<br>894<br>893<br>894 | 901<br>908<br>894<br>893<br>894 | 891<br>894<br>890<br>889<br>886 | | 2 I<br>2 2<br>2 3<br>2 4<br>2 5 | 896<br>897<br>881<br>887<br>879 | 906<br>886<br>887<br>887<br>880 | 886<br>882<br>880<br>889<br>889 | 889<br>888<br>885<br>891<br>882 | 896<br>887<br>885<br>894<br>883 | 901<br>889<br>889<br>898 | 901<br>893<br>896<br>901<br>897 | 900<br>895<br>896<br>904<br>893 | 900<br>890<br>894<br>905<br>886 | 894<br>884<br>882<br>902<br>876 | 886<br>874<br>870<br>897<br>866 | 871<br>869<br>865<br>880<br>860 | 867<br>858<br>865<br>868<br>861 | 873<br>855<br>870<br>866<br>870 | 866<br>858<br>870<br>862<br>874 | 844<br>864<br>867<br>855<br>875 | 857<br>869<br>873<br>852<br>877 | 846<br>874<br>882<br>840<br>880 | 869<br>878<br>885<br>866<br>882 | 879<br>882<br>887<br>874<br>883 | 884<br>884<br>888<br>881<br>887 | 878<br>884<br>888<br>883<br>885 | 878<br>884<br>888<br>881<br>883 | 884<br>881<br>888<br>879<br>884 | 881<br>879<br>882<br>881<br>880 | | 26<br>27<br>28<br>29**<br>30** | 885<br>897<br>889<br>894<br>870 | 885<br>899<br>891<br>894<br>880 | 885<br>886<br>887<br>892<br>877 | 884<br>880<br>889<br>898<br>872 | 892<br>888<br>889<br>900<br>880 | 894<br>893<br>891<br>902<br>885 | 892<br>899<br>894<br>908<br>888 | 893<br>880<br>892<br>911<br>877 | 887<br>883<br>889<br>908<br>862 | 879<br>878<br>879<br>911<br>839 | 877<br>873<br>872<br>904<br>849 | 869<br>857<br>867<br>895<br>849 | 867<br>847<br>867<br>888<br>824 | 867<br>842<br>869<br>885<br>852 | 872<br>852<br>874<br>875<br>848 | 877<br>-865<br>881<br>857<br>835 | 877<br>873<br>877<br>854<br>838 | 882<br>881<br>869<br>847<br>850 | 888<br>881<br>874<br>841<br>865 | 888<br>878<br>879<br>847<br>863 | 888<br>880<br>887<br>844<br>902 | 898<br>886<br>891<br>847<br>922 | 891<br>886<br>894<br>875<br>850 | 888<br>886<br>902<br>868<br>860 | 884<br>878<br>883<br>881<br>864 | | 31** | 855 | 168 | 855 | 852 | 874 | 881 | 881 | 879 | 871 | 863 | 857 | 862 | 860 | 831 | 842 | 855 | 865 | 852<br>881 | 800 | 846 | 841 | 870 | 882 | 874 | 860 | | Mean<br>Mean* | 893 | 894 | 893 | 891<br> | 894<br>898 | 901 | 902 | 902 | 901 | 891 | 885 | 876 | 8 <sub>7</sub> 0<br>8 <sub>7</sub> 5 | 87 r<br>877 | 871 | 873 | 878 | 895 | 883 | 887<br>897 | 890<br>898 | 892 | 891 | 893 | 887 | | Mean** | 884 | 892 | 884 | 883 | 891 | 895 | 897 | 895 | 889 | 883 | 882 | 869 | 858 | 859 | 859 | 858 | 864 | 865 | 855 | 866 | 874 | 885 | 878 | 882 | 877 | | Februa | ıry. | | | | <del></del> . I | <del></del> - | 1 | | 1 | 1700 | 00γ+ | Tabul | ar Qua | antitie<br>I | s. | 1 | 1 | | 1 | | | | ł | <u>.</u> | Mean. | | 1<br>2<br>3<br>4<br>5** | 8677<br>879<br>889<br>893<br>894 | 8727<br>882<br>898<br>888<br>888 | 8747<br>886<br>884<br>889<br>886 | 870y<br>897<br>884<br>890<br>888 | 8837<br>889<br>884<br>891<br>889 | 8807<br>886<br>889 <br>895<br>896 | 886y<br>894<br>894<br>897<br>901 | 8837<br>894<br>896<br>898<br>925 | 8747<br>896<br>896<br>898<br>915 | 874 <b>y</b><br>892<br>892<br>898<br>906 | 8677<br>887<br>884<br>893<br>901 | 860y<br>886<br>875<br>889<br>875 | 865y<br>879<br>867<br>887<br>860 | 8637<br>875<br>876<br>880<br>867 | 8597<br>873<br>885<br>874<br>863 | 867y<br>878<br>889<br>869<br>863 | 870y<br>880<br>892<br>872<br>857 | 8957<br>879<br>893<br>876<br>865 | 9037<br>894<br>893<br>885<br>884 | 868y<br>894<br>895<br>892<br>886 | 9197<br>884<br>895<br>892<br>888 | 886y<br>889<br>895<br>891<br>893 | 8817<br>897<br>895<br>890<br>889 | 880y<br>896<br>893<br>890<br>886 | 8777<br>887<br>888<br>888<br>888 | | 6**<br>7<br>8*<br>9 | 886<br>884<br>885<br>900<br>878 | 896<br>880<br>883<br>888<br>885 | 896<br>887<br>883<br>886<br>878 | 917<br>897<br>883<br>886<br>878 | 908<br>887<br>888<br>888<br>880 | 906<br>881<br>888<br>893<br>883 | 891<br>893<br>890<br>890<br>889 | 886<br>894<br>891<br>898<br>885 | 863<br>884<br>888<br>896<br>886 | 848<br>890<br>883<br>890<br>882 | 863<br>878<br>877<br>877<br>878 | 850<br>866<br>874<br>874<br>871 | 842<br>866<br>869<br>880<br>873 | 830<br>864<br>865<br>876<br>872 | 843<br>861<br>867<br>878<br>883 | 856<br>866<br>867<br>884<br>884 | 861<br>868<br>872<br>887<br>873 | 856<br>874<br>879<br>891<br>870 | 864<br>876<br>882<br>894<br>873 | 882<br>878<br>888<br>889<br>884 | 882<br>882<br>888<br>878<br>889 | 884<br>882<br>888<br>865<br>925 | 883<br>878<br>888<br>871<br>914 | 882<br>890<br>888<br>883<br>892 | 874<br>879<br>881<br>885<br>884 | | 11<br>12**<br>13**<br>14<br>15** | 881<br>864<br>860<br>851<br>874 | 890<br>866<br>860<br>851<br>881 | 872<br>869<br>844<br>851<br>876 | 879<br>862<br>834<br>866<br>876 | 877<br>859<br>870<br>900<br>873 | 879<br>879<br>860<br>887<br>876 | 885<br>867<br>860<br>881<br>876 | 890<br>871<br>844<br>866<br>883 | 881<br>869<br>829<br>856<br>879 | 872<br>849<br>839<br>840<br>868 | 871<br>843<br>844<br>825<br>856 | 869<br>864<br>850<br>832<br>851 | 862<br>865<br>860<br>830<br>852 | 864<br>877<br>870<br>833<br>854 | 872<br>880<br>873<br>842<br>860 | 874<br>854<br>855<br>851<br>867 | 876<br>844<br>855<br>861<br>867 | 875<br>847<br>850<br>866<br>859 | 884<br>860<br>852<br>871<br>857 | 881<br>789<br>847<br>866<br>860 | 871<br>817<br>834<br>854<br>888 | 864<br>811<br>837<br>853<br>882 | 864<br>846<br>839<br>863<br>877 | 859<br>850<br>839<br>869<br>880 | 875<br>854<br>850<br>857<br>870 | | 16<br>17<br>18<br>19*<br>20 | 891<br>894<br>902<br>910<br>906 | 884<br>892<br>904<br>910<br>906 | 888<br>894<br>904<br>913<br>906 | 888<br>897<br>904<br>913<br>910 | 893<br>901<br>902<br>913<br>912 | 898<br>902<br>902<br>915<br>913 | 901<br>906<br>910<br>913<br>916 | 898<br>904<br>906<br>907<br>913 | 882<br>906<br>902<br>905<br>906 | 867<br>892<br>904<br>897<br>894 | 862<br>883<br>894<br>886<br>890 | 841<br>878<br>885<br>879<br>885 | 833<br>873<br>884<br>877<br>885 | 852<br>868<br>882<br>879<br>885 | 860<br>868<br>879<br>878<br>890 | 867<br>878<br>879<br>880<br>890 | 874<br>883<br>884<br>886<br>896 | 882<br>889<br>892<br>892<br>885 | 888<br>894<br>903<br>895<br>885 | 891<br>894<br>903<br>900<br>885 | 895<br>894<br>905<br>903<br>887 | 908<br>896<br>905<br>905<br>896 | 891<br>899<br>905<br>905<br>923 | 896<br>899<br>905<br>905<br>890 | 880<br>891<br>898<br>899<br>898 | | 2 I<br>2 2*<br>2 3<br>2 4<br>2 5* | 889<br>899<br>898<br>879<br>888 | 892<br>899<br>898<br>887<br>886 | 896<br>899<br>896<br>884<br>886 | 903<br>897<br>895<br>887<br>888 | 920<br>900<br>898<br>898<br>888 | 930<br>902<br>900<br>885<br>890 | 903<br>903<br>901<br>898<br>890 | 906<br>900<br>900<br>901<br>893 | 901<br>897<br>898<br>896<br>888 | 885<br>886<br>887<br>889<br>883 | 862<br>883<br>882<br>879<br>878 | 868<br>878<br>880<br>875<br>873 | 873<br>876<br>881<br>866<br>873 | 876<br>879<br>883<br>868<br>873 | 878<br>881<br>889<br>866<br>873 | 884<br>882<br>867<br>864<br>876 | 886<br>884<br>882<br>866<br>880 | 888<br>886<br>891<br>872<br>886 | 892<br>891<br>879<br>878<br>890 | 895<br>895<br>877<br>883<br>896 | 897<br>897<br>903<br>888<br>899 | 899<br>897<br>903<br>890<br>899 | 897<br>897<br>913<br>886<br>899 | 897<br>897<br>887<br>888<br>899 | 892<br>892<br>891<br>882<br>886 | | 26*<br>27<br>28<br>Mean | 900<br>900<br>901 | 900<br>900<br>896 | 900<br>900<br>899<br>887 | 902<br>900<br>890<br>889 | 902<br>902<br>887<br>892 | 902<br>908<br>890 | 904<br>910<br>899<br>895 | 902<br>910<br>899 | 895<br>908<br>911 | 879<br>905<br>906 | 879<br>897<br>896<br>876 | 877<br>889<br>885<br>871 | 877<br>880<br>865 | 879<br>882<br>849 | 883<br>884<br>849<br>871 | 884<br>888<br>860<br>872 | 889<br>888<br>870<br>875 | 897<br>892<br>882<br>879 | 900<br>885<br>888<br>884 | 900<br>875<br>885 | 900<br>878<br>865<br>885 | 900<br>878<br>875<br>886 | 900<br>906<br>885<br>889 | 900<br>896<br>888<br>887 | 894<br>894<br>884<br>883 | | Mean* | 896 | 896 | 896 | 897 | 898 | 899 | 900 | 899 | 895 | 886 | 881 | 876 | 874 | 869 | 876 | 878 | 882 | 888 | 892 | 896 | 897 | 898 | 898 | 898 | 890 | | Mean** | 876 | 878 | 874 | 875 | 880 | 883 | 879 | 882 | 871 | 862 | 861 | 858 | 856 | 860 | 864 | 859 | 857 | 855 | 863 | 853 | 862 | 86 r | 867 | 867 | 867 | | | | | | Та | BLE | II.—I | Houri | LY M | EANS | of N | ORTH | Сом | PONE | T OF | Mag | NETIC | For | CE— <i>c</i> | ontini | ued. | | | | | | |---------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------------|-----------------------------------|------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | 0 | h j | [h 2 | 2h 3 | 3h 4 | լև չ | 5h | 6ь | 7h | 8ь б | 9h 10 | ) հ 1 | 1h N | oon. 1 | 3h 1 | 4h 1 | 5h 1 | 6h 1' | 7h : | 18h 1 | 19h 2 | 20h 2 | 21h 2 | 22h 2 | 23h 2 | <br>24h | | March | | | | | | | | | | 170 | 00γ+ | Tabu | lar Qu | antiti | es. | | | | · · · · · · · · · · · · · · · · · · · | | | | | | Mean. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1<br>2<br>3<br>4<br>5* | 8947<br>911<br>908<br>885<br>901 | 892y<br>904<br>894<br>885<br>900 | 8877<br>897<br>902<br>885<br>898 | 890y<br>900<br>913<br>893<br>901 | 8977<br>902<br>913<br>895<br>903 | 8947<br>911<br>911<br>897<br>905 | 8947<br>911<br>924<br>901<br>906 | 8927<br>902<br>908<br>900<br>903 | 8947<br>900<br>892<br>891<br>893 | 8877<br>887<br>880<br>881<br>887 | 882y<br>882<br>861<br>872<br>876 | 882y<br>887<br>853<br>875<br>870 | 882y<br>892<br>866<br>878<br>870 | 8827<br>897<br>866<br>883<br>878 | 8827<br>902<br>859<br>889<br>890 | 8877<br>902<br>870<br>893<br>900 | 890y<br>900<br>862<br>893<br>899 | 8947<br>890<br>859<br>895<br>899 | 8977<br>902<br>888<br>898<br>901 | 9027<br>907<br>903<br>898<br>903 | 910y<br>916<br>903<br>898<br>914 | 9167<br>902<br>898<br>898<br>909 | 9157<br>902<br>888<br>898<br>919 | 9167<br>902<br>888<br>903<br>914 | 8947<br>900<br>887<br>891<br>897 | | 6*<br>7<br>8**<br>9 | 909<br>910<br>873<br>869<br>883 | 909<br>906<br>899<br>869<br>885 | 909<br>906<br>848<br>866<br>887 | 909<br>906<br>792<br>866<br>885 | 910<br>907<br>879<br>869<br>885 | 910<br>913<br>837<br>874<br>887 | 910<br>915<br>837<br>880<br>887 | 906<br>911<br>834<br>878<br>885 | 913<br>906<br>827<br>874<br>881 | 902<br>897<br>822<br>872<br>874 | 894<br>889<br>822<br>859<br>871 | 879<br>889<br>812<br>854<br>871 | 876<br>889<br>820<br>856<br>878 | 884<br>890<br>822<br>859<br>883 | 889<br>892<br>830<br>866<br>880 | 894<br>894<br>843<br>874<br>872 | 899<br>896<br>834<br>883<br>868 | 904<br>899<br>843<br>883<br>856 | 906<br>906<br>869<br>883<br>864 | 910<br>906<br>864<br>883<br>883 | 910<br>904<br>864<br>885<br>887 | 907<br>928<br>864<br>885<br>895 | 908<br>915<br>874<br>885<br>910 | 911<br>887<br>869<br>881<br>900 | 902<br>903<br>845<br>873<br>882 | | 11** 12** 13 14 15** | 890<br>886<br>898<br>887<br>894 | 880<br>894<br>881<br>889<br>905 | 874<br>886<br>879<br>890<br>902 | 885<br>875<br>875<br>891<br>895 | 885<br>879<br>875<br>891<br>907 | 891<br>883<br>875<br>890<br>909 | 893<br>894<br>875<br>892<br>912 | 890<br>875<br>875<br>887<br>902 | 890<br>870<br>870<br>882<br>905 | 886<br>857<br>867<br>872<br>897 | 881<br>829<br>865<br>874<br>871 | 878<br>845<br>862<br>874<br>866 | 884<br>847<br>860<br>874<br>861 | 886<br>853<br>860<br>874<br>887 | 889<br>847<br>868<br>879<br>851 | 875<br>870<br>878<br>879<br>864 | 891<br>886<br>881<br>871<br>882 | 872<br>870<br>878<br>871<br>895 | 878<br>870<br>882<br>885<br>915 | 878 .<br>886<br>884<br>889<br>894 | 865<br>888<br>886<br>894<br>839 | 870<br>875<br>886<br>897<br>898 | 881<br>884<br>887<br>890<br>887 | 891<br>886<br>887<br>892<br>893 | 883<br>872<br>876<br>884<br>891 | | 16*<br>17<br>18<br>19*<br>20 | 897<br>888<br>890<br>892<br>892 | 915<br>886<br>891<br>893<br>889 | 917<br>886<br>893<br>891<br>889 | 915<br>886<br>895<br>891<br>892 | 909<br>886<br>898<br>892<br>899 | 901<br>888<br>903<br>896<br>905 | 892<br>888<br>903<br>899<br>903 | 887<br>888<br>903<br>891<br>894 | 879<br>882<br>891<br>878<br>899 | 874<br>871<br>875<br>868<br>894 | 866<br>857<br>847<br>858<br>863 | 858<br>860<br>841<br>858<br>853 | 859<br>864<br>847<br>853<br>858 | 849<br>867<br>857<br>856<br>856 | 865<br>872<br>867<br>863<br>853 | 859<br>877<br>880<br>877<br>860 | 857<br>883<br>883<br>884<br>873 | 877<br>883<br>886<br>887<br>878 | 877<br>888<br>888<br>894<br>887 | 867<br>888<br>888<br>896<br>891 | 883<br>890<br>890<br>897<br>891 | 893<br>891<br>890<br>897<br>892 | 886<br>903<br>890<br>899<br>889 | 886<br>890<br>888<br>897<br>889 | 882<br>882<br>883<br>884<br>883 | | 21<br>22<br>23<br>24*<br>25* | 889<br>887<br>900<br>890<br>893 | 894<br>888<br>898<br>887<br>891 | 894<br>892<br>898<br>885<br>891 | 892<br>888<br>910<br>887<br>893 | 894<br>892<br>882<br>888<br>895 | 899<br>890<br>882<br>888<br>896 | 904<br>892<br>893<br>895<br>896 | 907<br>893<br>892<br>891<br>893 | 897<br>887<br>884<br>875<br>884 | 881<br>874<br>869<br>863<br>872 | 868<br>859<br>854<br>860<br>860 | 858<br>854<br>849<br>858<br>852 | 855<br>849<br>851<br>854<br>858 | 848<br>851<br>859<br>855<br>865 | 851<br>851<br>864<br>862<br>875 | 866<br>849<br>872<br>870<br>883 | 864<br>859<br>879<br>878<br>886 | 869<br>888<br>876<br>883<br>891 | 876<br>888<br>888<br>889<br>897 | 883<br>894<br>910<br>891<br>899 | 898<br>897<br>874<br>891<br>895 | 892<br>895<br>885<br>891<br>891 | 900<br>895<br>890<br>891<br>891 | 888<br>895<br>890<br>891<br>893 | 882<br>879<br>881<br>880<br>885 | | 26<br>27<br>28<br>29<br>30 | 893<br>904<br>902<br>890<br>901 | 894<br>904<br>900<br>902<br>891 | 901<br>902<br>897<br>896<br>895 | 901<br>902<br>897<br>896<br>891 | 901<br>902<br>897<br>925<br>893 | 909<br>902<br>902<br>921<br>895 | 911<br>900<br>894<br>904<br>898 | 906<br>897<br>894<br>890<br>891 | 883<br>879<br>887<br>879<br>882 | 868<br>861<br>876<br>871<br>877 | 855<br>859<br>866<br>857<br>862 | 850<br>848<br>861<br>854<br>854 | 858<br>853<br>863<br>859<br>860 | 868<br>861<br>866<br>865<br>872 | 874<br>861<br>869<br>882<br>880 | 877<br>869<br>876<br>893<br>882 | 873<br>879<br>887<br>895<br>889 | 889<br>888<br>894<br>891<br>893 | 893<br>882<br>897<br>898<br>895 | 904<br>894<br>900<br>898<br>897 | 909<br>923<br>894<br>898<br>898 | 9°7<br>910<br>9°2<br>898<br>895 | 914<br>897<br>894<br>898<br>893 | 918<br>902<br>902<br>908<br>898 | 890<br>887<br>888<br>890<br>887 | | 3 r | 898 | 895 | 895 | 895 | 903 | 906 | 905 | 897 | 880 | 872 | 867 | 862 | 852 | 854 | 862 | 877 | 882 | 886 | 888 | 898 | 896 | 895 | 893 | 893 | 885 | | Mean | 894 | 894 | 892 | 891 | 895 | 896 | 896<br> | 892 | 885 | 875 | 864 | 860 | 862 | 866 | 870 | 876 | 880 | 883 | 889 | 893 | 895 | 895 | 896 | 895 | 885 | | Mean* Mean** | 897 | 896 | 895 | 896 | 898 | 899 | 901<br>886 | 897<br> | 889 | 878 | 870<br><br>854 | 863 | 862 | 868 | 876<br>856 | 885 | 889 | 893 | 897 | 900 | 901 | 899 | 902 | 901 | 890 | | April. | | <u> </u> | | 3/2 | | 004 | | 0/0 | 0/4 | | | | ar Qua | | | 1 802 | 870 | 871 | 882 | 878 | 878 | 878 | 882 | 885 | 875<br>Mean. | | | | | | | | | | | | | | | _~ | | | | | | | | | | | | | | 1<br>2<br>3<br>4<br>5** | 8947<br>905<br>897<br>895<br>885 | 8947<br>910<br>898<br>906<br>870 | 8947<br>892<br>897<br>906<br>900 | 8967<br>896<br>897<br>895<br>887 | 8967<br>903<br>902<br>906<br>895 | 8967<br>894<br>905<br>895<br>905 | 896y<br>905<br>903<br>901<br>875 | 8927<br>905<br>900<br>893<br>875 | 882y<br>896<br>889<br>864<br>870 | 8727<br>889<br>874<br>864<br>855 | 858y<br>874<br>858<br>859<br>834 | 8557<br>855<br>848<br>854<br>828 | 866y<br>853<br>848<br>849<br>828 | 8747<br>863<br>863<br>849<br>834 | 882y<br>867<br>872<br>849<br>854 | 8897<br>874<br>876<br>859<br>864 | 8917<br>879<br>884<br>877<br>873 | 9007<br>889<br>892<br>895<br>880 | 9057<br>896<br>900<br>898<br>921 | 9127<br>903<br>905<br>895<br>885 | 905 <b>y</b><br>905<br>908<br>893<br>875 | 9057<br>902<br>905<br>895<br>870 | 908y<br>900<br>905<br>904<br>875 | 8977<br>900<br>897<br>893<br>885 | 8907<br>890<br>888<br>883<br>872 | | 6**<br>7<br>8<br>9<br>10 | 875<br>871<br>881<br>881<br>887 | 875<br>881<br>876<br>886<br>885 | 870<br>886<br>876<br>881<br>885 | 890<br>886<br>876<br>881<br>885 | 862<br>865<br>886<br>886<br>883 | 867<br>886<br>886<br>886<br>884 | 863<br>871<br>888<br>891<br>887 | 856<br>855<br>886<br>886<br>892 | 854<br>840<br>876<br>871<br>877 | 808<br>835<br>860<br>856<br>864 | 823<br>819<br>855<br>840<br>858 | 834<br>814<br>850<br>840<br>854 | 828<br>814<br>847<br>850<br>851 | 859<br>824<br>850<br>855<br>853 | 859<br>855<br>860<br>850<br>856 | 834<br>855<br>876<br>865<br>864 | 829<br>865<br>886<br>876<br>864 | 849<br>881<br>881<br>886<br>884 | 859<br>891<br>901<br>891<br>890 | 880<br>886<br>886<br>888<br>895 | 880<br>886<br>881<br>889<br>897 | 881<br>886<br>881<br>892<br>918 | 876<br>886<br>876<br>904<br>916 | 886<br>891<br>881<br>897<br>923 | 859<br>864<br>875<br>876<br>881 | | 11**<br>12<br>13*<br>14*<br>15* | 913<br>872<br>873<br>881<br>890 | 895<br>877<br>875<br>882<br>893 | 892<br>866<br>876<br>883<br>898 | 895<br>851<br>876<br>883<br>891 | 897<br>851<br>878<br>883<br>893 | 887<br>858<br>878<br>888<br>893 | 882<br>870<br>878<br>885<br>893 | 879.<br>874<br>875<br>886<br>890 | 885<br>864<br>857<br>878<br>881 | 872<br>848<br>839<br>860<br>862 | 851<br>851<br>831<br>852<br>852 | 848<br>848<br>831<br>849<br>852 | 833<br>848<br>837<br>852<br>859 | 820<br>848<br>849<br>857<br>859 | 841<br>858<br>859<br>867<br>871 | 856<br>866<br>867<br>878<br>883 | 856<br>877<br>873<br>883<br>886 | 856<br>882<br>881<br>888<br>897 | 851<br>878<br>883<br>890<br>894 | 848<br>881<br>888<br>890<br>891 | 892<br>878<br>888<br>890<br>897 | 872<br>883<br>883<br>889<br>897 | 851<br>580<br>883<br>888<br>894 | 866<br>876<br>880<br>888<br>891 | 868<br>866<br>868<br>878<br>884 | | 16<br>17<br>18<br>19**<br>20* | 891<br>889<br>899<br>892<br>883 | 892<br>889<br>894<br>892<br>880 | 892<br>891<br>899<br>888<br>880 | 891<br>892<br>894<br>890<br>880 | 894<br>894<br>897<br>892<br>885 | 899<br>896<br>894<br>905<br>888 | 899<br>894<br>897<br>898<br>892 | 897<br>889<br>896<br>882<br>890 | 894<br>884<br>887<br>888<br>885 | 884<br>877<br>874<br>872<br>872 | 868<br>868<br>870<br>854<br>861 | 866<br>858<br>862<br>823<br>859 | 868<br>860<br>863<br>816<br>859 | 868<br>876<br>875<br>828<br>862 | 874<br>887<br>871<br>854<br>869 | 884<br>894<br>869<br>872<br>880 | 889<br>899<br>885<br>872<br>885 | 889<br>902<br>892<br>888<br>890 | 899<br>891<br>893<br>890<br>895 | 899<br>899<br>906<br>885<br>898 | 899<br>905<br>906<br>890<br>897 | 889<br>899<br>921<br>885<br>900 | 889<br>894<br>913<br>890<br>903 | 889<br>891<br>911<br>895<br>892 | 887<br>888<br>890<br>877<br>883 | | 21<br>22<br>23<br>24*<br>25 | 894<br>901<br>901<br>886<br>908 | 895<br>898<br>914<br>886<br>918 | 895<br>891<br>891<br>886<br>918 | 895<br>891<br>907<br>886<br>913 | 896<br>894<br>912<br>886<br>904 | 898<br>891<br>912<br>886<br>900 | 902<br>889<br>910<br>886<br>897 | 906<br>886<br>896<br>879<br>892 | 909<br>888<br>868<br>862<br>890 | 900<br>878<br>854<br>860<br>880 | 888<br>873<br>858<br>855<br>876 | 872<br>865<br>858<br>855<br>874 | 867<br>867<br>860<br>866<br>874 | 869<br>878<br>865<br>866<br>884 | 881<br>887<br>870<br>871<br>890 | 891<br>891<br>873<br>882<br>897 | 899<br>891<br>883<br>887<br>897 | 912<br>899<br>887<br>894<br>908 | 912<br>893<br>896<br>892<br>913 | 912<br>899<br>901<br>897<br>910 | 927<br>896<br>889<br>902<br>897 | 907<br>901<br>886<br>904<br>880 | 895<br>912<br>886<br>902<br>871 | 899<br>891<br>889<br>902<br>882 | 897<br>890<br>886<br>882<br>895 | | 26**<br>27<br>28<br>29<br>30 | 913<br>882<br>890 | 902<br>880<br>891 | 908<br>874<br>893 | 882<br>882<br>893 | 882<br>887<br>893 | 863<br>884<br>893<br>—<br>896 | 871<br>884<br>895<br>—<br>867 | 866<br>882<br>9°3<br>—<br>875 | 846<br>875<br>901<br>—<br>869 | 830<br>863<br>888<br>—<br>856 | 828<br>861<br>—<br>837 | 825<br>854<br>—<br>832 | 828<br>849<br>—<br>850<br>830 | 830<br>850<br> | 835<br>862<br>862<br>863 | 846<br>857<br>870<br>878 | 856<br>870<br>878<br>878 | 866<br>883<br> | 877<br>891<br>—<br>890 | 892<br>893<br>893 | 897<br>897<br>—<br>891 | 882<br>889<br>—<br>906 | 882<br>891<br><br>903 | 882<br>890<br>—<br>905 | 866<br>876<br>— | | Mean | 909 | 909<br>891 | 905<br>891 | $\frac{893}{889}$ | 889 | 890 | 889 | 885 | 877 | 864 | 854 | 849 | 849 | 850<br><br>856 | 858 | 858 | 879 | 9 <sup>2</sup> 4<br>888 | 899<br>892 | 892 | 9°4<br>895 | 873 | 884 | 904<br>892 | 879<br>880 | | Mean* | 883 | 883 | 885 | 883 | 885 | 887 | 887 | 884 | 873 | 859 | 850 | 849 | 855 | 859 | 867 | 878 | 883 | 890 | 891 | 893 | 895 | 895 | 894 | 891 | 879 | | Mean** | 896 | 887 | 892 | 889 | 886 | 885 | 878 | 882 | 869 | 847 | 838 | 832 | 827 | 834 | 849 | 854 | 859 | 868 | 880 | 878 | 887 | 878 | 875 | 883 | 868 | | | | | | | Тавг | E II | ——<br>—Но | URLY | MEA | NS OF | Nor | тн С | OMPO | NENT | OF M | AGNF | ric F | ORCE- | | ——inued | ··········· | | | <u> </u> | ··· | |---------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|----------------------------------| | Ор | 13 | h 21 | n 31 | 4 | | | | | | | | | on, 13 | | | <del></del> | | | 8h 19 | | | 1 <sup>h</sup> 25 | 2h 23 | 3h 24 | h | | May. | | | | | | | | | | 17000 | <br>)γ+Τa | ıbular | Quant | ities. | | | | | | | | | | | Mean. | | <u>-</u> | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | 1**<br>2<br>3<br>4<br>5 | 922y<br>896<br>907<br>902<br>897 | 9127<br>898<br>901<br>899<br>897 | 9017<br>888<br>901<br>897<br>908 | 922y<br>896<br>907<br>908<br>910 | 9057<br>898<br>900<br>906<br>913 | 8917<br>901<br>902<br>897<br>902 | 8787<br>900<br>907<br>897<br>882 | 8867<br>888<br>906<br>892<br>867 | 8817<br>888<br>899<br>892<br>867 | 8717<br>881<br>887<br>882<br>872 | 8677<br>871<br>872<br>866<br>862 | 855y<br>858<br>866<br>851<br>846 | 8637<br>862<br>869<br>839<br>849 | 8717<br>871<br>882<br>846<br>858 | 878y<br>884<br>889<br>851<br>872 | 886y<br>888<br>885<br>861<br>892 | 896y<br>898<br>885<br>882<br>899 | 9097<br>905<br>902<br>892<br>902 | 9157<br>909<br>902<br>897<br>923 | 9077<br>907<br>908<br>897<br>897 | 9017<br>896<br>906<br>897<br>897 | 9127<br>901<br>906<br>897<br>897 | 896y<br>901<br>905<br>897<br>902 | 8967<br>901<br>897<br>897 | 8937<br>891<br>896<br>885<br>888 | | 6<br>7*<br>8*<br>9* | 895<br>896<br>898<br>911<br>901 | 892<br>895<br>898<br>922<br>899 | 892<br>898<br>898<br>909<br>899 | 889<br>898<br>898<br>898<br>899 | 887<br>900<br>900<br>912<br>904 | 901<br>901<br>917<br>910 | 893<br>893<br>896<br>910<br>910 | 888<br>878<br>888<br>899<br>904 | 883<br>873<br>878<br>889<br>901 | 878<br>869<br>862<br>877<br>885 | 873<br>862<br>852<br>868<br>868 | 873<br>860<br>857<br>868<br>866 | 878<br>865<br>862<br>870<br>866 | 867<br>876<br>869<br>874<br>873 | 869<br>892<br>883<br>879<br>884 | 883<br>895<br>898<br>884<br>894 | 888<br>901<br>898<br>897<br>897 | 893<br>903<br>903<br>904<br>901 | 903<br>901<br>908<br>908 | 898<br>901<br>903<br>910<br>904 | 895<br>906<br>903<br>901<br>901 | 898<br>907<br>903<br>902<br>902 | 898<br>909<br>903<br>907<br>904 | 900<br>903<br>903<br>910 | 888<br>891<br>890<br>897<br>895 | | 11<br>12<br>13<br>14 | 904<br>910<br>905<br>902<br>905 | 901<br>889<br>895<br>909<br>901 | 901<br>889<br>900<br>909<br>893 | 902<br>891<br>902<br>909<br>896 | 901<br>899<br>913<br>909<br>896 | 904<br>901<br>911<br>909<br>894 | 889<br>897<br>913<br>902<br>881 | 889<br>891<br>902<br>885<br>870 | 879<br>866<br>895<br>880<br>862 | 887<br>862<br>882<br>859<br>870 | 883<br>850<br>859<br>854<br>868 | 879<br>856<br>859<br>854<br>860 | 887<br>858<br>859<br>849<br>865 | 885<br>873<br>869<br>854<br>865 | 883<br>881<br>882<br>869<br>870 | 899<br>884<br>888<br>884<br>884 | 894<br>897<br>890<br>900<br>924 | 897<br>901<br>905<br>904<br>927 | 901<br>910<br>900<br>911<br>920 | 910<br>910<br>900<br>906<br>906 | 920<br>904<br>900<br>911<br>901 | 901<br>904<br>900<br>913<br>912 | 901<br>910<br>900<br>896<br>896 | 904<br>904<br>900<br>911<br>896 | 896<br>889<br>893<br>891<br>890 | | 16**<br>17**<br>18**<br>19** | 903<br>829<br>871<br>877<br>887 | 891<br>819<br>861<br>882<br>861 | 886<br>850<br>861<br>861<br>871 | 886<br>819<br>846<br>861<br>871 | 889<br>817<br>861<br>861<br>866 | 886<br>824<br>861<br>861<br>863 | 881<br>819<br>863<br>859<br>861 | 876<br>803<br>866<br>853<br>859 | 870<br>793<br>849<br>851<br>851 | 876<br>809<br>837<br>840<br>846 | 870<br>814<br>848<br>846<br>835 | 876<br>809<br>838<br>856<br>851 | 876<br>822<br>836<br>859<br>853 | 876<br>834<br>853<br>861<br>856 | 891<br>826<br>849<br>890<br>864 | 889<br>865<br>882<br>897<br>871 | 903<br>860<br>873<br>890<br>873 | 922<br>865<br>892<br>882<br>882 | 945<br>883<br>894<br>911<br>882 | 920<br>917<br>889<br>906<br>913 | 896<br>896<br>882<br>884<br>887 | 850<br>872<br>902<br>882<br>882 | 829<br>879<br>892<br>882<br>883 | 839<br>892<br>864<br>880<br>888 | 884<br>842<br>865<br>875<br>869 | | 2 I<br>2 2<br>2 3<br>2 4<br>2 5 | 874<br>893<br>888<br>886<br>894 | 883<br>888<br>870<br>884<br>889 | 883<br>875<br>874<br>886<br>891 | 862<br>869<br>880<br>884<br>892 | 860<br>870<br>874<br>882<br>894 | 852<br>874<br>872<br>882<br>892 | 852<br>868<br>862<br>875<br>889 | 847<br>852<br>867<br>873<br>884 | 841<br>852<br>859<br>871<br>873 | 841<br>860<br>852<br>868<br>863 | 841<br>864<br>852<br>868<br>865 | 847<br>852<br>850<br>868<br>875 | 857<br>855<br>852<br>865<br>876 | 860<br>862<br>852<br>873<br>878 | 862<br>862<br>860<br>876<br>889 | 864<br>862<br>866<br>884<br>886 | 868<br>867<br>872<br>889<br>894 | 878<br>878<br>878<br>894<br>889 | 883<br>883<br>883<br>894<br>894 | 888<br>888<br>883<br>894<br>894 | 890<br>888<br>884<br>904<br>889 | 888<br>893<br>884<br>904<br>889 | 901<br>903<br>886<br>899<br>889 | 893<br>898<br>884<br>899<br>889 | 867<br>873<br>870<br>883<br>886 | | 26*<br>27*<br>28<br>29<br>30 | 884<br>890<br>895<br>900<br>894 | 884<br>890<br>890<br>897<br>894 | 884<br>890<br>892<br>903<br>880 | 886<br>890<br>893<br>905<br>875 | 889<br>895<br>900<br>910<br>881 | 889<br>893<br>898<br>912<br>880 | 884<br>890<br>895<br>905<br>880 | 879<br>885<br>892<br>905<br>871 | 875<br>874<br>885<br>902<br>857 | 876<br>866<br>877<br>895<br>855 | 882<br>872<br>869<br>885<br>853 | 871<br>874<br>869<br>874<br>850 | 863<br>876<br>866<br>880<br>855 | 863<br>874<br>864<br>890<br>873 | 873<br>869<br>867<br>895<br>883 | 879<br>874<br>874<br>882<br>873 | 889<br>883<br>883<br>885<br>883 | 889<br>890<br>890<br>895<br>888 | 889<br>897<br>900<br>911<br>886 | 893<br>900<br>905<br>904<br>901 | 893<br>895<br>905<br>886<br>896 | 890<br>895<br>903<br>881<br>893 | 890<br>895<br>903<br>886<br>889 | 890<br>895<br>903<br>886<br>886 | 883<br>885<br>888<br>895<br>878 | | 3 r | 884 | 886 | 888 | 886 | 886 | 891 | 890 | 881 | 877 | 865 | 865 | 863 | 861 | 855 | 860 | 865 | 870 | 894 | 901 | 901 | 896 | 891 | 886 | 886 | 880 | | Mean | 894 | 890 | 889 | 888 | 890 | 889 | 885 | 878 | 871 | 866 | 861 | 859 | 861 | 866 | 874 | 881 | 888 | 895 | 901 | 902 | 897 | 895 | 894 | 893 | 884 | | Mean*<br>Mean** | 896<br> | 898 | 896 | 894 | 899 | 900 | 895<br><br>860 | 886 | 878 | 870 | 867 | 866 | 867 | 871 | 879 | 886 | 894 | 898 | 900 | 901 | 900<br>892 | 899 | 901<br>876 | 898 | 889<br><br>872 | | June. | - | 1 07. | 0/2 | 1 007 | 1 007 | 7 004 | 800 | | 049 | | | | Quant | | 1 007 | 1 004 | 1 004 | 7 094 | 910 | 1 900 | 1 092 | 1 004 | 1 0/0 | | Mean. | | 1<br>2*<br>3*<br>4* | 8917<br>892<br>892<br>901<br>901 | 886y<br>892<br>889<br>903 | 8847<br>889<br>890<br>903<br>899 | 886 <b>y</b><br>895<br>892<br>903<br>893 | 8977<br>898<br>895<br>905 | 902y<br>903<br>903<br>905<br>906 | 8977<br>903<br>900<br>901<br>901 | 8917<br>900<br>903<br>896<br>901 | 886y<br>898<br>895<br>893<br>896 | 868y<br>882<br>877<br>886<br>889 | 850y<br>877<br>861<br>879<br>881 | 8577<br>867<br>858<br>883<br>881 | 860y<br>858<br>861<br>886<br>870 | 8717<br>867<br>867<br>891<br>882 | 8747<br>877<br>877<br>899<br>882 | 878y<br>880<br>889<br>904<br>892 | 8877<br>889<br>896<br>898<br>904 | 8917<br>898<br>891<br>901<br>910 | 890y<br>892<br>901<br>906<br>910 | 898y<br>898<br>901<br>909<br>910 | 8937<br>892<br>903<br>912<br>917 | 8947<br>892<br>901<br>912<br>918 | 892y<br>895<br>901<br>906<br>918 | 892y<br>892<br>901<br>901 | 8847<br>888<br>889<br>899 | | 6<br>7<br>8<br>9**<br>10** | 910<br>915<br>903<br>903<br>935 | 910<br>897<br>908<br>905<br>894 | 904<br>902<br>905<br>905<br>927 | 909<br>904<br>906<br>908<br>935 | 913<br>913<br>916<br>911<br>927 | 916<br>913<br>919<br>914<br>904 | 913<br>907<br>908<br>911<br>894 | 907<br>902<br>896<br>904<br>866 | 902<br>897<br>883<br>897<br>809 | 884<br>887<br>872<br>889<br>796 | 871<br>872<br>867<br>875<br>793 | 863<br>862<br>850<br>875<br>801 | 876<br>867<br>864<br>873 | 871<br>883<br>864<br>884<br>848 | 887<br>891<br>890<br>894<br>855 | 884<br>898<br>896<br>906<br>853 | 894<br>9°5<br>9°3<br>923<br>848 | 902<br>911<br>911<br>937<br>858 | 902<br>908<br>916<br>925<br>858 | 913<br>908<br>914<br>920<br>868 | 913<br>910<br>914<br>909<br>870 | 910<br>908<br>914<br>909<br>878 | 913<br>906<br>911<br>909<br>875 | 915<br>908<br>908<br>950<br>871 | 899<br>899<br>897<br>906<br>864 | | 11** 12** 13 14 15** | 863<br>895<br>900<br>894<br>892 | 863<br>869<br>901<br>896<br>892 | 853<br>895<br>891<br>906<br>897 | 863<br>895<br>875<br>891<br>895 | 885<br>849<br>875<br>894<br>895 | 883<br>869<br>877<br>891<br>887 | 869<br>864<br>873<br>869<br>893 | 859<br>859<br>865<br>867<br>876 | 854<br>843<br>857<br>863<br>866 | 843<br>849<br>853<br>844<br>876 | 828<br>864<br>853<br>844<br>866 | 843<br>890<br>863<br>831<br>845 | 843<br>890<br>870<br>847<br>856 | 859<br>900<br>870<br>875<br>861 | 864<br>895<br>879<br>870<br>876 | 854<br>885<br>888<br>868<br>887 | 859<br>890<br>891<br>873<br>912 | 869<br>885<br>901<br>884<br>912 | 880<br>895<br>906<br>894<br>918 | 900<br>895<br>906<br>892<br>943 | 895<br>892<br>896<br>894<br>902 | 900<br>877<br>896<br>890<br>897 | 900<br>876<br>894<br>889<br>897 | 900<br>900<br>888<br>902<br>902 | 868<br>880<br>882<br>878<br>889 | | 16<br>17<br>18<br>19<br>20 | 887<br>916<br>888<br>909<br>899 | 9°5<br>9°3<br>888<br>899<br>899 | 887<br>896<br>888<br>894<br>901 | 866<br>888<br>888<br>896<br>897 | 881<br>888<br>896<br>901<br>899 | 899<br>879<br>892<br>902<br>899 | 892<br>879<br>886<br>892<br>897 | 869<br>877<br>869<br>882<br>891 | 853<br>877<br>857<br>874<br>878 | 856<br>877<br>869<br>870<br>871 | 853<br>872<br>877<br>868<br>871 | 852<br>865<br>877<br>871<br>872 | 866<br>869<br>875<br>872<br>870 | 861<br>879<br>880<br>875<br>874 | 892<br>877<br>890<br>881<br>879 | 897<br>898<br>896<br>889<br>890 | 887<br>898<br>897<br>895<br>898 | 912<br>908<br>905<br>906<br>905 | 912<br>916<br>909<br>904<br>910 | 916<br>929<br>917<br>901<br>910 | 910<br>908<br>911<br>899<br>907 | 908<br>903<br>907<br>897<br>912 | 906<br>900<br>914<br>899<br>910 | 919<br>893<br>904<br>897<br>918 | 887<br>891<br>891<br>891 | | 21<br>22<br>23<br>24<br>25 | 9°7<br>9°5<br>9°3<br>9°3 | 890<br>905<br>903<br>907<br>905 | 893<br>902<br>901<br>911<br>904 | 908<br>901<br>911<br>910 | 905<br>905<br>907<br>919<br>914 | 910<br>906<br>906<br>908<br>912 | 905<br>904<br>896<br>907<br>902 | 898<br>890<br>889<br>892<br>892 | 888<br>874<br>880<br>881<br>884 | 871<br>864<br>870<br>876<br>884 | 869<br>875<br>865<br>876<br>881 | 874<br>875<br>868<br>874<br>883 | 874<br>875<br>868<br>881<br>886 | 890<br>875<br>880<br>878<br>889 | 884<br>880<br>891<br>892<br>905 | 884<br>889<br>899<br>895<br>904 | 890<br>901<br>901<br>892<br>908 | 910<br>903<br>897<br>902<br>917 | 914<br>906<br>901<br>902<br>919 | 908<br>901<br>901<br>910<br>917 | 902<br>901<br>903<br>906<br>915 | 906<br>901<br>901<br>904<br>915 | 912<br>901<br>901<br>905<br>919 | 910<br>901<br>901<br>907<br>919 | 895<br>902<br>893<br>897<br>904 | | 26<br>27<br>28<br>29*<br>30* | 917<br>896<br>905<br>906<br>907 | 917<br>893<br>908<br>906<br>905 | 917<br>900<br>904<br>902<br>905 | 917<br>903<br>906<br>904<br>903 | 916<br>905<br>908<br>907<br>905 | 913<br>901<br>909<br>908<br>905 | 913<br>887<br>904<br>904<br>903 | 908<br>877<br>899<br>896<br>895 | 895<br>867<br>892<br>886<br>893 | 887<br>862<br>880<br>881<br>882 | 882<br>857<br>876<br>873<br>866 | 877<br>860<br>868<br>873<br>862 | 877<br>869<br>868<br>873<br>862 | 887<br>877<br>878<br>875<br>862 | 893<br>891<br>886<br>885 | 901<br>903<br>896<br>894 | 907<br>911<br>901<br>902 | 907<br>915<br>904<br>906 | 924<br>915<br>904<br>914 | 919<br>913<br>907<br>914<br>911 | 903<br>913<br>907<br>909<br>910 | 908<br>908<br>909<br>909<br>903 | 896<br>908<br>911<br>910<br>900 | 900<br>903<br>909<br>907<br>902 | 902<br>893<br>897<br>899<br>894 | | Mean | 100 | 898 | 899 | 898 | 901 | 901 | 896 | 887 | 877 | 870 | 865 | 864 | 869 | 875 | 884 | 889 | 892 | 902 | 905 | 908 | 904 | 903 | 902 | 904 | 891 | | Mean*<br>Mean** | 898 | 899 | 898 | 899 | 893 | 905<br>891 | 886 | 898 | 893 | 882 | 845 | 869<br>851 | 868 | 872 | 885 | 892 | 896 | 899 | 895 | 907 | 893 | 892 | 902<br>891 | 901 | 894 | | | | | | | | | | , , | J 1 1 | J - 1 | 10 | J - | | - / - 1 | // | | · · · | | 101 | | 131 | 7~ | - 7 * 1 | 2~2 l | 001 | | | | | <del></del> | | Таві | E II. | .—Но | URLY | MEA | NS OF | Nor | тн С | OMPO | NENT | of M | AGNE | тіс F | ORCE- | -cont | inued | | | | | | |----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | 0ъ | 1 | h 21 | h · 31 | 4 h | 51 | 6 | h 7 | h 8 | 3h 9 | h 10 | h 11 | h No | oon. 1 | 3h 1 | 4h ] | 15h 1 | 6 <sup>h</sup> 1 | 7h 1 | 8h 1 | 9h 2 | 20h 2 | 1 <sup>h</sup> 2 | 2h 2 | 31 2 | 4h | | July. | | | | | | | | | | 170 | 000 γ+ | -Tabu | lar Qu | antitie | es. | 1 | | | | | | | | Ŋ | Mean. | | | 0000 | 898y | 902y | 904y | 910y | 909y | 90 <b>2</b> y | 887γ | 880y | 877y | 870y | 864y | 846y | 862y | 868y | 9227 | 922y | 880y | 906y | 902y | 8997 | 907y | 907γ | 905γ | 893y | | 1<br>2<br>3<br>4<br>5 | 900y<br>907<br>886<br>898<br>901 | 903<br>886<br>903<br>899 | 902)<br>905<br>894<br>908<br>899 | 9047<br>901<br>898<br>899 | 911<br>898<br>900<br>901 | 909<br>909<br>898<br>898<br>907 | 902<br>902<br>887<br>880<br>897 | 895<br>879<br>879<br>885 | 886<br>879<br>882<br>878 | 880<br>872<br>881<br>881 | 880<br>856<br>878<br>878 | 878<br>856<br>878<br>876 | 873<br>854<br>876<br>879 | 876<br>868<br>865<br>869 | 876<br>877<br>878<br>888 | 889<br>897<br>890<br>896 | 889<br>920<br>883<br>897 | 897<br>910<br>893<br>894 | 911<br>910<br>909<br>908 | 905<br>913<br>911 | 909<br>908<br>909<br>902 | 907<br>900<br>904<br>900 | 886<br>898<br>907<br>903 | 876<br>898<br>907<br>902 | 894<br>889<br>892<br>893 | | 6<br>7*<br>8**<br>9 | 900<br>901<br>913<br>907 | 900<br>901<br>909<br>896<br>894 | 898<br>901<br>909<br>893<br>892 | 900<br>901<br>913<br>896<br>894 | 900<br>901<br>903<br>899<br>892 | 897<br>899<br>903<br>881<br>890 | 891<br>890<br>902<br>879<br>892 | 885<br>882<br>899<br>870<br>882 | 879<br>871<br>886<br>865<br>871 | 876<br>861<br>876<br>858<br>866 | 879<br>865<br>876<br>855<br>863 | 870<br>859<br>876<br>841<br>871 | 868<br>867<br>868<br>865<br>880 | 872<br>875<br>876<br>866<br>884 | 877<br>887<br>868<br>877<br>892 | 891<br>893<br>881<br>886<br>892 | 884<br>893<br>902<br>903<br>894 | 904<br>901<br>917<br>905<br>903 | 902<br>911<br>924<br>915<br>913 | 910<br>911<br>912<br>913<br>923 | 908<br>916<br>896<br>934<br>921 | 902<br>923<br>894<br>908<br>912 | 900<br>925<br>898<br>894<br>899 | 901<br>930<br>899<br>900<br>894 | 891<br>894<br>896<br>888<br>892 | | 11**<br>12<br>13 | 888<br>898<br>894<br>916 | 872<br>897<br>910<br>900 | 888<br>889<br>905<br>898 | 895<br>889<br>899<br>906 | 883<br>882<br>901<br>908 | 885<br>886<br>894<br>906 | 885<br>882<br>887<br>895 | 883<br>870<br>873<br>887 | 870<br>863<br>865<br>885 | 853<br>855<br>863<br>880 | 846<br>858<br>862<br>874 | 853<br>865<br>856<br>867<br>857 | 853<br>871<br>868<br>866<br>863 | 867<br>882<br>864<br>864<br>857 | 881<br>889<br>895<br>874<br>867 | 888<br>889<br>916<br>880<br>877 | 888<br>896<br>918<br>890<br>891 | 891<br>913<br>906<br>901<br>894 | 908<br>898<br>914<br>933<br>899 | 912<br>905<br>913<br>898<br>901 | 912<br>915<br>906<br>907<br>896 | 893<br>915<br>900<br>927<br>898 | 888<br>905<br>900<br>920<br>896 | 901<br>900<br>909<br>904<br>896 | 883<br>888<br>892<br>892<br>884 | | 15<br>16<br>17<br>18<br>19* | 896<br>889<br>889<br>903<br>889 | 889<br>887<br>905<br>889 | 901<br>893<br>889<br>914<br>889 | 909<br>892<br>890<br>919<br>891 | 9°4<br>889<br>895<br>912<br>899 | 894<br>897<br>897<br>903<br>899 | 886<br>894<br>887<br>896<br>889 | 869<br>882<br>876<br>879<br>880 | 849<br>866<br>865<br>867<br>873 | 855<br>854<br>857<br>865<br>871 | 857<br>856<br>857<br>851<br>868 | 861<br>864<br>848<br>861 | 858<br>877<br>857<br>860 | 866<br>875<br>862<br>866 | 885<br>879<br>869<br>873 | 889<br>888<br>884<br>887 | 900<br>893<br>889<br>891 | 908<br>898<br>894<br>897 | 913<br>901<br>894<br>899 | 908<br>898<br>899<br>897 | 895<br>903<br>897<br>897 | 897<br>906<br>894<br>891 | 894<br>909<br>891<br>892 | 897<br>914<br>889<br>890 | 886<br>887<br>887<br>881 | | 20* 21* 22* 23 24 | 900<br>901<br>896<br>901 | 902<br>901<br>892<br>900 | 895<br>902<br>901<br>892<br>898 | 895<br>900<br>901<br>897<br>900 | 895<br>896<br>903<br>902<br>903 | 893<br>893<br>901<br>913<br>896 | 881<br>886<br>896<br>907<br>884 | 877<br>886<br>888<br>892<br>882 | 874<br>882<br>875<br>876<br>882 | 869<br>880<br>863<br>871<br>879 | 864<br>874<br>868<br>871<br>875 | 859<br>874<br>880<br>866<br>877 | 859<br>878<br>890<br>871<br>869 | 869<br>880<br>890<br>861<br>875 | 879<br>882<br>892<br>875<br>880 | 895<br>898<br>902<br>879<br>893 | 900<br>896<br>899<br>892<br>895 | 900<br>894<br>894<br>902<br>900 | 900<br>894<br>899<br>904<br>903 | 900<br>893<br>902<br>907<br>914 | 900<br>896<br>902<br>908<br>900 | 898<br>897<br>902<br>910<br>896 | 898<br>901<br>899<br>896<br>896 | 900<br>901<br>899<br>898<br>900 | 887<br>891<br>894<br>891<br>892 | | 25**<br>26<br>27<br>28**<br>29** | 901<br>878<br>869<br>891<br>860 | 901<br>881<br>876<br>891<br>876 | 904<br>883<br>879<br>896<br>874 | 912<br>883<br>895<br>901<br>876 | 925<br>894<br>895<br>898<br>883 | 919<br>904<br>893<br>885<br>891 | 915<br>899<br>882<br>873<br>876 | 896<br>894<br>874<br>877 | 889<br>875<br>862<br>875 | 885<br>864<br>845<br>854 | 883<br>843<br>832<br>821<br>840 | 873<br>843<br>841<br>802<br>834 | 873<br>843<br>848<br>839<br>840 | 873<br>843<br>855<br>844<br>847 | 892<br>851<br>862<br>849<br>864 | 902<br>864<br>874<br>870<br>876 | 898<br>886<br>885<br>904<br>890 | 894<br>895<br>880<br>917<br>904 | 909<br>905<br>894<br>925<br>902 | 894<br>895<br>887<br>900<br>895 | 894<br>893<br>896<br>880<br>878 | 894<br>886<br>894<br>917<br>871 | 878<br>879<br>894<br>883<br>876 | 878<br>872<br>898<br>857<br>879 | 895<br>877<br>875<br>877<br>873 | | 30 | 884<br>889 | 876<br>885 | 884<br>887 | 884<br>880 | 882<br>871 | 883<br>880 | 851 | 851 | 872<br>864 | 856<br>846 | 835<br>848 | 832 | 835<br>851 | 849<br>857 | 846<br>857 | 856<br>880 | 8 <sub>74</sub><br>88 <sub>3</sub> | 885<br>888 | 887<br>894 | 88 <sub>7</sub><br>899 | 887<br>899 | 887 | 888 | 896<br>897 | 8 <sub>7</sub> 0 | | Mean | 895 | 894 | 896 | 898 | 898 | 897 | 889 | 88 r | 874 | 866 | 861 | 859 | 862 | 866 | 875 | 888 | 895 | 899 | 903 | 904 | 902 | 901 | 896 | 896 | 887 | | Mean* | 896 | 897 | 898 | 898 | 899 | 897 | 888 | 883 | 875 | 869 | 868 | 867 | 871 | 876 | 883 | 895 | 896 | 897 | 901 | 901 | 902 | 902 | 903 | 904 | 890 | | Mean** | 891 | 890 | 894 | 899 | 898 | 897 | 890 | 889 | 880 | 869 | 853 | 848 | 854 | 862 | 871 | 883 | 896 | 905 | 914 | 903 | 892 | 894 | 885 | 883 | 885<br>Mean. | | Augus | t | | <u> </u> | 1 | | | | | | 1700 | ν γ <sub>+</sub> | Tabula | ar Qua | intities | s.<br> | <br> | | 1 | | | 1 | | | | Tean. | | 1*<br>2<br>3<br>4<br>5 | 902y<br>899<br>873<br>889<br>903 | 8857<br>899<br>877<br>885<br>893 | 8887<br>895<br>886<br>884<br>888 | 890y<br>894<br>871<br>884<br>891 | 890y<br>898<br>885<br>884<br>885 | 8857<br>901<br>878<br>881<br>879 | 8777<br>880<br>869<br>871<br>872 | 8717<br>858<br>863<br>867<br>872 | 8647<br>875<br>856<br>864<br>867 | 8547<br>872<br>842<br>861<br>870 | 8547<br>870<br>827<br>859<br>867 | 8577<br>872<br>819<br>867<br>862 | 8597<br>872<br>852<br>874<br>853 | 8577<br>870<br>864<br>872<br>851 | 869y<br>867<br>869<br>882<br>872 | 882y<br>873<br>868<br>882<br>882 | 8907<br>898<br>876<br>888<br>893 | 8957<br>888<br>892<br>888<br>883 | 8877<br>897<br>890<br>903<br>907 | 892y<br>898<br>892<br>898<br>899 | 896y<br>894<br>892<br>914<br>889 | 8967<br>883<br>892<br>893<br>889 | 8937<br>878<br>886<br>882<br>878 | 8967<br>880<br>884<br>898<br>883 | 880y<br>884<br>871<br>882<br>880 | | 6<br>7<br>8<br>9 | 881<br>888<br>900<br>883<br>886 | 878<br>884<br>905<br>883<br>895 | 880<br>889<br>884<br>890<br>886 | 894<br>891<br>879<br>873<br>881 | 886<br>893<br>884<br>885<br>889 | 883<br>893<br>884<br>888<br>884 | 880<br>887<br>855<br>867<br>878 | 881<br>876<br>841<br>856<br>874 | 863<br>859<br>839<br>844<br>868 | 842<br>851<br>839<br>846<br>864 | 863<br>859<br>823<br>849<br>864 | 858<br>855<br>830<br>849<br>861 | 850<br>859<br>836<br>846<br>862 | 832<br>869<br>844<br>854<br>871 | 852<br>876<br>870<br>867<br>874 | 881<br>888<br>891<br>886<br>878 | 892<br>884<br>901<br>902<br>890 | 894<br>889<br>896<br>905<br>886 | 908<br>905<br>906<br>897<br>897 | 897<br>898<br>906<br>895<br>905 | 896<br>905<br>896<br>895<br>915 | 901<br>903<br>906<br>918<br>912 | 888<br>897<br>919<br>899<br>898 | 875<br>910<br>901<br>884<br>887 | 873<br>884<br>876<br>877<br>884 | | 11<br>12<br>13<br>14<br>15** | 898<br>896<br>892<br>889 | 903<br>895<br>896<br>889<br>880 | 885<br>891<br>899<br>889<br>880 | 885<br>881<br>896<br>887<br>880 | 893<br>887<br>892<br>889<br>880 | 895<br>883<br>888<br>892<br>883 | 885<br>863<br>888<br>893<br>884 | 877<br>880<br>884<br>889<br>882 | 858<br>874<br>876<br>884<br>874 | 862<br>859<br>870<br>864<br>861 | 867<br>834<br>872<br>864<br>857 | 867<br>834<br>878<br>869 | 851<br>855<br>879<br>864<br>856 | 854<br>866<br>869<br>869<br>857 | 851<br>873<br>871<br>869<br>859 | 877<br>880<br>879<br>879<br>880 | 890<br>894<br>892<br>877<br>906 | 896<br>888<br>903<br>892<br>942 | 891<br>894<br>905<br>892<br>1015 | 896<br>892<br>898<br>899<br>924 | 896<br>894<br>900<br>909<br>901 | 894<br>894<br>9°5<br>911<br>875 | 896<br>892<br>908<br>895<br>861 | 898<br>894<br>889<br>888<br>873 | 882<br>879<br>889<br>885<br>887 | | 16**<br>17<br>18*<br>19*<br>20 | 867<br>866<br>880<br>885<br>897 | 857<br>873<br>874<br>885<br>897 | 842<br>874<br>874<br>883<br>894 | 840<br>876<br>874<br>883<br>894 | 840<br>876<br>880<br>883<br>894 | 860<br>871<br>882<br>883<br>894 | 862<br>862<br>876<br>875<br>886 | 862<br>858<br>870<br>868<br>882 | 831<br>848<br>867<br>857<br>870 | 769<br>838<br>861<br>852<br>861 | 767<br>832<br>856<br>852<br>855 | 777<br>832<br>856<br>855<br>851 | 821<br>838<br>859<br>857<br>851 | 829<br>843<br>859<br>857<br>848 | 845<br>849<br>861<br>859<br>840 | 850<br>856<br>870<br>873<br>863 | 848<br>870<br>873<br>883<br>874 | 852<br>880<br>883<br>888<br>882 | 866<br>880<br>885<br>891<br>889 | 874<br>880<br>891<br>893<br>889 | 871<br>882<br>891<br>899<br>889 | 862<br>882<br>891<br>893<br>891 | 866<br>884<br>891<br>896<br>889 | 871<br>882<br>891<br>894<br>882 | 843<br>864<br>875<br>877<br>877 | | 21*<br>22<br>23<br>24<br>25** | 876<br>893<br>884<br>889<br>872 | 866<br>895<br>886<br>887<br>877 | 865<br>898<br>881<br>885<br>882 | 869<br>900<br>878<br>885<br>865 | 876<br>901<br>886<br>885<br>893 | 882<br>895<br>883<br>884<br>893 | 881<br>882<br>884<br>877<br>890 | 866<br>875<br>871<br>861<br>862 | 849<br>859<br>850<br>830<br>829 | 833<br>849<br>845<br>837<br>817 | 835<br>841<br>829<br>838<br>817 | 844<br>840<br>845<br>856<br>801 | 849<br>841<br>850<br>866<br>817 | 856<br>857<br>857<br>846<br>824 | 859<br>876<br>863<br>854<br>817 | 866<br>881<br>871<br>864<br>831 | 877<br>886<br>871<br>872<br>865 | 883<br>876<br>871<br>892<br>867 | 887<br>894<br>886<br>877<br>876 | 893<br>884<br>888<br>877<br>890 | 890<br>883<br>890<br>882<br>888 | 890<br>886<br>890<br>900<br>888 | 890<br>886<br>892<br>861<br>888 | 885<br>886<br>895<br>858<br>898 | 869<br>877<br>873<br>869<br>860 | | 26**<br>27**<br>28<br>29<br>30* | 904<br>889<br>898<br>901 | 893<br>881<br>882<br>886<br>883 | 883<br>879<br>882<br>889<br>883 | 888<br>881<br>880<br>881<br>883 | 873<br>863<br>878<br>881<br>886 | 867<br>885<br>885<br>883<br>891 | 855<br>879<br>882<br>881<br>891 | 834<br>837<br>875<br>881<br>886 | 838<br>837<br>859<br>865<br>877 | 836<br>833<br>846<br>852<br>871 | 818<br>811<br>838<br>839<br>861 | 827<br>811<br>833<br>841<br>863 | 842<br>816<br>828<br>850<br>866 | 848<br>848<br>831<br>858<br>866 | 858<br>848<br>843<br>865<br>869 | 858<br>851<br>859<br>870<br>873 | 863<br>865<br>866<br>876<br>880 | 874<br>875<br>880<br>881<br>887 | 881<br>895<br>888<br>883<br>887 | 899<br>895<br>888<br>891<br>892 | 894<br>888<br>888<br>891<br>894 | 887<br>885<br>888<br>891<br>894 | 894<br>888<br>890<br>889<br>887 | 905<br>892<br>888<br>889<br>908 | 868<br>863<br>870<br>876<br>882 | | 31 | 900 | 887 | 887 | 890 | 892 | 892 | 890 | 884 | 875 | 863 | 866 | 877 | 887 | 882 | 883 | 898 | 888 | 885 | 927 | 898 | 888 | 888 | 893 | 893 | 888 | | Mean | 889 | 886 | 884 | 882 | 884 | 885 | 877 | 869 | 858 | 849 | 845 | 846 | 852 | 855 | 862 | 872 | 881 | 887 | 896 | 894 | 893 | 893 | 889 | 889 | 876 | | Mean* | 887 | 879 | 879 | 880 | 883 | 885 | 880 | 872 | 863 | 854 | 852 | 855 | 858 | 859 | 863 | 873 | 881 | 887 | 887 | 892 | 894 | 893 | 893 | 895 | 877 | | Mean** | 884 | 878 | 873 | 871 | 870 | 878 | 874 | 855 | 842 | 823 | 814 | 804 | 831 | 841 | 845 | 854 | 869 | 882 | 907 | 896 | 888 | 879 | 879 | 888 | 864 | | | | | | | Table | II.— | -Hou | RLY I | MEANS | S OF | Nort | н Сог | MPONE | ONT O | F MA | GNETI | c Fo | RCE— | contin | ıued. | | | | | | |----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------------------------------| | 0, | h 1 | h 2 | h 3 | h 41 | 51 | 6 | h 7: | h 8 | h 9h | 10 | h 11 | h No | on. 13 | 3h 14 | ļh 1 | 5 <sup>h</sup> 1 | 6h 1 | 7h 18 | 3h 1 | 19h 2 | 20h 2 | 21 <sup>h</sup> 2 | 2h 2 | 3h 2 | 4ь | | Septem | ber. | | | | | | **** | | | 17000 | )γ+Ta | bular | Quant | ities. | | | | | | | | | | 1 | Mean. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1**<br>2<br>3<br>4<br>5 | 896y<br>897<br>910<br>910 | 9117<br>884<br>890<br>913<br>901 | 892y<br>886<br>893<br>907<br>885 | 892y<br>890<br>890<br>895<br>885 | 8837<br>890<br>886<br>884<br>880 | 8787<br>879<br>879<br>879<br>880 | 8657<br>872<br>879<br>870<br>873 | 8577<br>853<br>866<br>867<br>865 | 8377<br>843<br>862<br>852<br>854 | 8447<br>858<br>853<br>844<br>842 | 8477<br>853<br>855<br>839<br>849 | 852y<br>864<br>869<br>821<br>854 | 8737<br>869<br>872<br>831<br>859 | 868y<br>869<br>876<br>858<br>867 | 842y<br>874<br>879<br>877<br>859 | 8787<br>876<br>879<br>883<br>875 | 8757<br>884<br>886<br>880<br>887 | 8927<br>890<br>888<br>894<br>889 | 8857<br>897<br>895<br>887<br>916 | 8947<br>895<br>895<br>901<br>906 | 8897<br>898<br>897<br>911<br>894 | 884y<br>897<br>901<br>896<br>891 | 8937<br>895<br>897<br>908<br>887 | 9037<br>913<br>910<br>891<br>891 | 876y<br>880<br>884<br>883<br>879 | | 6<br>7<br>8<br>9<br>10 | 885<br>876<br>909<br>869<br>887 | 885<br>878<br>905<br>867<br>889 | 883<br>881<br>892<br>856<br>887 | 883<br>886<br>894<br>856<br>889 | 883<br>879<br>895<br>872<br>887 | 885<br>881<br>881<br>882<br>889 | 885<br>878<br>888<br>885<br>883 | 875<br>871<br>876<br>889<br>875 | 859<br>855<br>832<br>898<br>867 | 852<br>850<br>821<br>908<br>858 | 854<br>857<br>834<br>908<br>856 | 859<br>850<br>899<br>861<br>856 | 865<br>860<br>899<br>872<br>865 | 885<br>868<br>897<br>882<br>869 | 887<br>868<br>892<br>885<br>875 | 892<br>874<br>876<br>887<br>887 | 881<br>892<br>866<br>889<br>893 | 907<br>895<br>860<br>900<br>898 | 899<br>888<br>866<br>903<br>898 | 881<br>881<br>878<br>900<br>903 | 892<br>881<br>876<br>906<br>898 | 897<br>886<br>871<br>908<br>900 | 915<br>886<br>871<br>902<br>900 | 897<br>895<br>868<br>887<br>894 | 88 <sub>3</sub><br>876<br>877<br>886<br>88 <sub>3</sub> | | 11* 12* 13 14 | 889<br>892<br>904<br>895<br>889 | 891<br>885<br>901<br>895<br>895 | 896<br>888<br>899<br>895<br>889 | 889<br>888<br>911<br>893<br>889 | 893<br>890<br>904<br>891<br>886 | 893<br>890<br>897<br>889<br>882 | 889<br>884<br>890<br>884<br>882 | 887<br>876<br>888<br>874<br>881 | 877<br>868<br>873<br>869<br>869 | 868<br>859<br>866<br>848<br>855 | 862<br>857<br>855<br>829<br>843 | 862<br>859<br>855<br>837<br>841 | 868<br>868<br>857<br>840<br>848 | 873<br>876<br>855<br>858<br>850 | 878<br>883<br>859<br>860<br>863 | 883<br>886<br>859<br>867<br>869 | 888<br>890<br>868<br>866<br>879 | 894<br>901<br>883<br>886<br>884 | 897<br>904<br>897<br>889<br>895 | 902<br>904<br>895<br>900<br>897 | 906<br>907<br>898<br>898<br>897 | 901<br>904<br>897<br>895<br>896 | 909<br>911<br>895<br>891<br>898 | 901<br>902<br>895<br>893<br>891 | 887<br>886<br>883<br>877<br>878 | | 16<br>17<br>18**<br>19**<br>20** | 895<br>885<br>878<br>883<br>886 | 884<br>870<br>878<br>883<br>876 | 915<br>882<br>878<br>902<br>876 | 906<br>888<br>880<br>902<br>871 | 885<br>890<br>872<br>902<br>871 | 885<br>885<br>857<br>898<br>871 | 885<br>896<br>847<br>860<br>850 | 880<br>880<br>849<br>845<br>842 | 875<br>880<br>864<br>845<br>817 | 859<br>870<br>849<br>803<br>817 | 854<br>833<br>833<br>777<br>808 | 859<br>818<br>831<br>814<br>803 | 872<br>818<br>824<br>829<br>821 | 875<br>841<br>834<br>814<br>845 | 878<br>841<br>845<br>817<br>850 | 885<br>847<br>839<br>831<br>845 | 880<br>851<br>855<br>848<br>855 | 859<br>851<br>871<br>842<br>855 | 870<br>859<br>881<br>862<br>865 | 882<br>874<br>876<br>862<br>876 | 888.<br>880<br>891<br>875<br>876 | 878<br>875<br>893<br>886<br>898 | 872<br>878<br>881<br>876<br>887 | 880<br>885<br>886<br>871<br>880 | 879<br>866<br>862<br>855<br>856 | | 2 I**<br>22<br>23<br>24<br>25* | 877<br>851<br>874<br>881<br>875 | 877<br>846<br>870<br>883<br>876 | 887<br>846<br>887<br>878<br>873 | 866<br>843<br>892<br>878<br>873 | 898<br>870<br>887<br>880<br>873 | 903<br>870<br>872<br>886<br>876 | 882<br>856<br>862<br>875<br>873 | 799<br>849<br>857<br>860<br>864 | 783<br>835<br>847<br>852<br>852 | 780<br>822<br>839<br>836<br>841 | 780<br>809<br>833<br>810<br>831 | 763<br>811<br>836<br>816<br>829 | 778<br>818<br>847<br>823<br>831 | 780<br>832<br>852<br>839<br>833 | 786<br>846<br>857<br>854<br>833 | 799<br>856<br>844<br>852<br>851 | 861<br>849<br>852<br>841<br>855 | 820<br>859<br>852<br>850<br>866 | 828<br>851<br>873<br>867<br>874 | 877<br>851<br>875<br>871<br>876 | 851<br>882<br>875<br>883<br>876 | 892<br>861<br>878<br>878<br>877 | 828<br>861<br>878<br>883<br>879 | 843<br>869<br>878<br>878<br>879 | 835<br>848<br>863<br>861<br>861 | | 26*<br>27<br>28<br>29<br>30 | 879<br>884<br>887<br>906<br>895 | 879<br>884<br>887<br>901 | 879<br>892<br>897<br>887<br>911 | 882<br>900<br>893<br>887<br>887 | 884<br>905<br>889<br>890<br>869 | 886<br>889<br>890<br>890<br>875 | 884<br>886<br>887<br>888<br>877 | 865<br>884<br>880<br>887<br>875 | 863<br>863<br>869<br>883<br>859 | 858<br>853<br>852<br>862<br>857 | 853<br>845<br>854<br>859<br>858 | 845<br>834<br>857<br>849<br>855 | 846<br>834<br>880<br>849<br>852 | 845<br>840<br>835<br>852<br>850 | 853<br>848<br>859<br>864<br>852 | 861<br>861<br>866<br>877<br>865 | 871<br>858<br>862<br>873<br>898 | 868<br>872<br>875<br>880<br>902 | 879<br>884<br>880<br>873<br>881 | 886<br>884<br>885<br>890<br>891 | 889<br>886<br>890<br>918<br>907 | 889<br>886<br>895<br>877<br>917 | 886<br>886<br>895<br>877<br>894 | 884<br>884<br>901<br>890<br>902 | 871<br>873<br>878<br>875<br>880 | | Mean | 888 | 886 | 887 | 886 | 886 | 883 | 877 | 867 | 857 | 847 | 841 | 842 | 849 | 854 | 859 | 865 | 871 | 876 | 881 | 886 | 891 | 890 | 887 | 888 | 873 | | Mean* | 885 | 888 | 885 | 884 | 883 | 883 | 882 | 875 | 866 | 856 | 849 | 847 | 852 | 855 | 862 | 870 | 877 | 883 | 889 | 893 | 895 | 893 | 897 | 891 | 877 | | Mean** | | 885 | 887 | 882 | 885 | 881 | 861 | 838 | 829 | 819 | 809 | 813 | 825 | 828 | 828 | 838 | 859 | 856 | 864 | 877 | 876 | 888 | 873 | 877 | I <sub>857</sub><br>Mean, | | Octobe | er. | | | | | | | | | 17 | υυυγ+<br> | - labui | ar Qua | intitle | 5•<br> | | 1 | 1 | | i | | I | 1 | 1 | меап.<br> | | 1<br>2**<br>3<br>4<br>5 | 892y<br>892<br>899<br>888<br>886 | 898y<br>895<br>888<br>877<br>886 | 8907<br>885<br>888<br>888<br>886 | 8937<br>880<br>880<br>886<br>881 | 8857<br>880<br>869<br>888<br>886 | 8872<br>890<br>890<br>882<br>891 | 8857<br>895<br>900<br>892<br>894 | 8747<br>888<br>890<br>884<br>886 | 8437<br>876<br>866<br>863<br>875 | 8177<br>845<br>852<br>853<br>870 | 848y<br>841<br>856<br>839<br>860 | 848y<br>851<br>852<br>844<br>855 | 848y<br>856<br>854<br>844<br>860 | 856y<br>862<br>859<br>855<br>870 | 867y<br>866<br>864<br>865<br>870 | 8647<br>883<br>866<br>865<br>865 | 876y<br>874<br>866<br>888<br>875 | 8857<br>895<br>880<br>879<br>881 | 8937<br>890<br>885<br>877<br>877 | 895y<br>890<br>880<br>930<br>886 | 9477<br>906<br>902<br>896<br>904 | 898y<br>895<br>888<br>888<br>917 | 8997<br>890<br>890<br>896<br>886 | 8987<br>910<br>891<br>894<br>891 | 8797<br>881<br>873<br>873<br>881 | | 6<br>7<br>8** | 881<br>892<br>892 | 891<br>878<br>892 | 888<br>885<br>895 | 881<br>895<br>897 | 879<br>887<br>902 | 886<br>889<br>902 | 886<br>892<br>897 | 886<br>892<br>887 | 870<br>885<br>878 | 865<br>882<br>856 | 860<br>861<br>856 | 855<br>856<br>—<br>840 | 849<br>856<br>—<br>843 | 855<br>866<br>—<br>856 | 863<br>864<br> | 870<br>861<br>—<br>866 | 881<br>871<br>—<br>871 | 886<br>882<br>—<br>876 | 886<br>885<br>—<br>878 | 884<br>889<br>—<br>882 | 884<br>902<br>—<br>871 | 888<br>899<br>—<br>872 | 920<br>890<br>—<br>872 | 9°5<br>887<br>—<br>877 | 879<br>881<br>— | | 10 | 883 | 875 | 875 | 875 | 873 | 877 | 877 | 867 | 857 | 846 | 841 | 836 | 841 | 846 | 855 | 862 | 867 | 872 | 877 | 879 | 883 | 879 | 877 | 879 | 867 | | 11* 12* 13* 14* | 875<br>883<br>887<br>889<br>899 | 875<br>883<br>884<br>889<br>897 | 875<br>883<br>880<br>889<br>899 | 877<br>879<br>884<br>889<br>899 | 877<br>886<br>887<br>889<br>901 | 877<br>886<br>887<br>894<br>901 | 877<br>886<br>899<br>896<br>918 | 869<br>883<br>884<br>892<br>910 | 860<br>879<br>880<br>885<br>889 | 851<br>860<br>870<br>873<br>878 | 846<br>855<br>858<br>862<br>858 | 846<br>851<br>852<br>856<br>835 | 848<br>851<br>849<br>858<br>829 | 855<br>857<br>856<br>860<br>832 | 859<br>865<br>863<br>860<br>837 | 865<br>864<br>873<br>868<br>852 | 872<br>867<br>878<br>880<br>825 | 877<br>872<br>884<br>891<br>842 | 879<br>879<br>891<br>897<br>863 | 886<br>883<br>889<br>897<br>879 | 877<br>884<br>889<br>897<br>879 | 893<br>884<br>889<br>899<br>885 | 883<br>889<br>889<br>899<br>885 | 883<br>884<br>889<br>899<br>895 | 870<br>874<br>878<br>884<br>874 | | 16**<br>17**<br>18<br>19<br>20 | 884<br>838<br>864<br>870<br>858 | 884<br>838<br>859<br>870<br>847 | 907<br>827<br>853<br>868<br>853 | 901<br>848<br>853<br>868<br>865 | 859<br>859<br>862<br>868<br>865 | 894<br>843<br>866<br>872<br>870 | 819<br>843<br>864<br>876<br>870 | 817<br>815<br>866<br>864<br>860 | 809<br>815<br>851<br>851<br>828 | 744<br>815<br>830<br>834<br>797 | 734<br>786<br>815<br>839<br>787 | 774<br>807<br>815<br>844<br>813 | 759<br>817<br>830<br>847<br>823 | 774<br>812<br>827<br>854<br>820 | 774<br>807<br>831<br>839<br>818 | 789<br>822<br>848<br>831<br>815 | 794<br>820<br>864<br>839<br>842 | 804<br>838<br>853<br>865<br>851 | 801<br>850<br>851<br>868<br>862 | 824<br>864<br>854<br>868<br>875 | 839<br>888<br>875<br>876<br>868 | 849<br>859<br>891<br>895<br>868 | 839<br>864<br>865<br>895<br>868 | 839<br>864<br>868<br>875<br>886 | 821<br>835<br>852<br>861<br>846 | | 2 I<br>2 2<br>2 3<br>2 4<br>2 5 | 875<br>881<br>881<br>881<br>877 | 870<br>879<br>871<br>883<br>880 | 865<br>876<br>871<br>876<br>877 | 865<br>881<br>873<br>881<br>877 | 865<br>869<br>871<br>883<br>877 | 868<br>871<br>871<br>881<br>882 | 872<br>875<br>873<br>879<br>882 | 860<br>855<br>871<br>869<br>882 | 849<br>850<br>848<br>867<br>877 | 849<br>835<br>829<br>849<br>872 | 839<br>819<br>824<br>829<br>849 | 834<br>809<br>817<br>827<br>836 | 828<br>821<br>814<br>829<br>846 | 834<br>827<br>824<br>832<br>853 | 844<br>827<br>827<br>850<br>867 | 849<br>840<br>835<br>855<br>851 | 854<br>850<br>850<br>867<br>867 | 850<br>859<br>845<br>872<br>872 | 850<br>866<br>845<br>880<br>872 | 869<br>873<br>848<br>879<br>880 | 871<br>871<br>871<br>862<br>880 | 866<br>871<br>871<br>862<br>880 | 871<br>879<br>883<br>874<br>880 | 873<br>894<br>879<br>874<br>884 | 857<br>857<br>854<br>864<br>871 | | 26<br>27*<br>28<br>29<br>30 | 880<br>884<br>881<br>878<br>868 | 874<br>882<br>880<br>873<br>868 | 874<br>882<br>880<br>868<br>870 | 874<br>882<br>880<br>873<br>873 | 874<br>884<br>881<br>873<br>873 | 874<br>882<br>883<br>873<br>873 | 874<br>882<br>883<br>875<br>876 | 874<br>877<br>881<br>873<br>875 | 872<br>872<br>873<br>868<br>868 | 864<br>862<br>868<br>857<br>863 | 856<br>853<br>861<br>842<br>852 | 846<br>851<br>849<br>837<br>852 | 851<br>853<br>842<br>842<br>852 | 856<br>856<br>844<br>845<br>857 | 867<br>862<br>842<br>850<br>864 | 872<br>871<br>831<br>854<br>864 | 882<br>873<br>852<br>863<br>864 | 877<br>881<br>857<br>873<br>876 | 877<br>881<br>863<br>878<br>882 | 882<br>883<br>873<br>868<br>882 | 888<br>883<br>877<br>875<br>884 | 888<br>889<br>885<br>904<br>884 | 888<br>885<br>881<br>894<br>884 | 882<br>883<br>878<br>873<br>900 | 873<br>875<br>868<br>867<br>871 | | 31** | 884 | 874 | 874 | 882 | 876 | 905 | 888 | 845 | 807 | 812 | 830 | 827 | 820 | 819 | 801 | 822 | 843 | 848 | 864 | 879 | 869 | 866 | 858 | 862 | 852 | | Mean | 880 | 878 | 878 | 879 | 878 | 882 | 881 | 872 | 861 | 846 | 839 | 837 | 839 | 844 | 848 | 853 | 860 | 867 | 872 | 878 | 883 | 880 | 882 | 883 | 866 | | Mean* | 884 | 883 | 882 | 882 | 885 | 885 | 886 | 881 | 877 | 863 | 855 | 851 | 852 | 857 | 862 | 868 | 874 | 881 | 885 | 888 | 886 | 891 | 889 | 888 | 876 | | Mean** | 875 | 873 | 873 | 878 | 869 | 883 | 861 | 841 | 827 | 804 | 798 | 815 | 813 | 817 | 812 | 829 | 833 | 846 | 851 | 864 | 875 | 867 | 863 | 869 | 847 | | November | | | | | TA | ABLE | ·<br>II.—] | Hour | LY M | EANS | of N | ORTH | Сом | PONE | NT OF | MAG | NETIC | For | CE <i>c</i> | ontin | ued. | | | | <del></del> | | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------|--------------------------|--------------------------|--------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------|--------------------------|--------------------------|-------------------|--------------------------|--------------------------|-------------------|-----------------------|--------------------------|-------------------|--------------------------|----------------------------------|----------------------------------------| | | 0ъ | 11 | h 21 | 31 | 4 | h 5 | h 6 | h 7 | h 81 | n 91 | 10 | )h 11 | h No | on. 1 | 3h 1 | 4 <sup>h</sup> 1: | 5h 16 | 5h 1 | 7h 1 | 8h 1 | 9h 2 | 0h 2 | 1 <sup>h</sup> 22 | 2h 23 | 3h 2 | 4h | | *** See See See See See See See See See | Novem | ber. | | | | | | _ | | | 170 | 000γ+ | Tabul | ar Qua | ntities | 5. | | | | | | | | | I | Mean. | | 8 | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | 9 88 98 97 88 98 98 98 89 88 98 98 89 88 98 98 89 89 | 2<br>3<br>4 | 864<br>880<br>880 | 864<br>873<br>877 | 864<br>867<br>877 | 864<br>870<br>877 | 872<br>873<br>880 | 874<br>873<br>885 | 874<br>873<br>885 | 872<br>871<br>880 | 847<br>865<br>873 | 843<br>854<br>861 | 834<br>844<br>855 | 841<br>844<br>850 | 843<br>844<br>857 | 838<br>849<br>868 | 844<br>854<br>874 | 850<br>865<br>878 | 852<br>873<br>884 | 870<br>875<br>886 | 873<br>875<br>886 | 875<br>877<br>886 | 875<br>883<br>886 | 875<br>877<br>876 | 875<br>877<br>884 | 880<br>875 | 858y<br>861<br>867<br>876<br>873 | | 1.2 | 7*<br>8<br>9 | 885<br>887<br>888 | 887<br>887<br>886 | 887<br>887<br>888 | 889<br>887<br>888 | 889<br>888<br>890 | 889<br>888<br>896 | 889<br>888<br>899 | 889<br>886<br>897 | 885<br>883<br>893 | 877<br>875<br>888 | 867<br>868<br>883 | 861<br>868<br>870 | 864<br>868<br>876 | 861<br>875<br>878 | 867<br>873<br>886 | 882<br>868<br>888 | 887<br>878<br>885 | 887<br>886<br>886 | 887<br>888<br>890 | 887<br> 888<br> 893 | 889<br>890<br>891 | 887<br>890<br>890 | 887<br>890<br>890 | 887<br>888<br>888 | 878<br>882<br>882<br>888<br>878 | | 27 | 12**<br>13<br>14 | 867<br>861<br>865 | 866<br>859<br>865 | 861<br>870<br>871 | 867<br>859<br>871 | 870<br>856<br>876 | 870<br>880<br>886 | 880<br>873<br>881 | 859<br>838<br>876 | 826<br>833<br>871 | 847<br>854<br>851 | 816<br>854<br>824 | 816<br>849<br>829 | 807<br>830<br>850 | 816<br>847<br>858 | 840<br>851<br>862 | 840<br>859<br>865 | 840<br>880<br>871 | 888<br>870<br>871 | 890<br>864<br>871 | 882<br>860<br>902 | 859<br>865<br>876 | 882<br>883<br>871 | 872<br>883<br>871 | 861<br>862 | 859<br>855<br>860<br>867<br>867 | | 21 | 17<br>18<br>19 | 877<br>890<br>887 | 877<br>883<br>883 | 877<br>886<br>879 | 877<br>878<br>883 | 877<br>881<br>881 | 877<br>890<br>885 | 880<br>883<br>890 | 877<br>878<br>883 | 872<br>875<br>876 | 863<br>867<br>864 | 856<br>860<br>858 | 840<br>860<br>855 | 842<br>856<br>861 | 850<br>850<br>863 | 841<br>854<br>842 | 852<br>860<br>853 | 873<br>867<br>863 | 875<br>870<br>874 | 891<br>873<br>861 | 873<br>880<br>879 | 881<br>888<br>879 | 887<br>885<br>876 | 888<br>885<br>876 | 883 | 866<br>871<br>874<br>872<br>884 | | According Syr | 22<br>23**<br>24 | 894<br>887<br>889<br>855 | 885<br>887<br>855 | 890<br>893 | 890<br>879<br>850 | 895<br>888<br>855 | 903<br>900<br>881<br>857 | 895<br>881<br>855 | 902<br>898<br>881<br>855 | 890<br>890<br>844<br>855 | 875<br>815<br>847 | 864<br>864<br>801<br>850 | 854<br>856<br>798<br>839 | 864<br>801<br>826 | 875<br>801<br>846 | 880<br>809<br>836 | 883<br>811<br>840 | 890<br>815<br>859 | 887<br>839<br>855 | 895<br>846<br>867 | 897<br>853<br>891 | 893<br>855<br>853 | 893<br>847<br>863 | 890<br>845<br>865 | 887<br>887<br>855<br>870<br>874 | 880<br>886<br>846<br>854<br>867 | | Mean* 875 874 876 875 878 882 882 887 860 861 854 852 852 852 852 853 863 868 874 873 876 876 876 879 879 876 Mean* 878 876 876 876 877 881 882 884 882 887 887 867 861 862 865 869 872 877 880 882 883 884 884 884 884 884 884 887 December. 17000y+ Tabular Quantities. | 26*<br>27*<br>28<br>29** | 873<br>878<br>883<br>879 | 877<br>869<br>883<br>881 | 874<br>870<br>883<br>883 | 872<br>883<br>881 | 877<br>880<br>886<br>879 | 879<br>883<br>888<br>884 | 881<br>888<br>884 | 880<br>888<br>884 | 878<br>886<br>884 | 871<br>869<br>878<br>881 | 864<br>859<br>866<br>879 | 861<br>862<br>862<br>879 | 862<br>857<br>884 | 868<br>865<br>857<br>899 | 871<br>867<br>857<br>904 | 872<br>865<br>901 | 874<br>878<br>872<br>904 | 877<br>878<br>883<br>908 | 883<br>886<br>868 | 883<br>889<br>816 | 881<br>883<br>887<br>814 | 883<br>881<br>849 | 878<br>886<br>879<br>889 | 883<br>880<br>881<br>842<br>863 | 875<br>875<br>875<br>878<br>877<br>848 | | Mean** 877 878 879 875 882 885 885 873 821 847 844 839 838 839 849 849 848 865 828 857 823 866 873 865 December | | | 874 | | | | | | | | | | | ļ | | | <u> </u> | | 874 | | 876 | 876 | <u> </u> | 879 | 876 | 870 | | December. 17000y+Tabular Quantities. | Mean* | 878 | 876 | 876 | 877 | 881 | 882 | 884 | 882 | 878 | 871 | 863 | 861 | 862 | 865 | 869 | 872 | 877 | 880 | 882 | 883 | 884 | 884 | 884 | 883 | 877 | | 1** 8729 8729 8629 8709 8709 8687 8729 8629 8579 8629 8579 8629 8579 8629 8579 8519 8519 8510 860 860 860 860 871 877 877 871 3 871 875 880 860 861 861 862 862 862 864 867 867 867 867 867 867 869 869 869 871 877 877 871 3 871 875 860 868 862 862 862 862 862 862 862 862 862 | <del></del> | | 878 | 879 | 875 | 882 | 885 | 885 | 873 | 851 | | <u>`</u> | | | | | 849 | 848 | 865 | 858 | 857 | 853 | 866 | 873 | 862 | 861 | | 2 849, 844, 844, 846, 854, 862, 868, 870, 877, 876, 878, 878, 878, 878, 878, 878 | Decem | ber. | 1 | | ı | | | | <u> </u> | | 170 | $\frac{000\gamma+}{1}$ | Tabul | ar Qua | ntities | 3. | | | 1 1 | 1 | _ <del></del> | | | | | Mean. | | 7 875 875 875 875 875 875 881 883 887 878 875 886 892 885 873 871 870 863 860 867 873 894 843 843 844 847 864 864 864 864 864 864 865 864 864 865 864 864 865 864 865 865 865 865 865 865 865 865 865 865 | 2<br>3<br>4 | 849<br>871<br>861 | 844<br>871<br>861 | 844<br>871<br>858 | 849<br>869<br>858 | 854<br>868<br>861 | 862<br>871<br>861 | 868<br>881<br>861 | 870<br>855<br>861 | 857<br>842<br>861 | 854<br>827<br>845 | 849<br>819<br>843 | 854<br>807<br>851 | 851<br>821<br>862 | 858<br>838<br>859 | 855<br>835<br>851 | 855<br>823<br>839 | 861<br>809<br>851 | 869<br>829<br>851 | 869<br>861<br>863 | 869<br>855<br>866 | 869<br>855<br>867 | 871<br>871<br>877 | 877<br>845<br>872 | 8447<br>871<br>852<br>864<br>872 | 8527<br>860<br>848<br>858<br>868 | | 122 855 855 850 857 855 866 866 866 866 866 866 866 867 857 857 857 857 857 857 857 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 858 | 7<br>8**<br>9** | 875<br>833<br>838 | 875<br>842<br>848 | 875<br>842<br>833 | 875<br>847<br>874 | 881<br>861<br>843 | 883<br>864<br>845 | 887<br>848<br>851 | 878<br>827<br>845 | 875<br>843<br>827 | 886<br>832<br>812 | 892<br>817<br>810 | 885<br>803<br>812 | 873<br>781<br>820 | 871<br>791<br>796 | 870<br>801<br>822 | 863<br>812<br>834 | 860<br>812<br>830 | 857<br>786<br>832 | 873<br>817<br>843 | 894<br>827<br>864 | 837<br>834<br>869 | 831<br>843<br>843 | 831<br>895<br>848 | 875<br>843<br>838<br>864<br>852 | 874<br>870<br>829<br>838<br>844 | | 17 | 12<br>13<br>14 | 855<br>855<br>854 | 855<br>857<br>856 | 850<br>855<br>858 | 857<br>871<br>858 | 855<br>871<br>858 | 866<br>871<br>861 | 860<br>866<br>872 | 866<br>868<br>859 | 866<br>869<br>858 | 860<br>868<br>846 | 860<br>863<br>848 | 857<br>855<br>852 | 857<br>845<br>844 | 847<br>840<br>835 | 836<br>855<br>835 | 855<br>845<br>835 | 857<br>845<br>846 | 857<br>850<br>856 | 878<br>853<br>861 | 853<br>851<br>858 | 874<br>882<br>851 | 866<br>858<br>867 | 859<br>851<br>867 | 866<br>857<br>885<br>856<br>865 | 857<br>858<br>860<br>854<br>861 | | 22 873 879 881 879 893 881 881 871 871 883 881 871 871 883 884 888 886 872 872 876 874 866 863 865 872 876 874 866 863 853 866 872 872 875 866 859 866 863 866 872 872 874 879 880 882 882 882 882 882 882 882 882 882 | 17<br>18<br>19 | 868<br>871<br>874 | 868<br>869<br>863 | 870<br>874<br>869 | 883<br>879<br>881 | 878<br>884<br>889 | 878<br>889<br>900 | 883<br>884<br>900 | 878<br>879<br>892 | 865<br>884<br>869 | 855<br>879<br>848 | 855<br>881<br>851 | 868<br>889<br>849 | 868<br>887<br>828 | 869<br>881<br>833 | 863<br>881<br>826 | 863<br>879<br>854 | 860<br>882<br>861 | 869<br>872<br>838 | 887<br>865<br>849 | 879<br>876<br>857 | 877<br>879<br>861 | 871<br>879<br>861 | 869<br>892<br>875 | 865<br>877<br>876<br>861<br>859 | 859<br>871<br>880<br>862<br>864 | | 27 | 22<br>23<br>24 | 873<br>865<br>877 | 879<br>871<br>872 | 881<br>871<br>874 | 879<br>866<br>879 | 893<br>866<br>880 | 881<br>882<br>882 | 88 t<br>872<br>882 | 871<br>876<br>880 | 871<br>874<br>872 | 883<br>866<br>869 | 884<br>863<br>867 | 888<br>853<br>872 | 886<br>866<br>875 | 881<br>872<br>861 | 881<br>875<br>882 | 879<br>866<br>882 | 881<br>859<br>882 | 88 r<br>866<br>882 | 881<br>863<br>884 | 881<br>866<br>887 | 881<br>872<br>887 | 902<br>894<br>890 | 871<br>901<br>882 | 879<br>890 | 869<br>881<br>871<br>879<br>855 | | Mean 862 863 863 867 870 872 872 868 864 859 858 856 854 852 853 854 857 853 861 865 864 866 867 865 Mean* 870 870 871 873 874 875 872 868 864 863 863 865 866 867 868 871 874 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 876 </td <td>27<br/>28*<br/>29*</td> <td>855<br/>868<br/>871</td> <td>861<br/>869<br/>872</td> <td>853<br/>874<br/>872</td> <td>861<br/>874<br/>871</td> <td>861<br/>874<br/>875</td> <td>863<br/>874<br/>875</td> <td>858<br/>874<br/>875</td> <td>853<br/>868<br/>875</td> <td>855<br/>863<br/>866</td> <td>851<br/>858<br/>859</td> <td>848<br/>855<br/>854</td> <td>848<br/>853<br/>854</td> <td>848<br/>855<br/>852</td> <td>853<br/>859<br/>851</td> <td>855<br/>861<br/>856</td> <td>858<br/>863<br/>854</td> <td>861<br/>868<br/>861</td> <td>863<br/>870<br/>866</td> <td>865<br/>872<br/>869</td> <td>866<br/>875<br/>869</td> <td>868<br/>875<br/>869</td> <td>865<br/>870<br/>872</td> <td>865<br/>872<br/>875</td> <td>868<br/>875<br/>872</td> <td>850<br/>858<br/>867<br/>866<br/>878</td> | 27<br>28*<br>29* | 855<br>868<br>871 | 861<br>869<br>872 | 853<br>874<br>872 | 861<br>874<br>871 | 861<br>874<br>875 | 863<br>874<br>875 | 858<br>874<br>875 | 853<br>868<br>875 | 855<br>863<br>866 | 851<br>858<br>859 | 848<br>855<br>854 | 848<br>853<br>854 | 848<br>855<br>852 | 853<br>859<br>851 | 855<br>861<br>856 | 858<br>863<br>854 | 861<br>868<br>861 | 863<br>870<br>866 | 865<br>872<br>869 | 866<br>875<br>869 | 868<br>875<br>869 | 865<br>870<br>872 | 865<br>872<br>875 | 868<br>875<br>872 | 850<br>858<br>867<br>866<br>878 | | Mean* 870 870 871 871 873 874 875 872 868 864 863 863 865 866 867 868 871 874 876 876 876 876 875 874 | 31 | 878 | 878 | 884 | 888 | 886 | 886 | 886 | 886 | 886 | 880 | | | 865 | 850 | 859 | 865 | 865 | | 872 | | 879 | 876 | 188 | 878 | 877 | | | | | | | <u>-</u> | | | | | | | | | | | | | | | | | | | | | 862 | | Mean** 847 854 850 863 864 864 863 857 855 847 842 838 831 831 829 834 844 817 828 836 842 847 849 842 | Mean*<br>Mean** | | <u> </u> | | | | 874 | 875 | 872 | 855 | 847 | 842 | 838 | 831 | 831 | 829 | 834 | 871 | 874 | 828 | 876 | 842 | 847 | 875 | 874 | 871<br>845 | | | | | | | TA | BLE I | II.— | Hour | LY M | EANS | of V | ERTIC | CAL C | ОМРО | NENT | of M | Iagne | тіс Б | ORCE | • | | | * | | | |----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------------------| | 0 | h 1 | h 21 | 31 | 41 | n 51 | 6 <sup>1</sup> | 7h | 8h | 9h | 101 | 11 | h No | on. | [3h ] | 4h 1 | 5h 1 | 6h 1 | 7h 1 | 8h 19 | 9h 20 | )h 21 | (h 22 | 2h 23 | 3h 24 | h | | Januai | y. | | | | | | | | 43 | 000 γ- | + Tabu | ılar Qu | ıantiti | es. | | | | | | | | | | ] | Mean. | | 1<br>2<br>3<br>4<br>5** | 2857<br>285<br>282<br>288<br>285 | 2857<br>284<br>283<br>286<br>285 | 285y<br>283<br>283<br>285<br>285 | 285y<br>284<br>283<br>278<br>284 | 285y<br>285<br>282<br>278<br>284 | 2857<br>284<br>284<br>281<br>284 | 285y<br>284<br>282<br>279<br>282 | 2847<br>283<br>282<br>280<br>282 | 2847<br>283<br>280<br>281<br>281 | 2847<br>283<br>279<br>282<br>283 | 2837,<br>280<br>276<br>283<br>274 | 282y<br>279<br>278<br>283<br>275 | 2837<br>278<br>283<br>283<br>280 | 2847<br>281<br>283<br>283<br>282 | 2857<br>284<br>288<br>285<br>285 | 288y<br>288<br>294<br>291<br>292 | 2937<br>290<br>294<br>293<br>292 | 292y<br>289<br>294<br>293<br>295 | 2877<br>288<br>296<br>291<br>298 | 2877<br>289<br>295<br>293<br>294 | 2857<br>288<br>293<br>291<br>292 | 287y<br>287<br>291<br>291<br>292 | 289y<br>286<br>290<br>293<br>292 | 286y<br>285<br>288<br>293<br>290 | 287y<br>285<br>286<br>286<br>286 | | 6<br>7<br>8*<br>9 | 288<br>279<br>285<br>282<br>279 | 284<br>279<br>282<br>281<br>279 | 280<br>280<br>281<br>281<br>277 | 280<br>280<br>280<br>281<br>277 | 281<br>281<br>282<br>283<br>277 | 282<br>281<br>284<br>282<br>279 | 282<br>281<br>280<br>281<br>277 | 282<br>281<br>278<br>279<br>277 | 280<br>281<br>280<br>279<br>274 | 276<br>277<br>282<br>277<br>274 | 274<br>273<br>280<br>271<br>271 | 273<br>274<br>280<br>274<br>271 | 276<br>276<br>280<br>273<br>274 | 281<br>279<br>282<br>274<br>279 | 296<br>283<br>284<br>279<br>286 | 297<br>289<br>286<br>286<br>288 | 297<br>289<br>288<br>287<br>288 | 297<br>289<br>287<br>285<br>288 | 291<br>286<br>283<br>284<br>288 | 291<br>285<br>285<br>283<br>283 | 291<br>284<br>285<br>284<br>282 | 289<br>287<br>285<br>282<br>284 | 289<br>285<br>282<br>283<br>283 | 285<br>285<br>282<br>282<br>280 | 285<br>282<br>283<br>281<br>280 | | 11*<br>12**<br>13<br>14 | 278<br>277<br>287<br>276<br>285 | 276<br>277<br>285<br>268<br>283 | 276<br>277<br>281<br>268<br>283 | 276<br>277<br>282<br>268<br>280 | 278<br>277<br>281<br>271<br>282 | 278<br>277<br>279<br>276<br>277 | 276<br>275<br>279<br>276<br>277 | 273<br>270<br>277<br>276<br>273 | 276<br>270<br>275<br>276<br>270 | 278<br>272<br>269<br>276<br>267 | 272<br>268<br>267<br>267 | 275<br>268<br>267<br>267 | 279<br>271<br>274<br>267 | 290<br>285<br>281<br>278<br>275 | 288<br>297<br>286<br>284<br>270 | 288<br>303<br>291<br>288<br>285 | 288<br>295<br>288<br>292<br>293 | 286<br>291<br>286<br>302<br>287 | 280<br>287<br>286<br>294<br>283 | 280<br>287<br>284<br>290<br>285 | 278<br>287<br>286<br>292<br>285 | 278<br>287<br>281<br>290<br>285 | 278<br>287<br>278<br>289<br>285 | 278<br>287<br>278<br>287<br>285 | 280<br>282<br>280<br>280<br>279 | | 16<br>17*<br>18*<br>19* | 282<br>275<br>273<br>271<br>274 | 278<br>277<br>272<br>268<br>274 | 277<br>280<br>273<br>269<br>273 | 277<br>278<br>274<br>271<br>271 | 278<br>279<br>274<br>271<br>273 | 278<br>281<br>274<br>271<br>271 | 275<br>277<br>274<br>271<br>273 | 273<br>278<br>274<br>268<br>271 | 285<br>276<br>274<br>269 | 285<br>274<br>274<br>269 | 275<br>264<br>266<br>266 | 275<br>270<br>266<br>268<br>263 | 273<br>273<br>272<br>271<br>265 | 275<br>275<br>272<br>271<br>271 | 283<br>280<br>274<br>274<br>273 | 285<br>285<br>276<br>276<br>274 | 285<br>287<br>279<br>274<br>279 | 285<br>285<br>282<br>271<br>281 | 283<br>283<br>276<br>274<br>278 | 283<br>277<br>278<br>274<br>279 | 280<br>280<br>276<br>274<br>279 | 282<br>280<br>278<br>274<br>275 | 283<br>280<br>274<br>272<br>276 | 280<br>277<br>272<br>271<br>273 | 279<br>279<br>274<br>272<br>273 | | 21<br>22<br>23<br>24<br>25 | 271<br>268<br>268<br>268<br>268 | 263<br>268<br>266<br>268<br>265 | 266<br>268<br>266<br>266<br>259 | 269<br>262<br>262<br>265<br>260 | 269<br>260<br>266<br>265<br>262 | 271<br>264<br>266<br>264<br>259 | 277<br>265<br>265<br>264<br>259 | 268<br>268<br>263<br>262<br>260 | 269<br>268<br>265<br>260<br>260 | 269<br>262<br>266<br>260<br>259 | 265<br>258<br>263<br>260<br>257 | 262<br>260<br>262<br>262<br>259 | 262<br>268<br>261<br>262<br>262 | 268<br>270<br>265<br>268<br>262 | 270<br>272<br>268<br>272<br>264 | 278<br>272<br>270<br>277<br>267 | 285<br>275<br>273<br>281<br>270 | 285<br>275<br>275<br>282<br>269 | 285<br>273<br>268<br>281<br>267 | 284<br>272<br>268<br>278<br>265 | 280<br>272<br>270<br>276<br>267 | 278<br>272<br>268<br>271<br>267 | 278<br>272<br>268<br>271<br>267 | 274<br>270<br>268<br>269<br>265 | 273<br>268<br>267<br>269<br>265 | | 26<br>27<br>28<br>29**<br>30** | 267<br>256<br>258<br>256<br>275 | 261<br>254<br>256<br>256<br>263 | 264<br>256<br>258<br>256<br>253 | 264<br>256<br>256<br>258<br>256 | 261<br>256<br>260<br>257<br>263 | 264<br>256<br>260<br>256<br>263 | 262<br>256<br>257<br>256<br>263 | 261<br>256<br>259<br>255<br>261 | 266<br>254<br>263<br>255<br>261 | 267<br>254<br>261<br>253<br>259 | 261<br>256<br>258<br>253<br>255 | 264<br>257<br>258<br>258<br>255 | 269<br>259<br>260<br>253<br>263 | 267<br>264<br>258<br>253<br>271 | 269<br>266<br>263<br>263<br>275 | 269<br>267<br>265<br>271<br>285 | 269<br>272<br>265<br>280<br>290 | 267<br>271<br>269<br>282<br>293 | 269<br>266<br>271<br>290<br>290 | 269<br>267<br>267<br>293<br>282 | 269<br>267<br>265<br>293<br>282 | 269<br>264<br>263<br>303<br>261 | 267<br>264<br>259<br>299<br>254 | 265<br>262<br>261<br>283<br>229 | 266<br>261<br>261<br>268<br>267 | | 31** | 230 | 233 | 248 | 260 | 258 | 259 | 263 | 263 | 261 | 263 | 259 | 261 | 262 | 270 | 284 | 282 | 282 | 285 | 303 | 302 | 308 | 298 | 282 | 277 | 271 | | Mean | 274 | 272 | 272 | 272 | 273 | 273 | 273 | 272 | 272 | 271 | 267 | 268 | 270 | 274 | 278 | 282 | 284 | 285 | 284 | 282 | 282 | 281 | 279 | 276 | 276 | | Mean* Mean** | 276 | 275 | 276 | 276 | 277 | 278 | 268 | 274 | 278 | 279 | 263 | 265 | 274 | 270 | | 287 | 290 | 289 | 294 | 292 | 292 | 288 | | 273 | | | Februa | | | 204 | | 200 | | | | | | ⊦ Tabu | lar Qu | antitie | es. | | | | | | | | | | | Mean. | | 1<br>2<br>3<br>4<br>5** | 2727<br>268<br>258<br>261<br>261 | 268y<br>268<br>260<br>261 | 260y<br>264<br>260<br>261<br>259 | 256y<br>254<br>260<br>261<br>259 | 260y<br>256<br>265<br>261<br>261 | 262y<br>260<br>265<br>261<br>261 | 2637<br>260<br>262<br>261<br>261 | 265y<br>260<br>260<br>261<br>253 | 265y<br>260<br>260<br>261<br>251 | 262y<br>260<br>260<br>259<br>251 | 260y<br>260<br>260<br>253<br>251 | 262y<br>260<br>258<br>253<br>249 | 262y<br>260<br>258<br>255<br>249 | 2657<br>260<br>260<br>256<br>249 | 270y<br>270<br>265<br>261<br>255 | 278y<br>270<br>269<br>265<br>261 | 280y<br>270<br>269<br>271<br>269 | 281 <i>y</i><br>270<br>269<br>269<br>271 | 280y<br>275<br>268<br>269<br>269 | 2787<br>275<br>269<br>266<br>269 | 280y<br>272<br>268<br>265<br>269 | 260y<br>270<br>269<br>265<br>269 | 262y<br>265<br>269<br>263<br>267 | 268y<br>250<br>263<br>261<br>263 | 2677<br>264<br>264<br>262<br>260 | | 6**<br>7<br>8*<br>9 | 263<br>264<br>262<br>257<br>258 | 256<br>262<br>260<br>254<br>258 | 242<br>260<br>260<br>257<br>263 | 225<br>252<br>260<br>260<br>261 | 230<br>254<br>262<br>260<br>261 | 232<br>260<br>262<br>260<br>258 | 232<br>257<br>260<br>257<br>257 | 242<br>257<br>262<br>257<br>253 | 249<br>257<br>264<br>259<br>255 | 251<br>262<br>264<br>255<br>253 | 253<br>262<br>262<br>252<br>253 | 253<br>264<br>262<br>247<br>248 | 254<br>267<br>260<br>250<br>251 | 263<br>267<br>262<br>245<br>253 | 270<br>270<br>264<br>252<br>261 | 273<br>270<br>264<br>254<br>265 | 278<br>270<br>264<br>257<br>272 | 280<br>270<br>267<br>257<br>272 | 281<br>268<br>267<br>260<br>272 | 271<br>266<br>262<br>260<br>277 | 269<br>264<br>264<br>264<br>277 | 269<br>265<br>262<br>274<br>263 | 266<br>264<br>262<br>272<br>251 | 264<br>262<br>262<br>258<br>251 | 257<br>263<br>263<br>257<br>260 | | 11<br>12**<br>13**<br>14<br>15** | 251<br>258<br>255<br>283<br>274 | 242<br>245<br>255<br>276<br>262 | 244<br>245<br>253<br>264<br>264 | 253<br>243<br>253<br>250<br>266 | 255<br>245<br>245<br>250<br>268 | 258<br>245<br>245<br>245<br>270 | 255<br>249<br>255<br>243<br>269 | 255<br>254<br>260<br>247<br>269 | 255<br>251<br>269<br>250<br>266 | 255<br>249<br>272<br>250<br>262 | 255<br>246<br>272<br>256<br>255 | 255<br>248<br>274<br>264<br>255 | 259<br>263<br>274<br>267<br>260 | 263<br>269<br>278<br>266<br>262 | 271<br>282<br>282<br>277<br>266 | 273<br>306<br>284<br>283<br>274 | 271<br>309<br>284<br>281<br>284 | 271<br>309<br>285<br>280<br>291 | 267<br>305<br>288<br>279<br>293 | 265<br>301<br>293<br>277<br>298 | 272<br>278<br>299<br>283<br>285 | 272<br>282<br>301<br>283<br>284 | 263<br>282<br>293<br>281<br>279 | 258<br>273<br>293<br>278<br>274 | 260<br>268<br>273<br>267<br>272 | | 16<br>17<br>18<br>19*<br>20 | 264<br>260<br>260<br>263<br>264 | 262<br>262<br>255<br>260<br>261 | 262<br>265<br>255<br>260<br>261 | 263<br>263<br>255<br>257<br>258 | 266<br>263<br>255<br>257<br>262 | 266<br>262<br>260<br>257<br>260 | 265<br>262<br>257<br>258<br>261 | 263<br>258<br>257<br>264<br>261 | 263<br>258<br>263<br>266<br>264 | 263<br>258<br>263<br>266<br>264 | 261<br>252<br>255<br>258<br>258 | 260<br>251<br>253<br>258<br>256 | 268<br>255<br>255<br>264<br>256 | 271<br>255<br>255<br>264<br>256 | 268<br>260<br>260<br>264<br>256 | 273<br>268<br>265<br>264<br>258 | 273<br>270<br>267<br>266<br>264 | 273<br>270<br>267<br>264<br>268 | 273<br>270<br>267<br>264<br>271 | 273<br>272<br>265<br>264<br>271 | 275<br>272<br>265<br>264<br>274 | 273<br>275<br>263<br>266<br>268 | 268<br>270<br>263<br>264<br>264 | 265<br>265<br>263<br>264<br>261 | 267<br>263<br>260<br>262<br>262 | | 21<br>22*<br>23<br>24<br>25* | 260<br>266<br>267<br>263<br>265 | 260<br>266<br>267<br>255<br>267 | 258<br>266<br>267<br>255<br>268 | 258<br>264<br>267<br>257<br>270 | 254<br>265<br>267<br>257<br>268 | 247<br>266<br>267<br>257<br>267 | 249<br>263<br>267<br>258<br>268 | 254<br>260<br>271<br>258<br>267 | 258<br>260<br>275<br>260<br>273 | 264<br>261<br>272<br>260<br>267 | 266<br>259<br>265<br>255<br>265 | 264<br>257<br>263<br>253<br>260 | 268<br>259<br>265<br>255<br>263 | 268<br>264<br>265<br>263<br>266 | 274<br>267<br>267<br>273<br>268 | 274<br>269<br>280<br>277<br>274 | 272<br>267<br>275<br>275<br>276 | 270<br>269<br>273<br>277<br>274 | 266<br>264<br>277<br>275<br>273 | 266<br>264<br>280<br>275<br>271 | 266<br>267<br>275<br>275<br>271 | 266<br>267<br>275<br>275<br>271 | 266<br>263<br>273<br>273<br>271 | 266<br>265<br>270<br>267<br>271 | 263<br>264<br>270<br>265<br>270 | | 26*<br>27<br>28 | 262<br>262<br>260 | 262<br>262<br>255 | 262<br>262<br>253 | 262<br>262<br>258 | 262<br>262<br>260<br>258 | 262<br>262<br>260<br>258 | 262<br>260<br>260<br>258 | 264<br>260<br>258<br>259 | 262<br>260<br>253<br>260 | 260<br>258<br>251<br>260 | 260<br>252<br>249<br>257 | 252<br>252<br>251<br>251 | 258<br>252<br>255<br>——— | 258<br>254<br>262<br>261 | 262<br>258<br>273<br>267 | 268<br>260<br>278<br>271 | 270<br>262<br>278 | 270<br>268<br>278 | 268<br>268<br>278 | 268<br>272<br>278<br>273 | 262<br>280<br>290 | 262<br>280<br>288<br>272 | 262<br>260<br>280<br>269 | 260<br>260<br>263 | 263<br>262<br>265<br>——————————————————————————————— | | Mean<br>————<br>Mean* | $\frac{263}{264}$ | 263 | 259<br><br>263 | 263 | 263 | 263 | 262 | 263 | 265 | 264 | 261 | 258 | 261 | 263 | 265 | 268 | 269 | 269 | 267 | 266 | 266 | 266 | 264 | 264 | 264 | | Mean** | 262 | 255 | 253 | 249 | 250 | 251 | 253 | 256 | 257 | 257 | 255 | 257 | 260 | 264 | 271 | 280 | 285 | 287 | 287 | 286 | 280 | 281 | 277 | 273 | 266 | | | | | | Тан | BLE I | II.—I | Houri | LY M | EANS | of V | ERTIC | al Co | OMPON | IENT ( | of M | AGNET | ric Fo | ORCE- | -cont | inued. | | | | | | |-------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------------|----------------------------------|----------------------------------|------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | | h 1h | 21 | 3: | h 41 | - 5 | h 6 | h 7 | h 8 | h C | )h 1 | Oh 1 | 1h No | on. 13 | 3h 14 | h 1: | 5h 16 | 3h 1 | 7h 1 | 8h 1 | 9h 20 | 0h 2 | 1h 2 | 2h 2 | 3h 2 | 4 h | | March | | | | | | | | | | | | | ılar Qı | | | | | | | | | | | | Mean. | | | | | | | | | | | | | 1 | 1 | 1 | | | | | | | | | | | | | | 1<br>2<br>3<br>4<br>5* | 2697<br>259<br>260<br>259<br>268 | 266y<br>261<br>260<br>259<br>268 | 267y<br>266<br>258<br>262<br>268 | 264y<br>267<br>258<br>265<br>268 | 2647<br>262<br>258<br>267<br>268 | 2697<br>264<br>258<br>269<br>268 | 2647<br>264<br>261<br>269<br>268 | 264y<br>264<br>265<br>269<br>270 | 264y<br>267<br>267<br>269<br>268 | 2643<br>267<br>267<br>267<br>268 | 2623<br>267<br>267<br>265<br>263 | 2547<br>261<br>265<br>259<br>258 | 258y<br>267<br>267<br>259<br>258 | 262y<br>269<br>275<br>267<br>258 | 269y<br>269<br>296<br>269<br>263 | 272y<br>275<br>304<br>275<br>268 | 276y<br>279<br>296<br>277<br>273 | 2747<br>277<br>294<br>277<br>270 | 2747<br>277<br>286<br>272<br>270 | 272y<br>277<br>279<br>272<br>270 | 2747<br>275<br>275<br>269<br>270 | 272y<br>269<br>275<br>269<br>270 | 268y<br>271<br>275<br>269<br>266 | 2647<br>267<br>265<br>267<br>266 | 2677<br>268<br>272<br>268<br>267 | | 6*<br>7<br>8**<br>9 | 260<br>267<br>250<br>280<br>282 | 260<br>264<br>182<br>272<br>280 | 263<br>264<br>122<br>272<br>280 | 263<br>264<br>206<br>280<br>280 | 266<br>266<br>226<br>282<br>280 | 266<br>264<br>261<br>288<br>280 | 263<br>264<br>278<br>288<br>288 | 266<br>269<br>286<br>290<br>280 | 260<br>269<br>283<br>288<br>278 | 260<br>267<br>288<br>278<br>272 | 258<br>261<br>283<br>272<br>261 | 255<br>259<br>279<br>270<br>259 | 256<br>259<br>286<br>272<br>263 | 258<br>266<br>290<br>280<br>269 | 263<br>269<br>296<br>285<br>278 | 268<br>269<br>299<br>285<br>288 | 268<br>269<br>297<br>288<br>307 | 268<br>267<br>304<br>285<br>312 | 268<br>264<br>315<br>282<br>301 | 268<br>269<br>297<br>282<br>294 | 268<br>269<br>293<br>285<br>290 | 268<br>269<br>290<br>283<br>288 | 268<br>269<br>286<br>285<br>282 | 268<br>277<br>279<br>282<br>278 | 264<br>266<br>270<br>281<br>282 | | 11** 12** 13 14 15** | 279<br>284<br>273<br>275<br>278 | 279<br>274<br>273<br>277<br>274 | 282<br>272<br>277<br>277<br>268 | 272<br>278<br>277<br>275<br>274 | 272<br>280<br>280<br>277<br>276 | 274<br>276<br>280<br>277<br>276 | 274<br>255<br>280<br>277<br>276 | 274<br>253<br>277<br>279<br>276 | 274<br>255<br>275<br>275<br>275<br>266 | 269<br>255<br>267<br>269<br>264 | 265<br>255<br>264<br>261<br>262 | 260<br>263<br>258<br>261<br>264 | 261<br>267<br>265<br>264<br>266 | 265<br>282<br>273<br>265<br>268 | 274<br>289<br>279<br>273<br>276 | 284<br>304<br>283<br>283<br>286 | 298<br>312<br>285<br>287<br>286 | 3°3<br>3°4<br>283<br>292<br>286 | 3°3<br>3°1<br>281<br>287<br>276 | 298<br>293<br>280<br>283<br>281 | 298<br>282<br>277<br>283<br>281 | 298<br>284<br>277<br>283<br>278 | 298<br>284<br>277<br>280<br>279 | 293<br>284<br>275<br>280<br>281 | 281<br>279<br>276<br>277<br>275 | | 16**<br>17<br>18<br>19*<br>20 | 273<br>279<br>274<br>275<br>275 | 266<br>279<br>274<br>275<br>275 | 262<br>279<br>274<br>275<br>275 | 255<br>279<br>276<br>275<br>275 | 255<br>282<br>276<br>277<br>275 | 258<br>282<br>280<br>277<br>275 | 264<br>282<br>279<br>285<br>277 | 273<br>276<br>281<br>285<br>275 | 275<br>274<br>277<br>283<br>265 | 273<br>264<br>274<br>273<br>263 | 264<br>255<br>264<br>265<br>256 | 255<br>255<br>257<br>258<br>256 | 264<br>257<br>262<br>263<br>258 | 278<br>264<br>264<br>265<br>260 | 290<br>269<br>272<br>273<br>265 | 301<br>272<br>276<br>275<br>270 | 309<br>276<br>282<br>283<br>275 | 306<br>279<br>279<br>281<br>275 | 300<br>279<br>276<br>277<br>275 | 297<br>279<br>274<br>277<br>275 | 294<br>279<br>274<br>280<br>275 | 285<br>284<br>279<br>277<br>275 | 283<br>279<br>277<br>275<br>277 | 283<br>276<br>274<br>275<br>275 | 278<br>274<br>274<br>275<br>271 | | 2 I<br>2 2<br>2 3<br>2 4 *<br>2 5 * | 276<br>276<br>272<br>275<br>276 | 274<br>276<br>267<br>277<br>276 | 274<br>271<br>258<br>277<br>276 | 276<br>271<br>248<br>275<br>276 | 276<br>276<br>258<br>275<br>276 | 276<br>276<br>267<br>273<br>274 | 276<br>274<br>272<br>275<br>278 | 276<br>276<br>275<br>277<br>278 | 274<br>271<br>272<br>277<br>273 | 267<br>266<br>269<br>267<br>263 | 262<br>266<br>265<br>256<br>254 | 257<br>256<br>265<br>248<br>249 | 257<br>262<br>265<br>248<br>249 | 265<br>274<br>267<br>258<br>259 | 276<br>286<br>269<br>265<br>260 | 295<br>295<br>277<br>275<br>268 | 312<br>300<br>279<br>277<br>278 | 309<br>300<br>282<br>277<br>272 | 3°4<br>284<br>286<br>277<br>276 | 295<br>278<br>291<br>277<br>278 | 286<br>276<br>277<br>277<br>278 | 278<br>276<br>284<br>277<br>280 | 278<br>276<br>284<br>275<br>278 | 276<br>276<br>277<br>275<br>278 | 279<br>277<br>272<br>271<br>271 | | 26<br>27<br>28<br>29<br>30 | 276<br>269<br>277<br>280<br>268 | 276<br>265<br>277<br>278<br>270 | 276<br>267<br>277<br>280<br>278 | 276<br>271<br>277<br>280<br>278 | 276<br>274<br>277<br>268<br>278 | 276<br>277<br>277<br>268<br>278 | 278<br>279<br>277<br>270<br>281 | 278<br>279<br>277<br>270<br>286 | 273<br>279<br>277<br>266<br>278 | 263<br>269<br>269<br>268<br>268 | 254<br>262<br>263<br>261<br>266 | 254<br>260<br>263<br>253<br>258 | 251<br>265<br>263<br>259 | 259<br>272<br>269<br>270 | 263<br>279<br>279<br>280 | 271<br>287<br>285<br>287 | 278<br>290<br>282<br>289 | 278<br>298<br>284<br>287 | 278<br>298<br>284<br>287 | 278<br>298<br>285<br>286 | 278<br>289<br>287<br>280 | 276<br>281<br>287<br>280 | 273<br>281<br>279<br>280 | 268<br>279<br>277<br>280 | 271<br>278<br>277<br>275 | | 31 | | | | | | | | | | | | | 259 | 271 | 273 | 279 | 283 | 289 | 291 | 291 | 289 | 281 | 281 | 279 | | | Mean | 272 | 268 | 266 | 270 | 271 | 273 | 274 | 275 | 272 | 268 | 263 | 259 | 262 | 270 | 275 | 282 | 286 | 288 | 284 | 280 | 280 | 279 | 278 | 276 | 275 | | Mean* | 271 | 271 | 272 | 271 | 271 | 271 | 274 | 275<br> | 272 | 266 | 259 | 254 | 255 | 260 | 265 | 271 | 276 | 274 | 274 | 274 | 275 | 274 | 272 | 272 | 270 | | Mean** April. | 273 | 255 | 241 | 257 | 262 | 269 | 269 | 272 | 271 | 270<br>430 | 266 | | lar Qu | 277<br>antitie | 285 | 295 | 300 | 301 | 299 | 1 293 | 290 | 287 | 286 | 284 | Mean. | | | | | | <u> </u> | | | | | | | | | <u> </u> | | <br> | 1 | 1 | 1 | I | | 1 | <del></del> | } | 1 | 1 | | 1<br>2<br>3<br>4<br>5** | 2797<br>272<br>272<br>260<br>248 | 2797<br>263<br>278<br>252<br>252 | 2797<br>267<br>275<br>250<br>248 | 2797<br>270<br>275<br>260<br>260 | 2797<br>272<br>278<br>262<br>266 | 2797<br>274<br>278<br>260<br>251 | 2817<br>280<br>280<br>262<br>259 | 2837<br>280<br>280<br>268<br>265 | 2737<br>280<br>272<br>260<br>270 | 2617<br>272<br>262<br>256<br>265 | 2477<br>266<br>256<br>252<br>259 | 247 <i>y</i><br>266<br>251<br>245<br>259 | 250y<br>267<br>251<br>241<br>255 | 260y<br>272<br>250<br>245<br>256 | 269y<br>274<br>260<br>262<br>270 | 2737<br>282<br>270<br>273<br>287 | 281y<br>282<br>270<br>279<br>298 | 2817<br>282<br>272<br>289<br>310 | 2817<br>282<br>272<br>289<br>298 | 2797<br>282<br>273<br>284<br>298 | 2797<br>282<br>278<br>284<br>298 | 2817<br>282<br>278<br>284<br>295 | 2757<br>280<br>280<br>279<br>265 | 2757<br>280<br>278<br>270<br>262 | 2737<br>275<br>271<br>265<br>271 | | 6**<br>7<br>8<br>9 | 250<br>270<br>287<br>270 | 239<br>268<br>287<br>276 | 235<br>276<br>286<br>278 | 230<br>280<br>286<br>278 | 244<br>280<br>282<br>278 | 258<br>278<br>278<br>278<br>278 | 272<br>280<br>278<br>278 | 279<br>286<br>280<br>278 | 275<br>282<br>273<br>273 | 265<br>276<br>258<br>263 | 258<br>263<br>268<br>251<br>254 | 258<br>266<br>261<br>250<br>247 | 260<br>268<br>259<br>250<br>249 | 285<br>273<br>259<br>261<br>258 | 305<br>283<br>268<br>271<br>270 | 305<br>283<br>276<br>278<br>278 | 303<br>288<br>280<br>280<br>283 | 307<br>288<br>283<br>280<br>283 | 305<br>290<br>288<br>281<br>278 | 303<br>288<br>304<br>285<br>278 | 297<br>288<br>297<br>283<br>278 | 272<br>290<br>292<br>287<br>276 | 277<br>280<br>292<br>278<br>276 | 262<br>276<br>290<br>278<br>258 | 273<br><br>279<br>275<br>271 | | 11**<br>12<br>13*<br>14*<br>15* | 248<br>227<br>284<br>279<br>277 | 259<br>232<br>287<br>279<br>277 | 267<br>249<br>289<br>281<br>277 | 269<br>269<br>289<br>282<br>275 | 270<br>277<br>289<br>282<br>277 | 270<br>279<br>289<br>283<br>277 | 276<br>286<br>289<br>283<br>279 | 278<br>289<br>287<br>282<br>282 | 269<br>289<br>279<br>277<br>277 | 258<br>281<br>269<br>267<br>267 | 250<br>279<br>255<br>263<br>258 | 248<br>274<br>252<br>258<br>248 | 259<br>279<br>253<br>258<br>248 | 269<br>287<br>260<br>267<br>253 | 288<br>291<br>271<br>275<br>260 | 308<br>295<br>279<br>277<br>270 | 324<br>298<br>281<br>279<br>275 | 342<br>300<br>285<br>279<br>279 | 347<br>305<br>284<br>285<br>284 | 332<br>300<br>284<br>285<br>282 | 306<br>291<br>281<br>279<br>279 | 264<br>289<br>284<br>285<br>279 | 269<br>281<br>281<br>279<br>277 | 258<br>282<br>281<br>277<br>277 | 280<br>281<br>278<br>277<br>272 | | 16<br>17<br>18<br>19**<br>20* | 275<br>273<br>273<br>252<br>275 | 277<br>275<br>273<br>254<br>281 | 277<br>275<br>273<br>263<br>283 | 275<br>273<br>275<br>273<br>283 | 275<br>279<br>275<br>271<br>283 | 275<br>278<br>273<br>245<br>280 | 275<br>283<br>273<br>240<br>281 | 277<br>281<br>271<br>251<br>281 | 275<br>278<br>271<br>254<br>278 | 267<br>273<br>263<br>258<br>281 | 265<br>261<br>256<br>254<br>273 | 256<br>254<br>254<br>254<br>254<br>271 | 251<br>254<br>252<br>261<br>271 | 256<br>259<br>254<br>265<br>273 | 265<br>263<br>265<br>280<br>281 | 273<br>271<br>281<br>284<br>283 | 285<br>273<br>283<br>282<br>283 | 285<br>275<br>284<br>284<br>283 | 285<br>275<br>284<br>290<br>283 | 283<br>278<br>290<br>290<br>283 | 280<br>278<br>292<br>284<br>283 | 283<br>278<br>290<br>283<br>283 | 279<br>281<br>271<br>282<br>281 | 275<br>278<br>256<br>275<br>278 | 274<br>273<br>272<br>268<br>280 | | 21<br>22<br>23<br>24*<br>25 | 280<br>284<br>274<br>284<br>274 | 280<br>278<br>266<br>284<br>268 | 283<br>276<br>266<br>284<br>255 | 283<br>281<br>258<br>284<br>264 | 282<br>281<br>264<br>280<br>266 | 282<br>281<br>266<br>282<br>274 | 280<br>281<br>268<br>281<br>274 | 280<br>281<br>270<br>284<br>276 | 275<br>276<br>268<br>281<br>274 | 273<br>271<br>268<br>268<br>266 | 265<br>266<br>266<br>267<br>261 | 264<br>257<br>262<br>267<br>257 | 264<br>252<br>262<br>268<br>255 | 273<br>259<br>268<br>276<br>264 | 275<br>269<br>278<br>284<br>268 | 277<br>276<br>284<br>288<br>276 | 280<br>286<br>287<br>291<br>280 | 280<br>290<br>295<br>289<br>284 | 283<br>290<br>295<br>286<br>285 | 283<br>290<br>295<br>286<br>287 | 285<br>286<br>295<br>284<br>292 | 287<br>286<br>286<br>281<br>295 | 285<br>278<br>286<br>278<br>278 | 283<br>276<br>284<br>276<br>257 | 278<br>277<br>275<br>280<br>272 | | 26**<br>27<br>28<br>29<br>30 | 247<br>283<br>277<br>274<br>274 | 235<br>283<br>275<br>276<br>272 | 228<br>283<br>275<br>277<br>272 | 217<br>277<br>277<br>277<br>277<br>272 | 213<br>273<br>275<br>279<br>264 | 226<br>273<br>277<br>274<br>255 | 235<br>273<br>275<br>276<br>255 | 249<br>273<br>270<br>274<br>255 | 257<br>267<br>265<br>274<br>255 | 259<br>263<br>263<br>274<br>259 | 254<br>256<br>263<br>274<br>257 | 254<br>256<br>259<br>264<br>253 | 256<br>256<br>257<br>257<br>253 | 264<br>265<br>265<br>258<br>260 | 273<br>270<br>270<br>264<br>272 | 283<br>275<br>278<br>266<br>282 | 292<br>275<br>280<br>274<br>291 | 300<br>283<br>285<br>277<br>302 | 302<br>283<br>285<br>281<br>302 | 302<br>285<br>285<br>282<br>302 | 283<br>279<br>285<br>281<br>283 | 278<br>279<br>277<br>276<br>276 | 278<br>277<br>275<br>274<br>277 | 275<br>275<br>275<br>274<br>269 | 260<br>274<br>274<br>273<br>271 | | Mean | 270 | 269 | 272 | 271 | 272 | 271 | 273 | 275 | 272 | 266 | 260 | 256 | 256 | 263 | 273 | 283 | 285 | 289 | 290 | 290 | 286 | 282 | 275 | 273 | 274 | | Mean* | 280 | 282 | 283 | 283 | 282 | 282 | 283 | 283 | 278 | 270 | 264 | 258 | 259 | 264 | 274 | 279 | 282 | 283 | 284 | 284 | 281 | 282 | 279 | 278 | 277 | | Mean** | 249 | 248 | 248 | 250 | 253 | 250 | 256 | 264 | 265 | 261 | 255 | 255 | 258 | 268 | 283 | 293 | 300 | 309 | 308 | 305 | 294 | 278 | 274 | 266 | 270 | | | <del></del> , | | | Тав | BLE I | II.—I | Houri | Ly Mi | EANS | of V | ERTIC | AL C | OMPON | NENT | of M | AGNE | гіс F | ORCE- | -cont | inued. | • | | | , | | |------------------------------------|----------------------------------|-----------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | 01 | h 1 | h 2 | h 3 | h 4: | h 5 | 5h 6 | 5h 7 | 'h 8 | h 9 | h 1( | )b 11 | h No | oon. 1 | 3 <sup>h</sup> 1 | 4 <sup>h</sup> 1 | 5h 1 | 6h 1 | 7 <sup>h</sup> 18 | 8h 19 | )h 20 | 0h 2 | 1h 25 | 2h 2 | 3h 2 | 24h | | May. | | | | | | | | - | | 43000 | v + ' | Tabula | ır Qua | ntities | | | | | | | | | | N | Mean. | | 1**<br>2<br>3<br>4 | 2557<br>277<br>269<br>276<br>274 | 246y<br>274<br>274<br>274<br>276<br>274 | 228y<br>266<br>274<br>276<br>274 | 232y<br>272<br>269<br>274<br>269 | 2397<br>274<br>274<br>276<br>260 | 250y<br>281<br>276<br>276<br>260 | 2557<br>282<br>274<br>274<br>263 | 260y<br>282<br>274<br>269<br>263 | 265y<br>276<br>269<br>269<br>263 | 260y<br>266<br>259<br>260<br>261 | 255y<br>255<br>259<br>255<br>257 | 246y<br>253<br>253<br>253<br>253 | 2597<br>255<br>250<br>248<br>255 | 255y<br>263<br>253<br>257<br>272 | 265y<br>274<br>264<br>269<br>292 | 274y<br>278<br>276<br>274<br>302 | 276y<br>282<br>276<br>282<br>302 | 280y<br>284<br>283<br>288<br>300 | 2897<br>284<br>283<br>293<br>302 | 2937<br>288<br>282<br>285<br>300 | 291y<br>288<br>282<br>284<br>288 | 2747<br>284<br>279<br>279<br>284 | 274y<br>282<br>278<br>279<br>282 | 2747<br>279<br>276<br>276<br>279 | 262y<br>275<br>271<br>273<br>276 | | 6<br>7*<br>8*<br>9* | 279<br>274<br>269<br>271<br>267 | 279<br>274<br>269<br>261<br>267 | 276<br>272<br>269<br>261<br>269 | 276<br>272<br>271<br>266<br>269 | 277<br>272<br>275<br>271<br>271 | 272<br>274<br>273<br>271<br>271 | 269<br>274<br>271<br>271<br>269 | 264<br>270<br>265<br>266<br>261 | 264<br>264<br>259<br>266<br>249 | 250<br>255<br>254<br>261<br>245 | 245<br>250<br>252<br>252<br>240 | 236<br>250<br>252<br>254<br>240 | 236<br>247<br>252<br>254<br>245 | 253<br>253<br>261<br>261<br>249 | 261<br>262<br>261<br>261<br>259 | 272<br>274<br>273<br>271<br>264 | 279<br>280<br>279<br>273<br>269 | 279<br>279<br>280<br>276<br>269 | 280<br>274<br>276<br>274<br>269 | 278<br>274<br>271<br>273<br>269 | 279<br>274<br>271<br>273<br>267 | 279<br>274<br>271<br>271<br>266 | 279<br>274<br>271<br>269<br>266 | 274<br>274<br>269<br>269<br>265 | 268<br>268<br>267<br>266<br>261 | | 11<br>12<br>13<br>14<br>15 | 264<br>254<br>256<br>261<br>252 | 264<br>256<br>256<br>261<br>254 | 264<br>256<br>256<br>264<br>258 | 267<br>258<br>264<br>266<br>261 | 274<br>266<br>264<br>271<br>266 | 274<br>266<br>256<br>268<br>266 | 269<br>266<br>256<br>268<br>266 | 269<br>258<br>256<br>268<br>258 | 259<br>256<br>256<br>258<br>256 | 254<br>248<br>251<br>256<br>250 | 251<br>242<br>247<br>251<br>240 | 250<br>237<br>239<br>242<br>238 | 254<br>244<br>239<br>242<br>238 | 254<br>247<br>247<br>251<br>245 | 259<br>254<br>256<br>258<br>261 | 269<br>261<br>268<br>266<br>276 | 270<br>266<br>273<br>271<br>285 | 280<br>271<br>273<br>268<br>294 | 278<br>273<br>270<br>266<br>294 | 278<br>266<br>266<br>266<br>287 | 274<br>266<br>266<br>266<br>280 | 271<br>266<br>266<br>266<br>276 | 267<br>264<br>264<br>266<br>266 | 261<br>256<br>264<br>256<br>266 | 266<br>259<br>259<br>261<br>264 | | 16**<br>17**<br>18**<br>19**<br>20 | 256<br>158<br>278<br>263<br>251 | 256<br>158<br>286<br>259<br>249 | 261<br>181<br>278<br>249<br>258 | 265<br>190<br>276<br>257<br>260 | 267<br>199<br>278<br>263<br>266 | 268<br>234<br>261<br>273<br>266 | 265<br>255<br>268<br>278<br>268 | 264<br>255<br>268<br>278<br>268 | 256<br>262<br>268<br>270<br>268 | 248<br>264<br>264<br>266<br>260 | 246<br>259<br>259<br>257<br>254 | 239<br>257<br>259<br>251<br>254 | 237<br>262<br>268<br>259<br>258 | 244<br>275<br>278<br>273<br>268 | 248<br>292<br>288<br>287<br>278 | 254<br>292<br>301<br>295<br>285 | 258<br>283<br>299<br>285<br>282 | 264<br>273<br>295<br>283<br>285 | 269<br>273<br>292<br>285<br>282 | 291<br>282<br>292<br>283<br>280 | 291<br>272<br>286<br>280<br>276 | 265<br>264<br>280<br>276<br>278 | 200<br>245<br>268<br>268<br>268 | 156<br>243<br>268<br>259<br>258 | 253<br>247<br>278<br>271<br>268 | | 21<br>22<br>23<br>24<br>25 | 258<br>238<br>228<br>220<br>238 | 249<br>233<br>228<br>221<br>238 | 247<br>235<br>223<br>223<br>238 | 256<br>243<br>223<br>223<br>240 | 256<br>243<br>231<br>228<br>238 | 263<br>247<br>233<br>228<br>238 | 266<br>247<br>233<br>230<br>238 | 270<br>247<br>233<br>226<br>238 | 272<br>235<br>225<br>226<br>233 | 268<br>231<br>214<br>218<br>224 | 260<br>223<br>214<br>211<br>219 | 258<br>216<br>212<br>211<br>223 | 258<br>223<br>212<br>216<br>228 | 266<br>214<br>223<br>233 | 276<br> | 277<br>238<br>223<br>230<br>250 | 276<br>243<br>225<br>233<br>259 | 273<br>241<br>233<br>236<br>260 | 270<br>241<br>233<br>233<br>257 | 276<br>243<br>233<br>238<br>253 | 270<br>243<br>235<br>238<br>251 | 268<br>241<br>238<br>238<br>250 | 263<br>238<br>238<br>238<br>248 | 258<br>233<br>240<br>238<br>248 | 265<br>233<br>227<br>227<br>241 | | 26*<br>27*<br>28<br>29<br>30 | 248<br>248<br>245<br>251<br>253 | 248<br>248<br>251<br>253<br>251 | 248<br>248<br>251<br>253<br>253 | 250<br>250<br>253<br>253<br>255 | 251<br>256<br>253<br>253<br>248 | 248<br>266<br>253<br>253<br>251 | 243<br>260<br>253<br>253<br>251 | 238<br>260<br>253<br>253<br>253 | 233<br>258<br>251<br>253<br>253 | 224<br>256<br>243<br>248<br>243 | 219<br>246<br>241<br>244<br>243 | 239<br>239<br>239<br>230<br>236 | 215<br>239<br>239<br>230<br>236 | 229<br>248<br>243<br>232<br>243 | 238<br>256<br>248<br>253<br>253 | 243<br>258<br>255<br>270<br>263 | 250<br>266<br>261<br>270<br>268 | 253<br>264<br>261<br>270<br>273 | 251<br>262<br>263<br>272<br>273 | 248<br>258<br>263<br>282<br>273 | 248<br>256<br>258<br>274<br>268 | 248<br>250<br>253<br>270<br>263 | 248<br>253<br>253<br>268<br>258 | 248<br>248<br>253<br>263<br>258 | 241<br>254<br>251<br>256<br>255 | | Mean | 278 | 275 | 278 | 276 | 278 | 273<br>261 | 263 | 268 | 265 | 261 | 254<br>246 | 249 | 254 | 249 | 254 | 261 | 271 • | 275 | 282 | 286 | 282 | 273 | 261 | 268<br>260 | 269 | | Mean* | 262 | 260 | 260 | 262 | 265 | 266 | 266 | 262 | 256 | 250 | 243 | 241 | 246 | 250 | 256 | 264 | 270 | 270 | 267 | 267 | 264 | 263 | 263 | 262 | 259 | | Mean** | 242 | 241 | 239 | 244 | 249 | 257 | 264 | 265 | 264 | 260 | 255 | 250 | 257 | 265 | 276 | 283 | 281 | 279 | 282 | 288 | 284 | 272 | 251 | 240 | 262 | | June. | | <u>-</u> | | | | <del></del> | ĺ | . | | 43000 | γ +<br> | labul | ar Qua | antitie | s. | | <del></del> | | | | | | | | Mean. | | 1<br>2*<br>3*<br>4* | 2587<br>244<br>236<br>233 | 258y<br>242<br>230<br>233 | 2587<br>244<br>233<br>233 | 260y<br> | 260y<br> | 258y<br><br>244<br>230<br>230 | 260y<br> | 258y<br> | 257y<br>238<br>225<br>228 | 248y<br>228<br>218<br>218 | 2437<br>221<br>213<br>209 | 228y<br><br>221<br>209<br>209 | 2337<br>217<br>204<br>209 | 243y<br>221<br>204<br>214 | 248y<br>223<br>211<br>218 | 2537<br>233<br>218<br>226 | 2557<br>233<br>223<br>236 | 256y<br>223<br>228<br>236 | 258y<br>216<br>230<br>236 | 2557<br>216<br>236<br>234 | 2537<br>214<br>236<br>233 | 2517<br>214<br>236<br>233 | 2457<br>214<br>236<br>230 | 2457<br>209<br>234<br>230 | 229y<br>225<br>228 | | 6<br>7<br>8<br>9**<br>10** | 230<br>228<br>236<br>235<br>218 | 230<br>230<br>238<br>235<br>218 | 230<br>233<br>238<br>237<br>196 | 233<br>236<br>238<br>237<br>209 | 236<br>238<br>238<br>237<br>218 | 236<br>236<br>238<br>237<br>226 | 233<br>238<br>238<br>237<br>235 | 228<br>230<br>238<br>235<br>233 | 223<br>228<br>236<br>227<br>233 | 216<br>221<br>222<br>224<br>228 | 211<br>219<br>219<br>218<br>228 | 207<br>209<br>219<br>213<br>228 | 207<br>209<br>218<br>216<br>247 | 211<br>228<br>216<br>218<br>305 | 218<br>230<br>229<br>229<br>315 | 228<br>238<br>232<br>235<br>295 | 236<br>243<br>237<br>245<br>295 | 238<br>248<br>242<br>250<br>295 | 238<br>243<br>242<br>256<br>290 | 238<br>243<br>237<br>265<br>280 | 238<br>240<br>235<br>265<br>271 | 236<br>238<br>234<br>251<br>237 | 233<br>238<br>232<br>237<br>233 | 233<br>238<br>232<br>232<br>237 | 228<br>233<br>232<br>236<br>249 | | 11** 12** 13 14 15** | 245<br>235<br>235<br>238<br>242 | 250<br>226<br>235<br>238<br>240 | 245<br>207<br>229<br>232<br>233 | 248<br>201<br>233<br>226<br>240 | 252<br>195<br>250<br>236<br>246 | 252<br>212<br>250<br>232<br>245 | 258<br>230<br>250<br>240<br>242 | 260<br>235<br>250<br>240<br>240 | 260<br>238<br>250<br>240<br>240 | 250<br>238<br>245<br>235<br>233 | 250<br>238<br>235<br>231<br>231 | 240<br>235<br>233<br>232<br>235 | 239<br>234<br>231<br>248<br>235 | 250<br>240<br>231<br>252<br>240 | 250<br>248<br>240<br>250<br>252 | 258<br>257<br>250<br>255<br>257 | 264<br>263<br>253<br>259<br>261 | 262<br>274<br>255<br>259<br>268 | 255<br>279<br>259<br>255<br>268 | 258<br>274<br>259<br>255<br>259 | 260<br>264<br>259<br>250<br>252 | 255<br>254<br>257<br>248<br>252 | 245<br>250<br>248<br>248<br>242 | 240<br>240<br>242<br>245<br>233 | 252<br>240<br>245<br>243<br>245 | | 16<br>17<br>18<br>19<br>20 | 228<br>220<br>241<br>244<br>246 | 219<br>227<br>241<br>236<br>246 | 217<br>228<br>244<br>241<br>246 | 226<br>234<br>241<br>246<br>246 | 226<br>234<br>238<br>246<br>246 | 226<br>234<br>244<br>246<br>246 | 236<br>234<br>244<br>241<br>236 | 238<br>236<br>246<br>244<br>236 | 236<br>236<br>246<br>244<br>236 | 234<br>236<br>236<br>240<br>231 | 231<br>228<br>234<br>236<br>227 | 226<br>231<br>256<br>236<br>228 | 228<br>225<br>236<br>244<br>229 | 236<br>236<br>241<br>246<br>227 | 244<br>246<br>246<br>246<br>227 | 246<br>255<br>246<br>244<br>236 | 255<br>255<br>248<br>248<br>246 | 260<br>255<br>254<br>251<br>251 | 257<br>260<br>256<br>254<br>253 | 260<br>260<br>251<br>251<br>251 | 255<br>255<br>251<br>248<br>248 | 246<br>246<br>248<br>246<br>246 | 241<br>236<br>246<br>246<br>246 | 234<br>241<br>246<br>246<br>241 | 238<br>240<br>245<br>245<br>240 | | 21<br>22<br>23<br>24<br>25 | 236<br>246<br>244<br>243<br>243 | 241<br>244<br>246<br>243<br>242 | 244<br>244<br>246<br>243<br>243 | 244<br>246<br>246<br>245<br>245 | 246<br>246<br>246<br>245<br>245 | 246<br>246<br>246<br>245<br>245 | 244<br>242<br>246<br>237<br>243 | 238<br>244<br>244<br>243<br>237 | 230<br>242<br>238<br>243<br>233 | 217<br>241<br>236<br>237<br>225 | 209<br>238<br>231<br>231<br>223 | 217<br>234<br>221<br>228<br>216 | 217<br>234<br>226<br>233<br>216 | 227<br>236<br>226<br>235<br>216 | 236<br>236<br>235<br>243<br>233 | 246<br>238<br>240<br>250<br>243 | 253<br>238<br>245<br>255<br>243 | 255<br>246<br>247<br>250<br>245 | 255<br>248<br>245<br>250<br>243 | 255<br>246<br>245<br>245<br>240 | 255<br>246<br>245<br>245<br>240 | 248<br>246<br>243<br>245<br>237 | 246<br>244<br>243<br>245<br>235 | 246<br>244<br>243<br>243<br>235 | 240<br>242<br>240<br>243<br>236 | | 26<br>27<br>28<br>29*<br>30* | 237<br>237<br>243<br>240<br>237 | 238<br>243<br>243<br>240<br>237 | 240<br>243<br>243<br>242<br>238 | 243<br>245<br>245<br>243<br>243 | 243<br>245<br>247<br>245<br>243 | 243<br>240<br>245<br>245<br>242 | 243<br>235<br>239<br>243<br>240 | 243<br>235<br>237<br>245<br>243 | 237<br>233<br>235<br>235<br>235 | 226<br>227<br>226<br>227<br>225 | 217<br>221<br>226<br>226<br>221 | 216<br>218<br>226<br>226<br>218 | 216<br>226<br>227<br>221<br>226 | 226<br>235<br>230<br>221<br>228 | 235<br>243<br>235<br>235 | 245<br>245<br>245<br>237 | 254<br>245<br>245<br>243 | 259<br>250<br>245<br>245 | 264<br>250<br>245<br>245 | 264<br>250<br>245<br>245<br>249 | 256<br>250<br>245<br>245<br>247 | 253<br>245<br>245<br>245<br>247 | 247<br>240<br>243<br>243<br>245 | 245<br>240<br>240<br>237<br>243 | 241<br>239<br>239<br>238<br>237 | | Mean<br>Mean* | 239 | 238 | 238 | 239 | 240 | 240 | 240 | 240 | 236 | 230 | 226 | 225 | 226 | 232 | 239 | 245 | 248 | 252 | 252 | 251 | 249 | 244 | 240 | 238 | 239 | | Mean** | 239 | 237 | 239 | 241 | 243 | 240 | 240 | 239 | 233 | 225 | 233 | 219 | 217 | 219 | 259 | 260 | 233 | 232 | 230 | 237 | 236 | 236 | 235 | 231 | 232 | | | | | | TA | BLE I | II.— | Hour | LY M | EANS | of V | ERTIC | CAL C | OMPO | NENT | of M | AGNE | тіс F | ORCE- | —cont | tinued | | | | | | |------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------| | | )h 11 | h 2 | h 3 | 3h 4 | ь 5 | h | 6 <sup>h</sup> 7 | 'h 8 | gh ( | | | | on. 1 | | | 5 <sup>h</sup> 1 | 6h ] | 17¤ 1 | 8h 1 | 9ћ 2 | 20h 2 | 1 <sup>h</sup> 2 | 2h 2 | | 24h | | July. | | | | | | | | ] | | 48 | <br> | - Tabu | lar Qu | antitie | es.<br> | 1 | | 1 | | | | | | | Mean. | | 1<br>2<br>3<br>4<br>5 | 239y<br>239<br>244<br>239<br>235 | 239y<br>239<br>244<br>236<br>233 | 239y<br>239<br>242<br>234<br>233 | 242y<br>242<br>244<br>237<br>238 | 242y<br>242<br>236<br>241<br>241 | 242y<br>238<br>239<br>242<br>243 | 2397<br>234<br>242<br>239<br>238 | 240y<br>234<br>242<br>232<br>238 | 236y<br>234<br>236<br>232<br>231 | 225y<br>226<br>232<br>224<br>228 | 223y<br>218<br>229<br>217<br>225 | 220y<br>215<br>227<br>220<br>231 | 225y<br>220<br>232<br>222<br>225 | 227y<br>232<br>239<br>232<br>228 | 2297<br>234<br>242<br>242<br>233 | 239y<br>234<br>244<br>242<br>238 | 244y<br>242<br>244<br>244<br>241 | 246y<br>244<br>244<br>244<br>243 | 258y<br>244<br>242<br>242<br>241 | 265y<br>246<br>244<br>240<br>238 | 261y<br>248<br>246<br>242<br>241 | 2537<br>244<br>244<br>239<br>238 | 246)<br>244<br>242<br>238<br>238 | 2447<br>242<br>239<br>238<br>235 | 240<br>236<br>240<br>235<br>236 | | 6<br>7*<br>8**<br>9 | 235<br>235<br>233<br>227<br>230 | 236<br>235<br>233<br>224<br>229 | 238<br>236<br>231<br>230<br>230 | 241<br>238<br>214<br>234<br>232 | 241<br>240<br>223<br>235<br>234 | 241<br>240<br>216<br>234<br>232 | 238<br>235<br>214<br>232<br>230 | 231<br>233<br>223<br>230<br>227 | 225<br>233<br>223<br>224<br>224 | 223<br>223<br>221<br>213<br>222 | 214<br>214<br>214<br>206<br>217 | 210<br>214<br>209<br>211<br>213 | 212<br>214<br>209<br>215<br>205 | 219<br>214<br>218<br>222<br>213 | 231<br>231<br>228<br>230<br>222 | 238<br>237<br>233<br>232<br>232 | 238<br>243<br>241<br>237<br>232 | 243<br>241<br>242<br>241<br>234 | 243<br>235<br>249<br>241<br>234 | 243<br>235<br>249<br>241<br>236 | 243<br>233<br>249<br>241<br>236 | 241<br>233<br>241<br>237<br>238 | 235<br>233<br>238<br>232<br>232 | 235<br>231<br>234<br>232<br>217 | 233<br>231<br>229<br>229<br>227 | | 11** 12 13 14 | 213<br>222<br>231<br>229<br>226 | 213<br>222<br>231<br>229<br>219 | 224<br>222<br>231<br>231<br>212 | 234<br>227<br>229<br>233<br>221 | 234<br>234<br>231<br>236<br>231 | 232<br>234<br>236<br>236<br>231 | 232<br>232<br>231<br>231<br>229 | 232<br>232<br>229<br>229<br>229 | 236<br>230<br>223<br>223<br>227 | 230<br>222<br>219<br>216<br>221 | 222<br>220<br>214<br>212<br>221 | 215<br>213<br>212<br>203<br>219 | 213<br>213<br>221<br>203<br>219 | 222<br>222<br>228<br>204<br>221 | 232<br>231<br>234<br>221<br>233 | 234<br>236<br>241<br>231<br>241 | 242<br>239<br>241<br>231<br>245 | 248<br>245<br>243<br>231<br>248 | 248<br>245<br>241<br>238<br>242 | 249<br>241<br>239<br>240<br>241 | 248<br>241<br>236<br>240<br>239 | 242<br>236<br>236<br>238<br>236 | 240<br>231<br>236<br>221<br>236 | 232<br>231<br>231<br>225<br>231 | 232<br>230<br>231<br>226<br>230 | | 16<br>17<br>18<br>19*<br>20* | 226<br>230<br>228<br>230<br>230 | 229<br>230<br>230<br>230<br>230 | 231<br>230<br>220<br>230<br>228 | 231<br>230<br>218<br>232<br>228 | 231<br>235<br>220<br>235<br>230 | 231<br>230<br>220<br>232<br>230 | 231<br>230<br>214<br>228<br>227 | 233<br>230<br>220<br>230<br>223 | 233<br>230<br>220<br>228<br>224 | 226<br>225<br>220<br>215<br>219 | 216<br>210<br>217<br>211<br>214 | 211<br>200<br>218<br>211<br>210 | 211<br>208<br>218<br>213<br>209 | 211<br>212<br>220<br>220<br>210 | 220<br>220<br>222<br>228<br>211 | 235<br>230<br>230<br>230<br>222 | 238<br>232<br>238<br>232<br>224 | 240<br>238<br>238<br>230<br>229 | 241<br>239<br>239<br>232<br>229 | 247<br>235<br>239<br>230<br>229 | 240<br>235<br>236<br>230<br>229 | 238<br>230<br>235<br>230<br>229 | 234<br>228<br>232<br>230<br>227 | 230<br>228<br>230<br>228<br>227 | 229<br>227<br>226<br>227<br>223 | | 21*<br>22*<br>23<br>24<br>25** | 227<br>227<br>230<br>227<br>229 | 227<br>227<br>230<br>230<br>229 | 227<br>227<br>232<br>226<br>228 | 227<br>227<br>232<br>229<br>224 | 229<br>229<br>232<br>231<br>228 | 229<br>229<br>230<br>229<br>222 | 221<br>227<br>224<br>225<br>214 | 219<br>226<br>229<br>226<br>212 | 219<br>219<br>222<br>221<br>212 | 211<br>210<br>213<br>219<br>212 | 205<br>203<br>213<br>213<br>212 | 205<br>202<br>213<br>212<br>212 | 200<br>202<br>211<br>204<br>212 | 205<br>208<br>213<br>212<br>220 | 214<br>211<br>222<br>221<br>233 | 224<br>229<br>227<br>223<br>239 | 234<br>236<br>232<br>229<br>270 | 236<br>235<br>239<br>233<br>298 | 229<br>232<br>237<br>233<br>300 | 227<br>229<br>234<br>231<br>289 | 223<br>229<br>232<br>233<br>258 | 227<br>229<br>232<br>231<br>241 | 227<br>227<br>230<br>229<br>239 | 227<br>227<br>230<br>229<br>237 | 222<br>223<br>226<br>225<br>236 | | 26<br>27<br>28**<br>29**<br>30 | 238<br>231<br>228<br>207<br>228 | 238<br>233<br>228<br>193<br>209 | 241<br>231<br>211<br>213<br>221 | 241<br>231<br>211<br>223<br>230 | 241<br>239<br>211<br>219<br>240 | 229<br>239<br>216<br>216<br>240 | 228<br>239<br>222<br>221<br>238 | 223<br>239<br>228<br>—<br>230 | 214<br>237<br>228<br>—<br>226 | 219<br>233<br>228<br>221<br>228 | 214<br>229<br>222<br>221<br>226 | 219<br>231<br>220<br>221<br>221 | 214<br>229<br>220<br>224<br>216 | 214<br>226<br>230<br>230<br>221 | 231<br>233<br>238<br>238<br>230 | 235<br>241<br>240<br>242<br>238 | 243<br>249<br>247<br>249<br>240 | 250<br>250<br>258<br>256<br>242 | 257<br>246<br>268<br>266<br>247 | 252<br>246<br>258<br>267<br>247 | 245<br>241<br>253<br>262<br>249 | 243<br>239<br>220<br>251<br>249 | 238<br>235<br>204<br>247<br>240 | 233<br>230<br>205<br>240<br>235 | 233<br>237<br>229<br>233<br>233 | | 31 | 225 | 227 | 227 | 227 | 229 | 227 | 227 | 232 | 229 | 227 | 225 | 220 | 218 | 225 | 232 | 237 | 237 | 242 | 241 | 245 | 245 | 238 | 236 | 234 | 232 | | Mean<br>Mean* | 230 | 228 | 229 | 231 | 233 | 232 | 229 | 229 | 226 | 221 | 217 | 215 | 215 | 211 | 228 | 235 | 240 | 244 | 245 | 244 | 242 | 237 | 234 | 231 | 231 | | Mean** | 222 | 219 | 221 | 221 | 223 | 219 | 220 | 224 | 225 | 222 | 218 | 215 | 216 | 224 | 234 | 238 | 250 | 261 | 267 | 263 | 254 | 239 | 234 | 230 | <u> </u> | | Augus | st. | | | | | | | | 1 | 430 | 000γ+ | Tabul | ar Qua | ntitie | s. | | 1 | | | | | | 1 | | Mean. | | 1* 2 3 4 5 | 226y<br>224<br>226<br>225<br>223 | 226y<br>218<br>224<br>227<br>220 | 226y<br>221<br>221<br>227<br>225 | 226y<br>224<br>205<br>227<br>225 | 228y<br>228<br>202<br>229<br>229 | 231y<br>226<br>207<br>233<br>227 | 231y<br>228<br>220<br>225<br>225 | 228y<br>233<br>226<br>220<br>225 | 230y<br>226<br>226<br>208<br>225 | 226y<br>226<br>224<br>201<br>216 | 226y<br>218<br>213<br>201<br>212 | 218y<br>209<br>211<br>198<br>206 | 216y<br>224<br>215<br>197<br>216 | 216y<br>220<br>215<br>204<br>217 | 226y<br>224<br>227<br>215<br>227 | 226y<br>234<br>235<br>225<br>235 | 2347<br>236<br>237<br>225<br>246 | 2347<br>236<br>246<br>227<br>252 | 226y<br>236<br>242<br>233<br>252 | 2267<br>238<br>237<br>233<br>246 | 230y<br>243<br>237<br>234<br>242 | 231y<br>238<br>235<br>234<br>235 | 228)<br>236<br>235<br>230<br>235 | 2267<br>232<br>227<br>225<br>230 | 227<br>228<br>225<br>221<br>229 | | 6<br>7<br>8<br>9 | 229<br>224<br>203<br>209<br>215 | 226<br>224<br>205<br>204<br>211 | 216<br>224<br>214<br>204<br>215 | 216<br>226<br>216<br>213<br>223 | 224<br>230<br>216<br>221<br>223 | 224<br>226<br>214<br>225<br>223 | 224<br>222<br>212<br>225<br>229 | 222<br>222<br>214<br>221<br>231 | 212<br>214<br>216<br>215<br>225 | 216<br>212<br>214<br>213<br>223 | 214<br>214<br>212<br>199<br>221 | 200<br>203<br>212<br>196<br>211 | 200<br>203<br>212<br>202<br>204 | 205<br>205<br>216<br>213<br>211 | 224<br>208<br>225<br>225<br>215 | 232<br>221<br>234<br>240<br>221 | 235<br>224<br>243<br>244<br>225 | 234<br>224<br>242<br>244<br>231 | 234<br>227<br>234<br>242<br>231 | 234<br>235<br>232<br>240<br>231 | 234<br>233<br>231<br>233<br>225 | 232<br>232<br>229<br>231<br>223 | 231<br>224<br>217<br>218<br>223 | 229<br>209<br>211<br>218<br>223 | 223<br>220<br>220<br>221<br>221 | | 11<br>12<br>13<br>14<br>15** | 221<br>220<br>224<br>219<br>212 | 213<br>220<br>222<br>219<br>219 | 219<br>222<br>222<br>218<br>221 | 217<br>222<br>222<br>221<br>221 | 220<br>222<br>224<br>223<br>226 | 224<br>222<br>222<br>223<br>229 | 224<br>232<br>220<br>221<br>231 | 224<br>230<br>220<br>221<br>229 | 222<br>224<br>220<br>219<br>223 | 220<br>220<br>216<br>209<br>221 | 208<br>212<br>212<br>211<br>216 | 203<br>203<br>208<br>211<br>203 | 201<br>203<br>208<br>211<br>203 | 217<br>205<br>210<br>211<br>210 | 224<br>212<br>220<br>216<br>210 | 225<br>222<br>224<br>221<br>212 | 230<br>226<br>230<br>223<br>212 | 234<br>226<br>232<br>232<br>232 | 234<br>228<br>231<br>231<br>250 | 236<br>226<br>238<br>229<br>266 | 234<br>230<br>233<br>229<br>297 | 230<br>224<br>231<br>221<br>251 | 220<br>224<br>221<br>211<br>229 | 220<br>224<br>219<br>202<br>231 | 222<br>221<br>222<br>219<br>227 | | 16**<br>17<br>18*<br>19*<br>20 | 236<br>241<br>243<br>242<br>242 | 239<br>241<br>243<br>242<br>239 | 231<br>238<br>239<br>242<br>239 | 201<br>238<br>237<br>242<br>238 | 211<br>241<br>237<br>244<br>242 | 2 I 3<br>243<br>24 I<br>244<br>24 I | 225<br>243<br>242<br>244<br>242 | 230<br>243<br>243<br>244<br>241 | 230<br>243<br>243<br>236<br>234 | 228<br>243<br>239<br>225<br>225 | 220<br>243<br>233<br>225<br>223 | 222<br>233<br>233<br>217<br>217 | 238<br>231<br>233<br>223<br>217 | 234<br>231<br>230<br>232<br>231 | 240<br>233<br>235<br>234<br>234 | 247<br>243<br>237<br>234<br>242 | 249<br>243<br>242<br>236<br>246 | 247<br>243<br>243<br>236<br>249 | 240<br>243<br>243<br>236<br>246 | 240<br>243<br>243<br>242<br>244 | 240<br>243<br>243<br>242<br>244 | 240<br>243<br>243<br>242<br>242 | 240<br>243<br>241<br>242<br>236 | 238<br>241<br>240<br>242<br>234 | 232<br>240<br>240<br>237<br>237 | | 2 1*<br>2 2<br>2 3<br>2 4<br>2 5** | 244<br>238<br>223<br>213<br>189 | 246<br>236<br>223<br>213<br>196 | 252<br>230<br>223<br>216<br>187 | 252<br>230<br>223<br>218<br>187 | 253<br>230<br>221<br>222<br>179 | 252<br>238<br>223<br>222<br>205 | 252<br>238<br>223<br>222<br>215 | 253<br>233<br>223<br>224<br>217 | 253<br>228<br>223<br>224<br>217 | 242<br>220<br>215<br>214<br>215 | 227<br>218<br>213<br>208<br>207 | 223<br>218<br>204<br>203<br>198 | 222<br>218<br>204<br>203<br>207 | 223<br>226<br>213<br>212<br>215 | 233<br>228<br>223<br>222<br>227 | 243<br>233<br>231<br>230<br>236 | 243<br>238<br>233<br>241<br>245 | 243<br>236<br>233<br>250<br>255 | 243<br>233<br>223<br>260<br>245 | 241<br>228<br>221<br>255<br>236 | 237<br>228<br>221<br>246<br>231 | 235<br>228<br>223<br>222<br>231 | 235<br>233<br>223<br>217<br>228 | 233<br>228<br>223<br>220<br>227 | 240<br>230<br>221<br>224<br>216 | | 26**<br>27**<br>28<br>29<br>30* | 223<br>223<br>221<br>220<br>223 | 215<br>224<br>219<br>218<br>223 | 197<br>224<br>227<br>220<br>223 | 187<br>224<br>227<br>226<br>223 | 199<br>229<br>229<br>228<br>225 | 215<br>226<br>229<br>228<br>227 | 223<br>232<br>231<br>233<br>229 | 225<br>232<br>237<br>236<br>230 | 225<br>232<br>234<br>238<br>227 | 225<br>226<br>221<br>228<br>223 | 215<br>224<br>212<br>218<br>217 | 215<br>224<br>212<br>214<br>208 | 219<br>234<br>217<br>218<br>206 | 224<br>248<br>224<br>223<br>215 | 234<br>251<br>227<br>228<br>223 | 243<br>251<br>229<br>233<br>230 | 253<br>247<br>234<br>233<br>233 | 243<br>248<br>236<br>233<br>233 | 243<br>248<br>237<br>233<br>232 | 243<br>244<br>234<br>230<br>230 | 234<br>239<br>234<br>236<br>230 | 234<br>236<br>234<br>233<br>230 | 234<br>236<br>228<br>230<br>229 | 224<br>234<br>228<br>228<br>223 | 225<br>235<br>228<br>228<br>225 | | 31 | 223 | 223 | 226 | 226 | 228 | 228 | 228 | 228 | 222 | 215 | 213 | 208 | 208 | 210 | 215 | 219 | 225 | 227 | 241 | 246 | 246 | 248 | 262 | 248 | 227 | | Mean* | 224 | 223 | 223 | 222 | 224 | 227 | 229 | 240 | 226 | 231 | 216 | 211 | 214 | 219 | 225 | 232 | 236 | 238 | 238 | 238 | 234 | 234 | 230 | 227 | 227 | | Mean** | 236 | 236 | 236 | 236 | 237 | 239 | 225 | 227 | 225 | 223 | 216 | 212 | 220 | 226 | 232 | 238 | 241 | 243 | 245 | | 248 | 238 | 233 | 231 | 234 | | | | | | TAE | BLE I | II.—I | Houri | Ly Mi | EANS | of V | ERTIC | AL C | OMPON | ENT | of M | AGNE | ric F | ORCE- | -cont | inued | | | 1. | | | |----------------------------------|----------------------------------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------| | 0 | h 1 | h 2 | h 3 | h 4 | h 5 | ь 6 | 3h 7 | 'h 8 | 3h 9 | h 1( | )h 1] | h No | on. 1 | 3h 1 | 4 <sup>h</sup> 1 | 5h 1 | 6h 17 | 7h 1 | 8h 1 | 9h 20 | 0h 2 | 1h 2 | 22h 2 | 23h 2 | 4h | | Septem | ber. | | | | | | | | | 430 | 000γ | +Tabı | ılar Q | uantiti | es. | | - | | | | | | | ] | Mean. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1**<br>2<br>3<br>4<br>5 | 2337<br>215<br>213<br>212<br>203 | 2217<br>215<br>218<br>198<br>194 | 221y<br>221<br>220<br>203<br>203 | 223y<br>223<br>222<br>207<br>214 | 225y<br>223<br>222<br>212<br>220 | 2237<br>223<br>217<br>212<br>222 | 223y<br>223<br>214<br>212<br>224 | 214y<br>221<br>212<br>212<br>222 | 217y<br>217<br>212<br>207<br>220 | 214y<br>213<br>207<br>201<br>212 | 206y<br>213<br>210<br>195<br>210 | 2047<br>211<br>212<br>210<br>203 | 208y<br>215<br>216<br>214<br>205 | 215y<br>221<br>220<br>222<br>212 | 2317<br>223<br>227<br>231<br>221 | 240y<br>231<br>237<br>236<br>240 | 240y<br>231<br>252<br>233<br>246 | 250y<br>231<br>242<br>231<br>240 | 251y<br>230<br>232<br>229<br>242 | 2447<br>231<br>232<br>231<br>231 | 242y<br>231<br>232<br>229<br>229 | 240y<br>227<br>232<br>226<br>226 | 2317<br>230<br>224<br>212<br>226 | 227y<br>226<br>212<br>207<br>223 | 227y<br>223<br>222<br>216<br>220 | | 6<br>7<br>8<br>9 | 216<br>216<br>219<br>222<br>222 | 22 I<br>22 I<br>2 I I<br>220<br>222 | 226<br>221<br>212<br>212<br>222 | 226<br>221<br>218<br>218<br>222 | 226<br>226<br>218<br>220<br>222 | 226<br>226<br>208<br>220<br>222 | 226<br>226<br>212<br>222<br>225 | 226<br>226<br>214<br>227<br>228 | 223<br>226<br>210<br>220<br>222 | 219<br>216<br>201<br>210<br>220 | 207<br>216<br>199<br>208<br>215 | 201<br>210<br>201<br>208<br>212 | 202<br>216<br>208<br>215<br>212 | 213<br>221<br>216<br>220<br>215 | 221<br>229<br>225<br>225<br>223 | 238<br>236<br>230<br>228<br>231 | 245<br>240<br>234<br>222<br>231 | 249<br>240<br>231<br>222<br>229 | 240<br>238<br>239<br>222<br>219 | 231<br>238<br>237<br>228<br>224 | 229<br>233<br>230<br>228<br>224 | 225<br>231<br>222<br>228<br>224 | 221<br>229<br>220<br>220<br>224 | 211<br>229<br>220<br>220<br>221 | 224<br>226<br>218<br>220<br>222 | | 11*<br>12*<br>13<br>14<br>15* | 219<br>219<br>219<br>223<br>226 | 219<br>219<br>219<br>223<br>225 | 217<br>221<br>218<br>223<br>221 | 219<br>222<br>216<br>223<br>220 | 221<br>224<br>218<br>223<br>223 | 227<br>229<br>218<br>226<br>226 | 227<br>229<br>218<br>226<br>228 | 227<br>229<br>218<br>226<br>228 | 225<br>229<br>218<br>218<br>220 | 219<br>219<br>218<br>213<br>217 | 217<br>219<br>207<br>211<br>208 | 209<br>211<br>201<br>211<br>210 | 209<br>209<br>204<br>218<br>214 | 209<br>209<br>208<br>218<br>219 | 214<br>219<br>218<br>228<br>225 | 221<br>219<br>228<br>237<br>227 | 227<br>219<br>237<br>237<br>225 | 221<br>219<br>228<br>237<br>225 | 219<br>219<br>228<br>236<br>224 | 219<br>219<br>228<br>232<br>225 | 221<br>221<br>228<br>230<br>224 | 221<br>224<br>228<br>228<br>227 | 219<br>222<br>228<br>228<br>227 | 219<br>219<br>228<br>226<br>227 | 219<br>220<br>220<br>225<br>222 | | 16<br>17<br>18**<br>19**<br>20** | 219<br>208<br>221<br>213<br>208 | 217<br>212<br>221<br>213<br>205 | 198<br>210<br>221<br>207<br>210 | 198<br>212<br>221<br>183<br>193 | 206<br>208<br>221<br>183<br>207 | 212<br>205<br>211<br>188<br>210 | 219<br>212<br>204<br>197<br>210 | 227<br>217<br>207<br>206<br>218 | 229<br>217<br>210<br>211<br>222 | 227<br>215<br>211<br>211<br>225 | 217<br>212<br>221<br>216<br>215 | 208<br>215<br>219<br>221<br>215 | 208<br>217<br>216<br>221<br>225 | 209<br>229<br>229<br>226<br>230 | 217<br>232<br>231<br>229<br>230 | 227<br>246<br>234<br>230<br>230 | 245<br>258<br>233<br>240<br>237 | 249<br>253<br>231<br>244<br>230 | 241<br>247<br>231<br>249<br>227 | 236<br>243<br>231<br>240<br>230 | 232<br>236<br>231<br>238<br>230 | 234<br>226<br>223<br>230<br>220 | 225<br>226<br>221<br>221<br>210 | 211<br>224<br>221<br>218<br>218 | 221<br>224<br>222<br>218<br>219 | | 21**<br>22<br>23<br>24<br>25* | 217<br>218<br>221<br>224<br>223 | 210<br>218<br>209<br>221<br>223 | 212<br>220<br>200<br>222<br>220 | 212<br>220<br>200<br>224<br>218 | 210<br>214<br>198<br>227<br>223 | 205<br>222<br>200<br>227<br>223 | 210<br>229<br>209<br>229<br>220 | 212<br>237<br>219<br>229<br>220 | 220<br>229<br>221<br>229<br>220 | 220<br>229<br>219<br>219<br>220 | 217<br>219<br>217<br>214<br>213 | 214<br>214<br>211<br>210<br>211 | 240<br>208<br>209<br>210<br>216 | 272<br>208<br>217<br>211<br>223 | 272<br>219<br>229<br>218<br>228 | 278<br>227<br>240<br>236<br>236 | 294<br>237<br>245<br>247<br>236 | 288<br>242<br>233<br>245<br>236 | 284<br>253<br>229<br>239<br>230 | 266<br>248<br>229<br>238<br>233 | 214<br>238<br>229<br>238<br>236 | 203<br>229<br>227<br>228<br>236 | 188<br>229<br>227<br>228<br>228 | 210<br>224<br>223<br>223<br>223 | 232<br>226<br>219<br>226<br>225 | | 26*<br>27<br>28<br>29<br>30 | 223<br>222<br>222<br>214<br>206 | 223<br>217<br>222<br>216<br>188 | 223<br>217<br>217<br>216<br>188 | 223<br>217<br>213<br>216<br>198 | 226<br>209<br>217<br>216<br>206 | 228<br>210<br>217<br>216<br>216 | 228<br>209<br>219<br>218<br>221 | 226<br>215<br>225<br>218<br>226 | 220<br>217<br>222<br>216<br>226 | 218<br>215<br>222<br>218<br>224 | 213<br>207<br>213<br>216<br>218 | 213<br>203<br>208<br>211<br>211 | 210<br>200<br>206<br>211<br>208 | 209<br>206<br>208<br>208<br>214 | 216<br>212<br>213<br>211<br>224 | 223<br>231<br>227<br>224<br>228 | 228<br>245<br>244<br>226<br>244 | 230<br>234<br>249<br>228<br>242 | 228<br>229<br>246<br>234<br>228 | 228<br>227<br>238<br>234<br>226 | 227<br>227<br>244<br>226<br>226 | 225<br>225<br>238<br>228<br>224 | 222<br>225<br>234<br>226<br>218 | 222<br>221<br>226<br>226<br>216 | 222<br>218<br>225<br>220<br>218 | | Mean | 218 | 215 | 216 | 215 | 216 | 217 | 219 | 22 I | 220 | 216 | 212 | 210 | 212 | 218 | 225 | 233 | 239 | 238 | 235 | 234 | 230 | 227 | 223 | 223 | 222 | | Mean* | 222 | 222 | 220 | 220 | 223 | 227 | 226 | 226 | 223 | 219 | 214 | 211 | 212 | 214 | 220 | 225 | 227 | 226 | 224 | 225 | 226 | 227 | 224 | 222 | 222 | | Mean** | 218 | 214 | 214 | 206 | 209 | 207 | 209 | 211 | 214 | 4300 | 215<br>00 V J | 215<br>Tabul | ar Qua | 234 | 239 | 242 | 249 | 249 | 248 | 242 | 231 | 223 | 214 | 219 | Mean. | | 1 | - | | | | | | | | | 1000 | | Tabui | | | | | | | | | | | | | <br> | | 1<br>2**<br>3<br>4<br>5 | 2057<br>203<br>202<br>221<br>215 | 200y<br>208<br>202<br>211<br>220 | 2007<br>212<br>211<br>211<br>220 | 1817<br>212<br>211<br>211<br>220 | 196y<br>208<br>206<br>209<br>220 | 210y<br>212<br>202<br>204<br>220 | 212y<br>212<br>204<br>211<br>222 | 218y<br>222<br>211<br>211<br>222 | 220y<br>222<br>211<br>216<br>220 | 222y<br>220<br>211<br>221<br>218 | 220y<br>214<br>211<br>221<br>215 | 210y<br>208<br>211<br>216<br>210 | 210y<br>210<br>211<br>216<br>218 | 210y<br>217<br>221<br>219<br>218 | 212y<br>230<br>226<br>223<br>220 | 220y<br>239<br>240<br>232<br>228 | 220y<br>241<br>240<br>242<br>230 | 220y<br>241<br>248<br>238<br>230 | 220y<br>232<br>238<br>231<br>230 | 220y<br>227<br>230<br>225<br>232 | 215y<br>227<br>229<br>221<br>237 | 215y<br>224<br>219<br>229<br>222 | 212y<br>224<br>221<br>223<br>220 | 205y<br>214<br>221<br>211<br>218 | 2117<br>220<br>218<br>220<br>222 | | 6<br>7<br>8**<br>9 | 201<br>200<br>220<br>218<br>220 | 199<br>203<br>220<br>210<br>218 | 205<br>206<br>218<br>203<br>218 | 210<br>209<br>217<br>197<br>220 | 215<br>209<br>215<br>190<br>220 | 218<br>214<br>218<br>194<br>222 | 220<br>214<br>217<br>213<br>225 | 218<br>217<br>215<br>218<br>226 | 218<br>219<br>218<br>218<br>223 | 212<br>214<br>220<br>210<br>220 | 210<br>209<br>212<br>206<br>216 | 212<br>204<br>206<br>206<br>210 | 210<br>204<br>210<br>206<br>209 | 212<br>211<br>215<br>208<br>216 | 218<br>219<br>229<br>218<br>220 | 220<br>222<br>248<br>222<br>226 | 222<br>228<br>271<br>227<br>228 | 222<br>228<br>290<br>227<br>226 | 228<br>224<br>266<br>226<br>226 | 229<br>219<br>266<br>226<br>226 | 229<br>219<br>257<br>227<br>224 | 228<br>219<br>253<br>231<br>220 | 220<br>219<br>234<br>227<br>220 | 201<br>219<br>229<br>227<br>218 | 216<br>215<br>232<br>215<br>221 | | 11*<br>12*<br>13*<br>14*<br>15 | 217<br>217<br>216<br>216<br>205 | 217<br>217<br>216<br>214<br>205 | 219<br>217<br>216<br>214<br>205 | 219<br>217<br>216<br>216<br>205 | 219<br>217<br>214<br>216<br>205 | 219<br>217<br>216<br>216<br>202 | 217<br>217<br>216<br>216<br>216 | 217<br>219<br>216<br>216<br>198 | 219<br>219<br>214<br>216<br>200 | 215<br>215<br>206<br>216<br>200 | 207<br>207<br>204<br>211<br>196 | 205<br>200<br>199<br>201<br>191 | 207<br>201<br>199<br>201<br>196 | 211<br>207<br>199<br>199 | 217<br>212<br>204<br>204<br>203 | 217<br>217<br>211<br>211<br>220 | 219<br>222<br>216<br>214<br>238 | 217<br>222<br>216<br>214<br>236 | 217<br>222<br>216<br>214<br>229 | 217<br>222<br>216<br>214<br>226 | 219<br>219<br>216<br>214<br>221 | 217<br>217<br>216<br>216<br>220 | 217<br>217<br>216<br>216<br>218 | 217<br>217<br>214<br>214<br>210 | 216<br>216<br>212<br>212<br>209 | | 16**<br>17**<br>18<br>19<br>20 | 212<br>219<br>210<br>218<br>200 | 210<br>221<br>210<br>218<br>207 | 199<br>210<br>212<br>218<br>209 | 184<br>200<br>219<br>218<br>216 | 175<br>200<br>219<br>218<br>218 | 157<br>196<br>222<br>218<br>222 | 171<br>202<br>219<br>216<br>225 | 192<br>210<br>219<br>218<br>228 | 192<br>219<br>221<br>218<br>226 | 198<br>212<br>222<br>216<br>218 | 230<br>210<br>219<br>210<br>218 | 240<br>219<br>224<br>209<br>218 | 262<br>227<br>234<br>209<br>218 | 283<br>234<br>237<br>223<br>228 | 299<br>257<br>246<br>233<br>236 | 320<br>258<br>238<br>260<br>245 | 294<br>257<br>238<br>246<br>245 | 274<br>238<br>238<br>235<br>236 | 268<br>234<br>238<br>228<br>230 | 266<br>234<br>238<br>230<br>230 | 246<br>229<br>234<br>228<br>228 | 237<br>224<br>219<br>226<br>228 | 220<br>219<br>219<br>209<br>228 | 220<br>219<br>223<br>199<br>218 | 231<br>223<br>226<br>222<br>224 | | 2 I<br>2 2<br>2 3<br>2 4<br>2 5 | 212<br>228<br>211<br>220<br>224 | 208<br>222<br>215<br>214<br>224 | 212<br>220<br>218<br>212<br>224 | 215<br>218<br>220<br>212<br>224 | 219<br>218<br>220<br>212<br>222 | 219<br>220<br>220<br>212<br>222 | 222<br>220<br>220<br>217<br>222 | 225<br>220<br>228<br>220<br>222 | 224<br>214<br>228<br>222<br>220 | 217<br>215<br>222<br>220<br>214 | 208<br>209<br>213<br>214<br>210 | 206<br>209<br>215<br>212<br>210 | 209<br>210<br>222<br>212<br>209 | 215<br>215<br>228<br>220<br>210 | 225<br>220<br>228<br>222<br>222 | 231<br>230<br>235<br>224<br>230 | 234<br>237<br>239<br>227<br>224 | 234<br>232<br>241<br>227<br>227 | 231<br>230<br>241<br>222<br>232 | 236<br>228<br>239<br>222<br>230 | 227<br>225<br>238<br>232<br>224 | 227<br>225<br>228<br>232<br>227 | 227<br>222<br>220<br>232<br>227 | 225<br>210<br>220<br>232<br>224 | 22 I<br>22 I<br>22 6<br>22 0<br>22 2 | | 26<br>27*<br>28<br>29<br>30 | 220<br>213<br>215<br>219<br>217 | 220<br>217<br>218<br>216<br>217 | 220<br>218<br>217<br>217<br>216 | 220<br>218<br>218<br>219<br>217 | 220<br>218<br>217<br>217<br>217 | 220<br>220<br>218<br>219<br>219 | 220<br>220<br>215<br>217<br>217 | 220<br>220<br>215<br>219<br>217 | 220<br>220<br>217<br>219<br>219 | 220<br>220<br>212<br>214<br>211 | 215<br>210<br>209<br>209<br>207 | 212<br>210<br>209<br>209<br>207 | 215<br>208<br>212<br>211<br>209 | 218<br>210<br>220<br>217<br>217 | 220<br>215<br>228<br>219<br>217 | 222<br>220<br>241<br>221<br>221 | 220<br>220<br>251<br>221<br>219 | 220<br>220<br>239<br>221<br>219 | 220<br>218<br>230<br>219<br>211 | 222<br>220<br>230<br>221<br>214 | 220<br>220<br>228<br>221<br>217 | 220<br>220<br>225<br>219<br>217 | 220<br>220<br>222<br>209<br>217 | 220<br>218<br>220<br>217<br>217 | 219<br>217<br>222<br>217<br>216 | | 31** | 209 | 209 | 209 | 209 | 207 | 193 | 193 | 198 | 202 | 217 | 217 | 219 | 224 | 229 | 240 | 246 | 238 | 229 | 229 | 229 | 219 | 219 | 219 | 209 | 217 | | Mean | 214 | 213 | 213 | 213 | 212 | 212 | 214 | 217 | 217 | 215 | 212 | 210 | 213 | 218 | 225 | 230 | 234 | 232 | 229 | 229 | 226 | 224 | 221 | 217 | 219 | | Mean*<br><br>Mean** | 216 | 216 | 217 | 217 | 217 | 195 | 199 | 218 | 218 | 214 | 208 | 203 | 203 | 205 | 214 | 262 | 218 | 218 | 217 | 218 | 218 | 217 | 217 | 216 | 215 | | | | | | Тан | BLE II | II.—F | Iouri | Y Mı | EANS | of V | ERTIC | AL C | OMPO? | ENT | of M | AGNE | тіс F | ORCE- | —cont | inued | | | | | | |-----------------------------------|------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | 0 | h 11 | h 2 | h 3 | h 4 | h 5 | h 6 | h 71 | a 81 | h 9h | 10 | h 11h | Noo | n. 13 | h 14 | h 15 | 5h 16 | Sh 1 | 7 <sup>h</sup> 1 | 8h 1 | 9h 2 | 0 т 2 | 1h 2 | 2 <sup>b</sup> 2 | 3ћ 2 | 24h | | Novem | ber. | | | | | | | | | 430 | <sup>100</sup> γ+ | Tabula | ar Qua | ntities | | | | | | | | | | N | Iean. | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | 1<br>2<br>3<br>4<br>5* | 204 <i>y</i><br>214<br>208<br>212<br>209 | 208y<br>211<br>209<br>209<br>209 | 211y<br>211<br>211<br>210<br>209 | 214y<br>208<br>214<br>209<br>209 | 214y<br>208<br>214<br>210<br>209 | 2147<br>209<br>210<br>212<br>207 | 214y<br>211<br>214<br>207<br>207 | 216y<br>214<br>216<br>207<br>207 | 216y<br>216<br>214<br>207<br>205 | 2147<br>211<br>208<br>207<br>202 | 214y<br>211<br>208<br>202<br>197 | 2117<br>208<br>214<br>205<br>202 | 208y<br>214<br>215<br>207<br>207 | 214y<br>218<br>212<br>209<br>207 | 218y<br>219<br>217<br>212<br>212 | 218y<br>221<br>217<br>215<br>214 | 218y<br>226<br>217<br>214<br>215 | 216y<br>221<br>217<br>209<br>209 | 2147<br>216<br>215<br>207<br>209 | 214y<br>216<br>215<br>207<br>207 | 2147<br>214<br>217<br>209<br>207 | 208y<br>216<br>217<br>217<br>209 | 208y<br>216<br>217<br>212<br>210 | 208y<br>214<br>215<br>210<br>209 | 2137<br>214<br>214<br>209<br>208 | | 6*<br>7*<br>8<br>9 | 207<br>208<br>208<br>209<br>212 | 207<br>208<br>208<br>209<br>211 | 207<br>208<br>208<br>209<br>211 | 207<br>208<br>208<br>209 | 207<br>208<br>210<br>211 | 207<br>210<br>210<br>211<br>211 | 208<br>206<br>208<br>211<br>209 | 208<br>208<br>208<br>209<br>209 | 208<br>208<br>208<br>209<br>209 | 208<br>206<br>203<br>209<br>204 | 203<br>200<br>203<br>207<br>200 | 206<br>200<br>200<br>207<br>200 | 208<br>206<br>201<br>213<br>202 | 208<br>208<br>206<br>213<br>207 | 210<br>210<br>208<br>217<br>214 | 213<br>210<br>210<br>217<br>219 | 213<br>213<br>210<br>217<br>219 | 213<br>213<br>213<br>216<br>219 | 210<br>208<br>210<br>212<br>224 | 208<br>208<br>210<br>211<br>228 | 210<br>208<br>208<br>214<br>233 | 213<br>208<br>208<br>214<br>233 | 210<br>208<br>208<br>214<br>228 | 208<br>208<br>210<br>215<br>211 | 209<br>208<br>208<br>212<br>214 | | 11** 12** 13 14 15** | 209<br>192<br>199<br>219<br>214 | 207<br>188<br>208<br>217<br>208 | 198<br>182<br>216<br>211<br>216 | 200<br>199<br>210<br>219<br>219 | 198<br>201<br>208<br>219<br>214 | 193<br>190<br>213<br>219<br>210 | 195<br>197<br>213<br>219<br>200 | 200<br>205<br>216<br>219<br>210 | 202<br>211<br>216<br>217<br>214 | 207<br>216<br>216<br>217<br>219 | 209<br>220<br>218<br>217<br>217 | 209<br>228<br>216<br>221<br>217 | 212<br>229<br>218<br>227<br>219 | 225<br>241<br>226<br>227<br>227 | 229<br>244<br>228<br>229<br>231 | 231<br>244<br>232<br>227<br>234 | 239<br>244<br>237<br>227<br>238 | 249<br>241<br>237<br>229<br>252 | 259<br>235<br>237<br>229<br>245 | 253<br>228<br>235<br>229<br>245 | 225<br>228<br>226<br>219<br>238 | 225<br>216<br>228<br>224<br>221 | 203<br>208<br>208<br>219<br>210 | 190<br>201<br>214<br>217<br>214 | 216<br>216<br>220<br>222<br>222 | | 16<br>17<br>18<br>19<br>20 | 210<br>218<br>222<br>231<br>231 | 210<br>213<br>222<br>231<br>231 | 210<br>217<br>220<br>229<br>231 | 208<br>218<br>222<br>227<br>229 | 208<br>220<br>222<br>230<br>229 | 210<br>220<br>222<br>231<br>225 | 212<br>220<br>220<br>231<br>225 | 217<br>220<br>220<br>231<br>223 | 219<br>220<br>220<br>233<br>223 | 217<br>218<br>220<br>233<br>225 | 212<br>218<br>220<br>233<br>221 | 221<br>224<br>220<br>231<br>221 | 230<br>232<br>228<br>235<br>223 | 237<br>240<br>230<br>241<br>221 | 247<br>241<br>240<br>241<br>221 | 252<br>241<br>240<br>243<br>221 | 247<br>240<br>238<br>243<br>226 | 246<br>240<br>237<br>243<br>226 | 239<br>235<br>238<br>245<br>223 | 232<br>232<br>238<br>247<br>221 | 230<br>230<br>230<br>233<br>223 | 218<br>230<br>230<br>236<br>225 | 218<br>230<br>228<br>236<br>223 | 222<br>228<br>228<br>233<br>221 | 224<br>227<br>227<br>235<br>225 | | 21<br>22<br>23**<br>24<br>25 | 221<br>224<br>221<br>245<br>233 | 221<br>225<br>219<br>245<br>233 | 223<br>224<br>216<br>243<br>233 | 224<br>224<br>220<br>243<br>236 | 221<br>225<br>207<br>238<br>240 | 221<br>227<br>209<br>241<br>238 | 219<br>224<br>206<br>241<br>238 | 219<br>222<br>199<br>241<br>235 | 223<br>222<br>209<br>238<br>233 | 221<br>222<br>212<br>237<br>231 | 221<br>222<br>221<br>235<br>230 | 223<br>222<br>232<br>235<br>231 | 230<br>224<br>253<br>241<br>233 | 230<br>230<br>260<br>248<br>237 | 234<br>230<br>270<br>253<br>238 | 237<br>230<br>285<br>262<br>241 | 240<br>232<br>280<br>257<br>243 | 240<br>232<br>270<br>253<br>243 | 234<br>230<br>268<br>256<br>241 | 234<br>230<br>259<br>253<br>241 | 237<br>230<br>257<br>248<br>237 | 232<br>232<br>255<br>245<br>241 | 232<br>232<br>251<br>243<br>241 | 227<br>222<br>250<br>238<br>239 | 228<br>227<br>239<br>245<br>237 | | 26*<br>27*<br>28<br>29**<br>30 | 235<br>234<br>234<br>235<br>253 | 236<br>234<br>234<br>235<br>247 | 233<br>234<br>232<br>235<br>235 | 233<br>234<br>232<br>235<br>245 | 235<br>234<br>232<br>233<br>245 | 236<br>234<br>234<br>233<br>245 | 233<br>234<br>226<br>230<br>243 | 233<br>232<br>226<br>231<br>242 | 233<br>234<br>231<br>231<br>240 | 233<br>229<br>232<br>231<br>235 | 231<br>226<br>226<br>231<br>235 | 233<br>229<br>227<br>228<br>240 | 234<br>234<br>229<br>229<br>243 | 234<br>234<br>239<br>226<br>245 | 234<br>236<br>239<br>226<br>245 | 239<br>236<br>242<br>226<br>253 | 239<br>240<br>242<br>226<br>255 | 239<br>234<br>238<br>231<br>255 | 239<br>234<br>234<br>245<br>259 | 236<br>234<br>234<br>290<br>257 | 236<br>234<br>236<br>370<br>247 | 238<br>234<br>239<br>300<br>245 | 238<br>234<br>239<br>281<br>245 | 232<br>234<br>237<br>250<br>243 | 235<br>234<br>234<br>243<br>246 | | Mean | 219 | 218 | 218 | 219 | 219 | 218 | 217 | 218 | 219 | 218 | 217 | 219 | 223 | 227 | 230 | 232 | 233 | 233 | 232 | 232 | 226 | 225 | 225 | 222 | 224 | | Mean* | 219 | 219 | 218 | 218 | 219 | 219 | 218 | 218 | 218 | 216 | 211 | 214 | 218 | 218 | 220 | 222 | 224 | 222 | 220 | 219 | 219 | 220 | 220 | 218 | 219 | | Mean** | 214 | 211 | 209 | 215 | 211 | 207 | 206 | 209 | 213 | 430 | 220<br>00γ+1 | rabula | r Quai | 236 | 242 | 244 | 245 | 249 | 250 | 255 | 251 | 243 | 231 | 221<br>N | 1 227<br>Iean. | | | 1 ( | 1 | | | | | | | | | | | <br> | | 1 | | | | | | | 1 | | | <u> </u> | | 1** 2 3 4 5* | 235y<br>234<br>237<br>243<br>237 | 2347<br>238<br>237<br>243<br>239 | 2347<br>244<br>239<br>240<br>239 | 234y<br>244<br>237<br>241<br>239 | 2347<br>240<br>237<br>238<br>239 | 2347<br>240<br>235<br>238<br>239 | 235y<br>240<br>232<br>238<br>234 | 2357<br>236<br>228<br>233<br>231 | 235y<br>238<br>228<br>233<br>232 | 235)<br>236<br>235<br>231<br>231 | 2317<br>236<br>235<br>232<br>229 | 226y<br>231<br>239<br>228<br>234 | 235y<br>231<br>245<br>231<br>234 | 240y<br>236<br>247<br>233<br>234 | 250y<br>236<br>249<br>238<br>237 | 266y<br>241<br>256<br>240<br>237 | 285y<br>241<br>264<br>245<br>237 | 282y<br>241<br>266<br>246<br>234 | 2877<br>241<br>252<br>243<br>231 | 2757<br>238<br>249<br>238<br>229 | 2577<br>241<br>247<br>238<br>229 | 245)<br>244<br>252<br>238<br>231 | 2377<br>236<br>250<br>238<br>231 | 2377<br>236<br>247<br>233<br>231 | 246)<br>238<br>244<br>237<br>234 | | 6*<br>7<br>8**<br>9** | 230<br>231<br>222<br>238<br>213 | 232<br>231<br>206<br>235<br>225 | 232<br>231<br>192<br>234<br>235 | 230<br>231<br>215<br>220<br>237 | 230<br>229<br>226<br>220<br>239 | 232<br>229<br>224<br>229<br>244 | 234<br>229<br>226<br>234<br>239 | 230<br>226<br>231<br>241<br>241 | 230<br>227<br>233<br>243<br>239 | 230<br>223<br>240<br>245<br>244 | 228<br>221<br>242<br>248<br>249 | 228<br>221<br>250<br>245<br>249 | 230<br>223<br>271<br>258<br>265 | 230<br>226<br>298<br>267<br>263 | 230<br>231<br>322<br>276<br>271 | 230<br>231<br>294<br>267<br>271 | 230<br>236<br>280<br>267<br>271 | 230<br>241<br>300<br>270<br>263 | 230<br>245<br>291<br>262<br>258 | 230<br>245<br>278<br>259<br>249 | 230<br>239<br>266<br>253<br>254 | 230<br>248<br>252<br>243<br>249 | 234<br>248<br>242<br>243<br>246 | 230<br>241<br>238<br>234<br>244 | 230<br>233<br>252<br>247<br>248 | | 11<br>12<br>13<br>14 | 235<br>236<br>239<br>235<br>239 | 231<br>236<br>239<br>238<br>239 | 235<br>241<br>237<br>238<br>239 | 240<br>241<br>235<br>238<br>239 | 235<br>241<br>235<br>238<br>239 | 240<br>243<br>233<br>240<br>239 | 242<br>243<br>235<br>238<br>239 | 245<br>244<br>235<br>238<br>231 | 245<br>256<br>237<br>238<br>235 | 253<br>256<br>237<br>243<br>237 | 250<br>256<br>237<br>238<br>237 | 245<br>244<br>235<br>238<br>239 | 245<br>243<br>237<br>246<br>241 | 245<br>246<br>245<br>250<br>247 | 250<br>246<br>247<br>250<br>249 | 255<br>251<br>251<br>255<br>247 | 255<br>246<br>252<br>250<br>247 | 259<br>246<br>264<br>250<br>249 | 255<br>251<br>252<br>248<br>249 | 257<br>248<br>252<br>248<br>249 | 250<br>246<br>252<br>248<br>247 | 250<br>246<br>242<br>246<br>247 | 235<br>246<br>242<br>240<br>247 | 235<br>244<br>230<br>240<br>245 | 245<br>246<br>242<br>243<br>242 | | 16<br>17<br>18<br>19<br>20 | 242<br>249<br>242<br>243<br>256 | 242<br>248<br>242<br>243<br>256 | 240<br>243<br>244<br>245<br>254 | 240<br>241<br>242<br>243<br>246 | 240<br>239<br>242<br>243<br>248 | 240<br>239<br>242<br>239<br>254 | 240<br>239<br>242<br>234<br>252 | 238<br>239<br>240<br>234<br>246 | 238<br>241<br>240<br>234<br>245 | 238<br>249<br>240<br>241<br>246 | 238<br>249<br>240<br>241<br>252 | 235<br>241<br>240<br>241<br>252 | 240<br>247<br>238<br>253<br>252 | 248<br>249<br>240<br>263<br>252 | 250<br>249<br>242<br>265<br>256 | 248<br>248<br>242<br>263<br>264 | 250<br>249<br>242<br>263<br>273 | 252<br>249<br>244<br>272<br>275 | 258<br>249<br>250<br>272<br>278 | 261<br>247<br>247<br>270<br>269 | 261<br>243<br>244<br>272<br>269 | 259<br>247<br>242<br>273<br>264 | 256<br>249<br>240<br>265<br>264 | 250<br>243<br>240<br>263<br>262 | 246<br>245<br>242<br>253<br>258 | | 2 I<br>2 2<br>2 3<br>2 4<br>2 5** | 262<br>260<br>254<br>247<br>259 | 259<br>257<br>246<br>249<br>259 | 256<br>257<br>244<br>255<br>257 | 256<br>255<br>239<br>257<br>257 | 254<br>245<br>248<br>257<br>255 | 254<br>250<br>254<br>257<br>257 | 252<br>253<br>248<br>257<br>250 | 246<br>253<br>250<br>257<br>245 | 246<br>255<br>248<br>257<br>245 | 246<br>255<br>250<br>257<br>245 | 250<br>255<br>256<br>257<br>245 | 249<br>253<br>258<br>257<br>255 | 244<br>255<br>266<br>257<br>260 | 246<br>255<br>258<br>259<br>267 | 249<br>257<br>258<br>259<br>278 | 254<br>255<br>261<br>259<br>315 | 259<br>255<br>261<br>259<br>329 | 262<br>255<br>266<br>259<br>381 | 264<br>255<br>268<br>265<br>391 | 264<br>255<br>273<br>265<br>348 | 262<br>257<br>266<br>259<br>299 | 259<br>255<br>261<br>257<br>286 | 262<br>253<br>254<br>257<br>280 | 259<br>253<br>244<br>257<br>257 | 255<br>255<br>256<br>257<br>280 | | 26**<br>27<br>28*<br>29*<br>30* | 25 <b>2</b> 255 271 267 268 | 260<br>260<br>269<br>267<br>266 | 264<br>260<br>269<br>267<br>265 | 267<br>260<br>269<br>267<br>265 | 267<br>260<br>269<br>264<br>265 | 269<br>266<br>271<br>267<br>266 | 267<br>268<br>269<br>267<br>265 | 269<br>270<br>271<br>267<br>266 | 277<br>270<br>271<br>267<br>263 | 277<br>270<br>271<br>269<br>265 | 281<br>268<br>271<br>272<br>265 | 284<br>268<br>271<br>272<br>268 | 288<br>270<br>271<br>272<br>271 | 288<br>272<br>269<br>272<br>268 | 284<br>270<br>271<br>272<br>265 | 279<br>270<br>273<br>272<br>265 | 274<br>270<br>273<br>272<br>268 | 279<br>270<br>271<br>272<br>268 | 279<br>270<br>271<br>272<br>266 | 271<br>268<br>271<br>272<br>265 | 279<br>268<br>271<br>270<br>266 | 260<br>270<br>271<br>270<br>265 | 258<br>270<br>271<br>270<br>268 | 260<br>270<br>266<br>268<br>268 | 272<br>267<br>270<br>270<br>266 | | 31 | 264 | 264 | 264 | 262 | 260 | 264 | 262 | 260 | 262 | 262 | 259 | 259 | 262 | 264 | 266 | 269 | 269 | 274 | 274 | 272 | 270 | 272 | 272 | 266 | 266 | | Mean | 245 | 245 | 245 | 245 | 244 | 246 | 245 | 244 | 245 | 247 | 247 | 247 | 251 | 254 | 257 | 259 | 260 | 264 | 264 | 260 | 257 | 254 | 252 | 248 | 251 | | Mean* | 267 | 267 | 266 | 266 | 265 | 267 | 266 | 265 | 265 | 265<br>249 | 265 | 267 | | 265 | 207 | 267 | 285 | 207 | 295 | 265 | 265 | 265 | 267 | 265 | 266 | | Mean** | 240 | 243 | 245 | 243 | 243 | 247 | 245 | 246 | 248 | <b>249</b> | 251 | 452 | 201 | 205 | 2/2 | 200 | 205 | 495 | <b>495</b> | 200 | 408 | 257 | 253 | 246 | 1 2 | Table IV.—Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West. (The results in each month are diminished by the smallest hourly value.) | | | | | | | 1918 | | | | | | | | |--------------------------------|----------|-----------|--------|--------|-------|-------|-------|---------|------------|----------|-----------|-----------|---------------| | Hour,<br>Greenwich Civil Time. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | For the Year. | | | | | _ | | | | | | | | | | | | Midnight | 0.5 | 0.1 | 1.4 | 2.1 | 3.4 | 3.3 | 3.7 | 3.2 | 1.1 | 0.5 | 1.1 | 2.6 | 0.86 | | ıh. | 1.4 | 0.5 | r · 5 | 1.9 | 3.5 | 3.9 | 3.5 | 3.1 | 1 . 2 | o∙8 | 1.0 | 2.8 | 1.11 | | 2 | 1.7 | 0.4 | 1.3 | 1.2 | 3.4 | 3.3 | 3.0 | 3.1 | 0.6 | I ·2 | 2.1 | 3.1 | 0.97 | | 3 | 2.7 | 0.5 | I · 2 | 1.9 | 3.1 | 2.4 | 2.4 | 3.3 | 0.6 | 1 · I | 2.5 | 3.4 | 1.03 | | 4 | 2.9 | 0.7 | I · 2 | 2 · I | 2.5 | 1.4 | 2.1 | 1.9 | 0.6 | 2.3 | 2.7 | 3.3 | 0.92 | | 5 | 2.7 | 1.6 | 1 •4 | 2.5 | 1.3 | 0.4 | 0.3 | 0.7 | 0.9 | 2.2 | 2.8 | 3.9 | 0.66 | | 6 | 2.6 | 1.7 | I • I | 1.5 | 0.4 | 0.2 | 0.0 | 0.0 | 0.4 | 1.5 | 2.5 | 4.5 | 0.31 | | 7 | 2.5 | 1.8 | 0.4 | 0.3 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.5 | 2.4 | 4.4 | 0.00 | | 8 | 2.3 | 1.5 | 0.0 | 0.0 | 0.8 | 0.5 | 0.8 | 1.0 | 0.3 | 0.0 | 2 · I | 4.8 | 0.11 | | 9 | 1.9 | 1.7 | I • I | 1.7 | 2.6 | 2.7 | 2.8 | 3.1 | 2 · 2 | I • I | 2.8 | 5.2 | 1.36 | | 10 | 2.9 | 3.3 | 3.9 | 4.7 | 5.5 | 5.4 | 5 € | 5.8 | 5.3 | 3.6 | 4·1 | 6.2 | 3.58 | | II | 4.4 | 4.8 | 7.3 | 8.3 | 8.7 | 8.7 | 8.4 | 9.7 | 8.3 | 6.8 | 6.5 | 6.6 | 6.32 | | Noon | 6.3 | 6.0 | 9.8 | 11.4 | 11.0 | 10.7 | 10.8 | 11.9 | 10.1 | 8.7 | 7.4 | 7.2 | 8.22 | | 13h. | 7.5 | 6.9 | 10.2 | 12.4 | 11.7 | 11.6 | 11.8 | 12.4 | 9.9 | 9.0 | 7.5 | 7.4 | 8.82 | | 14 | 7.4 | 6.8 | 9.4 | 11.3 | 11.1 | 11.3 | 11.5 | 11.3 | 8.9 | 8.6 | 6.8 | 6.9 | 8.21 | | 15 | 6.4 | 6∙1 | 7.5 | 9:5 | 9.4 | 9.9 | 10.2 | 9.7 | 7.3 | 6.6 | 5.8 | 6∙1 | 6.82 | | 16 | 5.6 | 5.6 | 5.4 | 7.8 | 7.9 | 8.0 | 8.8 | 7.9 | 4.8 | 4.9 | 4.8 | 4.9 | 5.31 | | 17 | 4.8 | 4.3 | 4.3 | 6.2 | 6.6 | 6.5 | 7.2 | 6.0 | 4.0 | 4·1 | 3.4 | 4.3 | 4.08 | | 18 | 4.3 | 4.0 | 3.5 | 4.7 | 5.2 | 5.7 | 5.7 | 4.8 | 2.8 | 3.5 | 2.5 | 3.2 | 3.10 | | 19 | 3.4 | 3.6 | 2.7 | 3.9 | 4.7 | 5.0 | 5.0 | 4.3 | 2 · I | I .5 | 1.6 | 1.2 | 2.19 | | 20 | 2.3 | 2.0 | 1 ·8 | 3.6 | 4.6 | 5.0 | 4.4 | 4.5 | 1.4 | 0.4 | 0.8 | 0.4 | 1.54 | | 2 I | 0.8 | 1.1 | 1.7 | 3.1 | 4.2 | 5·I | 4.7 | 3.7 | 0.4 | 0.3 | 0.8 | 0.0 | 1.11 | | 22 | 0.3 | 0.0 | 1.2 | 2.3 | 4.5 | 4.7 | 4.2 | 2.9 | I ·2 | 0.3 | 0.0 | 0.7 | 0.82 | | 23 | 0.0 | 0.0 | 1.3 | 1.1 | 3.9 | 3.7 | 3.8 | 3.5 | I .0 | 0.2 | 0.1 | 1.9 | 0.62 | | Means | 3'.24 | 2'.71 | 3'.38 | 4′.40 | 5′.03 | 4′.98 | 5'.02 | 4′.90 | 3'.14 | 2′.87 | 3'.12 | 3′.97 | 2′.84 | Table V.—Diurnal Range of Declination, on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers. | | | | | | | 1918. | | | | | | | |---------------|----------|-----------|--------|-------------|--------------|--------------|---------------|---------|------------|----------|-------------|-----------| | Day of Month. | January. | February. | March. | April | May. | June. | July. | August. | September. | October. | November. | December. | | d. | | | | 1 | | | | | | | | | | I. | 5.8 | 12.0 | 7.0 | 15.0 | 14.5 | 12.5 | 13.0 | 13.7 | 26.0 | 15.7 | 7.5 | 26.0 | | 2 | 6.5 | 8.3 | 10.8 | 15.0 | 11.5 | 13.0 | 10.5 | 11.2 | 10.8 | 12.0 | 7.0 | 7.8 | | 3 | 13.0 | 6.3 | 17.5 | 14.5 | 13.8 | 10.0 | 11.3 | 17.4 | 12.0 | 12.8 | 7.2 | 16:5 | | 4 | 12.7 | 4.7 | 12.7 | 20.0 | 15.0 | 13.0 | 13.8 | 14.7 | 16.8 | 13.0 | 9.0 | 6.0 | | ;<br>5 | 10.3 | 7.8 | 8.7 | 20.5 | 11.3 | 15.0 | 11.5 | 16.0 | 15.0 | 18.0 | <b>8</b> ⋅0 | 3.3 | | 5<br>6 | 10.8 | 17.8 | 8.2 | 30.3 | 13.5 | 14.5 | 12.0 | 17:4 | 13.8 | 10.4 | 6.5 | 3.5 | | | 8.5 | 7.5 | 11.0 | 18.5 | 11.5 | 15.0 | 15.0 | 12.0 | 13.2 | 12.0 | 6.5 | 15.0 | | 7<br>8 | 5.2 | 5.5 | 32.5 | 13.5 | 18.5 | 15.0 | 17.2 | 15.5 | 16.0 | 22.5 | 8.5 | 30.0 | | 9 | 6.0 | 9.2 | 8.8 | 16.5 | 15.0 | 13.3 | 14.0 | 14.3 | 13.8 | 19.0 | 8.2 | 15.0 | | 10 | 8.3 | 12.5 | 14.3 | 15.5 | 15.5 | 22.0 | 14.0 | 11.5 | 12.0 | 9.0 | 12.0 | 9.8 | | II | 4.3 | 13.5 | 12.7 | 21.0 | 12.5 | 13.5 | 14.5 | 16.3 | 11.0 | 9.5 | 21.5 | 15.5 | | I 2 | 17.0 | 15.2 | 13.0 | 11.5 | 10.8 | 13.3 | 12.3 | 11.5 | 8.3 | 8.2 | 20.0 | 6.5 | | 13 | 14.0 | 22.5 | 12.0 | 14.0 | 12.0 | 10.5 | 15.0 | 12.0 | 12.5 | 9.5 | 13.5 | 15.0 | | 14 | 11.5 | 17.0 | 12.5 | 10.0 | 15.5 | 12.5 | 12.8 | 11.0 | 13.5 | 10.0 | 12.5 | 8.5 | | 15 | 10.2 | 20.0 | 12.0 | 13.7 | 16.8 | 13.0 | 12.5 | 19.0 | 11.5 | 12.5 | 20.0 | 4.8 | | 16 | 7.5 | 10.5 | 18.5 | 11.0 | 23.3 | 11.5 | 9.0 | 15.0 | 16.0 | 17.0 | 9.5 | 9.0 | | 17 | 8.2 | 6.9 | 9.5 | 11.7 | 23.5 | 11.8 | 12.2 | 12.0 | 14.5 | 16.0 | 7.2 | 7.0 | | 18 | 7.6 | 5.8 | 12.2 | 21.0 | 12.5 | 12.0 | 14.2 | 9.0 | 15.0 | 9.0 | 7.5 | 7.8 | | 19 | 6.8 | 5.2 | 10.2 | 19.5 | 8.5 | 9.8 | 10.5 | 13.0 | 19.5 | 21.5 | 13.0 | 15.5 | | 20 | 7.8 | 10.3 | 9.7 | 9.6 | 12.2 | 11.0 | 11.5 | 14.2 | 10.5 | 13.5 | 7.8 | 8.0 | | 2 I | 10.2 | 9.0 | 15.5 | 11.5 | 10.3 | 15.5 | 9.6 | 14.2 | 18.5 | 11.5 | 8.0 | 8.8 | | 22 | 7.5 | 5.0 | 12.5 | 13.5 | 10.4 | 10.0 | 13.0 | 14.8 | 20.5 | 12.0 | 11.7 | 6.7 | | 23 | 5.0 | 17.0 | 12.5 | 15.3 | 11.5 | 13.2 | 15.2 | 14.5 | 11.5 | 15.5 | 19.5 | 9.2 | | 24 | 6.2 | 10.0 | 11.7 | 12.7 | 8.5 | 10.8 | 13.3 | 15.2 | 14.5 | 14.8 | 21.0 | 7.2 | | 25 | 8.8 | 5.5 | 12.7 | 22.3 | 12.0 | 11.0 | 20.4 | 19.0 | 12.8 | 13.8 | 4.2 | 32.5 | | <b>2</b> 6 | 8.5 | 7.8 | 15.2 | 25.5 | 13.3 | 16.2 | 16.0 | 12.8 | 9.5 | 10.2 | 6.8 | 20.0 | | 27 | 10.3 | 11.5 | 19.0 | 10.7 | 11.0 | 13.5 | 12.5 | 14.5 | 12.0 | 7:5 | 6.8 | 5.6 | | 28 | 6.6 | 15.0 | 15.3 | 11.2 | 12.7 | 12.5 | 18.0 | 13.8 | 19.0 | 12.5 | 8.2 | 3.2 | | 29 | 18.0 | | 11.7 | 7.6 | 11.7 | 11.0 | 12.8 | 12.2 | 14.5 | 10.2 | 21.0 | 4.7 | | 30 | 26.8 | ] | 12.0 | 14.0 | 11.7 | 13.0 | 12.0 | 12.4 | 17.5 | 12.0 | 16.5 | 3.2 | | 31 | 30.0 | | 15.0 | | 11.0 | | 12.5 | 14.0 | | 13.2 | | 9.2 | | Means | 10'.3 | 10'-7 | 13'.1 | 15'.6 | 13'-3 | 12'.6 | 13'-3 | 14'.0 | 14'.4 | 13'·1 | 11'.2 | 11'.0 | | | | | | The mean of | f the twelve | nonthly valu | es is 12'.72. | | | | | | Table VI.—Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West from Hourly Ordinates, on Five Selected Quiet Days in each Month. Each result is the mean of the corresponding hourly ordinates from the photographic registers, on five quiet days in each month, selected by the International Committee for comparison with results at other Observatories. The results in each case are diminished by the smallest hourly value. The days included are:— January 8, 11, 17, 18, 19. February 8, 19, 22, 25, 26. March 5, 6, 19, 24, 25. April 13, 14, 15, 20, 24. May 7, 8, 9, 26, 27. June 2, 3, 4, 29, 30. July7, 19, 20, 21, 22.August1, 18, 19, 21, 30.September 11, 12, 15, 25, 26. October 11, 12, 13, 14, 27. November 5, 6, 7, 26, 27. December 5, 6, 28, 29, 30. | | J, 0, 29, | | | ~ ~, 3, | 4, 29, 30. | | | | | | | 0, 20, 29, | | |--------------------------------|-----------|-----------|------------|------------|------------|-------|------------|------------|------------|------------|-----------|------------|--------------| | | | | | | | 1918. | | | | | | | | | Hour,<br>Greenwich Civil Time. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | For the Year | | Midnight | 0.2 | ı ·4 | 3.0 | 4.5 | , | 4:4 | 4.1 | , | 2.6 | 2.8 | 0.2 | 0.3 | 2.65 | | ih. | 0.7 | 1.4 | 2.9 | 4.5 | 5·9<br>5·4 | 3·8 | 4.0 | 5 5 | 3.0 | 2.6 | 0.0 | 0.4 | 2.66 | | 2 | 1.0 | 1.4 | 3.1 | 4·4<br>4·2 | 4.5 | 3.7 | 3.7 | 5.5 | 3.0 | 2.4 | 0.8 | 0.3 | 2.53 | | | 1.4 | I ·4 | 2.8 | 1 | 3.9 | _ | 3.1 | 5.4 | 2.5 | 2.7 | 1.2 | 0.4 | | | 3 | 1.8 | 1.4 | 2.8 | 4.3 | 2.6 | 3.3 | 2.0 | 4·6<br>2·8 | 1.0 | 2.7 | 0.4 | 0.4 | 2·37<br>1·76 | | 4 | 1.3 | I · 2 | | 3.0 | 1.5 | 0.7 | 0.7 | i | 1.7 | 2.6 | 0.4 | 0.2 | 1.17 | | 6 | 1.1 | 1.0 | 2·5<br>1·8 | 2.0 | 0.5 | 0.1 | 0.4 | 1.3 | I ·4 | 2.2 | 0.5 | 0.1 | i . | | 7 | 1.0 | 0.6 | 0.0 | 0.5 | 0.0 | 0.1 | 0.0 | 0.4 | 0.1 | 0.8 | 0.5 | | 0·70<br>0·14 | | 8 | 0.8 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 1 | | 0.0 | 0.0 | 0.0 | 0.3 | 0.00 | | * | 0.0 | | | | | 1.6 | 0.3 | 0.7 | 1.8 | | | 0.5 | 1 | | 9<br>10 | 0.8 | 0.3 | 0.9 | 2 · 2 | 3.1 | | | 3.2 | | 0.7 | 0.4 | 1.3 | 1.21 | | - ' | | 2.0 | 3·5<br>6·8 | 5·3<br>8·6 | 6.9 | 4·I | 4·6<br>8·1 | 5.9 | 4.8 | 3·I | 2.4 | 2.0 | 3.55 | | II<br>Noon | 2.0 | 3.8 | 8.8 | | 11.3 | 7.5 | | 9.8 | 7.9 | 6·2<br>8·6 | 4.7 | 2.8 | 6.41 | | Noon | 4.2 | 5.2 | | 11.4 | 13.4 | 10.4 | 10.6 | 11.8 | 9.5 | | 5.8 | ! | 8.28 | | 13 | 5.2 | 5.5 | 9.9 | 11.6 | 13.7 | 11.8 | 11.5 | 12.4 | 10.1 | 8.8 | 5.2 | 2.9 | 8.82 | | . 14 | 5.0 | 5.2 | 8.5 | 10.1 | 11.9 | 11.1 | 10.8 | 11.0 | 8.7 | 8.5 | 4.5 | 2.4 | 7.91 | | 15 | 3.9 | 4.7 | 6.5 | 8.1 | 9.6 | 10.0 | 8.9 | 8.8 | 7.1 | 7.0 | 3.7 | 1.9 | 6.42 | | 16 | 3.0 | 4.0 | 4.9 | 6.7 | 7.6 | 8.0 | 7:4 | 6.7 | 5.6 | 6∙0 | 3.1 | 1.3 | 5.10 | | 17 | 2.3 | 3.6 | 4.3 | 5.6 | 6∙1 | 6.6 | 5.8 | 5.5 | 4.9 | 5.2 | 2.7 | I · I | 4.51 | | 18 | 2.3 | 3.1 | 4·1 | 4.9 | 5.7 | 5.9 | 5·I | 4.7 | 4.4 | 4.2 | 2.5 | 1.0 | 3.76 | | 19 | 1.7 | 2.5 | 3.3 | 5.2 | 6.0 | 5.7 | 5.2 | 5.0 | 4.4 | 4.5 | 2.0 | 0.7 | 3.57 | | 20 | 1.4 | 1.0 | 1.7 | 5.0 | 6.4 | 2.2 | 2.1 | 5.4 | 3.6 | 3.8 | 1.5 | 0.4 | 3.51 | | 21 | 0.9 | 1.6 | 1.9 | 4.7 | 6.4 | 5.6 | 5.3 | 5.0 | 3.5 | 2.9 | 1.0 | 0.3 | 2.97 | | 22 | 0.4 | 1.2 | 2.1 | 4.3 | 6.2 | 5.2 | 5 1 | 5.1 | 2.3 | 3.3 | 0.6 | 0.1 | 2.78 | | 23 | 0.3 | 1.4 | 2.6 | 4.3 | 6.1 | 4.9 | 4.8 | 4.7 | 1.1 | 3.0 | 0.1 | 0.0 | 2.21 | TABLE VII.—MONTHLY and ANNUAL MEAN DIURNAL INEQUALITIES OF MAGNETIC DECLINATION WEST from HOURLY ORDINATES, on Five Selected Disturbed Days in each Month. 4'.95 5'.10 Each result is the mean of the corresponding hourly ordinates from the photographic registers, on five disturbed days in each month, selected by the International Committee for comparison with results at other Observatories. The results in each case are diminished by the smallest hourly value. The days included are:— January 5, 12, 29, 30, 31. February 5, 6, 12, 13, 15. March 8, 11, 12, 15, 16. 1'.75 Means 2'.35 3'.73 April 5, 6, 11, 19, 26. May 1, 16, 17, 18, 19. June 9, 10, 11, 12, 15. 5'.17 6'.06 July 8, 11, 25, 28, 29. August 15, 16, 25, 26, 27. September 1, 18, 19, 20, 21. 5'.45 3'.98 3'.95 October 2, 8, 16, 17, 31. November 11, 12, 15, 23, 29. December 1, 8, 9, 25, 26. ı'.88 0'.99 3'.53 | Maich | 0, 11, 12, | 15, 10. | Jun | 9, 10, 11 | ., 12, 13. | | - Septem | | .9, 20, 21. | | cember 1, | 0, 9, 25, | <u> </u> | |--------------------------------|------------|-----------|--------|-----------|-------------|-------|----------|---------|-------------|-------------|-----------|-----------|---------------| | | | | | | | 1918. | | | | | | | | | Hour,<br>Greenwich Civil Time. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | For the Year. | | 30.001.31.11.11.11 | , | / / | | , | , | , | , | , | / | , , | , | , | 1 | | Midnight | 3.3 | 4.0 | 4.3 | 0.0 | 0.0 | 1.0 | 2.3 | 0.0 | 1.7 | 4.5 | 3.2 | 10.1 | 0.16 | | rh. | 7.7 | 1.6 | 2.6 | I · I | | 4.5 | 3.9 | 1.7 | 0.0 | 4.4 | 4.2 | 10.0 | 0.94 | | 2 | 7.8 | 0.0 | 0.0 | I.I | 3.0 | 3.7 | 3.8. | 4.0 | 0.9 | 5.7 | 4.3 | 10.7 | 1.04 | | 3 | 8.2 | 1.6 | 1.8 | 3.4 | 2.5 | 1.2 | 2.9 | 5.0 | 2.3 | 2.4 | 5.2 | 11.5 | 1.29 | | 4 | 8.8 | 3.2 | 2.9 | 5.4 | 2.2 | 0.4 | 4·I | 2.6 | I ·7 | 8.2 | 7.8 | 11.4 | 2.18 | | 5 | 8.5 | 6.6 | 5.2 | 7.5 | 1.8 | 0.0 | 1.9 | 2.0 | 4.0 | 7.2 | 10.1 | 13.3 | 2.96 | | 6 | 8.6 | 7.0 | 5.7 | 5.6 | 1.0 | 0.3 | 0.0 | 0.6 | 5.8 | 6.8 | 8.6 | 15.2 | 2.72 | | 7 | 8.7 | 7.1 | 6.2 | 5·1 | 1.0 | 0.4 | 0.0 | I .5 | 6.3 | 6.1 | 7.9 | 14.5 | 2.67 | | 8 | 8.8 | 7.0 | 5.9 | 3.7 | 1.8 | 0.7 | 1.0 | 2.8 | 5.7 | 5.0 | 7.8 | 13.9 | 2.63 | | 9 | 8.8 | 8.0 | 6.8 | 5.7 | 4.4 | 3.0 | 2.7 | 3.6 | 6.5 | 7.0 | 9.0 | 14.3 | 3.94 | | IÓ | 9.5 | 9.4 | 9.2 | 10.5 | 6∙1 | 5.0 | 5.2 | 5.7 | 8.7 | 8.8 | 8.7 | 16.0 | 5.86 | | II | 10.7 | 9.8 | 11.0 | 15.0 | 8.4 | 8.3 | 9.0 | 10.5 | I I ·2 | 11.4 | 11.2 | 16.7 | <b>8</b> ⋅46 | | Noon | 12.9 | 10.0 | 14.6 | 17.7 | 10.4 | 10.5 | 11.4 | 12.4 | 12.5 | 13.3 | 11.5 | 18.7 | 10.28 | | 13 | 14.2 | 10.9 | 15.2 | 18·1 | 11.3 | 11.5 | 12.7 | 12.6 | 11.8 | 13.2 | 12.6 | 18.7 | 10.86 | | 14 | 15.2 | 11.5 | 15.1 | 16.3 | 11.4 | 11.9 | 13.0 | 11.0 | 11.1 | I 2·2 | 10.4 | 18·I | 10.46 | | 15 | 13.6 | 11.9 | 12.4 | 15.2 | 9.7 | 11.1 | 12.0 | 11.5 | 10.1 | 9.0 | 10.6 | 15.9 | 9.21 | | 16 | 13.4 | 12.7 | 10.3 | 13.3 | 9.0 | 9.2 | 10.8 | 9.0 | 7.1 | 9.2 | 9.9 | 11.7 | 7.76 | | 17 | 12.4 | 11.8 | 9.1 | 11.6 | <b>8</b> ⋅1 | 7.2 | 8.0 | 7.6 | 5.7 | ź.∘ | 4·I | 10.4 | 5.87 | | 18 | 12.2 | 12.4 | 5.4 | 7.6 | 7.2 | 6.3 | 4.1 | 5.1 | 3.2 | 5 · I | 5.4 | 7.6 | 4.09 | | | 10.7 | 11.1 | 7.0 | 5.8 | 3.6 | 4.8 | 2.3 | 4.2 | 2.2 | 0.0 | 3.0 | 2.6 | 2.07 | | 19 | , , | 1 | 6.6 | 5.3 | 3.7 | 4.1 | 1.0 | 4.9 | 3.8 | 2·I | 2.9 | 2.4 | 1.88 | | 20 | 7.8 | 9.6 | 6.6 | 6.4 | 3.7 | 4.3 | 2.8 | 4.5 | 0.3 | 2.9 | 4·I | 0.0 | 1.08 | | 21 | 2.3 | 7.6 | 6.6 | 2.7 | 3.3 | 3.0 | 3.8 | 2.2 | 1.6 | <b>2</b> ·8 | 0.0 | 3.8 | | | 22 | 1.3 | 5.1 | | 1 ' | 1.4 | 1.7 | 2.1 | 1.0 | 0.0 | | | - | 0.31 | | 23 | 0.0 | 3.7 | 5.9 | 1.3 | | | | | | 3.2 | 1.2 | 9.5 | 0.00 | | Means | 8'.07 | 7'.65 | 7'-39 | 7'.73 | 4'.87 | 4'.77 | 5'.07 | 5'.28 | 5'.21 | 6′.58 | 6'.85 | 11'-53 | 4'.11 | TABLE VIII.—MONTHLY and ANNUAL MEAN DIURNAL INEQUALITIES of MAGNETIC NORTH FORCE. (The results are expressed in Gauss Units and in each case diminished by the smallest hourly value). | | | | | | | 1918. | | | | | | | | |--------------------------------------|----------|-----------|-------------|-------------|------|-------------|-------|--------------|------------|------------|-----------|-----------|-----------| | Hour,<br>enwi <b>c</b> h Civil Time. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | For the Y | | Midn. | 237 | 19γ | 34 <i>y</i> | <b>42</b> γ | 352 | 37 <i>Y</i> | 36y | 447 | 472 | 43γ | 247 | 107 | 31.5 | | ıh. | 24 | 20 | 34 | 42 | 31 | 34 | 35 | 41 | 45 | 41 | 23 | II | 30.5 | | 2 | 23 | 19 | 32 | 42 | 30 | 35 | 37 | 39 | 46 | 41 | 25 | 11 | 30.7 | | 3 | 2 I | 21 | 31 | 40 | 29 | 34 | 39 | 37 | 45 | 42 | 24 | 15 | 30. | | 4 | 24 | 24 | 35 | 40 | 31 | 37 | 39 | 39 | 45 | <b>4</b> I | 27 | 18 | 32.0 | | 5 | 27 | 25 | 36 | 41 | 30 | 37 | 38 | 40 | 42 | 45 | 31 | 20 | 33.0 | | 6 | 29 | 27 | 36 | 40 | 26 | 32 | 30 | 32 | 36 | 44 | 31 | 20 | 30.0 | | 7 | 29 | 26 | 32. | 36 | 19 | 23 | 22 | 24 | 26 | 35 | 26 | 16 | 24.0 | | 8 | 26 | 21 | 25 | 28 | 12 | 13 | 15 | 13 | 16 | 24 | 18 | I 2 | 17. | | 9 | 2 I | 14 | 15 | 15 | 7 | 6 | 7 | 4 | 6 | 9 | 10 | 7 | 8. | | 10 | 15 | 8 | 4 | 5 | 2 | I | 2 | 0 | 0 | 2 | 3 | 6 | 2. | | II | 6 | 3 | 0 | 0 | 0 | 0 | 0 | I | I | 0 | 0 | 4 | 0. | | Noon | 0 | 0 | 2 | 0 | 2 | 5 | 3 | 7 | 8 | 2 | 0 | 2 | 1. | | 13h. | I | I | 6 | 7 | . 7 | 11 | 7 | 10 | 13 | 7 | 4 | 0 | 4. | | 14 | I | 3 | 10 | 16 | 15 | 20 | 16 | 17 | 18 | 11 | 7 | I | 10. | | 15 | 3 | 4 | 16 | 22 | 22 | 25 | 29 | 27 | 24 | 16 | I 2 | 2 | 15. | | 16 | 8 | 7 | 20 | 30 | 29 | 28 | 36 | 36 | 30 | 23 | 17 | 5 | 21. | | 17 | II | 11 | 23 | 39 | 36 | 38 | 40 | 42 | 35 | 30 | 23 | I | 26. | | 18 | 13 | 16 | 29 | 43 | 42 | 41 | 44 | 5 <b>1</b> . | 40 | 35 | 22 | 9 | 30. | | 19 | 17 | 13 | 33 | 44 | 43 | 44 | 45 | 49 | 45 | 41 | 25 | 13 | 33. | | 20 | 20 | 17 | 35 | 46 | 38 | 40 | 43 | 48 | 50 | 46 | 25 | 12 | 33. | | 21 | 22 | 18 | 35 | 43 | 36 | 39 | 42 | 48 | 49 | 43 | 28 | 14 | 33. | | 22 | 21 | 21 | 36 | 43 | 35 | 38 | 37 | 44 | 46 | 45 | 28 | 15 | 32. | | 23 | 23 | 19 | 35 | 43 | 34 | 40 | 37 | 44 | 47 | 46 | 25 | 13 | 32. | | Ieans | 17.0 | 14.9 | 24.8 | 31.1 | 24.6 | 27.4 | 28.3 | 30.7 | 31.7 | 29.7 | 19.1 | 9.9 | 22. | TABLE IX.—DIURNAL RANGE of MAGNETIC NORTH FORCE, on each CIVIL DAY, as deduced from the TWENTY-FOUR HOURLY MEASURES of ORDINATES of the PHOTOGRAPHIC REGISTERS. (The results are corrected for Temperature and are expressed in Gauss units.) | | | | | | | 1918. | | | | | | | |---------------|----------|-----------|--------|--------|------|-------|-------|---------|------------|----------|-----------|----------------------| | Day of Month. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December | | d. | | | | | | | | | | | | | | I | 297 | 60γ | 342 | 57γ | 67y | 52y | 76y | 48γ | 74Y | 130y | 492 | 59γ | | 2 | 25 | 24 | 34 | 57 | 51 | 45 | 38 | 43 | 70 | 69 | 46 | 33 | | 3 | 36 | 29 | 60 | 60 | 42 | 45 | 66 | 73 | 57 | 50 | 39 | 33<br>74 | | 4 | 4 I | 29 | 31 | 57 | 69 | 33 | 46 | 55 | 92 | 91 | 36 | 34<br>16 | | 5 | 46 | 68 | 49 | 93 | 77 | 48 | 41 | 56 | 74 | 62 | 31 | | | 6 | 53 | 87 | 37 | 82 | 31 | 53 | 42 | 76 | 63 | 71 | 23 | 14 | | 7 | 25 | 36 | 41 | 77 | 49 | 53 | 71 | 59 | 45 | 46 | 28 | 63 | | 8 | 29 | 26 | 107 | 54 | 51 | 69 | 56 | 96 | 88 | | 22 | 114 | | 9 | 25 | 35 | 31 | 64 | 54 | 77 | 91 | 74 | 52 | | 29 | 78 | | IO | 40 | 55 | 54 | 72 | 44 | 142 | 60 | 54 | 47 | 47 | 44 | 72 | | ΙΙ | 24 | 31 | 28 | 93 | 41 | 72 | 66 | 52 | 47 | 47 | 75 | 34 | | I 2 | 59 | 91 | 65 | 35 | 60 | 57 | 60 | 62 | 54 | 38 | 83 | 42 | | 13 | 53 | 44 | 38 | 57 | 54 | 53 | 62 | 39 | 56 | 42 | 53 | | | 14 | 38 | 75 | 26 | 41 | 64 | 75 | 69 | 47 | 71 | 43 | 78 | 37 | | 15 | 28 | 37 | 64 | 46 | 67 | 98 | 60 | 159 | 57 | 93 | 47 | 45<br>37<br>36<br>36 | | 16 | 24 | 75 | 68 | 33 | 116 | 67 | 59 | 107 | 61 | 173 | 83 | 36 | | 1 <i>7</i> | 36 | 38 | 46 | 47 | 124 | 64 | 57 | 52 | 78 | 102 | 53 | 32 | | <b>1</b> 8 | 35 | 31 | 62 | 59 | 66 | 60 | 71 | 35 | 69 | 76 | 40 | 27 | | 19 | 33 | 38 | 46 | 89 | 71 | 41 | 39 | 47 | 125 | 64 | 48 | 74 | | 20 | 50 | 38 | 52 | 44 | 78 | 42 | 41 | 57 | 95 | 99 | 38 | 47 | | 2 I | 62 | 68 | 59 | 60 | 60 | 45 | 28 | 60 | 140 | 47 | 62 | 27 | | 22 | 42 | 27 | 48 | 47 | 51 | 44 | 40 | 61 | 73 | 85 | 44 | 3 I | | 23 | 31 | 46 | 61 | 60 | 38 | 42 | 52 | 66 | 59 | 69 | 95 | 48 | | 24 | 65 | 37 | 41 | 49 | 39 | 45 | 45 | 70 | 76 | 56 | 65 | 29 | | 25 | 37 | 26 | 47 | 47 | 3 I | 38 | 52 | 97 | 50 | 48 | 25 | 134 | | 26 | 31 | 27 | 68 | 88 | 30 | 47 | 62 | 87 | 44 | 42 | 23 | 110 | | 27 | 57 | 35 | 75 | 48 | 34 | 58 | 66 | 84 | 71 | 38 | 27 | 20 | | 28 | 35 | 62 | 41 | | 41 | 43 | 123 | 70 | 66 | 54 | 32 | 22 | | 29 | 70 | | 71 | | 38 | 41 | 70 | 62 | 69 | 67 | 94 | 24 | | 30 | 98 | | 47 | 94 | 51 | _ | 64 | 47 | 67 | 48 | 50 | 17 | | 31 | 60 | | 54 | | 46 | | 53 | 64 | | 104 | | 38 | | Means | 42.5 | 45.5 | 51.1 | 61.1 | 56.0 | 52.4 | 58.9 | 66.4 | 69.7 | 63.5 | 48.7 | 47:3 | The mean of the twelve monthly values is 55.3 $\gamma$ . Table X.—Monthly and Annual Mean Diurnal Inequalities of Magnetic North Force from Hourly Ordinates, on Five Selected Quiet Days in each Month. Each result is the mean of the corresponding hourly ordinates from the photographic registers, on five quiet days in each month, selected by the International Committee for comparison with results at other Observatories. The results are corrected for Temperature and in each case diminished by the smallest hourly value. The days included are:— January 8, 11, 17, 18, 19. February 8, 19, 22, 25, 26. March 5, 6, 19, 24, 25. April 13, 14, 15, 20, 24. May 7, 8, 9, 26, 27. June 2, 3, 4, 29, 30 July 7, 19, 20, 21, 22. August 1, 18, 19, 21, 30. September 11, 12, 15, 25, 26. October 11, 12, 13, 14, 27. November 5, 6, 7, 26, 27. December 5, 6, 28, 29, 30. | March | 5, 6, 19, | -4, 43. | Jui | ne 2, 3, | 4, 29, 30 | | | 11, 12, 15, | 25, 20. | | ecember 5, | 0, 28, 29, | | |--------------------------------|-----------|-----------|--------|----------|-----------|-------|-------|-------------|------------|----------|------------|------------|--------------| | | | | | | | 1918. | | | | | | | | | Hour,<br>Greenwich Civil Time. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | For the Year | | Midnight | 217 | 22γ | 352 | 342 | 30y | 327 | 29γ | 352 | 382 | 337 | 17γ | 72 | 26.97 | | īh. | 21 | 22 | 34 | 34 | 32 | 31 | 30 | 27 | 41 | 32 | 15 | 7 | 26.3 | | 2 | 2 I | 22 | 33 | 36 | 30 | 30 | 31 | 27 | 38 | 31 | 15 | 8 | 25.9 | | 3 | 21 | 23 | 34 | 34 | 28 | 31 | 31 | 28 | 37 | 31 | 16 | 8 | 25.9 | | 4 | 23 | 24 | 36 | 36 | 33 | 34 | 32 | 31 | 36 | 34 | 20 | 10 | 28.2 | | 5 | 26 | 25 | 37 | 38 | 34 | 37 | 30 | 33 | 36 | 34 | 21 | 11 | 29.3 | | 6 | 27 | 26 | 39 | 38 | 29 | 34 | 2 I | 28 | 35 | 35 | 23 | 12 | 28.0 | | 7 | 27 | 25 | 35 | 35 | 20 | 30 | 16 | 20 | 28 | 30 | 2 I | 9 | 23.8 | | 8 | 26 | 21 | 27 | 24 | 12 | 25 | 8 | 11 | 19 | 26 | 17 | 5 | 17.5 | | 9 | 20 | 12 | 16 | 10 | 4 | 14 | 2 | 2 | 9 | I 2 | 10 | I | 8.4 | | 10 | 11 | 7 | 8 | I | I | 3 | I | 0 | 2 | 4 | 2 | 0 | 2.4 | | 11 | 4 | 2 | I | 0 | 0 | I | 0 | 3 | 0 | 0 | 0 | 0 | 0.0 | | $\mathbf{Noon}$ | 0 | 0 | 0 | 6 | I | 0 | 4 | 6 | 5 | I | I | 2 | 1.3 | | 13h. | 2 | I | 6 | 10 | 5 | 4 | 9 | 7 | 8 | 6 | 4 | 3 | 4.5 | | 14 | 5 | 2 | 14 | 18 | 13 | 1.7 | 16 | II | 15 | ΙΙ | 8 | 4 | 10.3 | | 15 | 10 | 4 | 23 | 29 | 20 | 24 | 28 | 21 | 23 | 17 | 11 | 5 | 17.0 | | 16 | 14 | 8 | 27 | 34 | 28 | 28 | 29 | 29 | 30 | 23 | 16 | 8 | 21.9 | | 17 | 20 | 14 | 31 | 41 | 32 | 31 | 30 | 35 | 36 | 30 | 19 | 11 | 26.6 | | 18 | 20 | 18 | 35 | 42 | 34 | 37 | 34 | 35 | 42 | 34 | 21 | 13 | 29.5 | | 19 | 22 | 22 | 38 | 44 | 35 | 39 | 34 | 40 | 46 | 37 | 22 | 13 | 31.8 | | 20 | 23 | 23 | 39 | 46 | 34 | 37 | 35 | 42 | 48 | 35 | 23 | 13 | 32.3 | | 21 | 22 | 24 | 37 | 46 | 33 | 35 | 35 | 41 | 46 | 40 | 23 | 13 | 32.0 | | 22 | 24 | 24 | 40 | 45 | 35 | 34 | 36 | 41 | 50 | 38 | 23 | 12 | 32.6 | | 23 | 24 | 24 | 39 | 42 | 32 | 33 | 37 | 43 | 44 | 37 | 22 | 11 | 31.4 | | Means | 18.1 | 16.5 | 27.7 | 30.1 | 23.1 | 25.9 | 23.3 | 24.8 | 29.7 | 25.5 | 15.4 | 7.7 | 21.4 | TABLE XI.—MONTHLY and ANNUAL MEAN DIURNAL INEQUALITIES OF MAGNETIC NORTH FORCE from HOURLY ORDINATES, ON FIVE SELECTED DISTURBED DAYS in each MONTH. Each result is the mean of the corresponding hourly ordinates from the photographic registers, on five disturbed days in each month, selected by the International Committee for comparison with results at other Observatories. The results are corrected for Temperature and in each case diminished by the smallest hourly value. The days included are:— January 5, 12, 29, 30, 31. February 5, 6, 12, 13, 15. March 8, 11, 12, 15, 16. April 5, 6, 11, 19, 26. May 1, 16, 17, 18, 19. June 9, 10, 11, 12, 15. July 8, 11, 25, 28, 29. August 15, 16, 25, 26, 27. September 1, 18, 19, 20, 21. October 2, 8, 16, 17, 31. November 11, 12, 15, 23, 29. December 1, 8, 9, 25, 26. | 1 | 9 | 1 | c | |---|-------------|---|---| | 1 | $\vartheta$ | 1 | C | | | | | | | | 1918. | | | | | | | | |--------------------------------|----------|-----------|--------|--------|------|-------|-------|---------|------------|-------------|-----------|-----------|---------------| | Hour,<br>Greenwich Civil Time. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | For the Year. | | Midnight | 29y | 237 | 36y | 697 | 337 | 532 | 432 | 80y | 752 | 77 <i>Y</i> | 392 | 302 | 42·8y | | ıh. | 37 | 25 | 47 | 60 | 26 | 40 | 42 | 74 | 76 | 75 | 40 | 37 | 42.2 | | 2 | 29 | 2 I | 33 | 65 | 25 | 50 | 46 | 69 | 78 | 75 | 41 | 33 | 41.0 | | 3 | 28 | 22 | 20 | 62 | 20 | 54 | 51 | 67 | 73 | 80 | 37 | 46 | 40.6 | | 4 | 36 | 27 | 40 | 59 | 20 | 48 | 50 | 66 | 76 | 71 | 44 | 47 | 42.6 | | 5 | 40 | 30 | 32 | 58 | 18 | 46 | 49 | 74 | 72 | 85 | 47 | 47 | 43.7 | | 6 | 42 | 26 | 34 | 51 | 13 | 41 | 42 | 70 | 52 | 63 | 47 | 46 | 37.8 | | 7 | 40 | 29 | 26 | 45 | 10 | 28 | 41 | 51 | 29 | 43 | 35 | 40 | 28.6 | | 8 | 34 | 18 | 22 | 42 | 2 | 9 | 32 | 38 | 20 | 29 | 13 | 38 | 18.7 | | 9 | 28 | 9 | 15 | 20 | 0 | 6 | 2 I | 19 | 10 | 6 | 9 | 30 | 8.3 | | 10 | 27 | 8 | 2 | 11 | 2 | 0 | 5 | 10 | 0 | 0 | 3 | 25 | 1.6 | | II | 14 | 5 | 0 | 5 | 0 | 6 | 0 | 0 | 4 | 17 | I | 2 I | 0.0 | | Noon | 3 | 3 | 2 | 0 | 4 | 21 | 6 | 27 | 16 | 15 | 0 | 14 | 3.5 | | 13h. | 4 | 7 | 7 | 7 | 12 | 25 | 14 | 37 | 19 | 19 | I | 14 | 7.7 | | 14 | 4 | 11 | 4 | 22 | 20 | 32 | 23 | 41 | 19 | 14 | 9 | 12 | 11.5 | | 15 | 3 | 6 | 10 | 27 | 37 | 32 | 35 | 50 | 29 | 31 | 11 | 17 | 17.9 | | 16 | 9 | 4 | 18 | 32 | 37 | 4I | 48 | 65 | 50 | 35 | 10 | 27 | 25.2 | | 17 | 10 | 2 | 19 | 4 I | 47 | 47 | 57 | 78 | 47 | 48 | 27 | 0 | 29.1 | | 18 | 0 | 10 | 30 | 53 | 63 | 50 | 66 | 103 | 5.5 | 53 | 20 | 11 | 36.7 | | 19 | 11 | 0 | 26 | 51 | 61 | 60 | 55 | 92 | 68 | 66 | 19 | 19 | 37.9 | | 20 | 19 | 9 | 26 | 60 | 45 | 48 | 44 | 84 | 67 | 77 | 15 | 25 | 37.2 | | 21 | 30 | 8 | 26 | 51 | 37 | 47 | 46 | 75 | 79 | 69 | 28 | 30 | 37.7 | | 22 | 23 | 14 | 30 | 48 | 29 | 46 | 37 | 75 | 64 | 65 | 35 | 32 | 35· <b>4</b> | | 23 | 27 | 14 | 33 | 56 | 27 | 60 | 35 · | 84 | 68 | 71 | 24 | 25 | 37.6 | | Means | 22.0 | 13.8 | 22.4 | 41.5 | 24.5 | 37·r | 37.0 | 59.5 | 47.8 | 49.3 | 23.1 | 27.7 | 22.7 | TABLE XII.—MONTHLY and ANNUAL MEAN DIURNAL INEQUALITIES of VERTICAL MAGNETIC FORCE. (The results are expressed in Gauss units, and in each case diminished by the smallest hourly value.) | | | | | | | 1918. | | | | | | | | |--------------------------------|----------|-----------|--------|--------|------|-------|-------|---------|------------|------------|-----------|-----------|------------------| | Hour,<br>Greenwich Civil Time. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | For the<br>Year. | | Midn. | 72 | 6γ | Ι 3 γ | 142 | 12γ | 14γ | 15γ | 13γ | 8γ | <b>4</b> γ | 2γ | Ιγ | 8·5γ | | ıh. | 5 | 3 | 9 | 13 | 12 | 13 | 13 | 12 | 5 | 3 | I | I | 6.9 | | 2 | 5 | 2 | 7 | 16 | II | 13 | 14 | 12 | 6 | . 3 | I | I | 7·0 | | 3 | 5 . | I | ΙI | 15 | 14 | 14 | 16 | 11 | 5 | 3 | 2 | 1 | 7.6 | | 4 | 6 | I | I 2 | 16 | 16 | 15 | 18 | 13 | 6 | 2 | 2 | 0 | 8.3 | | 5 | 6 | I | 14 | 15 | 18 | 15 | 17 | 16 | 7 | 2 | I | 2 | 8.9 | | 6 | 6 | I | 15 | 17 | 20 | 15 | 14 | 18 | 9 | 4 | 0 | I | 9.4 | | 7 | 5 | 2 | 16 | 19 | 17 | 15 | 14 | 18 | 11 | 7 | I | 0 | 9.8 | | 8 | 5 | 3 | 13 | 16 | 14 | II | 11 | 15 | 10 | 7 | 2 | I | <b>8</b> ∙4 | | 9 | 4 | 3 | 9 | 10 | 7 | 5 | 6 | 10 | 6 | 5 | I | 3 | 5.2 | | 10 | 0 | 0 | 4 | 4 | 3 | I | 2 | 5 | 2 | 2 | 0 | 3 | 1.6 | | II | I | 0 | 0 | 0 | I | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0.0 | | Noon | 3 | 2 | 3 | 0 | 0 | I. | 0 | 3 | 2 | 3 | 6 | 7 | 1.9 | | 13h. | 7 | 4 | II | 7 | 8 | 7 | 5 | 8 | 8 | 8 | 10 | 10 | 7.2 | | 14 | 11 | 10 | 16 | 17 | 18 | 14 | 13 | 14 | 15 | 15 | 13 | 13 | 13.5 | | 15 | 15 | 14 | 23 | 27 | 25 | 20 | 20 | 2 I | 23 | 20 | 15 | 15 | 19.2 | | 16 | 17 | 15 | 27 | 29 | 29 | 23 | 25 | 25 | 29 | 24 | 16 | 16 | 22.3 | | 17 | 18 | 17 | 29 | 33 | 29 | 27 | 29 | 27 . | 28 | 22 | 16 | 20 | 24.0 | | 18 | 17 | 17 | 25 | 34 | 29 | 27 | 30 | 27 | 25 | 19 | 15 | 20 | 23.2 | | 19 | 15 | 16 | 21 | 34 | 30 | 26 | 29 | 27 | 24 | 19 | 15 | 16 | 22.1 | | 20 | 15 | 16 | 2 I | 30 | 27 | 24 | 27 | 2.3 | 20 | 16 | 9 | 13 | 19.5 | | 21 | 14 | 15 | 20 | 26 | 24 | 19 | 22 | 23 | 17 | 14 | 8 | 10 | 17.1 | | 22 | 12 | I 2 | 19 | 19 | 18 | 15 | . 19 | 19 | 13 | 11 | 8 | 8 | 13·8 | | 23 | 9 | 8 | 17 | 17 | 17 | 13 | 16 | 16 | 13 | 7 | 5 | 4_ | I I · 2 | | Means. | 8.7 | 7.0 | 14.8 | 17.8 | 16.6 | 14.5 | 15.6 | 15.7 | I 2 · 2 | 9.2 | 6.3 | 7.0 | 11.5 | Table XIII.—Diurnal Range of Vertical Magnetic Force, on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers. (The results are corrected for Temperature and expressed in Gauss units.) | | | | | | | 1918. | | | | | | | |---------------|----------|-----------|--------|----------|------------|-------|-------------|---------|------------|----------|-----------|----------| | Day of Month. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | Decembe | | d. | | | | | | | | | | | | | | I | 117 | 257 | 22y | 36y | 65y | - | 45 <i>Y</i> | 18γ | 472 | 46y | 147 | 617 | | 2 | I 2 | 2 I | 20 | 19 | 35 | - | 33 | 34 | 20 | 38 | 18 | 13 | | 3 | 20 | 11 | 46 | 30 | 33 | 372 | 19 | 44 | 45 | 46 | 9 | 13<br>38 | | 4 | 15 | 18 | 18 | 48 | 45 | 32 | 27 | 37 | 41 | 38 | 15 | 18 | | | 24 | 22 | 15 | 62 | 49 | 27 | 18 | 46 | 52 | 27 | 18 | 10 | | 5<br>6 | 24 | 56 | 13 | 77 | 44 | 31 | 33 | 35 | 48 | 30 | 10 | 6 | | 7 | 16 | 18 | 18 | | 33 | 24 | 29 | 32 | 30 | 28 | 13 | 27 | | 8 | 10 | 7 | 193 | 45 | 28 | 26 | 4ó | 40 | 40 | 84 | 13 | 130 | | 9 | 16 | 29 | 20 | 37 | 24 | 52 | 35 | 48 | 20 | 41 | 10 | 56 | | 10 | 17 | 29 | 53 | 36 | 31 | 119 | 33 | 27 | 19 | 19 | 33 | 58 | | 11 | 17 | 31 | 43 | | 30 | 25 | 36 | 35 | 18 | 14 | 69 | 28 | | I 2 | 33 | 66 | 59 | 99<br>78 | <b>3</b> 6 | 84 | 32 | 27 | 20 | 22 | 62 | 20 | | 13 | 23 | 56 | 27 | 37 | 34 | 30 | 31 | 30 | 36 | 17 | 38 | 34 | | 14 | 35 | 40 | 31 | 27 | 29 | 33 | 37 | 30 | 26 | 17 | 18 | 20 | | 15 | 26 | 43 | 24 | 36 | 56 | 37 | 36 | 94 | 20 | 47 | 52 | 18 | | 16 | 12 | 15 | 54 | 34 | 145 | 43 | 36 | 48 | 51 | 163 | 44 | 26 | | 17 | 17 | 24 | 29 | 29 | 134 | 40 | 39 | 12 | 53 | 62 | 28 | 10 | | 18 | 18 | 14 | 25 | 40 | 42 | 22 | 25 | 13 | 30 | 36 | 20 | 12 | | 19 | 10 | 9 | 27 | 50 | 46 | 18 | 24 | 27 | 66 | 61 | 20 | 38 | | 20 | 18 | 18 | 2 I | 12 | 36 | 26 | 25 | 32 | 44 | 45 | 10 | 33 | | 2 I | 23 | 27 | 55 | 23 | 30 | 46 | 36 | 31 | 106 | 30 | 21 | 20 | | 22 | 17 | I 2 | 44 | 38 | 31 | 14 | 34 | 20 | 45 | 28 | 10 | 15 | | 23 | 14 | 17 | 43 | 37 | 28 | 26 | 28 | 29 | 47 | 30 | 86 | 34 | | 24 | 22 | 24 | 29 | 24 | 27 | 27 | 29 | 57 | 37 | 20 | 28 | 18 | | | 13 | 16 | 3 I | 40 | 4 r | 29 | 88 | 76 | 25 | 23 | 13 | 146 | | 25<br>26 | 8 | 18 | 27 | 89 | 43 | 48 | 43 | 66 | 21 | 10 | 8 | 36 | | 27 | 18 | 28 | 38 | 29 | 27 | 32 | 24 | 28 | 45 | I 2 | 14 | 17 | | 28 | 15 | 41 | 24 | 28 | 24 | 21 | 64 | 25 | 43 | 42 | 16 | 7 | | 29 | 50 | | 36 | 25 | 52 | 24 | 74 | 24 | 26 | 12 | 81 | 8 | | 30 | 64 | | _ | 49 | 37 | 31 | 40 | 27 | 54 | 14 | 24 | 8 | | 31 | 73 | | | ., | 37 | - | 27 | 54 | ) 1 | 53 | | 15 | | Means | 22.3 | 26.3 | 37.4 | 41.9 | 43.6 | 35.9 | 36⋅1 | 37.0 | 39.2 | 37:3 | 27 · 2 | 31 | TABLE XIV.—Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force from Hourly Ordinates, on Five Selected Quiet Days in each Month. Each result is the mean of the corresponding hourly ordinates from the photographic registers, on five quiet days in each month, selected by the International Committee for comparison with results at other Observatories. The results in each case are diminished by the smallest hourly value. The days included are:— January 8, 11, 17, 18, 19. February 8, 19, 22, 25, 26. March 5, 6, 19, 24, 25. April 13, 14, 15, 20, 24. May 7, 8, 9, 26, 27. June ... 3, 4, 29, 30. July 7, 19, 20, 21, 22. August 1, 18, 19, 21, 30. September 11, 12, 15, 25, 26. October 11, 12, 13, 14, 27. November 5, 6, 7, 26, 27. December 5, 6, 28, 29, 30. | | | | | | | 1918. | | | | | | | | |--------------------------------|----------|----------------|--------|--------|------|-------|------------|---------|------------|----------|-----------|-----------|------------------| | Hour,<br>Greenwich Civil Time. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | For the<br>Year. | | Midnight | 52 | 6 <sub>y</sub> | 172 | 227 | 217 | 22γ | 237 | 16γ | πη | 137 | 8γ | 2γ | 13·1γ. | | ıh. | 4 | 5 | 17 | 24 | 19 | 20 | 23 | 16 | 11 | 13 | 8 | 2 | 12.8 | | 2 | 5 | 5 | 81 | 25 | 19 | 22 | 23 | 16 | 9 | 14 | 7 | τ | 13.0 | | 3 | 5 | 5 | 17 | 25 | 2 Ï | 24 | 23 | 16 | 9 | 14 | 7 | τ | 13.2 | | <i>J</i> | 6 | 5 | 17 | 24 | 24 · | 26 | 26 | 17 | 12 | 14 | 8 | 0 | 14.2 | | ₹<br>• | 7 | 5 | 17 | 24 | 25 | 23 | 25 | 19 | 16 | 15 | 8 | 2 | 14.8 | | 6 | 5 | 4 | 20 | 25 | 25 | 21 | 21 | 20 | 15 | 14 | 7 | I | 14.1 | | 7 | 3 | 5 | 21 | 25 | 21 | 22 | 19 | 20 | 15 | 15 | 7 | 0 | 13.7 | | 8 | 7 | 7 | 18 | 20 | 15 | 16 | 1 <b>8</b> | 18 | 12 | 15 | 7 | 0 | 12.1 | | 9 | 8 | 6 | 12 | 12 | 9 | 8 | 9 | 11 | 8 | II | 5 | 0 | 7.6 | | 10 | 0 | 3 | 5 | 6 | 2 | 3 | 2 | 6 | 3 | 5 | 0 | 0 | 2.2 | | 11 | 0 | 0 | 0 | 0 | 0 | 2 | I | 0 | 0 | ó | 3 | 2 | 0.0 | | Noon | 3 | 3 | ı | ı | 0 | 0 | 0 | 0 | 1 | 0 | 7 | 3 | 0.9 | | 13h. | 7 | 5 | 6 | 6 | 9 | 2 | 4 | 3 | 3 | 2 | 7 | 2 | 4·ó | | 14 | 9 | 7 | 11 | 16 | 15 | 6 | 12 | 10 | 9 | 11 | 9 | 2 | 9.1 | | 15 | 11 | 10 | 17 | 21 | 23 | 12 | 21 | 14 | 14 | I 2 | ıí | 2 | 13.3 | | 16 | 12 | II | 22 | 24 | 29 | 16 | 27 | 18 | 16 | 15 | 13 | 3 | 16.5 | | 17 | 11 | 11 | 20 | 25 | 29 | 15 | 27 | 18 | 15 | 15 | 11 | 2 | 15.9 | | 18 | 8 | 9 | 20 | 26 | 26 | 13 | 24 | 16 | 13 | 14 | 9 | I | 14.2 | | 19 | 8 | 8 | 20 | 26 | 26 | 20 | 23 | 16 | 14 | 15 | 8 | 0 | 14.6 | | 20 | 8 | 8 | 21 | 23 | 23 | 19 | 22 | 16 | 15 | 15 | 8 | 0 | 14.1 | | 21 | 8 | 8 | 20 | 24 | 22 | 19 | 23 | 16 | 16 | 14 | 9 | 0 | 14.2 | | 22 | 6 | 6 | 18 | 21 | 22 | 18 | 22 | 15 | 13 | 14 | 9 | 2 | 13.1 | | 23 | 5 | 6 | 18 | 20 | 2 I | 14 | 21 | 13 | 11 | 13 | 7 | 0 | 11.7 | | Means | 6.3 | 6.2 | 15.5 | 19.4 | 18.6 | 15.1 | 18.3 | 13.8 | 10.9 | 11.8 | 7.6 | I · 2 | 11.4 | Table XV.—Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force from Hourly Ordinates, on Five Selected Disturbed Days in each Month. Each result is the mean of the corresponding hourly ordinates from the photographic registers, on five disturbed days in each month, selected by the International Committee for comparison with results at other Observatories. The results in each case are diminished by the smallest hourly value. The days included are:— January 5, 12, 29, 30, 31. February 5, 6, 12, 13, 15. March 8, 11, 12, 15, 16. April 5, 6, 11, 19, 26. May 1, 16, 17, 18, 19. June 9, 10, 11, 12, 15. July 8, 11, 25, 28, 29. August 15, 16, 25, 26, 27. September 1, 18, 19, 20, 21. October 2, 8, 16, 17, 31. November 11, 12, 15, 23, 29. December 1, 8, 9 25, 26. | 1918 | 3 | |------|---| |------|---| | | | | | | | 1010. | | | | | | | | |--------------------------------|------------|-----------|--------|--------|-------|-------|-------|---------|------------|----------|-----------|-----------|------------------| | Hour,<br>Greenwich Civil Time. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | For the<br>Year. | | Midnight | 2γ | 13γ | 32γ | Ιγ | 32 | 117 | 72 | 137 | Ι 2γ | 18γ | 8γ | ογ | 5·8y | | Th. | 0 | 6 | 14 | o l | 2 | 10 | 4 | 15 | 8 | 19 | 5 | 3 | 3.0 | | 2 | ī | 4 | 0 | 0 | 0 | 0 | 6 | 8 | 8 | 15 | 3 | 5 | 0.0 | | 2 | 4 | 0 | 16 | 2 | 5 | 3 | 6 | 0 | 0 | 9 | 9 | 3 | 0.6 | | 3 | τ . | I | 2 I | 5 | 10 | 6 | 8 | 5 | 3 | 6 | 5 | 3 | 2.3 | | 4 | , , | 2 | 28 | 2 | 18 | 10 | 4 | 14 | I | 0 | 1 | 7 | 3.2 | | 6 | 5 | 4. | 28 | 8 | 25 | 16 | 5 | 21 | 3 | 4 | 0 | 5 | 6∙1 | | 7 | 3 | 7 | 31 | 16 | 26 | 17 | 9 | 23 | 5 | 12 | 3 | 6 | 9.0 | | 8 | 3 | 8 | 30 | 17 | 25 | 16 | 10 | 21 | 8 | 16 | 7 | 8 | 9.9 | | 9 | 3 | 8 | 29 | 13 | . 2 I | ΙΙ | 7 | 19 | 8 | 16 | 11 | 9 | 8.7 | | 10 | 0 | 6 | 25 | 7 | 16 | 9 | 3 | I 2 | 9 | 22 | 14 | II | 7.0 | | 11 | 2 | 8 | 23 | 7 | II | 6 | 0 | 8 | 9 | 23 | 17 | I 2 | 6.3 | | Noon | 4 | 11 | 28 | 10 | 18 | 10 | I | 16 | 16 | 32 | 22 | 21 | 11.6 | | 13h. | 9 | 15 | 36 | 20 | 26 | 27 | 9 | 22 | 28 | 41 | 30 | 25 | 19.8 | | 14 | 1 <b>8</b> | 22 | 44 | 35 | 37 | 35 | 19 | 28 | 33 | 56 | 36 | 32 | 28.7 | | 15 | 24 | 31 | 54 | 45 | 44 | 36 | 23 | 34 | 36 | 67 | 38 | 40 | 35.1 | | 16 | 27 | 36 | 59 | 52 | 42 | 42 | 35 | 37 | 43 | 65 | 39 | 45 | 39.3 | | 17 | 26 | 38 | 60 | 61 | 40 | 46 | 46 | 39 | 43 | 59 | 43 | 55 | 42 · I | | 18 | 31 | 38 | 58 | 60 | 43 | 46 | 52 | 41 | 42 | 51 | 44 | 55 | 42.6 | | 19 | 29 | 37 | 52 | 57 | 49 | 43 | 48 | 42 | 36 | 49 | 49 | 40 | 40.1 | | 20 | 29 | 31 | 49 | 46 | 45 | 38 | 39 | 44 | 25 | 41 | 45 | 28 | 34 · I | | 21 | 25 | 32 | 46 | 30 | 33 | 26 | 24 | 34 | 17 | 36 | 37 | 17 | 25.6 | | 22 | 20 | 28 | 45 | 26 | I 2 | 17 | 19 | 29 | 8 | 28 | 25 | 13 | 18.3 | | 23 | 10 | 24 | 43 | 18 | I | I 2 | 15 | 27 | 13 | 23 | 15 | 6 | 13.1 | | Means | 11.9 | 17.1 | 35.5 | 22.4 | 23.0 | 20.5 | 16.6 | 23.0 | 17.3 | 29.5 | 21.1 | 18-7 | 17.2 | TABLE XVI.—VALUE of the COEFFICIENTS and PHASE ANGLES in the PERIODICAL EXPRESSION. $$\begin{aligned} \mathbf{V_t} &= m + a_1 \cos t + b_1 \sin t + a_2 \cos 2t + b_2 \sin 2t + a_3 \cos 3t + b_3 \sin 3t + a_4 \cos 4t + b_4 \sin 4t \\ &= m + c_1 \sin (t + a_1) + c_2 \sin (2t + a_2) + c_3 \sin (3t + a_3) + c_4 \sin (4t + a_4), \end{aligned}$$ in which t represents the time from Greenwich mean midnight converted into arc at the rate of 15° to each hour, and $V_t$ the annual or monthly mean hourly value of the magnetic element at time t, as given in Tables IV, VIII and XII. The coefficients, a, b, c, are given in units of 1 $\gamma$ (0.00001 C.G.S. unit) for N.F. and V.F. and in minutes of arc (1' = 5.39 $\gamma$ ) for Declination. If the inequalities are expressed relative to time reckoned from apparent midnight, the new phase angles $a'_1$ , $a'_2$ , $a'_3$ , $a'_4$ may be obtained from $a_1$ , $a_2$ , $a_3$ , $a_4$ by adding respectively a, $a_4$ , the value for each month being as follows:— | | | Jar<br>Fel<br>Ma | 1. $+ 2^{\circ} \cdot 1$<br>2. $+ 3^{\circ} \cdot 2$<br>1. $+ 2^{\circ} \cdot 1$ | 9'. A<br>9'. M<br>2'. Ju | pril $+ \circ^{\circ}$ .<br>lay $- \circ^{\circ}$ .<br>une $+ \circ^{\circ}$ . | 52'. | July + 1°·<br>Aug. + 0°·<br>Sept. — 1°· | 59´· | Oct. —<br>Nov. —<br>Dec. — | 3°·28′.<br>3°·47′.<br>1°·6′. | | | | | | |----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------| | $a_1$ | $b_1$ | $a_2$ | $b_2$ | $a_3$ | $b_3$ | a <sub>4</sub> | b <sub>4</sub> | $c_1$ | $a_1$ | c <sub>2</sub> | $a_2$ | c <sub>3</sub> | $a_3$ | C4 | a4 | | | | | | | Di | ECLINATI | on Wes | ST. | | | | | | | | | -2·18<br>-2·46<br>-2·92<br>-3·34<br>-2·48<br>-2·50<br>-2·62<br>-3·05<br>-3·33<br>-2·94<br>-2·42<br>-2·34 | -0.80<br>-1.26<br>-1.56<br>-2.18<br>-2.47<br>-2.81<br>-2.82<br>-2.32<br>-1.35<br>-0.92<br>-0.11<br>+0.67 | -0.04<br>+0.12<br>+1.57<br>+1.36<br>+1.98<br>+2.04<br>+1.93<br>+2.25<br>+1.83<br>+1.15<br>+0.76<br>+0.59 | + 1 · 37<br>+ 0 · 86<br>+ 1 · 35<br>+ 1 · 63<br>+ 1 · 26<br>+ 1 · 09<br>+ 1 · 31<br>+ 1 · 33<br>+ 1 · 04<br>+ 1 · 61<br>+ 1 · 77<br>+ 0 · 89 | -0.48<br>-0.33<br>-0.94<br>-1.17<br>-0.90<br>-0.77<br>-0.57<br>-0.83<br>-0.86<br>-0.51<br>+0.21 | -0·18<br>-0·17<br>-0·51<br>-0·63<br>-0·21<br>-0·22<br>-0·26<br>-0·05<br>-0·37<br>-0·09<br>+0·04 | +0·20<br>+0·30<br>+0·51<br>+0·40<br>+0·06<br>-0·01<br>+0·03<br>+0·04<br>+0·46<br>+0·52<br>+0·22<br>+0·31 | +0·33<br>+0·21<br>+0·09<br>-0·03<br>-0·07<br>+0·12<br>+0·04<br>+0·11<br>-0·12<br>-0·17<br>+0·05<br>-0·03 | 2·32<br>2·76<br>3·31<br>3·99<br>3·50<br>3·76<br>3·85<br>3·83<br>3·59<br>3·08<br>2·42<br>2·43 | 249.9<br>242.8<br>241.9<br>236.9<br>225.2<br>221.7<br>222.9<br>232.8<br>247.9<br>252.7<br>267.3<br>285.9 | 1·37<br>0·87<br>2·07<br>2·12<br>2·35<br>2·31<br>2·33<br>2·61<br>2·10<br>1·98<br>I·40<br>I·07 | 358·9<br>7·7<br>49·4<br>40·0<br>57·6<br>61·9<br>55·8<br>59·4<br>70·4<br>35·4<br>32·9<br>33·6 | 0·51<br>0·37<br>1·07<br>1·33<br>0·92<br>0·80<br>0·63<br>0·97<br>0·85<br>0·94<br>0·52 | 249·4<br>242·6<br>241·4<br>241·9<br>256·7<br>253·7<br>245·3<br>266·9<br>256·1<br>246·6<br>260·5<br>79·8 | 0·39<br>0·37<br>0·52<br>0·40<br>0·09<br>0·12<br>0·05<br>0·12<br>0·48<br>0·55<br>0·23<br>0·31 | 80.5<br>54.9<br>80.5<br>93.9<br>140.0<br>355.2<br>34.5<br>20.7<br>104.4<br>108.3<br>76.7<br>96.1 | | -2.72 | - ı · 48 | +1.31 | +1.24 | -0.68 | -0·24 | +0.25 | +0.04 | 3.10 | 241 · 4 | 1.80 | 46.5 | 0.72 | 250.6 | 0.25 | 80.2 | | North Force. | | | | | | | | | | | | | | | 1 | | | - | - 4·I<br>- 4·7<br>- 6·7<br>- 9·I<br>- 7·2<br>- 7·I<br>- 8·6<br>- 7·7<br>- 5·5<br>- 7·7<br>- 6·7<br>- 3·3<br>- 6·4 | - 3·7 - 1·6 - 0·5 + 0·9 + 2·1 + 3·4 + 4·1 + 3·2 + 3·5 + 0·5 + 0·1 - 1·4 + 0·9 | + 2·0<br>+ I·2<br>+ I·3<br>+ 2·3<br>+ 0·6<br>- 0·3<br>+ 0·1<br>- 0·2<br>- I·4<br>0·0<br>+ 0·9<br>- I·2<br>+ 0·3 | - 0·3 - 1·2 - 2·6 - 1·4 - 0·3 - 2·0 - 0·5 - 1·2 - 2·4 - 3·3 - 2·4 - 1·5 | - 0·2<br>+ 0·4<br>+ 0·4<br>+ 0·5<br>+ 1·2<br>+ 1·4<br>- 0·4<br>+ 2·0<br>+ 0·7<br>+ 1·5<br>+ 0·5<br>+ 0·2 | + 0·4<br>+ 0·1<br>+ 1·2<br>+ 1·3<br>- 0·1<br>+ 0·1<br>- 0·6<br>- 0·3<br>+ 0·9<br>+ 0·9<br>- 0·1<br>- 0·4<br>+ 0·3 | 10·4<br>9·3<br>13·9<br>17·1<br>15·0<br>15·5<br>16·3<br>19·2<br>19·7<br>18·9<br>10·4<br>6·4 | 52.0<br>56.1<br>85.1<br>97.4<br>117.8<br>111.7<br>113.7<br>115.6<br>102.8<br>89.4<br>84.3<br>53.0<br>95.8 | 5·5<br>5·6<br>6·7<br>9·1<br>7·5<br>7·9<br>9·5<br>8·3<br>6·5<br>7·7<br>6·7<br>3·6 | 228·4<br>250·8<br>265·9<br>275·8<br>286·4<br>295·8<br>295·7<br>292·5<br>302·1<br>273·4<br>271·1<br>256·4 | 2·0<br>1·7<br>2·9<br>2·7<br>0·7<br>2·0<br>0·5<br>1·2<br>2·8<br>3·3<br>2·6<br>1·9 | 97.3<br>136.6<br>153.9<br>120.7<br>113.4<br>187.9<br>165.7<br>190.8<br>211.1<br>179.4<br>158.7<br>218.6 | 0·4<br>0·4<br>1·3<br>1·4<br>1·2<br>1·4<br>0·7<br>2·0<br>1·1<br>1·7<br>0·5<br>0·4 | 337.4<br>69.1<br>18.6<br>20.0<br>96.5<br>87.2<br>211.8<br>99.7<br>37.8<br>59.0<br>98.0<br>155.4 | | | | | | | | VERTIC | al Forc | Œ. | | | | | | | | | + I·I<br>+ I·0<br>+ 2·0<br>+ 4·I<br>+ 3·4<br>+ 4·0<br>+ 5·2<br>+ 3·2<br>+ 0·5<br>- 0·9<br>- I·6<br>- 2·I | - 5.7<br>- 7.4<br>- 6.0<br>- 7.8<br>- 6.6<br>- 5.7<br>- 6.5<br>- 5.4<br>- 7.9<br>- 6.7<br>- 7.8 | - 5·7<br>- 8·4<br>- 7·9<br>- 6·5<br>- 7·1<br>- 6·7<br>- 5·8<br>- 4·0<br>- 1·8<br>- 2·6 | + 1.0<br>+ 1.0<br>+ 1.5<br>+ 2.0<br>+ 1.5<br>+ 0.1<br>+ 1.1<br>+ 0.9<br>+ 1.7<br>+ 0.9 | + 2·7<br>+ 2·2<br>+ 1·6<br>+ 1·3<br>+ 1·0<br>+ 2·1<br>+ 2·8<br>+ 2·1<br>+ 0·3<br>- 0·1 | | - 0.6<br>- 0.8<br>- 0.6<br>- 1.4<br>- 0.9<br>- 0.1<br>- 0.6<br>- 0.4<br>- 0.7<br>- 1.4<br>- 0.3<br>0.0 | - 0·1<br>+ 0·1<br>- 0·5<br>+ 1·3<br>+ 0·4<br>+ 0·9<br>0·0<br>+ 0·5<br>+ 0·1<br>- 0·1 | 5·8<br>7·5<br>6·3<br>8·8<br>7·4<br>7·0<br>8·3<br>6·3<br>8·4<br>8·0<br>6·9<br>8·1 | 168·7<br>172·1<br>161·6<br>152·4<br>152·7<br>145·3<br>141·4<br>149·8<br>176·4<br>186·3<br>193·5 | 3·I<br>2·6<br>5·8<br>8·5<br>6·8<br>7·3<br>6·7<br>5·9<br>4·I<br>2·5<br>2·8 | 285·4<br>259·3<br>280·3<br>276·9<br>280·9<br>287·2<br>282·3<br>271·0<br>281·1<br>283·0<br>313·1<br>289·4 | 1·3<br>1·0<br>3·5<br>2·2<br>2·5<br>1·4<br>1·0<br>2·5<br>2·9<br>2·2<br>0·7 | 140·0<br>120·0<br>129·9<br>95·9<br>139·6<br>109·6<br>93·0<br>122·1<br>107·5<br>111·1<br>152·1<br>339·8 | 0.6<br>0.8<br>0.8<br>1.9<br>1.0<br>0.9<br>0.6<br>0.6<br>0.7<br>1.5 | 263·4<br>279·1<br>230·7<br>312·8<br>294·8<br>354·9<br>270·0<br>322·7<br>275·2<br>290·9<br>298·1<br>153·4 | | | | -2·18 | Fel Ma $a_1 \qquad b_1 \qquad a_2$ $-2 \cdot 18 \qquad -0 \cdot 80 \qquad -0 \cdot 04$ $-2 \cdot 46 \qquad -1 \cdot 26 \qquad +0 \cdot 12$ $-2 \cdot 92 \qquad -1 \cdot 56 \qquad +1 \cdot 57$ $-3 \cdot 34 \qquad -2 \cdot 18 \qquad +1 \cdot 36$ $-2 \cdot 48 \qquad -2 \cdot 47 \qquad +1 \cdot 98$ $-2 \cdot 50 \qquad -2 \cdot 81 \qquad +2 \cdot 04$ $-2 \cdot 62 \qquad -2 \cdot 82 \qquad +1 \cdot 93$ $-3 \cdot 05 \qquad -2 \cdot 32 \qquad +2 \cdot 25$ $-3 \cdot 33 \qquad -1 \cdot 35 \qquad +1 \cdot 83$ $-2 \cdot 94 \qquad -0 \cdot 92 \qquad +1 \cdot 15$ $-2 \cdot 42 \qquad -0 \cdot 11 \qquad +0 \cdot 76$ $-2 \cdot 34 \qquad +0 \cdot 67 \qquad +0 \cdot 59$ $-2 \cdot 72 \qquad -1 \cdot 48 \qquad +1 \cdot 31$ $+ 8 \cdot 2 \qquad +6 \cdot 4 \qquad -4 \cdot 1$ $+ 7 \cdot 7 \qquad +5 \cdot 2 \qquad -4 \cdot 7$ $+13 \cdot 8 \qquad +1 \cdot 2 \qquad -6 \cdot 7$ $+13 \cdot 8 \qquad +1 \cdot 2 \qquad -6 \cdot 7$ $+14 \cdot 4 \qquad -5 \cdot 7 \qquad -7 \cdot 1$ $+14 \cdot 9 \qquad -6 \cdot 5 \qquad -7 \cdot 7$ $+14 \cdot 4 \qquad -5 \cdot 7 \qquad -7 \cdot 7$ $+16 \cdot 4 \qquad +1 \cdot 0 \qquad -6 \cdot 7$ $+5 \cdot 1 \qquad +3 \cdot 8 \qquad -3 \cdot 3$ $+13 \cdot 2 \qquad -1 \cdot 4 \qquad -6 \cdot 4$ $+1 \cdot 1 \qquad -7 \cdot 8 \qquad -8 \cdot 4$ $+3 \cdot 4 \qquad -6 \cdot 6 \qquad -7 \cdot 9$ $+4 \cdot 0 \qquad -5 \cdot 7 \qquad -6 \cdot 5$ $+5 \cdot 2 \qquad -6 \cdot 5 \qquad -7 \cdot 1$ $+3 \cdot 2 \qquad -5 \cdot 4 \qquad -6 \cdot 4$ $-6 \cdot 4 \qquad -5 \cdot 7 \qquad -6 \cdot 5$ $+5 \cdot 2 \qquad -6 \cdot 5 \qquad -7 \cdot 1$ $+3 \cdot 2 \qquad -5 \cdot 4 \qquad -6 \cdot 4$ $-7 \cdot 9 \qquad -7 \cdot 9 \qquad -4 \cdot 0$ $-1 \cdot 6 \qquad -6 \cdot 7 \qquad -1 \cdot 8$ $-2 \cdot 1 \qquad -7 \cdot 8 \qquad -2 \cdot 6$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Feb. $+ 3^{\circ} - 29^{\circ}$ . Mar. $+ 2^{\circ} - 12^{\circ}$ . July 2^$ | Feb. $+ 3^{\circ} \cdot 29^{\circ}$ . May $- \circ^{\circ}$ . Mar. $+ 2^{\circ} \cdot 12^{\circ}$ . June $+ \circ^{\circ}$ . $a_1$ $b_1$ $a_2$ $b_2$ $a_3$ $b_3$ $a_1$ $a_2$ $a_3$ | Feb. $+3^{\circ}$ -12'. May $-6^{\circ}$ -52'. So Mar. $+2^{\circ}$ -12'. June $+6^{\circ}$ -4'. So Mar. $+2^{\circ}$ -12'. So $+6^{\circ}$ -1'. | Feb. $+ 3^{3}$ -29'. June $+ 0^{5}$ -4'. Aug. $+ 0^{5}$ Sept. $- 1^{5}$ . Mar. $+ 2^{5}$ -12'. June $+ 0^{5}$ -4'. Sept. $- 1^{5}$ . Sept. $- 1^{5}$ . a_1 b_1 a_2 b_2 a_3 b_3 a_4 b_4 | Feb. + 3°-39′. May - 0°-32′. Aug. + 0°-59′. | Feb. $+ 3^{9-29}$ . May $- 6^{9}$ 52. Aug. $+ 6^{9-9}$ 79. Nov. $- 10^{9}$ . Aug. $+ 6^{9-9}$ 79. Nov. $- 10^{9}$ . Aug. $+ 2^{9-19}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Feb. $+ \frac{3}{2} \cdot \frac{3}{2}$ , $\frac{1}{2}$ $1$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | TABLE XVII.—RESULTS of OBSERVATIONS of MAGNETIC DECLINATION, with DEDUCED VALUES of the BASE-LINE of the Declination Magnetograms. | Greenwich Civil Time,<br>1918. | Declination. | Deduced value of Base-line. | Greenwich Civil Time,<br>1918. | Declination. | Deduced value of Base-line. | Greenwich Civil Time,<br>1918. | Declination. | Deduced value of Base-line | |--------------------------------|--------------|-----------------------------|--------------------------------|--------------|-----------------------------|--------------------------------|------------------|----------------------------| | d h m | . , | ۰ , | d h m | . , | . , | d h m | ۰ , | . , | | Jan. 1. 12. 10 | 14. 33.2 | 14. 28.3 | Mar. 4. 12. 36 | 14. 34.4 | 14. 28.4 | May 4. 7. 50 | 14. 24.2 | 14. 28.3 | | 12. 40 | 34 · 1 | 28.5 | 5. 15. 20 | 33.7 | 28.6 | 6. 8. 10 | 25.5 | 27.2 | | 2. 11. 15 | 32.6 | 28.4 | 15. 50 | 32.7 | 28.6 | 7. 8. 20 | 23.8 | 28.5 | | 3. 11. 15 | 34.0 | 28.2 | 6. 14. 22 | 36.2 | 28.5 | 8. 53 | 24.7 | 28·7<br>28·6 | | 4. 12. 22 | 34.4 | 28.4 | 14. 53 | 35.4 | 28.6 | 10. 11. 40 | 33.8 | 28.8 | | 12. 50 | 34.4 | 28.4 | 8. 12. 5 | 34.0 | 28.6 | 12. 10 | 34.7 | 28.3 | | 7. 16. 0 | 32.6 | 28.4 | 12. 32 | 34.0 | 28·5<br>28·4 | 11. 11. 45<br>13. 7. 48 | 32.3 | 28.4 | | 8. 12. 20 | 35.1 | 28·4<br>28·6 | 9. 12. 45 | 35.0 | 28.8 | 13. 7. 48<br>14. 11. 50 | 34.7 | 28.8 | | 12. 51 | 35.5 | 28.2 | 11. 11. 0 | 33.5 | 28.5 | 12. 18 | 36.1 | 28.5 | | 9. 14. 20 | 35·I | 28.5 | 12. 14. 50<br>15. 18 | 36.0 | 28.7 | 15. 8. 0 | 23.2 | 28.5 | | 10. 14. 30<br>12. 12. 15 | 35.0 | 28.5 | 13. 10. 10 | 30.2 | 28.2 | 17. 11. 15 | 30.4 | 28.4 | | 12. 12. 15 | 36.5 | 28.5 | 15. 14. 36 | 34.0 | 28.2 | 12. 0 | 33.3 | 28.7 | | 14. 13. 2 | 35.9 | 28.2 | 15. 4 | 34.8 | 28.4 | 18. 7. 24 | 23 · 1 | 28. | | 15. 12. 25 | 33.6 | 28.4 | 16. 11. 0 | 31.2 | 28.3 | 21. 11. 36 | 29.9 | 28.6 | | 12. 55 | 35.0 | 28.5 | 18. 11. 40 | 35.2 | 28.3 | 12. 8 | 31.5 | 28. | | 16. 11. 48 | 34.5 | 28.6 | 19. 14. 45 | 33.7 | 28.8 | 22. 8. 10 | 24.7 | 28.0 | | 12. 0 | 34.5 | 28.5 | 15. 28 | 32.3 | 28.8 | 23. 12. 0 | 34.9 | 28.4 | | 17. 13. 0 | 35.6 | 28.5 | 20. 11. 20 | 35.0 | 28.2 | 17. 0 | 29.4 | 28. | | 18. 12. 15 | 35.2 | 28.5 | 22. 14. 15 | 38.2 | 28.4 | 24. 11. 45 | 33.5 | 28. | | 12. 45 | 35.7 | 28.7 | 14. 41 | 38.9 | 28.7 | 12. 18 | 32.4 | 28. | | 19. 12. 30 | 34.3 | 28.6 | 23. 10. 33 | 30.2 | 28 · 2 | 25. 11. 0 | 34.8 | 28. | | 21. 14. 10 | 36.6 | 28.1 | 25. 13. 12 | 37.0 | 28.5 | 27. 7. 55 | 24 · 4 | 28. | | 22. 14. 38 | 34.9 | 28.1 | 25. 14. 8 | 39.2 | 28.6 | 28. 11. 22 | 30.7 | 28. | | 15. 25 | 34·1 | 28.4 | 14. 37 | 37.9 | 28.4 | 28. 11. 50 | 32.4 | 28. | | 23. 14. 20 | 34.0 | 28.3 | 28. 11. 0 | 32.3 | 28.5 | 29. 14. 12 | 35.3 | 28. | | 24. 11. 0 | 30.9 | 27.9 | 30. 11. 37 | 34.7 | 28.7 | 30. 19. 20 | 26.2 | 28. | | 25. 12. 21 | 34.3 | 28.3 | 14. 15 | 36.6 | 28.6 | 31. 13. 36 | 34.2 | 28. | | 12. 48 | 34.9 | 28.4 | 14. 44 | 36.2 | 28.7 | 14. 8 | 34 · 8 | 28. | | 28. 14. 8 | 34.9 | 27.9 | | | | | | | | 29. 14. 33 | 37.4 | 28.8 | Apr. 2. 12. 0 | 35.3 | 28.6 | | | | | 15. 0 | 36.5 | 28.7 | 14. 5 | 39.7 | 28.4 | T 0 | 0 | | | 30. 12. 57 | 37.7 | 28.9 | 3. 11. 50 | 33.0 | 28.2 | June 1. 8. 30 | 20.8 | 27 | | 31. 12. 30 | 37.0 | 28.3 | 4. 11. 9 | 33.1 | 28.5 | 2. 19. 30 | 28.9 | 28. | | | | 0.6 | 5. 13. 56 | 36.9 | 28.4 | 3. 13. 36 | 32.8 | 28. | | eb. 1.15. o | 33.6 | 28.6 | 14. 24 | 38.5 | 28.7 | 4. 13. 48 | 37.1 | 28. | | 15. 30 | 33.4 | 28.4 | 6. 8. 0 | 23.5 | 28·3<br>28·1 | 14. 18<br>5. 8. 30 | 36.6 | 29. | | 2. 10. 0 | 30.4 | 28.4 | 8. 13. 50 | 37.3 | 28.6 | 5. 8. 30<br>6. 19. 15 | 23 · I<br>27 · 5 | 28. | | 4. 11. 50 | 31.6 | 28·3<br>28·6 | 9. 14. 17 | 36.8 | 28 · 2 | 7. 11. 45 | 33.5 | 28. | | 5. 14. 42 | 36.7 | 28.5 | 14. 44 | 41.9 | 29.0 | 8. 8. 0 | 23.7 | 28. | | 15. 13 | 36.5 | 28.4 | 11. 13. 10<br>15. 40 | 39.1 | 28.9 | 10. 7. 30 | 20.4 | 28. | | 6. 14. 45 | 35.7 | 28.5 | 12. 8. 24 | 23.4 | 28.4 | 11. 11. 15 | 30.5 | 28. | | 8. 14. 42 | 34.2 | 28.5 | 8. 52 | 25.1 | 28.2 | II. 42 | 31.5 | 28. | | 15. 23 | 33.7 | 28.5 | 13. 11. 0 | 32.9 | 28.4 | 12. 8. 42 | 23.1 | 28. | | 9. 12. 22 | 36.1 | 28.6 | 15. 8. 30 | 23.6 | 27.8 | 13. 19. 27 | 26.2 | 28. | | 11. 15. 10 | 33.9 | 28.6 | 16. 13. 35 | 35.4 | 28.3 | 14. 11. 26 | 31.5 | 28. | | 12. 16. 37 | 35.1 | 28.3 | 14. 16 | 34.7 | 28.6 | 12. 0 | 33.9 | 28. | | 17. 12<br>13. 9. 30 | 35 / | 28.3 | 17. 8. 8 | 24.3 | 28 · 1 | 15. 11. 50 | 32.9 | 29. | | 13. 9. 30 | 36.5 | 28.5 | 19. 13. 32 | 36.2 | 28.7 | 16. 13. 50 | 31.1 | 28. | | 15. 14. 24 | 38.3 | 28.5 | 14. 0 | 35.3 | 28.5 | 17. 10. 0 | 26.4 | 28. | | 15. 30 | 38.0 | 28.7 | 20. 8. 40 | 23.4 | 28.2 | 18. 13. 45 | 33 · 1 | 28. | | 16. 9. 6 | 30.6 | 28 · I | 22. 11. 38 | 34.3 | 28 · 1 | 14. 24 | 33.2 | 28. | | 18. 14. 33 | 34.6 | 28.6 | 23. 14. 3 | 36.2 | 28.5 | 19. 12. 8 | 31.6 | 28. | | 19. 10. 22 | 31.9 | 28.2 | 14. 30 | 36.0 | 28.6 | 21. 11. 22 | 31.9 | 28. | | 14. 30 | 34.4 | 28.6 | 24. 10. 57 | 33.7 | 28.2 | 11. 52 | 33 · 1 | 28. | | 15. 16 | 34.0 | 28.7 | 25. 10. 10 | 27.7 | 28.4 | 22. 8. 48 | 23.5 | 28. | | 20. 12. 48 | 34.5 | 28.6 | 26. 13. 20 | 41.5 | 28.9 | 23. 14. 40 | 34.0 | 28. | | 22. 14. 50 | 33.2 | 28.5 | 13. 47 | 41 · I | 28.6 | <b>24</b> . 8. 0 | 25.7 | 28. | | 15. 28 | 32.4 | 28.4 | 27. 8. 35 | 24.7 | 28.5 | 15. 45 | 32.2 | 28. | | 24. 13. 9 | 34.3 | 28.3 | 29. 11. 30 | 28.6 | 28.4 | 25. 10. 55 | 31.3 | 28. | | 25. 14. 40 | 34.3 | 28.3 | 30. 13. 50 | 34.3 | 28.6 | 11. 24 | 32.7 | 28. | | 26. 14. 38 | 36.2 | 28.3 | 14. 16 | 36.2 | 28.3 | 26. 8. 12 | 20.3 | 28. | | 15. 5 | 35.8 | 28.6 | | 1 | _ [ | 20. 15 | 27.8 | 27. | | 27. 12. 2 | 34.3 | 28.4 | May 1. 8. 0 | 24.3 | 28.3 | 27. 8. 33 | 21.8 | 27 · | | -,· | ) ) , | | 2. 7. 55 | 25 · 1 | 28.3 | 28. 13. 40 | 34 · I | 28. | | ar. 1. 14. 39 | 33.6 | 28.9 | 3. 13. 52 | 35.0 | 28.7 | 14. 7 | 34.6 | 28. | | 15. 12 | 32.0 | 28.4 | 14. 24 | 36.8 | 28.8 | 29. 8. 18 | 22.7 | 28. | | 44. 44 | 1 5- | 1 | | | | | 4 | | Table XVII.—Results of Observations of Magnetic Declination, with Deduced Values of the Base-Line of the Declination Magnetograms—continued. | Greenwich Civil Time,<br>1918. | Declination. | Deduced value<br>of Base-line. | Greenwich Civil Time,<br>1918. | Declination. | Deduced value<br>of Base-line. | Greenwich Civil Time,<br>1918. | Declination. | Deduced value of Base-lin | |--------------------------------|--------------|--------------------------------|--------------------------------|--------------|--------------------------------|--------------------------------|--------------|---------------------------| | d h m | . , | . , | d h m | . , | ۰ , | d h m | ۰ , | . , | | July 1. 11. 39 | 14. 34.0 | 14. 29.1 | Aug. 21. 11. 54 | 14. 34.4 | 14. 29.4 | Oct. 29. 12. 20 | 14 27.7 | 14 28. | | 15. 20 | 36.0 | 28.9 | 22. 11. 10 | 34.0 | 29.1 | 12. 50 | 28.7 | 28. | | 2. 13. 52 | 31.8 | 28.6 | 11. 40 | 36.1 | 29.1 | 30. 11. 15 | 26.7 | 28. | | 14. 22 | 32.0 | 28.7 | 28. 13. 52 | 34.0 | 29.1 | 31. 15. 10 | 25.1 | 28. | | 3· 7· 43 | 24.3 | 29.0 | 14. 20 | 32.6 | 29.0 | | | | | 19. 35 | 28.1 | 28.8 | 29. 11. 42 | 32.4 | 28.9 | Nov. 1. 12. 3 | 29.5 | 29. | | 4. 8. 5 | 25.2 | 28.7 | 30. 14. 24 | 32.4 | 29.4 | 12. 42 | 30.4 | 29. | | 5. 14. 15 | 33.5 | 29.2 | 14. 51 | 31.0 | 29.4 | 5. 15. 3 | 28.0 | 29. | | 14. 45 | 31.9 | 28.9 | 31. 8. 45 | 20.6 | 28.6 | 15. 33 | 27.5 | 29. | | 6. 7. 45 | 23.7 | 28.7 | ~ | | | 6. 13. 12 | 28.6 | 29. | | 7. 19. 4 | 29.0 | 29.0 | Sept. 2. 8. 45 | 25.4 | 28.4 | 7. 14. 22<br>8. 12. 8 | 28.7 | 29. | | 8. 10. 35 | 29.3 | 28.8 | 3. 13. 52 | 31.8 | 29.0 | | | 1 | | 13. 35 | 34.4 | 29.1 | 14. 20 | 30.6 | 29.1 | 12. 38 | 29.2 | 29 | | 9. 15. 8 | 34.6 | 29.1 | 5. 11. 36 | 32.6 | 29.0 | 9. 9. 30 | 23.3 | 29. | | 15. 40 | 33.1 | 28.7 | 6. 14. 9 | 31.5 | 28.7 | 12. 11. 54 | 30.5 | 29 | | 10. 10. 42 | 28.0 | 28.5 | 14. 35 | 32.0 | 29.6 | 12. 27 | 28.0 | 29 | | 11. 11. 42 | 29.6 | 28.7 | 7. 8. 45 | 23.5 | 28.6 | 15. 12. 44 | 26.8 | 28 | | 12. 10. 32 | 27.7 | 28.7 | 9. 8. 3 | 25.4 | 29.3 | 13. 30 | 1 | 28 | | 11. 2 | 27 · 3 | 28.7 | 10. 13. 27 | 34.4 | 29.2 | 16. 15. 9 | 24 · I | 29 | | 13. 8. 15 | 20.7 | 28.0 | 13. 55 | 34.1 | 29.1 | 18. 12. 57<br>19. 12. 18 | 29.7 | 29 | | 14. 19. 35 | 28.3 | 28.4 | 11. 8. 20 | 21.0 | 28 · I | | 1 | 29 | | 15. 15. 20 | 32.4 | 29·I | 12. 10. 35 | 27.2 | 28.7 | 12. 48 | 29.4 | 1 | | 16. 10. 36 | 27.6 | 28.8 | 13. 13. 35 | 33.6 | 28.6 | 20. 13. 0 | 29.0 | 29 | | 11. 6 | 29.5 | 28.9 | 14. 2 | 33.9 | 28.5 | 22. 12. 18 | 1 | | | 18. 11. 33 | 32.2 | 28.7 | 14. 8. 3 | 22.3 | 28.5 | 12. 45 | 30.8 | 30 | | 19. 14. 10 | 31.2 | 28.9 | 16. 12. 3 | 31.6 | 28.9 | 23. 13. 0 | 25.6 | 29 | | 14. 40 | 31.2 | 29.0 | 17. 14. 0 | 35.1 | 28.6 | 25. 13. 0<br>26. 12. 18 | 28.0 | 29 | | 20. 8. 33 | 23.0 | 28.7 | 14. 45 | 34.8 | 28.7 | | 27.7 | 29 | | 21. 15. 27 | 31.1 | 28.8 | 18. 8. 15 | 29.8 | 28.7 | 12. 45<br>27. 14. 18 | 26.9 | 29 | | 22. 15. 17 | 33.4 | 28.7 | 19. 11. 38 | 30.2 | 28.7 | , ' ' | 27.3 | 28 | | 23. 13. 33 | 34.4 | 28.9 | 20. 11. 15 | 31.5 | 29.0 | 30. 12. 43 | 2/ 3 | 20 | | 14. 15 | 35.1 | 29.0 | 11. 42 | 32.6 | 28.9 | | | | | 24. 8. 12 | 23.7 | 28.5 | 21. 11. 0 | 31.5 | 28.8 | Doc 2 12 10 | 26.2 | 29 | | 25. 8. 52 | 23.7 | 28.7 | 23. 11. 36 | 29.1 | 28.8 | Dec. 2. 12. 50 | 28.2 | 29 | | 26. 11. 8 | 29.6 | 28.7 | 24. 8. 5 | 22 · I | 28.8 | 3. 12. 5 | 27 · I | 29 | | 11. 34 | 30.7 | 28.7 | 13. 50 | 33.1 | 1 : | 12. 35<br>4. II. 0 | 26.0 | 28 | | <b>2</b> 7. 8. 18 | 23.8 | 28.5 | 14. 18 | 33.6 | 28.8 | · - | 25.1 | 29 | | 28. I3. 27 | 34.4 | 29.1 | 25. 12. 13 | 31.4 | 28·9<br>28·6 | 5. 10. 38<br>6. 11. 27 | 26.1 | 29 | | 30. 14. 25 | 33.4 | 29.1 | 27. 11. 15 | 29.8 | E . | 12. 0 | 26·I | 29 | | 14. 53 | 32.5 | 29.7 | 11. 40 | 31.7 | 28·9<br>28·7 | | 29.1 | 29 | | 31. 8. 25 | 21.6 | 28.5 | 28. 8. 37 | 18.2 | 26.7 | 9. 11. 10<br>10. 12. 20 | 22.3 | 29 | | 10. 25 | 26.4 | 28.9 | · | | | 10. 12. 20 | 24.8 | 29 | | | | | 0-4 | 20.5 | 28.5 | 11. 11. 37 | 24 · I | 29 | | | | | Oct. 1. 11. 53 | 29.5 | 28.4 | 11. 11. 3/ | 27.0 | 28 | | Aug. 1. 8. 8 | 21.1 | 27 · 1 | 12. 29 | 31.2 | 28.2 | 12. 15. 0 | 24·I | 28 | | 2. 11. 24 | 31.0 | 29.3 | 4. 12. 47 | 29.5 | 28.8 | 13. 12. 15 | 28.6 | 29 | | 11. 52 | 32.3 | 29.3 | 15. 25 | 31.9 | 28.6 | 13. 12. 15 | 27 · 1 | 28 | | 3. 8. 24 | 20.4 | 28.6 | 15. 54 | 26.3 | 28.6 | 14. 10. 25 | 26.0 | 29 | | 12. 7 | 32.8 | 29·6 | 5. 12. 5 | 1 | 26.7 | 16. 11. 0 | 25.1 | 29 | | 6. 14. 2 | 37.5 | 29.6 | 7. 12. 35<br>8. 12. 0 | 29.4 | 29.3 | 17. 12. 18 | 25.7 | 28 | | 14. 30 | 34.5 | 29.5 | | 33.5 | 29.5 | 12. 48 | 27.0 | 29 | | 7. 19. 16 | 27.6 | 29.1 | 8. 12. 30 | 35.5 | 28.7 | 18. 11. 52 | 25.5 | 28 | | 8. 8. 15 | 24.2 | 28.2 | 11. 15. 20 | 28.8 | 28.8 | 20. 12. 6 | 24.8 | 29 | | 9. 13. 40 | 35.9 | 29.7 | 12. 13. 0 | 25.8 | 28.5 | 13. 0 | 28.3 | 29 | | 14. 7 | 35.1 | 29.6 | 13. 11. 12 | 29.5 | 28.7 | 23. 11. 24 | 25.3 | 28 | | 12. 13. 40 | 34.8 | 29.8 | 14. 12. 18 | | 29.0 | 24. 11. 31 | 25.2 | 29 | | 13. 14. 0 | 33.3 | 29.4 | 15. 12. 20 | 35.2 | 28.6 | 12. 21 | 28.3 | 28 | | 14. 38 | 34.3 | 29.7 | 12. 50<br>18. 12. 10 | 33.4 | 28.3 | 12. 52 | 28.5 | 29 | | 14. 8. 30 | 22.8 | 1 | 16. 12. 10 | 26.8 | 28.8 | 27. 12. 10 | 25.0 | 29 | | 15. 8. 8 | 22.2 | 29.1 | | 26.8 | 28.6 | 12. 48 | 24.5 | 29 | | 16. 11. 32 | 36.3 | 29.0 | 15. 22 | 3 | 28.5 | <b>2</b> 8. 9. 6 | 23.1 | 29 | | 14. 10 | 32.5 | 29.4 | 19. 11. 10 | 29.2 | 28·g | 30. I5. 4 | 23.7 | 28 | | 14. 42 | 32.6 | 29.4 | 22. 12. 0 | 30.8 | 28.8 | 31. 15. 10 | 27.0 | 29 | | 17. 8. 15 | 23.0 | 28.7 | 12. 30 | 25.6 | 28.5 | 15. 40 | 25.7 | 28 | | 18. 15. 5 | 31.3 | 29.3 | 24. 10. 0 | 1 | 20.5 | 15. 40 | ", ' | | | 19. 8. 10 | 22.2 | 28.9 | 25. 11. 54 | 29.8 | 28.4 | | | | | 20. 13. 54<br>14. 32 | 35·I<br>35·I | 29·3<br>29·4 | 12. 23<br>26. 12. 30 | 27.5 | 28.4 | | 1 | | | | | | | | | | | | TABLE XVIII.—Results of Determinations of the Absolute Value of Horizontal Magnetic Force from Observations made with the Gibson Instrument in the Magnetic Pavilion, with Deduced Values of the Base Line of the North Force Magnetograms. | MAGNETOGRAMS. In C.G.S. Units. | | | | | | | | In C.G.S | S. Units. | | | In C.G.S | . Units. | | | | |---------------------------------|-------------|-------------------|---------------|----------------------------------------------|--------------------------------------------------|------|---------------|-----------------|--------------|------------|----------------------------------------------|--------------------------------------------------|---------------|-------------------------|----------------------------------------------|--------------------------------------------------| | Gr | eenwich | ı Civil T<br>918. | `ime, | Value of<br>observed<br>Horizontal<br>Force. | Deduced<br>value of<br>North Force<br>Base-line, | Gı | reenwicl<br>1 | h Civil<br>918. | Time, | | Value of<br>observed<br>Horizontal<br>Force. | Deduced<br>value of<br>North Force<br>Base-line. | | ch Civil Time,<br>1918. | Value of<br>observed<br>Horizontal<br>Force. | Deduced<br>value of<br>North Force<br>Base-line. | | Jan. | d<br>I. | | m h m 2-12 47 | 18000+<br>460 | 783 | May | d<br>3. | | m h<br>46-14 | - 1 | · 18000+<br>476 | ·17000+ | d<br>Sept. 3. | h m h m 13 45-14 27 | + 18000+<br>473 | ·17000+<br>876 | | | 4. | 12 | 15-12 58 | 472 | 785 | | 7. | 8 | 13-9 | 2 | 459 | 784 | 6. | 14 2-14 44 | 484 | 882 | | | 8. | 12 | 3-12 59 | 473 | 794 | | 10. | ΙΙ | 35-12 | 16 | 450 | 778 | 10. | 13 21-14 3 | 475 | 885 | | | 12. | 12 | 8-12 53 | 437 | 783 | | 14. | ΙI | 44-12 | 26 | 45 I | 788 | 13. | 13 27-14 10 | 454 | 877 | | | 15. | 12 | 18-13 0 | 469 | 793 | | 17. | 11 | I 2-I 2 | 6 | 402 | 790 | 17. | 13 56-14 53 | 440 | 883 | | | 18. | 12 | 9-13 0 | 462 | 799 | | 2I. | 11 | 30-12 | 16 | 448 | 794 | 20. | 11 8-11 50 | 400 | 879 | | | 22. | 14 | 36-15 34 | 461 | 809 | | 24. | 11 | 43-12 | 27 | 463 | 793 | 24. | 13 43-14 26 | 445 | 881 | | | 25. | 12 | 14-12 57 | 465 | 815 | | 28. | 11 | 14-11 | 57 | 463 | 797 | 27. | 11 7-11 49 | 419 | 873 | | | 29. | 14 2 | 26-15 7 | 469 | 811 | | 31. | 13 | 28-14 | 16 | 461 | 803 | | | | | | Feb. | ı. | 14 | 58-15 43 | 451 | 808 | June | 4. | 13 | 42-14 | 26 | 502 | 821 | Oct. 1. | 11 48-12 37 | 418 | 741 | | | 5. | 14 | 36-15 22 | 477 | 831 | | 7. | ΙI | 8-1 I | 52 | 449 | 816 | 4. | 15 18–16 3 | 451 | 761 | | | 8. | 14 | 36-15 3 | 462 | 820 | | II. | 11 | 8-11 | 49 | 430 | 807 | 11. | 15 14-15 58 | 464 | 776 | | | 12. | 16 | 35-17 20 | 446 | 829 | | 14. | 11 | 20-12 | 7 | 418 | 811 | 15. | 12 15-12 59 | 419 | 756 | | | 15. | 14 | 53-15 36 | 470 | 834 | | 18. | 13 | 37-14 | 32 | 471 | 809 | 18. | 14 30-15 29 | 429 | 769 | | | 19. | 14 | 24-15 26 | 453 | 808 | | 21. | 11 | 17-12 | 0 | 468 | 814 | 22. | 11 57-12 39 | 416 | 775 | | | 22. | 14 | 44-15 35 | 476 | 831 | | 25. | 10 | 48-11 | 32 | 467 | 812 | 25. | 11 46-12 31 | 420 | 766 | | | 26. | 14 | 30-15 13 | 474 | 825 | | 28. | 13 | 33-14 | 15 | 473 | 820 | 29. | 12 13-12 57 | 428 | 774 | | Marc | hī. | 14 | 31-15 21 | 487 | 845 | July | 2. | 13 | 46-r4 | 30 | 469 | 822 | Nov., 1. | 12 1-12 46 | 435 | 782 | | | 5. | 15 | 13-15 59 | 487 | 830 | | 5. | 14 | 8–14 | 52 | 484 | 831 | 5. | 14 57-15 43 | 468 | 789 | | | 8. | 11 | 58-12 40 | 401 | 826 | | 9. | 15 | 1-15 | <b>4</b> 7 | 484 | 836 | 8. | 12 2-12 46 | 453 | 774 | | | 12. | 14 | 44-15 26 | 438 | 829 | | 12. | 10 | 26–11 | 10 | 440 | 824 | . 12. | 11 52-12 33 | 395 | 766 | | | 15. | 14 | 29–15 12 | 429 | 829 | | 16. | 10 | 29–11 | 15 | 440 | 830 | 15. | 12 44-13 39 | 442 | 780 | | | 19. | 14 | 38–15 36 | 463 | 843 | | 19. | 14 | 2-14 | <b>4</b> 7 | 476 | 850 | 19. | 12 12-12 55 | 437 | 771 | | | 22. | 14 | 6-14 50 | 451 | 844 | | 23. | 13 | 25-14 | 23 | 463 | 844 | 22. | 12 12-12 52 | 444 | 778 | | | 26. | 14 | 0-14 45 | 475 | 843 | | 26. | 11 | 1-11 | 42 | 436 | 845 | <b>2</b> 6. | 12 11-12 54 | 446 | 779 | | | 30. | 14 | 9-14 51 | 477 | 834 | | 30. | 14 | 17-15 | I | 435 | 845 | 29. | 15 19-16 8 | 489 | 792 | | April | l 2. | 13 | 58-14 27 | 474 | 846 | Aug. | 2. | II | 17-12 | 0 | 465 | 850 | Dec. 3. | 12 0-12 43 | 409 | 787 | | | 5. | 13 | 48-14 32 | 445 | 840 | | 6. | 13 | 54-14 | 38 | 441 | 852 | 6. | 11 21-12 4 | 468 | 805 | | | 9. | 14 | 10-14 52 | 451 | 842 | | 9. | 13 | 32-14 | 15 | 464 | 861 | 10. | 12 13-12 56 | 403 | 791 | | | 12. | | 11-8 59 | 444 | 846 | | 13. | 13 | 59-14 | <b>4</b> I | 468 | 860 | 13. | 12 7-13 2 | 443 | 806 | | | 16. | | 27-14 25 | 457 | 839 | | 16. | 14 | 7-14 | 51 | 446 | 858 | 17. | 12 12-12 55 | 462 | 806 | | | 19. | | 23-14 7 | 430 | 844 | | 20. | 13 | 45-14 | 41 | 437 | 869 | 20. | 12 0-13 1 | 451 | 797 | | | 23. | | 56–14 39 | 474 | 860 | | 22. | 11 | 4-11 | 46 | 441 | 865 | 24. | 12 15-13 0 | 453 | 791 | | | <b>2</b> 6. | | 12-13 55 | 442 | 854 | | 28. | 13 | 43-14 | 28 | 437 | 872 | 27. | 12 4-12 54 | 430 | 800 | | | 30. | | 43-14 25 | 455 . | 856 | | 30. | 14 | 16-14 | 59 | 460 | 870 | 31. | 15 3-15 48 | 448 | 803 | April 30 and September 30. Suspension of North Force Magnet adjusted to restore the trace to its normal position on the sheets. Table XIX.—Results of Observations of Magnetic Dip made with the Dip Inductor, with Deduced Values of the Base-line of the Vertical Force Magnetograms. | Greenwich<br>Civil Time,<br>1918. | ril Time, Magnetic Vertical | | Agnetic Value of Vertical Civil Time, Force 1918. | | Deduced Value of Vertical Force Base-line. | Greenwich<br>Civil Time,<br>1918. | Magnetic<br>Dip. | Deduced Value of Vertical Force Base-line. | Greenwich<br>Civil Time,<br>1918. | Magnetic<br>Dip | Deduced Value of Vertical Force Base-line. | |-----------------------------------|-----------------------------|---------|---------------------------------------------------|---------|--------------------------------------------|-----------------------------------|------------------|--------------------------------------------|-----------------------------------|-----------------|--------------------------------------------| | d h | . , | ·42900+ | d h | 0 , | ·42900+ | d h | · , | ·42900+ | d h | · , | .42900+ | | Jan. 1.11·6 | 66 53.9 | 100 | Apr. 2. 13.7 | 66 53.3 | 75 | July 2. 13.5 | 66 52.1 | 69 | Oct. 1.11.6 | 66 55.5 | 89 | | 2. II.0 | 66 52.5 | 79 | 4. 11.3 | 66 54.0 | 84 | 4. 8.3 | 66 53.5 | 105 | 3. 10.1 | 66 54.9 | 65 | | 4. 11.9 | 66 53.1 | 90 | 5. 13.6 | 66 55.3 | 108 | 5. 13.9 | 66 53.1 | 106 | 4. 12.6 | 66 55.4 | 89 | | 8. 12.0 | 66 53.5 | 88 | 9. 11.7 | 66 53.7 | 55 | 10. 10.2 | 66 54.3 | 121 | 10. 11.4 | 66 55.7 | 68 | | 9. 12.9 | 66 52.6 | 90 | 11. 15.0 | 66 54.6 | 65 | 11. 11.4 | 66 54.9 | 119 | II. I2·I | 66 54.3 | 58 | | 12. 11.9 | 66 54.1 | 95 | 12. 8·o | 66 54.1 | 35 | 12. 10.2 | 66 54.4 | 99 | 15. 12.0 | 66 54.3 | 26 | | 15. 12.0 | 66 53.0 | 89 | 16. 11.8 | 66 53.7 | 84 | 16. 10.2 | 66 55.0 | 127 | 18. 12.0 | 66 58.3 | 107 | | 17. 14.8 | 66 53.0 | 75 | 18. 11.6 | 66 53.6 | 74 | 17. 11.1 | 66 53.3 | 102 | 19. 12.1 | 66 55.5 | 81 | | 18. 11.9 | 66 52.9 | 57 | 19. 11.8 | 66 55.9 | 66 | 19. 13.8 | 66 53.0 | 94 | 22. 11.7 | 66 56.5 | 44 | | 22. 12.6 | 66 53.7 | 55 | 23. 11.7 | 66 53.6 | 66 | 23. 11.7 | 66 52.8 | 85 | 24. 11.8 | 66 56.3 | 62 | | 23. 12.8 | 66 52.5 | 30 | 25. 14.9 | 66 51.2 | 50 | 25. 11.6 | 66 52.1 | 91 | 25. 11.5 | 66 55.2 | 55 | | 25. 12.0 | 66 52.8 | 45 | 26. 11.8 | 66 55.1 | 66 | 26. 10.8 | 66 55·I | 100 | 29. 12.0 | 66 55.5 | 56 | | 29. 12.0 | 66 51.8 | 70 | 30. 13.5 | 66 53.2 | 36 | 30. II·2 | 66 55.7 | 92 | ., | , ,, | | | 30. 12.3 | 66 55.9 | 68 | | 1 75 | <i>J</i> . | <b>.</b> | 757 | | Nov. 1. 11.8 | 66 55.0 | 21 | | 5 5 | 757 | | May 2. 14.7 | 66 53.0 | 88 | Aug. 2. 11·1 | 66 52.7 | 86 | 2. 12.5 | 66 55.4 | 34 | | Feb. 1. 14·6 | 66 55.0 | 110 | 3. 13.5 | 66 52.7 | 79 | 3. 11.5 | 66 56.1 | 138 | 5. 12·8 | 66 54.0 | 38 | | 5. 15.9 | 66 54.0 | 97 | 7. 7.9 | 66 53.8 | 63 | 6. 13.7 | 66 55.7 | 122 | 7. 13.0 | 66 53.6 | 34 | | 6. 12.7 | 66 55.1 | 65 | 9. 11.8 | 66 52.6 | 51 | 7. 15.1 | 66 51.5 | 75 | 8. 11.8 | 66 53.1 | 42 | | 8. 12.8 | 66 53.3 | 57 | 10. 11.4 | 66 52.7 | 56 | 9. 11.6 | 66 53.9 | 79 | 12. 11.6 | 66 57.6 | 41 | | 12. 16.2 | 66 55.0 | 33 | 14. 11.5 | 66 53.5 | 49 | 13. 11.3 | 66 53.0 | 113 | 14. 12.7 | 66 54.9 | 46 | | 14. 12.1 | 66 55.8 | 75 | 16. 11·6 | 66 52.2 | 66 | 15. 11.8 | 66 54.0 | 109 | 15. 12·4 | 66 55.6 | 67 | | 15. 14.6 | 66 53.4 | 69 | 17. 11.0 | 66 57.8 | 78 | 16. 11·4 | 66 59.8 | 123 | 19. 12.0 | 66 55.5 | 85 | | 19. 12.6 | 66 54.0 | 108 | 21. 12.4 | 66 54.2 | 104 | 20. 11.3 | 66 54.1 | 98 | 21. 12.8 | 66 55.9 | 74 | | 2Í. I2·4 | 66 54.4 | 114 | 24. 11.4 | 66 52.8 | 99 | 22. 10.7 | 66 53.9 | 70 | 22. 12.0 | 66 54.4 | 57 | | 22. 14.5 | 66 52.5 | 60 | 25. 11.2 | 66 51.4 | 6ó | 24. 11.6 | 66 53.3 | 113 | 26. 12.0 | 66 54.8 | 59 | | 26. 12.5 | 66 53.2 | 98 | 28. 11.0 | 66 53.7 | 102 | 28. 13.5 | 66 55.2 | 88 | 30. 12.1 | 66 55.6 | 46 | | 27. I4·I | 66 52.5 | 94 | 30. 15.3 | 66 52.9 | 76 | 30. 11.8 | 66 53.8 | 98 | | | | | , , | | , , | 31. 11.6 | 66 53.2 | 87 | 31. 11.7 | 66 51.6 | 69 | Dec. 3. 11.7 | 66 57.2 | 79 | | Mar. 1. 12.9 | 66 52.2 | 72 | - | | · | | | · | 5. 12.2 | 66 53.4 | 49 | | 5. 14.9 | 66 51.7 | 71 | June 4. 13.5 | 66 50.5 | 119 | Sept. 3. 13.5 | 66 53.9 | 118 | 6. II·I | 66 52.9 | 66 | | 7. 11.8 | 66 52.6 | 96 | 6. 15.3 | 66 52.1 | 133 | 5. 11.8 | 66 53.1 | 82 | 10. 11.9 | 66 58.9 | 120 | | 8. 11.7 | 66 58.4 | 97 | 7. 10.9 | 66 53.0 | 106 | 6. 11.5 | 66 53.1 | 77 | 11. 11.3 | 66 55.0 | 72 | | 12. 14.5 | 66 55.6 | 92 | 11. 10.9 | 66 57.5 | 165 | 10. 11.1 | 66 54.3 | 87 | 13. 11.9 | 66 53.3 | 19 | | 14. 13.5 | 66 52.5 | 59 | 14. 11.1 | 66 56.7 | 151 | 12. 15.9 | 66 52.9 | 94 | 17. 12.0 | 66 53.7 | 73 | | 15. 12.0 | 66 54.3 | 101 | 15. 11.8 | 66 55.3 | 105 | 13. 11.9 | 66 53.9 | 86 | 18. 11.6 | 66 52.1 | 72. | | 19. 14.4 | 66 53.9 | 85 | 18. 13.6 | 66 52.4 | 84 | 17. 13.7 | 66 54.7 | 55 | 20. 11.8 | 66 54.2 | 86 | | 22. I2·2 | 66 54.4 | 83 | 20. 10.4 | 66 53.7 | 108 | 19. 13.9 | 66 57.4 | 87 | 23. 11.3 | 66 55.2 | 97 | | 23. 12.2 | 66 54.4 | 88 | 21. 11.0 | 66 54.3 | 145 | 20. 10.9 | 66 58.1 | 85 | 24. 12.0 | 66 53.8 | 85 | | 26. 13.8 | 66 53.0 | 94 | 25. 8.7 | 66 53.1 | 99 | 24. 11.5 | 66 57.4 | 99 | 27. 11.9 | 66 55.4 | 65 | | 28. IO·I | 66 53.7 | 67 | 28 11.3 | 66 53.4 | 94 | 27. IO·I | 66 55.2 | 73 | 31. 12.6 | 66 53.9 | 57 | | 30. II·8 | 66 53.0 | 44 | 29. 8.5 | 66 53.0 | 94 | 28. II·6 | 66 53.9 | 89 | | 1 | 1 | TABLE XX.—Annual Summary of the Magnetic Elements. | Month, | | | Mean Valu | ae of | Mean Value of | | | | | | | | | |---------------|--------------|----------------------|------------------|-------------|---------------|--------------------|--------------|-----------------|--------------------|--------------|--------------|--------------------|--| | 1918. | Declination. | Horizontal<br>Force. | Dip. | West Force. | North Force. | Vertical<br>Force. | Declination. | North<br>Force, | Vertical<br>Force. | Declination. | North Force. | Vertical<br>Force. | | | | 0 / | | 0 , | 1 | | | · / i | | | 1 | <u> </u> | | | | January | 14. 32.0 | .18478 | 66. 52.7 | .04637 | 17887 | .43276 | 7.5 | 29γ | 18γ | 41.8 | 1907 | 114γ | | | February | 14. 31.3 | 18473 | 66. 52.7 | .04632 | .17883 | .43264 | 6.9 | 27 | 17 | 48.6 | 169 | 139 | | | March | 14. 30.8 | 18475 | 66. 52.9 | .04630 | 17885 | .43275 | 10.5 | 36 | 29 | 62.0 | 252 | 145 | | | April | 14. 29.5 | ·18468 | 66. 53.4 | ·04621 | ·17880 | 43274 | 12.4 | 46 | 34 | 73.5 | 315 | 182 | | | May | 14. 28.8 | ·18471 | 66. 52.7 | .04618 | ·17884 | ·43260 | 11.7 | 43 | 30 | 64.2 | 269 | 169 | | | June | 14. 28.2 | ·18477 | 66. 51.7 | .04617 | 17891 | .43239 | 11.6 | 44 | 27 | 66.4 | 288 | 135 | | | July | 14. 27.4 | .18472 | 66. 51.8 | .04611 | 17887 | ·4323I | 11.8 | 45 | 30 | 68.3 | 311 | 161 | | | August | 14. 26.7 | ·18460 | 66. 52.5 | .04605 | 17876 | 43227 | 12.4 | 51 | 27 | 71.1 | 345 | 144 | | | September | 14. 26.1 | ·18456 | 66. 52.7 | ·04601 | 17873 | .43222 | 10.1 | 50 | 29 | 66.7 | 348 | 170 | | | October | 14. 25.2 | ·18447 | 66. 53·1 | .04594 | ·17866 | .43219 | 9.0 | 46 | 24 | 59.5 | 350 | 154 | | | November | 14. 24.1 | .18450 | 66. 53·I | .04589 | 17870 | .43224 | 7.5 | 31 | 16 | 42.4 | 202 | 127 | | | December | 14. 23.7 | ·18441 | 66. 54.5 | ·04585 | ·17862 | .43251 | 7.4 | 20 | 20 | 41.7 | 123 | 141 | | | For the year. | 14. 27.8 | ·18464 | 66. <b>52</b> ·8 | .04612 | .17879 | .43247 | 9.9 | 39.0 | 25.1 | 58.8 | 263.8 | 148 | | ## ROYAL OBSERVATORY, GREENWICH. ## MAGNETIC DISTURBANCES. 1918. MAGNETIC DISTURBANCES in DECLINATION, NORTH FORCE, and VERTICAL FORCE, recorded at the ROYAL OBSERVATORY, GREENWICH, in the Year 1918. The following notes give a brief description of all magnetic movements (superposed on the ordinary diurnal movement) exceeding 3' in Declination, $20\gamma$ in North Force, or $12\gamma$ in Vertical Force, as taken from the photographic records of the respective Magnetometers. The movements in North and Vertical Force are expressed in C. G. S. units. When any one of the three elements is not specifically mentioned, it is to be understood that the movement, if any, was insignificant. Any failure or want of register is specially indicated. The term "wave" is used to indicate a movement in one direction and return; "double wave" a movement in one direction and return with continuation in the opposite direction and return; "two successive waves" consecutive wave movement in the same direction; "oscillations" a number of movements in both directions. The extent and direction of the movement are indicated in brackets, + denoting an increase, and - a decrease of the magnetic element. In the case of oscillations the sign $\pm$ denotes positive and negative movements of generally equal extent. Magnetic movements which do not admit of brief description in this way are exhibited on accompanying plates. The time is Greenwich Civil Time (commencing at midnight, and counting the hours from 0 to 24). 1918. Januarv - $3^{d}$ $16\frac{3}{4}^{h}$ to $18\frac{1}{4}^{h}$ Wave in Dec. (+5'). $17^{h}$ to $18\frac{1}{2}^{h}$ Wave in N.F. (-26). $22\frac{1}{4}^{h}$ to $22\frac{3}{4}^{h}$ Wave in Dec. (-3'). $3^{d}$ $23\frac{1}{4}^{h}$ to $4^{d}$ $1\frac{1}{4}^{h}$ Irregular double-crested wave in Dec. (-5'). - $4^{d}$ $1\frac{3}{4}$ h to $3^{h}$ Irregular double-crested wave in Dec. (-8'). $2^{h}$ to $3\frac{1}{2}$ h Wave in N.F. (+35). $22^{h}$ to $24^{h}$ Wave in Dec. (-7'). - $5^{\rm d}$ II<sup>h</sup> to I3<sup>h</sup> Wave in N.F. (- 36). II½<sup>h</sup> to I2½<sup>h</sup> Wave in Dec. (- 4') with small superposed fluctuations. I6½<sup>h</sup> to I8½<sup>h</sup> Irregular wave in Dec. (- 10'). I7<sup>h</sup> to I7½<sup>h</sup> Increase in N.F. (+ 20). $5^{\rm d}$ 23¾<sup>h</sup> to $6^{\rm d}$ 0½<sup>h</sup> Wave in Dec. (- 4'). - $6^{d} \circ 2^{h}$ to $3^{h}$ Two successive waves in Dec. (-4', -4'). $13^{h}$ to $15^{h}$ Irregular wave in N.F. (-25), followed till $16^{h}$ by a wave (-20). $16^{h}$ to $16^{h}$ Decrease in Dec. (-3'). $6^{d} 23^{h}$ to $7^{d} \circ 4^{h}$ Waves in Dec. (-6'), and N.F. (+47), both steeper at commencement. - $9^{d}$ 23½ to $10^{d}$ 0¾ Wave in N.F. (+ 32). - $10^{d}$ $19^{h}$ to $20_{4}^{1h}$ Wave in Dec. (-7'). $19_{4}^{1h}$ to $21^{h}$ Wave in N.F. (+37). - 12<sup>d</sup> 11½<sup>h</sup> to 13½<sup>h</sup> Irregular decrease in N.F. (-58), followed till 13½<sup>h</sup> by a sharper increase (+32). 14½<sup>h</sup> to 15½<sup>h</sup> Sharp double-crested wave in N.F. (-40). 14½<sup>h</sup> to 16<sup>h</sup> Wave in V.F. (+17). 14¾<sup>h</sup> to 15½<sup>h</sup> Increase in Dec. (+3') and decrease (-6'). 12<sup>d</sup> 23<sup>h</sup> to 13<sup>d</sup> 1<sup>h</sup> Wave in Dec. (-12'), steep at commencement. 12<sup>d</sup> 23<sup>h</sup> to 13<sup>d</sup> 0½<sup>h</sup> Wave in N.F. (+47), steep at commencement. - 13¾ to 14h Sharp decrease in N.F. (-40). 14½h to 16h Wave in Dec. (-4'), with sharp superposed vibrations. 20h to 21h Sharp wave in Dec. (-7'), followed till 21¼h by a sharp decrease (-4'). 21h to 22h Rounded wave in N.F. (+24). - 14<sup>d</sup> $0^{1h}_2$ to $1^{1h}_2$ Sharp increase in Dec. (+4') and decrease (-8'). $0^{1h}_2$ Sharp increase in N.F. (+20). $0^{3h}_4$ to $1^h$ Decrease in V.F. (-14). $3^{1h}_4$ to $4^{1h}_4$ Irregular wave in Dec. (+4'). $22^{3h}_4$ to $23^{1h}_4$ Wave in Dec. (-4'). $23^{1h}_4$ to $23^{1h}_4$ Wave in N.F. (+21). - 15<sup>d</sup>, 15½<sup>h</sup> to 16½<sup>h</sup> Sharp wave in N.F. (-30). 15¾<sup>h</sup> to 16½<sup>h</sup> Wave in Dec. (-6'): increase in V.F. (+12). $20½^h$ to $22^h$ Wave in N.F. (-22). $21^h$ to $22^h$ Wave in Dec. (-5'). 15<sup>d</sup> $23½^h$ to 16<sup>h</sup> $1½^h$ Irregular wave in Dec. (-5'). - $17^{d}$ 23<sup>h</sup> to 23<sup>3h</sup> Wave in N.F. (-22). - $21^{d}$ $0_{4}^{3h}$ to $1^{h}$ Sharp increase in N.F. (+24). $1_{4}^{1h}$ to $2_{4}^{1h}$ Decrease in N.F. (-33). $14_{2}^{1h}$ to $16_{4}^{1h}$ Wave in N.F. (-25). $17^{h}$ to $17_{2}^{1h}$ Decrease in Dec. (-5). - 22<sup>d</sup> oh to 1h Wave in N.F. (+23). $2\frac{3}{4}$ h to $4\frac{1}{4}$ h Double-crested wave in Dec. (+5'). - $23^{d}$ Ih to $3\frac{3}{4}$ h Slow double wave in Dec. (-3', +3'). - $24^{d}$ $16\frac{3}{4}^{h}$ to $17\frac{1}{4}^{h}$ Wave in Dec. (-3'). $17^{h}$ to $18^{h}$ Wave in N.F. (-20). - 25<sup>d</sup> $1\frac{1}{4}$ h to $2\frac{1}{2}$ h Irregular double-crested wave in Dec. (+ 4'). $1\frac{1}{2}$ h to 3h Wave in N.F. (+ 27). $20\frac{1}{4}$ h to $21\frac{1}{4}$ h Wave in Dec. (- 5'). 1918. January - $26^{d} \ 20^{1h}_{2}$ to $21^{3h}_{4}$ Wave in Dec. (-6'). - $27^{d} \circ_{4}^{1h}$ to $1\frac{3}{4}^{h}$ Wave in N.F. (+ 30). $0\frac{1}{2}^{h}$ to $2^{h}$ Wave in Dec. (- 5'). - 29<sup>d</sup> 12<sup>2h</sup> to 13<sup>th</sup> Sharp increase in Dec. (+ 7') and decrease (- 4'). 13<sup>2h</sup> to 14<sup>h</sup> Increase in Dec. (+ 4'). 17<sup>1h</sup> to 19<sup>h</sup> Irregular double wave in Dec. (+ 3', 3'). 18<sup>1h</sup> to 19<sup>h</sup> Wave in N.F. (+ 20). 19<sup>1h</sup> Sharp decrease in Dec. (- 8'), followed till 20<sup>1h</sup> by an irregular wave (+ 8'). 19<sup>1h</sup> to 19<sup>2h</sup> Sharp increase in N.F. (+ 30), and decrease (- 20). 20<sup>h</sup> to 20<sup>1h</sup> Wave in N.F. (- 33). 21<sup>h</sup> to 23<sup>h</sup> Irregular double-crested wave in Dec. (- 13'), steep at end. 21<sup>1h</sup> to 22<sup>h</sup> Sharp increase in N.F. (+ 45). 22<sup>1h</sup> to 23<sup>1h</sup> Two successive waves in N.F. (- 30, 28). 29<sup>d</sup> 22<sup>2h</sup> to 30<sup>d</sup> 2<sup>h</sup> Irregular decrease in V.F. (- 50). - 30<sup>d</sup> I<sup>h</sup> to 2½<sup>h</sup> Irregular wave in Dec. (+ 9'). I<sup>h</sup> to 2<sup>h</sup> Double-crested wave in N.F. (+ 20). 8½<sup>h</sup> to 9½<sup>h</sup> Decrease in N.F. (- 50). 12<sup>h</sup> to 13½<sup>h</sup> Truncated wave in N.F. (- 40). 17½<sup>h</sup> to 18½<sup>h</sup> Two successive waves in Dec. (- 5', 4'). 17½<sup>h</sup> Sharp increase in N.F. (+ 32). 18<sup>h</sup> to 18½<sup>h</sup> Wave in N.F. (- 22). 20<sup>h</sup> to 20½<sup>h</sup> Decrease in Dec. (- 7'). 20½<sup>h</sup> to 20½<sup>h</sup> Sharp decrease in Dec. (- 11), followed till 21<sup>h</sup> by a sharp wave (+ 8'). 20½<sup>h</sup> to 21½<sup>h</sup> to 21½<sup>h</sup> by sharp increase (+ 24) and decrease (- 50). 20½<sup>h</sup> to 21½<sup>h</sup> Decrease in V.F. (- 34). 21½<sup>h</sup> to 22½<sup>h</sup> Two successive sharp waves in Dec. (- 8', 9'), followed till 23½<sup>h</sup> by a double-crested wave (- 10'), followed till 31<sup>d</sup> I<sup>h</sup> by a wave (- 22'), very steep at commencement. 30<sup>d</sup> 23<sup>h</sup> to 31<sup>d</sup> 0¾<sup>h</sup> Irregular wave in V.F. (- 40), followed till 3<sup>h</sup> by a wave (-20). 30<sup>d</sup> 23½<sup>h</sup> to 31<sup>d</sup> 2¼<sup>h</sup> Quadruple wave in N.F. (- 32, + 36, 30, + 46). - 31<sup>d</sup> 3<sup>h</sup> to 4<sup>3</sup>h Double wave in Dec. (-4',+4'), the second portion truncated and serrated. 4½h to 5½h Wave in N.F. (+23). 12<sup>h</sup> to 12½h Irregular increase in Dec. (+7'). 13<sup>h</sup> to 13½h Wave in Dec. (+4'). 13½h to 14½h Truncated wave in N.F. (-35). 13¾h to 15¼h Slow wave in V.F. (+13). 14<sup>h</sup> to 15½h Truncated wave in Dec. (+7'), steep at commencement. 15½h to 19h Double wave in N.F. (+30, -55), the second portion sharper. 17½h to 18h Irregular decrease in Dec. (-8'), followed till 19h by a sharp irregular wave (+10'). 18h to 18½h Increase in V.F. (+18). 19¾h to 21h Irregular double-crested wave in N.F. (-23). 20h to 21h Wave in Dec. (+4'). 20½h to 22½h Serrated decrease in V.F. (-30). 21½h to 22½h Sharp double-crested wave in Dec. (-4'), followed till 22¾h by a sharp decrease (-7'). 21½h to 22½h Two successive waves in N.F. (+20,+25). February - 1d 13h to 4h Irregular triple-crested wave in Dec. (+ 8'). 2h to 3h Decrease in V.F. (- 13). 3h to 3½h Wave in N.F. (- 20). 163h to 18h Double wave in N.F. (- 24,+ 26), followed till 19½h by a truncated wave (+ 33). 163h to 17h Sharp decrease in Dec. (- 11'). 173h to 18½h Sharp wave in Dec. (+ 5'). 18½h to 21½h Irregular triple wave in Dec. (+ 7',- 5',+ 11'), the second portion double-crested, the third very steep. 20½h to 21½h Very sharp wave in N.F. (+ 110). 20½h to 21½h Irregular decrease in V.F. (- 17). - 2<sup>d</sup> 2½<sup>h</sup> to 3½<sup>h</sup> Wave in Dec. (+ 5'). 2¾<sup>h</sup> to 3½<sup>h</sup> Decrease in V.F. (- 12). 17½<sup>h</sup> to 17¾<sup>h</sup> Decrease in Dec. (- 6'). 18<sup>h</sup> to 19½<sup>h</sup> Two successive waves in Dec. (- 6', 7'). 18½<sup>h</sup> to 19½<sup>h</sup> Double-crested wave in N.F. (+ 30). 21¾<sup>h</sup> to 22¼<sup>h</sup> Wave in Dec. (- 3'). 22¾<sup>h</sup> to 23½<sup>h</sup> Wave in Dec. (+ 6'). 22¾<sup>h</sup> to 23½<sup>h</sup> Wave in N.F. (+ 20). - 5<sup>d</sup> 7<sup>h</sup> to 8½<sup>h</sup> Serrated double-crested wave in N.F. (+ 25). 11½<sup>h</sup> to 12½<sup>h</sup> Double-crested wave in Dec. (+ 4'). 12<sup>h</sup> to 13<sup>h</sup> Wave in N.F. (- 24). - 6d 1½h to 1½h Sharp increase in Dec. (+ 7'), followed till 6h by a truncated serrated wave (- 19'), steep at commencement. 1½h to 2½h Wave in N.F. (+ 40), very steep at commencement. 1½h to 1¾h Sharp decrease in V.F. (- 22). 3h to 4h Triple-crested wave in N.F. (+ 28). 3½h to 3½h Sharp decrease in V.F. (- 19). 8h to 10½h Slow wave in N.F. (- 22). 14h to 14¾h Wave in Dec. (+ 3'). 23½h to 24h Wave in Dec. (- 4'). - $7^{\text{d}}$ rh to $3^{\frac{1}{2}\text{h}}$ Slow double-crested wave in Dec. (+ 5'). $7^{\frac{1}{2}\text{h}}$ to $9^{\text{h}}$ Wave in N.F. (- 25). $7^{\frac{3}{4}\text{h}}$ to $9^{\frac{1}{4}\text{h}}$ Wave in Dec. (+ 5'). $23^{\text{h}}$ to $23^{\frac{3}{4}\text{h}}$ Wave in N.F. (+ 25). - $9^{d}$ 201 to 201 Decrease in Dec. (-6') and N.F. (-30). 201 to 231 Flat-crested wave in V.F. (+17). 221 to 231 Irregular waves in Dec. (+4') and N.F. (+22). - 10<sup>d</sup> 1¼<sup>h</sup> to 2¼<sup>h</sup> Wave in N.F. (+ 24). 1½<sup>h</sup> to 2½<sup>h</sup> Wave in Dec. (-7'). '10¾<sup>h</sup> to 11½<sup>h</sup> Truncated wave in Dec. (+4'). 12¾<sup>h</sup> to 13½<sup>h</sup> Irregular wave in Dec. (+5'), steep at end. 17½<sup>h</sup> to 18½<sup>h</sup> Wave in Dec. (-8'). 17½<sup>h</sup> to 18½<sup>h</sup> Wave in N.F. (+23). 20½<sup>h</sup> to 20½<sup>h</sup> Sharp decrease in Dec. (-8'), followed till 21½<sup>h</sup> by a double-crested wave (+5'). 20½<sup>h</sup> Sharp increase in N.F. (+20). 21½<sup>h</sup> to 23½<sup>h</sup> Irregular wave in N.F. (+48). 21½ to 22¼<sup>h</sup> Sharp double-crested wave in Dec. (+7'). - the last truncated. o<sup>1</sup>/<sub>4</sub>h to 1<sup>h</sup> Irregular decrease in N.F. (-38), followed till 2<sup>1</sup>/<sub>4</sub>h by a wave (+40), steep at commencement. 1<sup>h</sup> to 3<sup>h</sup> Wave in V.F. (-27). 20<sup>h</sup> to 20<sup>1</sup>/<sub>2</sub>h Irregular decrease in Dec. (-6'). 21<sup>3</sup>/<sub>4</sub>h to 22<sup>1</sup>/<sub>2</sub>h Wave in Dec. (+4'). 22<sup>1</sup>/<sub>4</sub>h to 23<sup>1</sup>/<sub>4</sub>h Wave in N.F. (+22). 1918. February, - 12<sup>d</sup> oh to o<sup>2h</sup> Wave in Dec. (-4'). o<sup>1h</sup> to 1<sup>2h</sup> Decrease in V.F. (-25). 1<sup>1h</sup> to 4<sup>h</sup> Two successive waves in Dec. (-12', -5'). 2<sup>h</sup> to 3<sup>h</sup> Wave in N.F. (-20). 3<sup>1h</sup> to 4<sup>2h</sup> Wave in N.F. (-30). 5<sup>h</sup> to 6<sup>1h</sup> Wave in N.F. (+20). 12<sup>1h</sup> to 13<sup>1h</sup> Spasmodic double wave in N.F. (-20, +20), with superposed fluctuations. 14<sup>h</sup> to 15<sup>2h</sup> Increase in V.F. (+43). 15<sup>h</sup> to 15<sup>2h</sup> Sharp movements in N.F. (+25, -73, +30). 15<sup>1h</sup> to 16<sup>1h</sup> Wave in Dec. (+10'), steep at commencement. 18<sup>h</sup> to 18<sup>1h</sup> Wave in N.F. (+23). 18<sup>2h</sup> to 19<sup>h</sup> Sharp wave in N.F. (-20), followed till 20<sup>h</sup> by very sharp movements (-150, +100, -30), followed till 20<sup>1h</sup> by double-crested wave (+50). 19<sup>h</sup> to 20<sup>2h</sup> Irregular sharp quadruple wave in Dec. (+5', -13', +23', -6'), the fourth movement serrated. 19<sup>h</sup> to 19<sup>1h</sup> Sharp increase in V.F. (+17), followed till 20<sup>h</sup> by a decrease (-43). 21<sup>h</sup> to 21<sup>1h</sup> Wave in Dec. (-4'). 22<sup>h</sup> to 24<sup>h</sup> Steep truncated wave in Dec. (-14'), with double-crested wave (+7'), superposed from 22<sup>1h</sup> to 23<sup>1h</sup>. 22<sup>1h</sup> to 23<sup>1h</sup> Truncated wave in N.F. (+21). 23<sup>h</sup> to 23<sup>3h</sup> Wave in V.F. (-12), followed till 13<sup>h</sup> o<sup>1h</sup> by a decrease (-25). 12<sup>d</sup> 23<sup>3h</sup> to 13<sup>d</sup> o<sup>3h</sup> Triple wave in N.F. (+28, -20, +25), the first portion double-crested. - $13^{d}$ old to old Sharp decrease in Dec. (-17'). In to $13^{h}$ Wave in Dec. (-5'). $3^{h}$ to $41^{h}$ Double-crested wave in Dec. (+8'), followed till $51^{h}$ by an increase (+12'). $4^{h}$ to $41^{h}$ Very sharp increase in N.F. (+70), followed till $43^{h}$ by slower partial return (-25). - 14<sup>d</sup> 2<sup>h</sup> to $3\frac{1}{2}$ <sup>h</sup> Wave in Dec. (+ 12'). $2\frac{1}{4}$ <sup>h</sup> to $2\frac{3}{4}$ <sup>h</sup> Decrease in N.F. (- 24). $2\frac{3}{4}$ <sup>h</sup> to 4<sup>h</sup> Wave in V.F. (- 13). 3<sup>h</sup> to 4<sup>h</sup> Increase in N.F. (+ 60). 5<sup>h</sup> to $6\frac{3}{4}$ <sup>h</sup> Wave in Dec. (+ 6'), followed till $7\frac{1}{2}$ <sup>h</sup> by an increase (+ 6'). - 15<sup>d</sup> o<sup>1</sup>/<sub>2</sub>h to 1<sup>h</sup> Wave in Dec. (+ 4'), continued till 1<sup>3</sup>/<sub>4</sub>h by a decrease (- 7'). o<sup>1</sup>/<sub>2</sub>h to 1<sup>1</sup>/<sub>4</sub>h decrease in V.F. (- 12). 9<sup>h</sup> to 18<sup>h</sup> Rapid small oscillations in Dec. and N.F. 16<sup>h</sup> to 21<sup>1</sup>/<sub>2</sub>h Rapid oscillations in V.F. 18<sup>h</sup> to 19<sup>1</sup>/<sub>4</sub>h Wave in Dec. (+ 9') with superposed oscillations. 18<sup>1</sup>/<sub>4</sub>h to 19<sup>1</sup>/<sub>2</sub>h Irregular double-crested wave in N.F. (- 35). 20<sup>h</sup> to 21<sup>h</sup> Truncated wave in N.F. (+ 35), very steep at both ends, followed till 21<sup>1</sup>/<sub>4</sub>h by a very sharp double wave (+ 50, 24). - 16<sup>d</sup> 10<sup>h</sup> to 10<sup>1</sup>/<sub>4</sub><sup>h</sup> Increase in Dec. (+ 4'). 11<sup>1</sup>/<sub>4</sub><sup>h</sup> to 12<sup>1</sup>/<sub>2</sub><sup>h</sup> Wave in Dec. (+ 6'), with superposed fluctuations. 11<sup>2</sup>/<sub>4</sub><sup>h</sup> to 12<sup>3</sup>/<sub>4</sub><sup>h</sup> Wave in N.F. (- 32). 20<sup>1</sup>/<sub>4</sub><sup>h</sup> to 22<sup>h</sup> Waves in Dec. (- 6'), and N.F. (+ 30). - $17^{d}$ 20\frac{1}{4}^{h} to 21\frac{2}{4}^{h} Wave in Dec. (-4'). - 20d 21 $\frac{3}{4}$ h to 22 $\frac{1}{4}$ h Decrease in Dec. (- 10'), followed till 22 $\frac{3}{4}$ h by slower partial return (+ 4'). 22h to 23 $\frac{1}{4}$ h Wave in N.F. (+ 43). - $21^{d}$ 4<sup>h</sup> to 6<sup>h</sup> Wave in N.F. (+ 35). $4\frac{1}{2}$ <sup>h</sup> to $6\frac{1}{4}$ <sup>h</sup> Wave in Dec. (- 6'). - 23<sup>d</sup> 14½<sup>h</sup> to 14½<sup>h</sup> Sudden increase in Dec. (+ 4') and N.F. (+ 20). 14½<sup>h</sup> to 17<sup>h</sup> Wave in V.F. (+ 13). 15<sup>h</sup> to 16½<sup>h</sup> Truncated wave in N.F. (- 28). 15¾<sup>h</sup> to 16½<sup>h</sup> Wave in Dec. (- 3'). 21<sup>h</sup> to 24<sup>h</sup> Wave in Dec. (- 12'). 22<sup>h</sup> to 23½<sup>h</sup> Wave in N.F. (+ 37). - $24^{d}$ $4\frac{1}{2}$ h to 6h Wave in N.F. (-21). 20h to $21\frac{1}{2}$ h Wave in Dec. (-4'). - $27^{d}$ $21\frac{3}{4}^{h}$ to $23\frac{1}{2}^{h}$ Irregular wave in N.F. (+ 30). $22^{h}$ to $23\frac{1}{2}^{h}$ Wave in Dec. (- 5'). $22^{h}$ to $22\frac{1}{2}^{h}$ Decrease in V.F. (- 18). - 28d 03h to 21h Truncated wave in Dec. (+8'). 14h to 15h Wave in Dec. (-4'). 19h to 22h Irregular wave in Dec. (-7'). 19h to 22h Slow wave in V.F. (+17). 19h to 21h. Truncated wave in N.F. (-25). 23½h to 24h Wave in Dec. (+3'). February 28d. 23¾h to March 1d. 0½h Wave in N.F. (+20). March - $1^{d} 2\frac{1}{2}^{h}$ to $2\frac{3}{4}^{h}$ Sharp increase in Dec. (+5'). $20\frac{1}{4}^{h}$ to $21^{h}$ Sharp wave in Dec. (-5'). $21^{h}$ to $21\frac{3}{4}^{h}$ Sharp wave in N.F. (+34), followed till $22^{h}$ by an increase (+25). - 2d $16\frac{3}{4}$ h to $17\frac{3}{4}$ h Truncated wave in N.F. (-25). $17^{h}$ to $18^{h}$ Wave in Dec. (-3'). $19\frac{3}{4}$ h to $21^{h}$ Wave in N.F. (+45). - $3^{d}$ $1\frac{3}{4}^{h}$ to $3^{h}$ Truncated wave in Dec. (+5'). $13\frac{3}{4}^{h}$ to $15\frac{1}{4}^{h}$ Sharp double wave in Dec. (+4', -4'), both portions double-crested. $14^{h}$ to $15^{h}$ Increase in V.F. (+30). $14\frac{1}{4}^{h}$ to $14\frac{3}{4}^{h}$ Sharp decrease in N.F. (-30) and increase (+48). $16^{h}$ to $17\frac{1}{2}^{h}$ Wave in Dec. (+3'). $16\frac{1}{2}^{h}$ to $18^{h}$ Wave in N.F. (-25). $21\frac{3}{4}^{h}$ to $22\frac{1}{4}^{h}$ Domed wave in Dec. (-8') followed till $23^{h}$ by a sharp decrease (-10') and increase (+3'). $21\frac{3}{4}^{h}$ to $22\frac{3}{4}^{h}$ Wave in V.F. (+14). $22\frac{3}{4}^{h}$ to $23\frac{1}{4}^{h}$ Wave in N.F. (+26). - $4^{d}$ $1\frac{1}{2}$ h to $4^{h}$ Slow wave in Dec. (+7'). - 5<sup>d</sup> 22<sup>h</sup> to 23<sup>h</sup> Wave in N.F. (+ 21). - 7<sup>d</sup> 20<sup>h</sup> to 8<sup>d</sup> 20<sup>h</sup>. See Plate I. - 8d 22 $\frac{1}{4}$ h to 22 $\frac{3}{4}$ h Sharp wave in Dec. (+ 5'). - $g^d$ in to $2\frac{1}{2}$ Wave in Dec. (+ 7'). - 10<sup>d</sup> 16<sup>h</sup> to 16<sup>3</sup>/<sub>4</sub><sup>h</sup> Wave in N.F. (-30), followed till 19<sup>h</sup> by an irregular wave (-30), with a sharp wave (-24) superposed from 17<sup>3</sup>/<sub>4</sub><sup>h</sup> to 18<sup>h</sup>. 16<sup>h</sup> to 19<sup>h</sup> Slow wave in V.F. (+23). 16<sup>1</sup>/<sub>4</sub><sup>h</sup> to 17<sup>3</sup>/<sub>4</sub><sup>h</sup> Irregular wave in Dec. (-8'). 21<sup>1</sup>/<sub>h</sub> to 22<sup>1</sup>/<sub>2</sub><sup>h</sup> Wave in Dec. (-6'). 21<sup>1</sup>/<sub>2</sub><sup>h</sup> to 22<sup>1</sup>/<sub>2</sub><sup>h</sup> Wave in N.F. (+26). 23<sup>3</sup>/<sub>4</sub><sup>h</sup> to 24<sup>h</sup> Sharp decrease in N.F. (-21). - 11<sup>d</sup> $2_4^{\text{th}}$ to $4^{\text{h}}$ Wave in Dec. (+6'). $2_2^{\text{th}}$ to $3_4^{\text{th}}$ Slow decrease in V.F. (-12). $13_4^{\text{th}}$ to $14^{\text{h}}$ Sharp increase in Dec. (+4'). $15_2^{\text{th}}$ to $16_4^{\text{th}}$ Irregular wave in N.F. (+32). $17_4^{\text{th}}$ to $18_4^{\text{th}}$ Wave in V.F. (+15). $17_2^{\text{th}}$ to $17_4^{\text{th}}$ Sharp decrease in Dec. (-8'). $19^{\text{th}}$ to $19_4^{\text{th}}$ Sharp movements in Dec. (-5', +8', -16'), followed till $20_4^{\text{th}}$ by an irregular increase (+8'). $19^{\text{th}}$ to $19_4^{\text{th}}$ Sharp double wave in N.F. (+44, -50). $19_4^{\text{th}}$ to $19_4^{\text{th}}$ Wave in V.F. (-14). $20^{\text{th}}$ to $21^{\text{th}}$ Wave in N.F. (-30). $21_4^{\text{th}}$ to $22_4^{\text{th}}$ Wave in Dec. (-3'). $23^{\text{th}}$ to $24^{\text{th}}$ Wave in Dec. (-5'). 1918. March - 12<sup>d</sup> $0_4^{3h}$ to 1<sup>h</sup> Decrease in Dec. (-3'), followed till 2<sup>h</sup> by a wave (+4'). 5<sup>h</sup> to $5_2^{1h}$ Sharp increase in Dec. (+7'). 5<sup>h</sup> to 6<sup>h</sup> Wave in N.F. (-22). $5_2^{1h}$ to 6<sup>h</sup> Decrease in V.F. (-24). 15<sup>h</sup> to 16<sup>h</sup> Increase in V.F. (+28). 15 $_4^{1h}$ to 15 $_4^{3h}$ Serrated decrease in Dec. (-8'). 15 $_2^{1h}$ to 17<sup>h</sup> Wave in N.F. (+45), steep at commencement. 19 $_4^{1h}$ to 20 $_4^{1h}$ Double wave in Dec. (+4', -3'), the first portion double-crested. 19 $_2^{1h}$ to 20<sup>h</sup> Decrease in V.F. (-16). 19 $_4^{3h}$ to 21<sup>h</sup> Wave in N.F. (+40). 12<sup>d</sup> 23 $_4^{3h}$ to 13<sup>d</sup> 1<sup>h</sup> Truncated wave in N.F. (+22). - $13^{d} \circ_{4}^{1h}$ to $14^{h}$ Wave in Dec. (-3'). - 15<sup>d</sup> I<sup>h</sup> to 2<sup>h</sup> Wave in Dec. (+ 3'). 7½<sup>h</sup> to 8½<sup>h</sup> Wave in Dec. (+ 4'). 13<sup>h</sup> to 14½<sup>h</sup> Serrated wave in Dec. (+ 9'). 13<sup>h</sup> to 16<sup>h</sup> Double wave in N.F. (+ 35, 45). 13½<sup>h</sup> to 14½<sup>h</sup> Increase in V.F. (+ 17). 17½<sup>h</sup> Very slow increase in N.F. (+ 60), followed till 19½<sup>h</sup> by very sharp fluctuations superposed on the return. Fluctuations also in Dec. - 16d Ih to $2\frac{3}{4}^{\text{h}}$ Irregular triple wave in Dec. (-5', +3', -3'). Ih to $1\frac{1}{2}^{\text{h}}$ Truncated wave in N.F. (+25). $1\frac{3}{4}^{\text{h}}$ to $2\frac{1}{4}^{\text{h}}$ Decrease in V.F. (-12). $5^{\text{h}}$ to $5\frac{1}{2}^{\text{h}}$ Serrated increase in Dec. (+4'). $10\frac{1}{2}^{\text{h}}$ to $12^{\text{h}}$ Increase in Dec. (+7'), followed till $12\frac{1}{2}^{\text{h}}$ by a sharper increase (+6'). $12^{\text{h}}$ to $12\frac{3}{4}^{\text{h}}$ Domed wave in N.F. (+22). $12\frac{3}{4}^{\text{h}}$ to $13\frac{1}{2}^{\text{h}}$ Increase in V.F. (+17). $13^{\text{h}}$ to $14\frac{1}{4}^{\text{h}}$ Wave in Dec. (-6'). $15^{\text{h}}$ to $17\frac{1}{4}^{\text{h}}$ Slow wave in V.F. (+14), followed till $18\frac{1}{2}^{\text{h}}$ by a double-crested wave (+19). $17\frac{1}{2}^{\text{h}}$ to $18\frac{3}{4}^{\text{h}}$ Waves in Dec. (-10'), and N.F. (+75), both very steep at commencement. $20\frac{1}{4}^{\text{h}}$ to $21^{\text{h}}$ Sharp double-crested wave in Dec. (-5'), followed till $21\frac{1}{2}^{\text{h}}$ by a sharp double wave (-6', +4'). $20\frac{1}{2}^{\text{h}}$ to $21\frac{1}{2}^{\text{h}}$ Two successive waves in N.F. (+20, +47), the second steep. - $17^{d}$ 22h to 23h Domed wave in Dec. (-4'). 22h to 23h Wave in N.F. (+ 35). - 20<sup>d</sup> 10<sup>h</sup> to $10^{1h}_{2}$ Decrease in N.F. (-40). - 21<sup>d</sup> 12<sup>h</sup> to 14<sup>3h</sup> Irregular wave in Dec. (+ 5'), followed till 17<sup>h</sup> by a serrated wave (+ 7'). 13<sup>h</sup> to 21<sup>3h</sup> Slow wave in V.F. (+ 45). 14<sup>3h</sup> to 15<sup>1h</sup> Increase in N.F. (+ 33). 17<sup>3h</sup> to 18<sup>1h</sup> Decrease in Dec. (- 6'). 19<sup>2h</sup> to 21<sup>1h</sup> Irregular wave in Dec. (- 8'), followed till 23<sup>h</sup> by a shallow wave (- 4'). 20<sup>h</sup> to 21<sup>h</sup> Truncated wave in N.F. (+ 21). 21<sup>3h</sup> to 23<sup>h</sup> Wave in N.F. (+ 22). - 22<sup>d</sup> $1\frac{3}{4}$ h to $2\frac{1}{2}$ h Wave in Dec. (+4'). $13\frac{1}{2}$ h to $15\frac{1}{4}$ h Irregular double wave in N.F. (+20, -20). $14\frac{3}{4}$ h to $18\frac{1}{2}$ h Wave in V.F. (+18). $16\frac{1}{2}$ h to $17\frac{3}{4}$ h Sharp wave in Dec. (-10'): double wave in N.F. (-20, +37). - 23<sup>d</sup> $1\frac{3}{4}$ h to $2\frac{1}{2}$ h Sharp wave in N.F. (-40). $2^h$ to $3\frac{1}{2}$ h Wave in Dec. (+10'), steep at commencement. $2\frac{1}{4}$ h to $5^h$ Domed wave in V.F. (-22). $4^h$ to $6^h$ Wave in N.F. (-30). $4\frac{1}{4}$ h to $5\frac{1}{4}$ h Increase in Dec. (+5'). $17\frac{3}{4}$ h to $19\frac{1}{4}$ h Wave in N.F. (+28). $19^h$ to $21\frac{1}{2}$ h Irregular triple wave in Dec. (-10', +4', -7'). $19\frac{1}{2}$ h to $20\frac{3}{4}$ h Steep double wave in N.F. (+95, -24): Wave in V.F. (-25). - $26^{d}$ $22^{h}$ to $22\frac{3}{4}^{h}$ Sharp wave in N.F. (+ 33). - 27<sup>d</sup> $o_2^{1h}$ to $o_2^{1h}$ Wave in Dec. (+ 4'). 17<sup>h</sup> to 18<sup>h</sup> Wave in Dec. (- 5'), followed till 18½<sup>h</sup> by a decrease (- 5'). 17½<sup>h</sup> to 18<sup>h</sup> Wave in N.F. (+ 30). 20<sup>h</sup> to 22¾<sup>h</sup> Wave in Dec. (- 11'), steep at commencement. 20¼<sup>h</sup> to 21½<sup>h</sup> Wave in N.F. (+ 50). - 29<sup>d</sup> $3\frac{1}{2}$ <sup>h</sup> to 5<sup>h</sup> Truncated Wave in Dec. (+ 4'). $3\frac{3}{4}$ <sup>h</sup> to $4\frac{1}{2}$ <sup>h</sup> Irregular increase in N.F. (+ 33). $22\frac{3}{4}$ <sup>h</sup> to 24<sup>h</sup> Shallow wave in Dec. (- 3'). - $30^d$ $16^h$ to $31^d$ $11^h$ loss of V.F. Register. $30^d$ $19^h$ to $21^h$ Wave in Dec. (-8'). - $31^{\text{d}} 183^{\text{h}}$ to $193^{\text{h}}$ Wave in Dec. (-4'). April - $2^{d}$ oh to 1h Wave in Dec. (+ 5'). $0^{\frac{1}{2}h}$ to $1^{\frac{1}{2}h}$ Domed wave in N.F. (+ 20). $0^{\frac{1}{2}h}$ to 1h Decrease in V.F. (- 12). $3^{d}$ $2^{2h}$ to $4^{d}$ $3^{\frac{1}{2}h}$ Slow triple wave in Dec. (- 5', + 3', 5'). - $3^{\rm d}$ $23^{\rm 3h}$ to $4^{\rm d}$ Ih Decrease in V.F. (-20). - $4^{d} \circ_{4}^{3h}$ to $3^{h}$ Flat-crested wave in N.F. (+23). $21\frac{1}{4}^{h}$ to $22^{h}$ wave in N.F. (+25). $21\frac{1}{2}^{h}$ to $22\frac{1}{2}^{h}$ Wave in Dec. (-4'), followed till $5^{d}$ $1^{h}$ by an irregular double wave (-5', +10'). $4^{d}$ $23\frac{1}{4}^{h}$ to $5^{d}$ $0\frac{1}{2}^{h}$ Irregular double wave in N.F. (-22, +33). $4^{d}$ $23\frac{3}{4}^{h}$ to $5^{d}$ $1^{h}$ Domed wave in V.F. (-25). - 5<sup>d</sup> I<sup>h</sup> to 2½<sup>h</sup> Wave in Dec. (+ 11'). 1½<sup>h</sup> to 5½<sup>h</sup> Slow double wave in V.F. (- 12, + 13). 1½<sup>h</sup> to 3½<sup>h</sup> Wave in N.F. (+ 32). 3½<sup>h</sup> to 4<sup>h</sup> Increase in Dec. (+ 5'). 4½<sup>h</sup> to 5<sup>h</sup> Increase in Dec. (+ 6'). 5<sup>h</sup> to 5½<sup>h</sup> Increase in N.F. (+ 20). 5½<sup>h</sup> to 6½<sup>h</sup> Decrease in N.F. (- 46). 13<sup>h</sup> to 17½<sup>h</sup> Increase in V.F. (+ 55). 17<sup>h</sup> to 19½<sup>h</sup> Wave in Dec. (- 8'), with several small waves superposed. 17¾<sup>h</sup> to 19½<sup>h</sup> Serrated wave in N.F. (+ 60). 21<sup>h</sup> to 22<sup>h</sup> Wave in Dec. (+ 6'), followed till 23½<sup>h</sup> by a sharp double wave (+ 13', 8'), the first portion double-crested. 21¾<sup>h</sup> to 23½<sup>h</sup> Triple wave in N.F. (+ 40, 40, + 30). 22<sup>h</sup> to 22¾<sup>h</sup> Decrease in V.F. (- 35). - 6d 0½h to 1¼h Double-crested wave in N.F. (- 20), followed till 1¼h by a wave (- 45). Ih to 3½h Double wave in Dec. (- 7′, + 8′), both portions double-crested. Ih to 2h Irregular decrease in V.F. (- 22), followed till 2¾h by a domed wave (+ 18). 3h to 4¼h Increase and decrease in N.F. (+ 20, -43). 4¼h to 4½h Increase in Dec. (+ 6′). 9h to 11¾h Irregular wave in N.F. (- 45). 12¼h to 13h Wave in N.F. (- 28). 12½h to 14h Irregular serrated wave in Dec. (+ 9′), followed till 16½h by tour successive waves (- 4′, -3′, -3′, -4′). 13h to 1¼h Increase in V.F. (+ 50). 13¼h to 15½h Irregular wave in N.F. (+ 57), with small waves superposed. 17½h to 18¼h Truncated wave in N.F. (- 21). 17¾h to 18½h Wave in Dec. (- 3′). 18¾h to 20h Wave in Dec. (- 4′). 21h to 21½h Wave in Dec. (+ 10′), very steep at commencement: decrease in V.F. (- 28). 21¾h to 22¼h Decrease in Dec. (- 9′). 6d 22¾h to 7d 2h Irregular triple wave in Dec. (+ 4′, -6′, +16′), the last two portions double-crested. 6d 23¼h to 24h Wave in N.F. (+ 26). 6d 23¼h to 7d 10½h Loss of V.F. register. MAGNETIC DISTURBANCES 1918. April $7^{\rm d}$ o<sub>2</sub><sup>h</sup> to 1<sup>h</sup> Wave in N.F. (-40), followed till $2_2^{\rm h}$ by a Double wave (-25,+25). $2_2^{\rm sh}$ to 4<sup>h</sup> Wave in N.F. (-42). $3^h$ to $4^h$ Domed wave in Dec. $(+8^r)$ . $7^d$ 23 $\frac{3^h}{4^h}$ to $8^d$ 1 $\frac{1}{4^h}$ Double wave in Dec. $(-6^r, +7^r)$ , the first portion slow, the second sharp. 8d 18h to 19h Truncated wave in N.F. (+ 25). 19h to 20½h Sharp wave in Dec. (- 11). $9^d$ 4h to $4\frac{1}{2}$ h Increase in Dec. (+4'). $22^h$ to $22\frac{1}{2}$ h Sharp wave in Dec. (+4'): decrease in V.F. (-12). $22\frac{1}{4}$ h to 23<sup>3h</sup> Wave in N.F. (+ 30), steeper at commencement. 10d 21h Very sharp increase in Dec. (+ 3'), and N.F. (+ 40). 10d 22 $\frac{3}{4}$ h to 11d 0 $\frac{1}{4}$ h. Two successive waves in Dec. (+7', +4'): decrease in V.F. (-35). 10<sup>d</sup> 23½<sup>h</sup> to 11<sup>d</sup> 0½<sup>h</sup> Wave in N.F. (+38). 11d 5h to 12d 5h. See Plate I. $12^{d}$ 18h to 183h Wave in Dec. (-3'). 15d 3h to 4h Wave in Dec. (+ 7'). $17^{\rm d}$ $16\frac{1}{4}^{\rm h}$ Sudden decrease in N.F. (- 20). 18d 13h to 15h Increase in V.F. (+ 22). 14h to 15h Serrated truncated wave in N.F. (- 21), followed till 174h by a serrated double wave (-33, +32). $20\frac{3}{4}^{h}$ to $22\frac{1}{2}^{h}$ Double wave in Dec. (-13', +5'). $20\frac{3}{4}^{h}$ to $21\frac{3}{4}^{h}$ Wave in N.F. (+48). $22^{h}$ to $22\frac{1}{2}^{h}$ Decrease in V.F. (-22). $22\frac{1}{4}^{h}$ to $23^{h}$ Wave in N.F. (+33), steep at end. 23<sup>th</sup> to 23<sup>th</sup> Decrease in Dec. (- 12'). 18<sup>d</sup> 23<sup>th</sup> to 19<sup>d</sup> 0<sup>th</sup> Irregular decrease in N.F. (- 40). $19^{d}$ oh to $0^{\frac{3}{4}h}$ Sharp movements in Dec. (+4',-3',+5'), followed till $1^{\frac{1}{2}h}$ by a sharp wave (-13'). $0^{\frac{3}{4}h}$ to $1\frac{1}{2}$ h Sharp wave in N.F. (+ 52). $1\frac{1}{2}$ h to 6h Slow wave in V.F. (+ 30). $4\frac{1}{4}$ h to 7h Irregular wave in Dec. (+12'). $4\frac{3}{4}$ to $7^h$ Serrated flat-crested wave in N.F. (+33). $7^h$ to $7\frac{1}{2}$ Serrated wave in Dec. (+4'). $18^{h}$ to $19^{h}$ Wave in Dec. (-3'). 20d 223h to 233h Wave in N.F. (+ 20), steep at commencement. 21<sup>d</sup> 20½<sup>h</sup> to 20½<sup>h</sup> Sharp decrease in Dec. (-8'). 20½<sup>h</sup> to 22½<sup>h</sup> Irregular Double wave in N.F. (+30,-30). $21\frac{3}{4}$ to $22\frac{3}{4}$ Wave in Dec. (+ 4'). 22<sup>d</sup> 21<sup>h</sup> to 21<sup>h</sup> Decrease in Dec. (-4'). 22<sup>h</sup> to 23<sup>h</sup> Wave in N.F. (+27). 22<sup>d</sup> 23<sup>h</sup> to 23<sup>d</sup> 1<sup>h</sup> Irregular double wave in N.F. (-22, +20), followed till $3\frac{1}{2}$ h by a wave (-30). $22^d$ $23\frac{3}{4}$ h to $23^d$ $1\frac{1}{4}$ h Wave in Dec. 23<sup>d</sup> 2<sup>h</sup> to 4<sup>h</sup> Wave in Dec. (+6'). $8\frac{1}{2}$ <sup>h</sup> to $8\frac{3}{4}$ <sup>h</sup> Sharp decrease in N.F. (-30). $18\frac{1}{2}$ <sup>h</sup> to $19\frac{1}{2}$ <sup>h</sup> Waves in Dec. (-6') and N.F. (+30). $25^{d}$ $1\frac{1}{2}$ h Sudden increase in Dec. (+ 6') and N.F. (+ 20). $1\frac{1}{2}$ h to $3^{h}$ Wave in V.F. (- 20). $1\frac{3}{4}$ h Decrease in Dec. (-12'). $20\frac{3}{4}$ to $21\frac{1}{4}$ Wave in Dec. (+4'). $21\frac{3}{4}$ to $22\frac{3}{4}$ Two successive sharp waves in Dec. (-6', -6'), followed by a sudden decrease (-8'). 22h to 22h Sharp wave in N.F. (+26). 22h to 23h Irregular decrease in V.F. (-42). 23h to 24h Wave in Dec. (-9'): Sharp double wave in N.F. (-39, +41), followed till $26^{d}$ $1\frac{1}{4}^{h}$ by a wave (+48), followed till $1\frac{1}{2}^{h}$ by an increase (+22). $26^{\text{h}}$ oh to 1h Wave in Dec. (-5'). $0\frac{1}{4}$ h to 8h Oscillatory wave in V.F. (-40). $1\frac{3}{4}$ h to $2\frac{1}{4}$ h Increase in Dec. (+5'). 2h to 4h Irregular double wave in N.F. (+34, -36), the first position domed, the second sharp. $2^{3h}_{4}$ to $5^{h}$ Flat-crested wave in Dec. (+7'), with superposed fluctuations. $19^{1h}_{2}$ to $20^{1h}_{2}$ Sharp truncated wave in Dec. (-10'): Sharp wave in N.F. (+55): decrease in V.F. (-24). 27<sup>d</sup> 14<sup>3h</sup> Sudden increase in N.F. (+ 20), followed till 16<sup>h</sup> by a wave (- 24). $28d \text{ 10}\frac{1}{2}h$ to $29d \text{ 11}\frac{1}{2}h$ Loss of N.F. register. $28d \text{ 19}\frac{3}{2}h$ to 21h Wave in Dec. (-4). 29d 21 $\frac{1}{4}$ h to 21 $\frac{3}{4}$ h Wave in N.F. (+ 27), very steep at commencement. $30^{\rm d}$ $4\frac{1}{2}^{\rm h}$ to $7\frac{1}{2}^{\rm h}$ Double wave in N.F. (+ 20, - 25). $5\frac{1}{4}^{\rm h}$ to $7\frac{1}{2}^{\rm h}$ Two successive double-crested waves in Dec-(+4',+5'). $16^h$ to $16\frac{1}{2}^h$ Increase in N.F. (+33), followed till $18\frac{1}{2}^h$ by a wave (+70). $17\frac{1}{2}^h$ Sharp decrease in Dec. (-6'). $19\frac{1}{2}^h$ to $21\frac{3}{4}^h$ Irregular decrease in V.F. (-36). $20^h$ to $21\frac{1}{4}^h$ Two successive sharp waves in Dec. (+10', +5') and N.F. (+60, +30). $30^{d}$ $23^{h}$ to $23^{h}$ Decrease in Dec. (-8'), continued till May $1^{d}$ $0^{h}$ by a double wave (-3',+3'). April $30^{d}$ 23h to 24h Wave in N.F. (+ 35), followed till May 1d 44h by an irregular triple wave (+ 25, - 20, + 25). May - Id oth to oth Decrease in V.F. (-13). 13th to 2h Sharp increase in Dec. (+9'). 13th to 2th Decrease in V.F. (-18). 2th to 3h Decrease in Dec. (-5'). 4h to 5h Wave in Dec. (+5'). 20h to 20th Increase in Dec. (+5'). 21h to 22h Double wave in Dec. (+3'-4'). 21h to 21th Decrease in V.F. (+37). 21h to 21th Decrease in V.F. (-12). - $2^{d}$ $1_{4}^{1h}$ to $2^{h}$ Wave in Dec. (+4'). $2^{d}$ $23_{2}^{1h}$ to $3^{h}$ $0_{2}^{1h}$ Wave in Dec. (+5'). - $4^{d}$ 15<sup>h</sup> to 16<sup>h</sup> Domed wave in N.F. (-20). 16 $\frac{1}{2}$ <sup>h</sup> to 18<sup>h</sup> Wave in N.F. (+21). - 5<sup>d</sup> 7½<sup>h</sup> to 8<sup>h</sup> Wave in Dec. (-5'). 13<sup>h</sup> to 15<sup>h</sup> Increase in V.F. (+45). 17½<sup>h</sup> to 19½<sup>h</sup> Double-crested wave in N.F. (+47). 18½<sup>h</sup> to 20<sup>h</sup> Wave in Dec. (-4'). - $6^{d}$ 4<sup>h</sup> to $5^{1}$ Wave in Dec. (+ 3'). - $8^{d}$ $10^{1}$ to $16^{h}$ Wave in Dec. (+ 10'). 1918. May - 11<sup>d</sup> 13<sup>th</sup> to 14<sup>th</sup> Wave in N.F. (+ 22). 20<sup>h</sup> to 22<sup>h</sup> Wave in Dec. (- 13'), steep at commencement. 20<sup>th</sup> to 21<sup>h</sup> Steep wave in N.F. (+ 40). - $12^{d}$ oh to $0\frac{1}{2}^{h}$ Decrease in Dec. (-4'). $14\frac{1}{4}^{h}$ to $15\frac{1}{2}^{h}$ Wave in N.F. (+27). $22\frac{3}{4}^{h}$ to $24^{h}$ Wave in Dec. (-4'). - $13^{d}$ $0_{4}^{1h}$ to $1_{4}^{1h}$ Wave in Dec. (-4'). $14_{4}^{3h}$ to $16^{h}$ Wave in N.F. (+20). - $14^{d}$ $6\frac{1}{2}^{h}$ Sudden sharp wave in Dec. (-4'). $21\frac{3}{4}^{h}$ to $22^{h}$ Sharp decrease in N.F. (-30). $23\frac{1}{4}^{h}$ to $23\frac{3}{4}^{h}$ Decrease in V.F. (-12). $14^{d}$ $23\frac{1}{2}^{h}$ to $15^{d}$ $1\frac{3}{4}^{h}$ Irregular slow wave in Dec. (-5'). - 15<sup>d</sup> 13<sup>1h</sup> to 13<sup>3h</sup> Waves in Dec. (-4') and N.F. (-30), very steep at commencement. 16<sup>1h</sup> to 18<sup>1h</sup> Two successive waves in Dec. (-4', -4') and N.F. (+35, +20), the second truncated. 20<sup>3h</sup> to 22<sup>h</sup> Double-crested wave in Dec. (-8'). 21<sup>h</sup> to 21<sup>1h</sup> Wave in N.F. (+22). - $16^{\rm d}$ oh to $2^{\rm h}$ Double wave in Dec. (+ 3', 5'). oh to $1^{\rm h}$ Domed wave in N.F. (+ 20). $0_4^{\rm h}$ to $0_4^{\rm sh}$ Decrease in V.F. (- 12). $15^{\rm h}$ to $16_4^{\rm sh}$ Irregular wave in N.F. (- 23). - 16d 17h to 17d 17h. See Plate II. - 17<sup>d</sup> 19<sup>h</sup> to 20½<sup>h</sup> Wave in Dec. (- 12'), with pauses at 9½<sup>h</sup> to 19½<sup>h</sup> on first movement, and 20<sup>h</sup> to 20½<sup>h</sup> on second: irregular waves in N.F. (+ 80) and V.F. (+ 16). 21½<sup>h</sup> to 22½<sup>h</sup> Waves in Dec. (+ 7) and N.F. (+ 28): decrease in V.F. (- 28). 17<sup>d</sup> 23½<sup>h</sup> to 18<sup>d</sup> 0¾<sup>h</sup> Truncated wave in Dec. (- 6'). - 18<sup>d</sup> o<sup>h</sup> to $0^{3h}_4$ Decrease in N.F. (-40). $2^{1h}_4$ to $3^h$ Serrated domed wave in Dec. (-3') $2^{3h}_4$ to $3^{3h}_4$ Wave in N.F. (-33). $3^{1h}_2$ to $5^{1h}_2$ Serrated double wave in Dec. (-3', +4'), followed by short sharp fluctuations till $8^{1h}_2$ . $4^{3h}_4$ to $5^{1h}_2$ Wave in N.F. (-30). $5^h$ to $7^h$ Wave in V.F. (-16). $8^{1h}_2$ to $9^{1h}_2$ Domed wave in N.F. (-26). $14^{3h}_4$ to $16^h$ Serrated domed wave in N.F. (+35). $16^{1h}_2$ to $17^{3h}_4$ Domed wave in N.F. (+34). $18^{1h}_4$ to $19^{1h}_2$ Wave in Dec. (-4'). $20^{3h}_4$ to $21^{3h}_4$ Sharp wave in Dec. (-9'). $21^{1h}_4$ to $22^h$ Irregular wave in N.F. (+32). $22^h$ to $24^h$ Irregular double-crested wave in Dec. (-6') $18^d$ $23^{1h}_4$ to $19^d$ $0^{1h}_4$ Wave in N.F. (-26). - 19<sup>d</sup> oh to $0^{3h}_4$ Serrated wave in Dec. (+ 4'). $1^{1h}_2$ to $2^{1h}_4$ Truncated wave in Dec. (+ 4'): decrease in V.F. (- 14). $15^{1h}_4$ to $16^{1h}_4$ Wave in N.F. (+ 40), steep at commencement. $18^{1h}_4$ to $19^{1h}_4$ Wave in N.F. (+ 50). $22^{1h}_4$ to $23^{1h}_4$ Sharp wave in Dec. (+ 7'). $22^{1h}_4$ to $23^{1h}_4$ Decrease in V.F. (- 16). $19^{1h}_4$ $23^{1h}_4$ to $20^{1h}_4$ Double wave in Dec. (+ 3', 3'). - 20<sup>d</sup> $0\frac{3}{4}^{h}$ to $2^{h}$ Irregular wave in N.F. (-30). $16^{h}$ to $16\frac{3}{4}^{h}$ Wave in N.F. (-23). $18\frac{1}{2}^{h}$ to $19\frac{3}{4}^{h}$ Wave in Dec. (-4'). $18\frac{3}{4}^{h}$ to $20\frac{3}{4}^{h}$ Flat-crested wave in N.F. (+32). $22^{h}$ to $22\frac{3}{4}^{h}$ Decrease in V.F. (-13). $22\frac{1}{4}^{h}$ to $23^{h}$ Wave in Dec. (+4'). $22\frac{1}{2}^{h}$ Sharp decrease in N.F. (-23). $20^{d}$ $23\frac{1}{4}^{h}$ to $21^{d}$ $2^{h}$ Double wave in Dec. (-6', +5'), the first portion truncated. $20^{d}$ $23\frac{3}{4}^{h}$ to $21^{d}$ $2^{h}$ Irregular double-crested wave in N.F. (-32). - 21<sup>d</sup> $o_2^{1h}$ to $1\frac{1}{2}^{h}$ Decrease in V.F. (-16). $2\frac{1}{2}^{h}$ to $2\frac{3}{4}^{h}$ Decrease in N.F. (-25). $22\frac{1}{4}^{h}$ to $22\frac{1}{2}^{h}$ Sharp increase in N.F. (+24). - 30<sup>d</sup> oh to 1<sup>h</sup> Wave in Dec. (-4'). $3\frac{1}{2}$ <sup>h</sup> to 5<sup>h</sup> Wave in Dec. (+6'). $14\frac{1}{4}$ <sup>h</sup> to $14\frac{3}{4}$ <sup>h</sup> Increase in N.F. (+25). 15<sup>h</sup> to 16<sup>h</sup> Wave in N.F. (-23). June - Id II 1h to 2d 101h Loss of V.F. register. - 6d 12½h to 13½h Wave in N.F. (+ 24). 16¾h to 17½h Wave in N.F. (+ 20). 6d 23½h to $7^d \circ 2^{h}$ Wave in Dec. (+ 4′). - $7^{d}$ $1^{1h}$ to $2^{1h}$ Truncated wave in Dec. (+ 4'). - $8^{d}$ 11½h to 12½h Domed wave in N.F. (-25). - 9<sup>d</sup> 17½<sup>h</sup> to 18<sup>h</sup> Wave in N.F. (+ 23). 19<sup>h</sup> to 20<sup>h</sup> Wave in N.F. (+ 20). 19½<sup>h</sup> to 20<sup>h</sup> Decrease in Dec. (- 8'). 20½<sup>h</sup> to 21<sup>h</sup> Very sharp wave in N.F. (+ 22). 21<sup>h</sup> to 22½<sup>h</sup> Two successive waves in Dec. (- 5', 8'), the second very steep, followed till 22½<sup>h</sup> by a decrease (- 8'). 21½<sup>h</sup> to 22½<sup>h</sup> Sharp wave in N.F. (+ 45). 21½<sup>h</sup> to 23<sup>h</sup> Wave in V.F. (- 17), followed till 23½<sup>h</sup> by an irregular decrease (- 21). 22½<sup>h</sup> to 24<sup>h</sup> Domed wave in Dec. (+ 7'), with sharper wave (+ 5'), superposed from 23<sup>h</sup> to 23½<sup>h</sup>. 9<sup>d</sup> 23<sup>h</sup> to 10<sup>d</sup> 3<sup>h</sup> Very irregular triple wave in N.F. (+ 75, 60, + 40), with several sharp movements superposed. - 10d 03h to 3h Irregular double-crested wave in Dec. (+ 17'), with superposed fluctuations, followed till 4h by a serrated domed wave (+ 5'). 13h to 3h Sharp wave in V.F. (- 35). 7h to 8h Sharp decrease in N.F. (- 100). 9h to 10h Serrated wave in Dec. (+ 4'). 9h to 10h Wave in N.F. (- 20). 10h to 11h Sharp wave in Dec. (- 5'), followed by sharp fluctuations till 13h 12h to 13h Irregular increase in V.F. (+ 90), followed till 15h by a wave (+ 18). 13h to 13h Wave in Dec. (- 4'). 13h to 14h Double wave in N.F. (+ 20, 21), the first portion truncated. 14h to 14h Wave in Dec. (- 4'). 17h to 18h Sharp decrease and increase in Dec. (- 7', + 4'). 17h Sharp increase in N.F. (+ 36), followed by slower partial return. 20h to 22h Decrease in V.F. (- 56). 21h to 23h Two successive double waves in Dec. (- 7', + 7') and (+ 6', 3'), the second portion of the first truncated, all the other movements sharp. 20h to 21h Sharp wave in N.F. (+ 54). 21h to 22h Decrease in Dec. (- 3'). (+ 35, -40, + 35), followed till 22h by slower decrease (- 20). 22h Decrease in Dec. (- 3'). - 11<sup>d</sup> 2<sup>h</sup> to $3\frac{1}{2}$ <sup>h</sup> Flat-crested wave in Dec. (+ 4'). Wave in N.F. (- 30). $6\frac{3}{4}$ <sup>h</sup> to 8<sup>h</sup> Wave in Dec. (+ 4'). $12\frac{1}{2}$ <sup>h</sup> to $13\frac{1}{2}$ <sup>h</sup> Wave in N.F. (- 27). $15\frac{1}{4}$ <sup>h</sup> to $16\frac{3}{4}$ <sup>h</sup> Rounded wave in N.F. (- 22). 19<sup>h</sup> to 20<sup>h</sup> Wave in N.F. (+ 20). $20\frac{3}{4}$ <sup>h</sup> to $21\frac{1}{2}$ <sup>h</sup> Wave in N.F. (+ 20). $21\frac{3}{4}$ <sup>h</sup> to $22\frac{3}{4}$ <sup>h</sup> Truncated wave in Dec. (+ 4'). 1918. June - 12<sup>d</sup> 1<sup>h</sup> to 3½<sup>h</sup> Irregular wave in Dec. (+ 10'). 1<sup>h</sup> to 2¾<sup>h</sup> Wave in N.F. (- 40), steeper at commencement. 1½<sup>h</sup> to 2<sup>h</sup> Decrease in V.F. (- 19), followed till 7<sup>h</sup> by an irregular wave (- 30). 3¾<sup>h</sup> to 5<sup>h</sup> Wave in Dec. (+ 6'). 4<sup>h</sup> to 5¾<sup>h</sup> Wave in N.F. (- 45), sharp at commencement. 6¼<sup>h</sup> to 7¼<sup>h</sup> Small sharp fluctuations in Dec. 12¼<sup>h</sup> to 13¼<sup>h</sup> Wave in N.F. (- 22). 15h to 16¼<sup>h</sup> Wave in N.F. (- 23). 17¼<sup>h</sup> to 17¾<sup>h</sup> Decrease in Dec. (- 7'). 20¼<sup>h</sup> to 21h Double wave in Dec. (- 3', + 3'), the second portion double-crested. 20½<sup>h</sup> to 21h Decrease in V.F. (- 23). 23¼<sup>h</sup> to 23½<sup>h</sup> Decrease in V.F. (- 18). - $13^{d}$ oh to $1\frac{1}{4}$ h Double-crested wave in Dec. (-4'). Ih to 5h Irregular wave in V.F. (-19). $2^{h}$ to $2\frac{1}{2}$ h Domed wave in Dec. (+5'). $21^{h}$ to $22^{h}$ Wave in N.F. (+22). $13^{d}$ $22\frac{1}{2}$ h to $14^{d}$ $0\frac{1}{2}$ h Wave in Dec. (-5'). - $14^{d}$ 3h to $5\frac{1}{4}$ h Wave in N.F. (-21). $6\frac{1}{2}$ h to $7\frac{1}{4}$ h Wave in Dec. (+4'). $12^{h}$ to $13^{h}$ Increase in N.F. (+40). - 15<sup>d</sup> o<sup>h</sup> to 1½<sup>h</sup> Wave in Dec. (-6'). 0¾<sup>h</sup> to 3<sup>h</sup> Wave in N.F. (+20). 6<sup>h</sup> to 7<sup>h</sup> Wave in Dec. (-3'), with sharp superposed fluctuations. 7½<sup>h</sup> to 9<sup>h</sup> Wave in N.F. (-30). 11<sup>h</sup> to 12<sup>h</sup> Wave in N.F. (-20). 13¾<sup>h</sup> Very sudden fluctuations in N.F., followed till 14½<sup>h</sup> by a wave (-27). 16½<sup>h</sup> to 17½<sup>h</sup> Wave in N.F. (+38). 18¾<sup>h</sup> Sharp increase in N.F. (+37). 19½<sup>h</sup> to 20<sup>h</sup> Sharp wave in Dec. (-6): sharp movements in N.F. (-32, +37, -45). 21½<sup>h</sup> to 23<sup>h</sup> Double wave in Dec. (+3', -4'), the intermediate movement steep. 23<sup>h</sup> to 24<sup>h</sup> Wave in N.F. (+20). - 16<sup>d</sup> $o_2^{\text{th}}$ Sudden increase in Dec. (+4'). $o_4^{3h}$ to $4_4^{3h}$ Double wave in Dec. (+5', -7'). $1_4^{3h}$ to $2^h$ Serrated increase in N.F. (+30). $2_4^{3h}$ to $5_2^{1h}$ Wave in N.F. (-40). $16^h$ to $17_2^{1h}$ Domed wave in N.F. (-30). $17^h$ to $18^h$ Wave in Dec. (-3'), followed till $20^h$ by a slow wave (-4'). $18_4^{1h}$ to $19^h$ Wave in N.F. (-20). $20_4^{3h}$ to $21_4^{3h}$ Two successive waves in Dec. (-3', -3'). $23_2^{1h}$ to $23_4^{3h}$ Sudden decrease in Dec. (-4') and increase in N.F. (+30). - 17<sup>d</sup> 18<sup>3h</sup> to 19<sup>1h</sup> Sharp wave in Dec. (-5'). 19<sup>h</sup> to 20<sup>h</sup> Wave in N.F. (+35), steep at commencement. 20<sup>1h</sup> to 21<sup>1h</sup> Domed wave in N.F. (+24). 21<sup>1h</sup> to 22<sup>h</sup> Sharp wave in Dec. (+4'). 22<sup>h</sup> to 22<sup>3h</sup> Domed wave in N.F. (+20). - $18^{\text{d}} 201^{\text{h}}$ to $201^{\text{h}}$ Decrease in N.F. (-21). - $20^{d}$ $23^{dh}$ to $23^{dh}$ Sharp decrease in Dec. (-6'). $20^{d}$ $23^{dh}$ to $21^{d}$ $0^{3h}$ Truncated wave in N.F. (+29). - 21<sup>d</sup> 11<sup>h</sup> to 11½<sup>h</sup> Increase in N.F. (+ 26). 17¾<sup>h</sup> to 18½<sup>h</sup> Sharp double-crested wave in N.F. (+ 20). 22<sup>h</sup> Sharp increase in N.F. (+ 20). - 26d $15\frac{1}{2}$ h to $15\frac{3}{4}$ h Increase in N.F. (+ 22). $17\frac{1}{4}$ h to $19^h$ Irregular double wave in N.F. (- 20, + 20), the second portion truncated. $19\frac{1}{2}$ h to $20\frac{1}{2}$ h Increase (+ 20), and decrease (- 35) in N.F. $21\frac{1}{2}$ h to $22^h$ Sharp wave in N.F. (+ 22). - $30^{d}$ $13\frac{1}{2}$ h to $19^{h}$ Loss of Dec., N.F., and V.F. registers. July - $1^{d}$ $15^{h}$ to $15^{4h}$ Sharp increase in N.F. (+ 60). $17^{h}$ to $18^{h}$ Truncated wave in N.F. (- 50). - $2^{d}$ oh to 1h Wave in Dec. (+ 3'). $21\frac{1}{4}$ h to $21\frac{3}{4}$ h Decrease in Dec. (- 4'). $22\frac{3}{4}$ h Sharp decrease in N.F. (- 20). - $3^{\rm d}$ 4h to 5h Decrease in Dec. (-7'). $6\frac{1}{2}$ h to $6\frac{1}{2}$ h Increase in Dec. (+4'). $13\frac{1}{4}$ h to $13\frac{1}{2}$ h Increase in N.F. (+27). $15\frac{1}{4}$ h to $15\frac{3}{4}$ h Increase in N.F. (+30). - 8d oh to oth Sharp decrease in N.F. (-25), with partial return. 2th to 3th Decrease in Dec. (-15'), and N.F. (-22). 3th to 4th Increase in Dec. (+5'). 6h to 7h Serrated wave in Dec. (-3'). 7th to 7th Increase in Dec. (+5'). - $9^{d}$ 14\frac{1}{4}^h to 15\frac{1}{2}^h Wave in N.F. (+ 21). 15\frac{3}{4}^h to 16\frac{1}{4}^h Wave in N.F. (+ 20). 19\frac{1}{4}^h to 22^h Wave in N.F. (+ 40). 19\frac{3}{4}^h to 21\frac{1}{2}^h Wave in Dec. (- 7'). 23\frac{3}{4}^h Sharp decrease in Dec. (- 3'). 9^d 23\frac{3}{4}^h to 10^d 0\frac{1}{4}^h Sharp wave in N.F. (+ 32). - 10<sup>d</sup> 22<sup>h</sup> to 11<sup>d</sup> 1½<sup>h</sup> Irregular quadruple wave in Dec. (-6', +6', -8', +5'). 10<sup>d</sup> 23<sup>h</sup> to 11<sup>d</sup> 3<sup>h</sup> Irregular double-crested wave in V.F. (-25). - 11<sup>d</sup> $0_4^{3h}$ to $2^h$ Wave in N.F. (-35). $4^h$ to $4_2^{1h}$ Decrease in N.F. (-20). $4_4^{1h}$ to $4_3^{3h}$ Increase in Dec. (+4'). $6_2^{1h}$ to $7^h$ Decrease in Dec. (-5'). $14_2^{1h}$ to $16^h$ Wave in N.F. (+28). $19^h$ to $19_2^{1h}$ Decrease in Dec. (-6'). $19_2^{1h}$ to $20_2^{1h}$ Double-crested wave in N.F. (+30). $23^h$ to $24^h$ Wave in Dec. (+5'). - $12^{d} 21^{h}$ to $21\frac{1}{2}^{h}$ Truncated wave in Dec. (-3'). - $13^{d} 2_{4}^{h}$ to $3_{4}^{h}$ Wave in Dec. (+4'). $13_{4}^{h}$ to $14_{2}^{h}$ Wave in Dec. (-3'). $13_{4}^{3h}$ to $14_{4}^{3h}$ Increase in N.F. (+48). $15_{4}^{h}$ to $16^{h}$ Decrease in Dec. (-7'). - 14<sup>d</sup> 15<sup>3h</sup> to 16<sup>1h</sup> Wave in N.F. (+ 20). 18<sup>h</sup> to 19<sup>1h</sup> Wave in N.F. (+ 54), with sharp wave (- 30) superposed from 18<sup>1h</sup> to 18<sup>3h</sup>. 21<sup>h</sup> to 22<sup>1h</sup> Irregular wave in N.F. (+ 26). 21<sup>1h</sup> to 22<sup>1h</sup> Decrease in V.F. (- 20). 22<sup>h</sup> to 22<sup>3h</sup> Decrease in Dec. (- 6'). - 15<sup>d</sup> oh to 3<sup>h</sup> Irregular serrated wave in Dec. (+ 7'). $\circ_{\frac{3}{4}}^{\frac{3}{4}}$ to $3\frac{1}{4}^{\frac{1}{4}}$ Wave in V.F. (- 18). 1<sup>h</sup> to $1\frac{1}{2}^{\frac{1}{4}}$ Wave in N.F. (- 20). 15<sup>d</sup> 23<sup>h</sup> to 16<sup>d</sup> $\circ_{\frac{1}{4}}^{\frac{1}{4}}$ Wave in N.F. (+ 20). 15<sup>d</sup> 23<sup>h</sup> to 16<sup>d</sup> 1<sup>h</sup> Wave in Dec. (+ 5'). - 16d 18th to 20h Wave in N.F. (+ 22). - $18^{d} 2^{h}$ to $2\frac{3}{4}^{h}$ Wave in Dec. (-3'). 1918. July - 25<sup>d</sup> 7<sup>h</sup> Sudden increase in Dec. (+6'). 13<sup>h</sup> to 14½<sup>h</sup> Wave in N.F. (-33). 15<sup>h</sup> to 21<sup>h</sup> Wave in V.F. (+70). 16<sup>h</sup> to 17½<sup>h</sup> Irregular wave in N.F. (-36), followed till 19<sup>h</sup> by a double wave (-37, +28). 17<sup>h</sup> Sharp decrease in Dec. (-5'). 18<sup>h</sup> Sharp decrease in Dec. (-5'). 18½<sup>h</sup> to 20<sup>h</sup> Wave in Dec. (-9'). - 26<sup>d</sup> $3\frac{1}{2}$ <sup>h</sup> to $5\frac{3}{4}$ <sup>h</sup> Wave in Dec. (+ 7'). $17\frac{3}{4}$ <sup>h</sup> to 19<sup>h</sup> Wave in Dec. (- 4'). 18<sup>h</sup> to 19<sup>h</sup> Wave in N.F. (+ 27). $22\frac{1}{4}$ <sup>h</sup> to 24<sup>h</sup> Wave in Dec. (- 4'). - 27<sup>d</sup> $2_4^{\text{th}}$ to $3_4^{\text{th}}$ Wave in Dec. (+ 3'). $2_4^{\text{th}}$ to $3^{\text{h}}$ Wave in N.F. (- 20). $18_2^{\text{th}}$ to $19_4^{\text{3h}}$ Wave in N.F. (+ 24). $27^{\text{d}}$ $23_2^{\text{th}}$ to $28^{\text{d}}$ o $_4^{\text{th}}$ Double wave in Dec. (+ 3', 4'), followed till $1^{\text{th}}$ by a wave (- 3'). $27^{\text{d}}$ $23_4^{\text{3h}}$ to $28^{\text{d}}$ o $_2^{\text{th}}$ Wave in N.F. (+ 20). - 28d $1\frac{1}{2}^{h}$ to $4\frac{3}{4}^{h}$ Irregular triple wave in Dec. (+ 4', -3', +5'). $1\frac{3}{4}^{h}$ to $3\frac{1}{2}^{h}$ Wave in V.F. (-13). 10h to $12\frac{1}{4}^{h}$ Wave in N.F. (-48). $15\frac{1}{2}^{h}$ to 16h Increase in N.F. (+42). 17h to $18\frac{1}{2}^{h}$ Two successive waves in N.F. (-20,-32). $17\frac{1}{2}^{h}$ to $18\frac{1}{4}^{h}$ Decrease in Dec. (-8'). $17\frac{3}{4}^{h}$ to $19\frac{1}{2}^{h}$ Wave in V.F. (+14). $21^{h}$ to $23^{h}$ Sharp sextuple wave in Dec. (-4',+8',-12',+11',-7',+6'), followed till $23\frac{1}{2}^{h}$ by a decrease (-5'). $21^{h}$ to $21\frac{1}{2}^{h}$ Sharp wave in N.F. (+45), followed till $21\frac{3}{4}^{h}$ by an increase (+60). $21^{h}$ to $21\frac{1}{2}^{h}$ Irregular decrease in V.F. (-45). $23^{h}$ to $24^{h}$ Sharp movements in N.F. (-100,+67,-45). - 29<sup>d</sup> o<sub>4</sub><sup>3h</sup> to 1<sup>h</sup> Very sharp wave in Dec. (+ 11'): sharp increase in N.F. (+ 30), followed by slower partial return: sharp decrease in V.F. (- 36), followed till $3\frac{1}{2}$ <sup>h</sup> by an increase (+ 54). 3<sup>h</sup> to 6<sup>h</sup> Slow double-crested wave in Dec. (+ 8'). 4<sup>h</sup> to 7<sup>h</sup> Rounded wave in N.F. (+ 40). 7<sup>h</sup> to $9\frac{1}{2}$ <sup>h</sup> Loss of Dec., N.F., and V.F. registers. $19\frac{1}{2}$ <sup>h</sup> to $21\frac{1}{2}$ <sup>h</sup> Wave in Dec. (- 5'). - 30<sup>d</sup> o<sup>h</sup> to 3<sup>h</sup> Double wave in Dec. (+7', -5'), the first portion truncated. Wave in V.F. (-30). 6<sup>h</sup> to $8\frac{1}{2}$ <sup>h</sup> Wave in Dec. (+7'). 6<sup>h</sup> to $7\frac{1}{2}$ <sup>h</sup> Domed wave in N.F. (-40). $14\frac{1}{4}$ <sup>h</sup> to $15\frac{3}{4}$ <sup>h</sup> Domed wave in N.F. (-30). $23\frac{1}{2}$ <sup>h</sup> to $31^d$ o $\frac{1}{2}$ <sup>h</sup> Double wave in Dec. (-3', +3'). Wave in N.F. (+20). - $31^{\text{d}} 3\frac{1}{2}^{\text{h}}$ to $5^{\text{h}}$ Wave in N.F. (-23). $13\frac{1}{4}^{\text{h}}$ to $15\frac{1}{2}^{\text{h}}$ Wave in N.F. (-46). $20^{\text{h}}$ to $21^{\text{h}}$ Sharp wave in Dec. (-9'). $20\frac{1}{4}^{\text{h}}$ to $21\frac{1}{4}^{\text{h}}$ Wave in N.F. (+32), steep at commencement. $23\frac{3}{4}^{\text{h}}$ to $24^{\text{h}}$ Decrease in Dec. (-4'). August - Id oh to Ih Decrease in N.F. (- 30). - $2^{d}$ $6^{1h}_{4}$ to $8^{1h}_{2}$ Wave in N.F. (-32). $16^{3h}_{4}$ to $17^{h}$ Sharp double-crested wave in Dec. (+3'). $16^{3h}_{4}$ to $17^{1h}_{2}$ Double wave in N.F. (+50, -23), the first portion very steep and double-crested, followed till $18^{h}$ by a sharp wave (+43). $18^{1h}_{4}$ to $18^{1h}_{2}$ Increase in N.F. (+25). $22^{1h}_{2}$ to $24^{h}$ Wave in Dec. (+3'). - $3^{d}$ rh to $1\frac{1}{2}$ h Increase in Dec. (+ 8'). $2\frac{3}{4}$ h to 6h Wave in V.F. (- 20). $3\frac{1}{2}$ h to 5h Truncated wave in N.F. (+ 20). $4^{h}$ to $4\frac{1}{2}$ h Decrease in Dec. (- 6'). $22\frac{3}{4}$ h to $24^{h}$ Double-crested wave in Dec. (+ 3'). - $4^{d}$ $19^{1h}_{2}$ to $21^{3h}_{4}$ Irregular wave in N.F. (+35). $21^{1h}_{2}$ to $22^{1h}_{4}$ Wave in Dec. (-4'), followed till $23^{1h}_{2}$ by an irregular wave (-3'). - $5^{\mathbf{d}}$ $15\frac{1}{4}$ h to $16\frac{1}{2}$ h Wave in N.F. (+ 25). $17^{\mathbf{h}}$ to $18\frac{3}{4}$ h Double wave in N.F. (- 29, + 24). $18\frac{1}{2}$ h to $19\frac{1}{2}$ h Wave in Dec. (- 6'). $19\frac{1}{2}$ h to $21^{\mathbf{h}}$ Two successive waves in N.F. (- 20, -20). - 6d $1\frac{1}{2}^h$ to $3^h$ Wave in Dec. (+ 5'). 8h to $10^h$ Wave in N.F. (- 30). $12\frac{1}{4}^h$ to $13^h$ Wave in N.F. (+ 20). $13\frac{1}{2}^h$ to $14^h$ Wave in N.F. (- 30). $18\frac{1}{4}^h$ to $19^h$ Wave in N.F. (+ 22). $21^h$ to $22^h$ Wave in N.F. (+ 23). $6^d$ $23\frac{1}{2}^h$ to $7^d$ $0\frac{1}{2}^h$ Wave in Dec. (+ 3'). - $7^{d}$ $18\frac{1}{2}^{h}$ to $20\frac{1}{2}^{h}$ Triple wave in N.F. (+ 37, 23, + 31), the first portion domed: wave in V.F. (+ 13). $19\frac{1}{4}^{h}$ to $20\frac{1}{2}^{h}$ Wave in Dec. (- 4'). $22\frac{1}{4}^{h}$ to $23^{h}$ Wave in N.F. (- 23). $23^{h}$ to $23\frac{1}{2}^{h}$ Wave in Dec. (+ 6'). $23\frac{1}{4}^{h}$ to $24^{h}$ Decrease in V.F. (- 16). $7^{d}$ $23\frac{3}{4}^{h}$ to $8^{d}$ $0\frac{1}{2}^{h}$ Waves in Dec. (- 3') and N.F. (- 35). - 8d $1^{\frac{1}{4}h}$ to $3^{\frac{1}{4}h}$ Wave in Dec. (-5'). $14^{\frac{1}{2}h}$ to $16^{\frac{3}{4}h}$ Truncated wave in N.F. (+43), with sharp wave (-35), superposed from $15^{\frac{1}{2}h}$ to $16^{h}$ . $15^{\frac{1}{2}h}$ to $16^{\frac{1}{4}h}$ Wave in Dec. (-5'). $18^{\frac{1}{4}h}$ to $20^{h}$ Wave in Dec. (-7'). $21^{\frac{1}{2}h}$ to $22^{h}$ Sharp wave in N.F. (+30). $22^{h}$ to $23^{\frac{1}{2}h}$ Double-crested wave in Dec. (-4'). $22^{\frac{3}{4}h}$ to $23^{\frac{1}{4}h}$ Decrease in N.F. (-30). - 9<sup>d</sup> 0<sup>3h</sup> to 1<sup>1h</sup> Waves in Dec. (+ 7'), and N.F. (- 20). 2<sup>1h</sup> to 4<sup>h</sup> Wave in N.F. (- 25). 3<sup>h</sup> to 5<sup>h</sup> Wave in Dec. (+ 8'). 15<sup>1h</sup> to 15<sup>1h</sup> Sharp decrease in Dec. (- 4'), and increase in N.F. (+ 48). 17<sup>3h</sup> to 18<sup>1h</sup> Domed wave in N.F. (+ 20). 18<sup>3h</sup> to 20<sup>h</sup> Wave in N.F. (+ 20). 20<sup>3h</sup> to 22<sup>1h</sup> Irregular wave in Dec. (- 7'). 21<sup>h</sup> to 22<sup>2h</sup> Double-crested wave in N.F. (+ 50). - 10<sup>d</sup> oh to 1½<sup>h</sup> Wave in Dec. (+ 6'). 20½<sup>h</sup> to 20½<sup>h</sup> Sharp wave in N.F. (+ 23). 20½<sup>h</sup> Sharp decrease in Dec. (-4'). - IId $0\frac{3}{4}h$ to $1\frac{1}{4}h$ Domed wave in Dec.(+ 3'). $2\frac{1}{2}h$ to $4\frac{1}{2}h$ Wave in Dec. (+ 6'). $12\frac{1}{4}h$ to $13\frac{1}{4}h$ Wave in N.F. (- 22). $14\frac{1}{2}h$ to $14\frac{3}{4}h$ Decrease in Dec. (- 5'). 21h to $21\frac{3}{4}h$ Wave in Dec. (+ 3'). $22\frac{1}{4}h$ to $22\frac{3}{4}h$ Decrease in Dec. (- 4'). - $12^{d}$ $3\frac{3}{4}^{h}$ to $5^{h}$ Wave in Dec. (+ 4'). $5\frac{1}{2}^{h}$ to $7\frac{1}{2}^{h}$ Flat-crested wave in N.F. (- 24), with small superposed fluctuations. - $_{1\,3^{\overset{\bullet}{d}}}$ 21½h to 23h Wave in N.F. (+ 30), steep at commencement. - $14^{d} 12^{h}$ to $12\frac{3}{4}^{h}$ Waves in Dec. (-3'), and N.F. (-20). $20\frac{1}{2}^{h}$ Sharp decrease in Dec. (-5'). $22\frac{1}{4}^{h}$ to $24^{h}$ Two successive waves in N.F. (-21, -20). $23^{h}$ to $23\frac{1}{2}^{h}$ Decrease in V.F. (-13). $22\frac{3}{4}^{h}$ to $23\frac{3}{4}^{h}$ Wave in Dec. (+7'). - 15d 15h to 16d 15h. See Plate II. 1918. August - 20d 13<sup>3h</sup> to 15h Wave in N.F. (-30), steep at commencement. - $21^{d} 5\frac{1}{2}^{h}$ to $6^{h}$ Wave in Dec. (-3'). - $22^{d}$ $16\frac{3}{4}$ to $18\frac{1}{4}$ Wave in N.F. (- 20). - $23^{d}$ $15\frac{1}{4}^{h}$ to $17^{h}$ Wave in N.F. (-25). - 24<sup>d</sup> 8<sup>h</sup> to 9½<sup>h</sup> Wave in N.F. (— 20). 13½<sup>h</sup> to 14½<sup>h</sup> Wave in N.F. (— 25). 15<sup>h</sup> to 22<sup>h</sup> Slow wave in V.F. (+ 36). 16<sup>h</sup> to 18<sup>h</sup> Irregular double wave in N.F. (— 24, + 20). 17½<sup>h</sup> to 18<sup>h</sup> Decrease in Dec. (— 8′). 20½<sup>h</sup> to 21½<sup>h</sup> Sharp double-crested wave in Dec. (— 6′). 20½<sup>h</sup> to 22½<sup>h</sup> to 22½<sup>h</sup> Irregular triple-crested wave in N.F. (+ 48). 22<sup>h</sup> to 22½<sup>h</sup> Decrease in Dec. (— 5′). 24<sup>d</sup> 23½<sup>h</sup> to 25<sup>d</sup> 2<sup>h</sup> Triple wave in Dec. (+ 9′, 5′, + 7′), the middle portion domed, followed till 4½<sup>h</sup> by two successive waves (+ 6′, + 17′). 24<sup>d</sup> 23½<sup>h</sup> to 25<sup>d</sup> 1½<sup>h</sup> Sharp wave in V.F. (— 29). - 25<sup>d</sup> $0_4^{3h}$ to $1_4^{3h}$ Wave in N.F. (-33). $1_2^{1h}$ to $3^h$ Irregular wave in V.F. (-13), followed till $6^h$ by a wave (-36). $3^h$ to $4_4^{3h}$ Double wave in N.F. (-30, +20). $7^h$ to $8^h$ Decrease in N.F. (-52). $7_2^{1h}$ to $8_4^{1h}$ Increase in Dec. (+8'). $9^h$ to $9_4^{1h}$ Sharp movements in Dec. (-3', +5'). $11_4^{1h}$ to $12_2^{1h}$ Wave in N.F. (-40). $11_2^{1h}$ to $11_4^{3h}$ Increase in Dec. (+4'). $16_2^{1h}$ to $19^h$ Irregular wave in V.F. (+17). $16_4^{3h}$ to $17_2^{1h}$ Wave in N.F. (+37). - 26d $0\frac{1}{2}^h$ to $2^h$ Irregular double wave in Dec. (-4', +3'), followed till $3\frac{1}{2}^h$ by a wave (+8'). $0\frac{1}{2}^h$ to $6^h$ Irregular wave in V.F. (-42). $1\frac{3}{4}^h$ to $2\frac{3}{4}^h$ Double-crested wave in N.F. (-32). $4^h$ to $4\frac{3}{4}^h$ Wave in Dec. (-4'). $4^h$ to $5\frac{3}{4}^h$ Irregular wave in N.F. (-23). $5\frac{1}{2}^h$ to $6^h$ Wave in Dec. (-3'). $12\frac{1}{2}^h$ to $13\frac{1}{4}^h$ Double-crested wave in Dec. (-4'). $12\frac{1}{2}^h$ to $14^h$ Double-crested wave in N.F. (-24), followed till $15^h$ by a wave (-24). $15^h$ to $16\frac{1}{4}^h$ Irregular decrease in Dec. (-7'). $15\frac{1}{4}^h$ to $17^h$ Double wave in N.F. (-32, +20). $18\frac{1}{2}^h$ to $19\frac{3}{4}^h$ Wave in Dec. (-5'). $19^h$ to $20^h$ Wave in N.F. (+20). $22^h$ to $23^h$ Decrease in Dec. (-6'), followed till $23\frac{1}{4}^h$ by a sharp wave (+5'). $23\frac{1}{4}^h$ Sharp increase in N.F. (+40); decrease in V.F. (-12). $23\frac{1}{4}^h$ to $24^h$ Increase in Dec. (+5'): decrease in N.F. (-25). - $27^{\rm d}$ oh to oh Decrease in Dec. (-5'). $3\frac{3}{4}$ to 6h Wave in Dec. (+5'). $4\frac{1}{2}$ to $7\frac{1}{2}$ h Domed wave in N.F. (+46). $9\frac{1}{2}$ h to $10\frac{3}{4}$ h Wave in N.F. (-38). $13\frac{1}{4}$ h to $13\frac{1}{2}$ h Decrease in Dec. (-7'). $13\frac{1}{4}$ h to $14\frac{1}{2}$ h Truncated wave in N.F. (+25). $18^{\rm h}$ to $19\frac{1}{4}$ h Steep wave in Dec. (-10'). $18\frac{1}{2}$ h to $19\frac{1}{2}$ h Wave in N.F. (+48). - $28d \circ \frac{1}{2}h$ to $1\frac{1}{4}h$ Waves in Dec. (+ 7') and N.F. (+ 35). $\circ \frac{1}{2}h$ to $2^h$ Wave in V.F. (- 12). - 20<sup>d</sup> oh to 1<sup>h</sup> Wave in Dec. (+7'), steep at commencement. oh to 0½h Sharp increase in N.F. (+20). 0½h to 0½h Decrease in V.F. (-15). - $30^{\rm d} \ 23^{\rm 3h} \ \text{to} \ 31^{\rm d} \ 0^{\rm 1h} \ \text{Wave in Dec.} \ (-3').$ - 31<sup>d</sup> 15<sup>h</sup> to 16<sup>h</sup> Wave in N.F. (+ 27). 17½<sup>h</sup> to 18½<sup>h</sup> Increase in N.F. (+ 63). 19½<sup>h</sup> to 19½<sup>h</sup> Sharp decrease in Dec. (- 16'), followed till 21<sup>h</sup> by irregular increase (+ 12'). 19½<sup>h</sup> to 19½<sup>h</sup> Sharp wave in N.F. (- 54): increase in V.F. (+ 12), followed till September 1<sup>d</sup> o½<sup>h</sup> by an irregular decrease (- 32). 21½<sup>h</sup> to 22½<sup>h</sup> Irregular serrated wave in N.F. (- 30). 22½<sup>h</sup> to 23½<sup>h</sup> Irregular wave in Dec. (- 4'). 21h to 22½<sup>h</sup> Increase in V.F. (+ 22). 23½<sup>h</sup> to 23½<sup>h</sup> Very sharp wave in N.F. (- 40). September - Id oth to oth Sharp decrease in Dec. (-9'). oth to 1th Double wave in N.F. (-20, +30): wave in V.F. (+12). oth to 1th Uaran Dec. (-9'). oth to 3th Wave in Dec. (-5'), followed by sharp fluctuations in Dec. and N.F. till 9th. Ioth to 1oth Sharp decrease in N.F. (-25). I2th to 15th Irregular triple-crested wave in Dec. (+8'). I2th to 1th Double wave in N.F. (+28, -20), followed till 1th by another double wave (-40, +20). I2th to 15th Serrated increase in V.F. (+35). Ith to 18th Irregular wave in N.F. (+35). Ith to 20th Wave in Dec. (-5'). 21th to 22th Wave in Dec. (+4'). 21th to 22th Sharp wave in N.F. (+31). - $2^{d}$ oh to $2^{h}$ Slow wave in V.F. (-13). $7\frac{1}{2}^{h}$ to $9\frac{1}{2}^{h}$ Wave in N.F. (-21). $20\frac{3}{4}^{h}$ to $21\frac{1}{4}^{h}$ Wave in N.F. (+20). $2^{d}$ $23\frac{1}{2}^{h}$ to $3^{d}$ $1^{h}$ Domed wave in N.F. (+37): decrease in V.F. (-14). - 3<sup>d</sup> 4½<sup>h</sup> to 6<sup>h</sup> Truncated wave in Dec. (+ 4'). 6¾<sup>h</sup> to 8<sup>h</sup> Wave in Dec. (+ 4'), with sharp superposed fluctuations. 14<sup>h</sup> to 19<sup>h</sup> Wave in V.F. (+ 24). 15¾<sup>h</sup> to 6½<sup>h</sup> Decrease in Dec. (- 8'). 16h to 16¾<sup>h</sup> Wave in N.F. (+ 22). 20¼<sup>h</sup> to 21h Truncated wave in Dec. (+ 4'). 21½<sup>h</sup> to 23½<sup>h</sup> Domed wave in N.F. (- 38), with double-crested wave (+ 25) superposed from 22¼<sup>h</sup> to 23<sup>h</sup>. 22h to 24h Irregular wave in Dec. (+ 11'). 22½<sup>h</sup> to 23<sup>h</sup> Irregular decrease in V.F. (- 14). - 4<sup>d</sup> o<sub>4</sub><sup>h</sup> to 2½<sup>h</sup> Irregular wave in Dec. (+ 10'). o½<sup>h</sup> to 1½<sup>h</sup> Decrease in V.F. (- 18). o¾<sup>h</sup> to 1¾<sup>h</sup> Wave in N.F. (+ 30). 2<sup>h</sup> to 3½<sup>h</sup> Serrated wave in N.F. (+ 22). 11<sup>h</sup> to 11½<sup>h</sup> Serrated wave in N.F. (- 22). 19<sup>h</sup> to 20<sup>h</sup> Wave in Dec. (- 3'), followed till 21¼<sup>h</sup> by a steeper wave (- 8'). 20<sup>h</sup> to 21½<sup>h</sup> Wave in N.F. (+ 35). 21¾<sup>h</sup> to 22<sup>h</sup> Sharp increase in Dec. (+ 6'). 21¾<sup>h</sup> to 23½<sup>h</sup> Wave in N.F. (+ 32). 22<sup>h</sup> to 24<sup>h</sup> Wave in V.F. (- 14), followed till 5<sup>d</sup> 3<sup>h</sup> by a sharper wave (- 28). 4<sup>d</sup> 23¾<sup>h</sup> to 5<sup>d</sup> 1¾<sup>h</sup> Double wave in Dec. (+ 5', 5'), the first portion truncated: irregular domed wave in N.F. (+ 45). - 5<sup>d</sup> 15<sup>h</sup> to 15<sup>3</sup>/<sub>4</sub><sup>h</sup> Increase in N.F. (+ 45). 15<sup>3</sup>/<sub>4</sub><sup>h</sup> to 17<sup>h</sup> Wave in Dec. (- 5'). 17<sup>3</sup>/<sub>4</sub><sup>h</sup> to 19<sup>h</sup> Decrease in Dec. (- 7'), with very sharp wave (- 10'), superposed from 18<sup>h</sup> to 18<sup>1</sup>/<sub>2</sub><sup>h</sup>. 18<sup>1</sup>/<sub>4</sub><sup>h</sup> to 19<sup>h</sup> Waves in N.F. (+ 60) and V.F. (+ 12). 5<sup>d</sup> 23<sup>1</sup>/<sub>4</sub><sup>h</sup> to 6<sup>d</sup> 0<sup>1</sup>/<sub>2</sub><sup>h</sup> Truncated wave in Dec. (+ 4'). 5<sup>d</sup> 23<sup>1</sup>/<sub>4</sub><sup>h</sup> to 6<sup>d</sup> 0<sup>1</sup>/<sub>4</sub><sup>h</sup> Decrease in V.F. (- 12). 1918. September - $6^{d}$ $15\frac{1}{4}^{h}$ to $16\frac{1}{4}^{h}$ Wave in N.F. (+32). $15\frac{1}{2}^{h}$ to $19\frac{1}{4}^{h}$ Irregular wave in V.F. (+21). $17^{h}$ to $19^{h}$ Very irregular waves in Dec. (-6') and N.F. (+55). $22^{h}$ to $23\frac{1}{4}^{h}$ Wave in N.F. (+36): decrease in V.F. (-12). $23\frac{1}{2}^{h}$ to $24^{h}$ Decrease in N.F. (-20). - $7^{\rm d}$ o<sub>4</sub><sup>h</sup> to o<sub>2</sub><sup>h</sup> Increase in Dec. (+ 4'). 16<sup>h</sup> to 18<sup>h</sup> Wave in Dec. (- 5'). - 8<sup>d</sup> o<sup>h</sup> to 1½<sup>h</sup> Double-crested wave in Dec. (+ 4'). o<sup>h</sup> to 3½<sup>h</sup> Slow wave in V.F. (- 16). o½<sup>h</sup> to 1½<sup>h</sup> Wave in N.F. (+ 30). 3½<sup>h</sup> to 4½<sup>h</sup> Wave in N.F. (+ 28). 4½<sup>h</sup> to 6<sup>h</sup> Wave in Dec. (+ 8'). 4½<sup>h</sup> to 6½<sup>h</sup> Wave in V.F. (- 12). 8½<sup>h</sup> to 9¾<sup>h</sup> Wave in N.F. (- 40). 20<sup>h</sup> to 21<sup>h</sup> Wave in Dec. (- 4'). - $9^{d}$ Ih to $1\frac{1}{2}$ h Waves in Dec. (-3') and N.F. (-20). $1\frac{3}{4}$ h to 4h Truncated wave in Dec. (+8'). $2\frac{1}{4}$ h to $3\frac{1}{2}$ h Domed wave in N.F. (-23). $20\frac{3}{4}$ h to $21\frac{3}{4}$ h Wave in N.F. (-26). $21\frac{1}{2}$ h to $21\frac{3}{4}$ h Wave in Dec. (-3'). $22\frac{1}{4}$ h to $23\frac{3}{4}$ h Wave in Dec. (-3'). - $10^{d}$ $18\frac{1}{2}^{h}$ to $19\frac{1}{2}^{h}$ Wave in Dec. (-4'). $21\frac{1}{2}^{h}$ to $22\frac{3}{4}^{h}$ Wave in Dec. (-8'). - $13^d$ $2^h$ to $34^h$ Wave in Dec. (+3'). $144^h$ Decrease in Dec. (-4'). $144^h$ to $15^h$ Wave in N.F. (-21). $142^h$ to $18^h$ Wave in V.F. (+16). - $14^{d}$ $18^{1h}$ to 20<sup>h</sup> Wave in Dec. (-4'). - $15^{\text{d}}$ $23\frac{3}{4}^{\text{h}}$ to $16^{\text{d}}$ 4<sup>h</sup> Irregular triple wave in Dec. (-6', +5', -6'). - 16d 1½h to 4h Truncated wave in N.F. (+ 41). 1½h to 2½h Decrease in V.F. (- 22). 15¾h to 16½h Wave in N.F. (+ 22). 15¾h to 19h Wave in V.F. (+ 28). 20¼h to 23h Irregular double wave in Dec. (- 15′,+ 5′). 21½h to 22¾h Truncated wave in V.F. (+ 17). 16d 23½h to 17d 2h Irregular double wave in Dec. (- 7′,+ 4′). - $17^{d} \circ_{2}^{1h}$ to $2^{h}$ Wave in N.F. (-21). $4^{h}$ to $5_{2}^{1h}$ Wave in Dec. (+7'). $4_{2}^{1h}$ to $5_{2}^{1h}$ Wave in N.F. (+24). $4_{2}^{1h}$ to $6^{h}$ Wave in V.F. (-16). $12_{3}^{2h}$ to $13^{h}$ Sharp decrease in Dec. (-4'). $12_{3}^{2h}$ to $14_{4}^{1h}$ Wave in N.F. (+21). $14^{h}$ to $16_{2}^{1h}$ Increase in V.F. (+25). $16_{3}^{2h}$ Sharp decrease in Dec. (-5') and N.F. (-20). $21^{h}$ to $22^{h}$ Double wave in Dec. (+4',-2'): in N.F. small. $23^{h}$ to $24^{h}$ Wave in N.F. (+22). - $18^{d} \stackrel{3^{1h}}{\cancel{4}}$ to $5^{h}$ Increase in Dec. (+6'). $5^{\frac{1h}{\cancel{4}}}$ to $7^{\frac{1h}{\cancel{4}}}$ Wave in Dec. (+8'). $7^{\frac{1h}{\cancel{4}}}$ Wave in Dec. (+4'). $20^{\frac{1}{\cancel{4}}}$ to $21^{\frac{1}{\cancel{4}}}$ Wave in Dec. (-10'). $20^{\frac{3}{\cancel{4}}}$ to $21^{\frac{3}{\cancel{4}}}$ Domed wave in N.F. (+35). $18^{d} \stackrel{2}{\cancel{3}}$ to $19^{d} \stackrel{1}{\cancel{2}}$ Wave in Dec. (-4'). - 19<sup>d</sup> 1½<sup>h</sup> to 2<sup>h</sup> Wave in Dec. (- 3'). 2<sup>h</sup> to 2½<sup>h</sup> Increase in N.F. (+ 25). 2<sup>h</sup> to 3<sup>h</sup> Decrease in V.F. (- 19). 3<sup>h</sup> to 3¾<sup>h</sup> Sharp wave in Dec. (+ 8'), followed till 4¾<sup>h</sup> by a double wave (+ 3', 4'). 3½<sup>h</sup> to 3½<sup>h</sup> Steep decrease in V.F. (- 28). 7<sup>h</sup> to 7½<sup>h</sup> Serrated increase in Dec. (+ 8'). 8¼<sup>h</sup> to 9½<sup>h</sup> Serrated wave in Dec. (- 5'). 8½<sup>h</sup> to 12<sup>h</sup> Irregular wave in N.F. (- 60). 12<sup>h</sup> to 12¾<sup>h</sup> Increase in Dec. (+ 7'). 17<sup>h</sup> to 18<sup>h</sup> Truncated wave in N.F. (- 20). 17¾<sup>h</sup> to 18<sup>h</sup> Sharp decrease in Dec. (- 7'). 20¾<sup>h</sup> to 22<sup>h</sup> Sharp wave in Dec. (- 17'). 21<sup>h</sup> to 21¾<sup>h</sup> Sharp wave in N.F. (+ 40). - 20<sup>d</sup> oh to Ih Sharp wave in Dec. (+ 8'). Ih to $2\frac{1}{4}$ h Wave in N.F. (- 25). I $\frac{1}{2}$ h to 3h Wave in V.F. (- 19). $2\frac{1}{4}$ h to $4\frac{1}{4}$ h Wave in Dec. (+ 10'). $2\frac{1}{2}$ h to $4\frac{1}{2}$ h Wave in V.F. (- 20). $4\frac{1}{4}$ h to 6h Flat-crested wave in N.F. (+ 37), followed till $7\frac{3}{4}$ h by an irregular wave (+ 32). $5\frac{3}{4}$ h to 7h Serrated wave in Dec. (+ 5'). I2h to $12\frac{1}{2}$ h Wave in Dec. (- 3'): increase in V.F. (+ 14). I5 $\frac{1}{2}$ h to $16\frac{1}{4}$ h Wave in N.F. (- 26). 21h to $23\frac{1}{2}$ h Double wave in Dec. (+ 5', 5'). $21\frac{1}{2}$ h to $23^h$ Wave in V.F. (- 12). - 21d oh to 22d oh. See Plate III. - 22<sup>d</sup> $o_4^{3h}$ to $I^h$ Increase in Dec. (+5'). $2^h$ to $4\frac{1}{2}^h$ Waves in Dec. (+6') and N.F. (-25). $13^h$ to $21\frac{3}{4}^h$ Slow wave in V.F. (+33). $17\frac{1}{2}^h$ to $18\frac{1}{2}^h$ Wave in N.F. (-30). $18\frac{1}{4}^h$ to $19^h$ Wave in Dec. (-7'). $20^h$ to $21\frac{1}{4}^h$ Waves in Dec. (-14') and N.F. (+49). - $23^{d}$ $o_{\frac{1}{2}}^{1h}$ to $o_{\frac{3}{4}}^{3h}$ Increase in Dec. (+4'). $o_{\frac{1}{2}}^{1h}$ to $24^{h}$ Decrease in V.F. (-22). $14^{h}$ to $34^{h}$ Wave in Dec. (-6'). $42^{h}$ to $52^{h}$ Wave in Dec. (+5'). - 24<sup>d</sup> 19½<sup>h</sup> to 20¾<sup>h</sup> Domed wave in Dec. (-5'). 20<sup>h</sup> to 21<sup>h</sup> Wave in N.F. (+23). 21<sup>h</sup> to 23½<sup>h</sup> Slow wave in Dec. (-5'). - $27^{d}$ $14\frac{3}{4}^{h}$ to $16\frac{1}{4}^{h}$ Wave in N.F. (+ 23). $14\frac{3}{4}^{h}$ to $18^{h}$ Wave in V.F. (+ 25). $16^{h}$ to $17^{h}$ Wave in Dec. (- 5'). - 28d $10\frac{3}{4}^{h}$ to $12\frac{1}{4}^{h}$ Wave in N.F. (-24). $12^{h}$ to $12\frac{1}{4}^{h}$ Steep increase in Dec. (+9'). $13^{h}$ to $15^{h}$ Domed wave in N.F. (-42). $14\frac{1}{2}^{h}$ to $17\frac{1}{2}^{h}$ Increase in V.F. (+42). $16\frac{1}{2}^{h}$ to $17\frac{1}{4}^{h}$ Domed wave in Dec. (-4'). $16\frac{3}{4}^{h}$ to $17\frac{3}{4}^{h}$ Wave in N.F. (+23). $17\frac{3}{4}^{h}$ to $18\frac{1}{2}^{h}$ Irregular decrease in Dec. (-8'), followed till $20^{h}$ by an irregular wave (+6'). $19^{h}$ to $19\frac{3}{4}^{h}$ Wave in N.F. (+23). $23\frac{1}{2}^{h}$ to $24^{h}$ Irregular increase in N.F. (+24). 28d $23\frac{1}{2}^{h}$ to $29^{d}$ $0\frac{1}{2}^{h}$ Decrease in V.F. (-13). - 29<sup>d</sup> 8½<sup>h</sup> to 8¾<sup>h</sup> Sharp increase in Dec. (+ 4'). 8½<sup>h</sup> to 9<sup>h</sup> Decrease in N.F. (- 30). 18<sup>h</sup> to 21<sup>h</sup> Serrated wave in V.F. (+ 16). 19¼<sup>h</sup> to 19½<sup>h</sup> Wave in Dec. (+ 4'). 19¼<sup>h</sup> to 21¼<sup>h</sup> Very irregular wave in N.F. (+ 60). 19¾<sup>h</sup> to 22¼<sup>h</sup> Flat-crested wave in Dec. (- 7'), with small waves superposed. 29<sup>d</sup> 23½<sup>h</sup> to 30<sup>d</sup> 0¼<sup>h</sup> Wave in Dec. (+ 4'). 29<sup>d</sup> 23½<sup>h</sup> to 30<sup>d</sup> 1¾<sup>h</sup> Two successive waves in N.F. (+ 40, + 43), followed till 3½<sup>h</sup> by a serrated domed wave (+ 37). 29<sup>d</sup> 23¾<sup>h</sup> to 30<sup>d</sup> 6<sup>h</sup> Irregular wave in V.F. (- 45). - 30<sup>d</sup> Ih to 4½<sup>h</sup> Irregular wave in Dec. (-14'), followed till 10<sup>h</sup> by rapid small fluctuations. 12½<sup>h</sup> to 13½<sup>h</sup> Wave in Dec. (+4'). 15½<sup>h</sup> to 18½<sup>h</sup> Wave in V.F. (+18). 16<sup>h</sup> to 17½<sup>h</sup> Wave in Dec. (-12'). 16½<sup>h</sup> to 17½<sup>h</sup> Wave in N.F. (+60). 19¾<sup>h</sup> to 22<sup>h</sup> Two successive waves in N.F. (+20, +30). 20½<sup>h</sup> to 22¾<sup>h</sup> Irregular slow wave in Dec. (-5'). 22½<sup>h</sup> to 24<sup>h</sup> Wave in N.F. (+20). 1918. October - 1<sup>d</sup> o<sup>1</sup>/<sub>2</sub>h to 2<sup>h</sup> Wave in Dec. (-9'). 2<sup>h</sup> to 2<sup>1</sup>/<sub>2</sub>h Wave in N.F. (-26). 2<sup>1</sup>/<sub>4</sub>h to 5<sup>h</sup> Wave in V.F. (-24). 3<sup>1</sup>/<sub>4</sub>h to 4<sup>h</sup> Decrease in Dec. (-5). 8<sup>1</sup>/<sub>4</sub>h to 10<sup>1</sup>/<sub>4</sub>h Serrated domed wave in N.F. (-40). 19<sup>2</sup>/<sub>4</sub>h to 21<sup>h</sup> Sharp waves in Dec. (-14') and N.F. (+78). 22<sup>h</sup> to 22<sup>1</sup>/<sub>2</sub>h Wave in Dec. (+4'). 1<sup>d</sup> 23<sup>2</sup>/<sub>4</sub>h to 2<sup>d</sup> o<sup>2</sup>/<sub>4</sub>h Wave in N.F. (-20) - $2^{\mathbf{d}} \circ 3^{\mathbf{h}}$ to $1_{\mathbf{d}}^{\mathbf{h}}$ Wave in Dec. (-3'). $4_{\mathbf{d}}^{\mathbf{h}}$ to $4_{\mathbf{d}}^{\mathbf{h}}$ Wave in Dec. (+3'). $5^{\mathbf{h}}$ to $7^{\mathbf{h}}$ Serrated wave in N.F. (+33). $13^{\mathbf{h}}$ to $14_{\mathbf{d}}^{\mathbf{h}}$ Double-crested wave in Dec. (+4'). $16_{\mathbf{d}}^{\mathbf{h}}$ to $18_{\mathbf{d}}^{\mathbf{h}}$ Wave in Dec. (-10'). $17^{\mathbf{h}}$ to $18_{\mathbf{d}}^{\mathbf{h}}$ Truncated wave in N.F. (+22). $20^{\mathbf{h}}$ to $21^{\mathbf{h}}$ Wave in Dec. (-7'). $20^{\mathbf{h}}$ to $20_{\mathbf{d}}^{\mathbf{h}}$ Increase in N.F. (+27). $22_{\mathbf{d}}^{\mathbf{h}}$ to $23^{\mathbf{h}}$ Increase in N.F. (+20). $23^{\mathbf{h}}$ to $24^{\mathbf{h}}$ Irregular decrease in V.F. (-18). $23_{\mathbf{d}}^{\mathbf{h}}$ to $23_{\mathbf{d}}^{\mathbf{h}}$ Wave in Dec. (-5'). $2^{\mathbf{d}}$ $23_{\mathbf{d}}^{\mathbf{h}}$ to $3^{\mathbf{d}}$ $0_{\mathbf{d}}^{\mathbf{h}}$ Wave in N.F. (-30). - 3<sup>d</sup> oh to o½h Wave in Dec.(-3'). 5<sup>h</sup> to 5¾h Wave in Dec. (+4'): increase in N.F. (+47). 8<sup>d</sup> to 10<sup>h</sup> Slow wave in N.F. (-27). 17<sup>h</sup> to 19<sup>h</sup> Irregular sharp double-crested wave in Dec. (-13'). 17<sup>h</sup> to 18¼h Two successive waves in N.F. (+30, +20). 20<sup>h</sup> Sharp decrease in Dec. (-7'). 20<sup>h</sup> to 21½h Sharp double-crested wave in N.F. (+43). 20¾h to 22<sup>h</sup> Truncated wave in Dec. (+6'). - 4<sup>d</sup> o½h to o¾h Sharp increase in Dec. (+ 9'), followed till 2h by a slow irregular decrease (- 5'). 2½h to 3¼h Wave in Dec. (- 3'). 3¾h to 5½h Double wave in Dec. (- 3', + 4'). 14½h to 16¼h Increase in V.F. (+ 22). 15½h to 16¾h Wave in Dec. (- 4'). 16h to 17h Domed wave in N.F. (+ 27). 18¾h to 19¼h Decrease in Dec. (- 9'), followed till 19¾h by a sharp double-crested wave (+ 7'). 18¾h to 20¾h Irregular sharp double-crested wave in N.F. (+ 77). 19h to 21½h Wave in V.F. (- 17), followed till 2¾h by an irregular decrease (- 17). 20¾h to 21ħ Increase in Dec. (+ 4'). 21¾h to 23½h Two successive waves in Dec. (+ 3', + 6'). 22h to 23ħ Wave in N.F. (+ 22). - 5<sup>d</sup> 13½<sup>h</sup> to 14<sup>h</sup> Wave in Dec. (+ 4'), steep at commencement. 13½<sup>h</sup> to 13½<sup>h</sup> Wave in N.F. (+ 21), steep at commencement. 14½<sup>h</sup> Sudden sharp wave in N.F. (+ 23): in Dec. small. 19½<sup>h</sup> to 22½<sup>h</sup> Wave in Dec. (- 14'), with sharp wave (+ 9') superposed from 20½<sup>h</sup> to 21<sup>h</sup>. 20<sup>h</sup> to 21<sup>h</sup> Wave in V.F. (+ 12). 20½<sup>h</sup> to 20½<sup>h</sup> Sharp wave in N.F. (+ 20). 21½<sup>h</sup> to 21½<sup>h</sup> Wave in N.F. (+ 30). 23½<sup>h</sup> to 24½<sup>h</sup> Sharp increase in Dec. (+ 10') and decrease (- 3'): wave in N.F. (+ 24). 23½<sup>h</sup> to 24½<sup>h</sup> decrease in V.F. (- 16). - 6d 04h to 1h Wave in Dec. (-7'). 03h to 12h Domed wave in N.F. (+28). 14h to 13h Decrease in Dec. (-5'). 44h to 54h Slow wave in Dec. (+4'): wave in N.F. (-25). 19h to 194h Sharp decrease in Dec. (-6'). 192h to 202h Truncated wave in Dec. (+3'). 222h to 233h Double-crested wave in Dec. (+8'), steep at commencement: very steep wave in N.F. (+95). 23h to 232h Decrease in V.F. (-25). - 7<sup>d</sup> o<sup>1</sup>/<sub>4</sub>h to 1<sup>1</sup>/<sub>4</sub>h Flat-crested wave in Dec. (-3'). 17<sup>3</sup>/<sub>4</sub>h to 18<sup>1</sup>/<sub>4</sub>h Decrease in Dec. (-6'). 20<sup>1</sup>/<sub>4</sub>h to 22<sup>h</sup> Wave in Dec. (-7'), steep at commencement. - 8d 64h to 7½h Wave in Dec. (+ 4'). 8d 11h to 9d 11h Loss of N.F. register. 8d 14h to 153h Increase in V.F. (+ 48). 154h to 16h Irregular decrease in Dec. (- 11'), followed till 173h by a sharp quadruple-crested wave (+ 16'). 163h to 184h Sharp double-crested wave in V.F. (+ 33). 18h Very sharp wave in Dec. (- 5'). 18½h to 20h Wave in Dec. (- 14'). 183h to 19½h Wave in V.F. (+ 16). 204h to 21½h Wave in Dec. (+ 5'), with sharp double-crested wave (+ 6') superposed from 21h to 21½h, followed till 22½h by sharp movements (- 10', +9', 5'). 203h to 21½h Decrease in V.F. (- 25). - $9^{\rm d}$ oh to $7^{\rm h}$ Irregular wave in V.F. (-39). $1^{\rm h}$ to $1^{\rm h}$ Domed wave in Dec. (-3'). $1^{\rm h}$ to $3^{\rm h}$ Two successive waves in Dec. (+8',+4'). $4^{\rm h}$ to $6^{\rm h}$ Irregular wave in Dec. (+8'). $9^{\rm h}$ to $10^{\rm h}$ Irregular increase in Dec. (+7'). $20^{\rm h}$ to $21^{\rm h}$ Wave in Dec. (-4'). - $10^{d}$ $0_{4}^{3h}$ to $1_{2}^{1h}$ Wave in Dec. (+3'). $19^{h}$ to $20^{h}$ Wave in Dec. (-3'). - IId 203h to 22h Slightly truncated wave in N.F. (+ 22). 2Ih to 2Ih Decrease in Dec. (- 4'). - $12^{d}$ $18\frac{3}{4}^{h}$ to $19\frac{1}{2}^{h}$ Wave in Dec. (-3'). $23^{h}$ to $24^{h}$ Wave in Dec. (+3'). - $14^{d} 20\frac{1}{2}^{h}$ to $21\frac{1}{2}^{h}$ Wave in Dec. (-4'). - 15<sup>d</sup> 5½<sup>h</sup> to 6½<sup>h</sup> Serrated domed wave in Dec. (+ 4'). 5½<sup>h</sup> to 6½<sup>h</sup> Increase in N.F. (+ 28). 11<sup>h</sup> to 11½<sup>h</sup> Decrease in N.F. (- 30). 11½<sup>h</sup> to 12<sup>h</sup> Irregular increase in Dec. (+ 8'). 12½<sup>h</sup> to 12½<sup>h</sup> Serrated wave in Dec. (+ 4'). 13½<sup>h</sup> to 13½<sup>h</sup> Wave in Dec. (+ 3'). 13<sup>h</sup> to 20<sup>h</sup> Slow wave in V.F. (+ 32). 14<sup>h</sup> to 15½<sup>h</sup> Wave in Dec. (- 4'). 14½<sup>h</sup> to 17<sup>h</sup> Double wave in N.F. (+ 22, 20), the second portion truncated. - 16d oh to 17d oh. See Plate III. - 7<sup>1</sup> 1½h to 2½h Waves in Dec. (+ 4') and N.F. (- 20): decrease in V.F. (- 18). 3½h to 5h Wave in N.F. (+ 30). 4h to 6h Wave in Dec. (+ 7'). 5½h to 7½h Flat-crested wave in N.F. (+ 25). 7½h to 8h Serrated wave in Dec. (- 4'), followed by sharp fluctuations till 9h: fluctuations also in N.F. 9½h to 10h Increase in Dec. (+ 6'). 10h to 10½h Decrease in N.F. (- 30). 12½h to 13½h Double-crested wave in Dec. (+ 5'). 13½h to 18h Flat-crested wave in V.F. (+ 32). 14h to 14½h Decrease in Dec. (- 9'). 15½h to 17h Wave in Dec. (- 4'). 19½h to 21½h Irregular waves in Dec. (- 17') and N.F. (+ 72), with humps at 20½h on the return. - 18d $5\frac{3}{4}$ h to $7\frac{1}{4}$ h Truncated wave in Dec. (+ 4'). 13 $\frac{3}{4}$ h to 14 $\frac{1}{2}$ h Wave in N.F. (- 27). 20 $\frac{1}{4}$ h to 22h Irregular triple-crested wave in Dec. (- 6'). 20 $\frac{3}{4}$ h to 22h Wave in N.F. (+ 52). 20 $\frac{3}{4}$ h to 23h Wave in V.F. (- 15). - 19<sup>d</sup> 13<sup>h</sup> to 13<sup>3</sup>/<sub>4</sub><sup>h</sup> Wave in Dec. (+ 5'). 13<sup>1</sup>/<sub>2</sub><sup>h</sup> to 18<sup>h</sup> Wave in V.F. (+ 40). 14<sup>h</sup> to 16<sup>h</sup> Double wave in Dec. (+ 6', 4'), the second portion triple-crested. 14<sup>h</sup> to 15<sup>1</sup>/<sub>4</sub><sup>h</sup> Double wave in N.F. (+ 20, -32), the second movement steep. 21<sup>h</sup> to 23<sup>h</sup> Wave in N.F. (+ 62), followed till 24<sup>h</sup> by a truncated wave (+ 26). 21<sup>1</sup>/<sub>4</sub><sup>h</sup> to 22<sup>h</sup> Decrease in Dec. (- 9'). 21<sup>3</sup>/<sub>4</sub><sup>h</sup> to 22<sup>3</sup>/<sub>4</sub><sup>h</sup> Decrease in V.F. (- 21). 19<sup>d</sup> 22<sup>3</sup>/<sub>4</sub><sup>h</sup> to 20<sup>d</sup> 0<sup>1</sup>/<sub>2</sub><sup>h</sup> Double wave in Dec. (- 3', + 3'). 1918. October - 20<sup>d</sup> $0_3^{2h}$ to $1_2^{1h}$ Increase in Dec. (+ 10') and decrease (- 3'), followed till $3_2^{1h}$ by a domed wave (+ 7'). $8_2^{1h}$ to $9^h$ Decrease in N.F. (- 35). $18_2^{1h}$ to $19_2^{1h}$ Wave in Dec. (- 6'). $19^h$ to $19_2^{2h}$ Wave in N.F. (+ 20). $23_1^{1h}$ Decrease in Dec. (- 5'). - 21<sup>d</sup> 19<sup>h</sup> to 19½<sup>h</sup> Decrease in Dec. (-6'), continued till 20½<sup>h</sup> by a double wave (-4', +3'). 19½<sup>h</sup> to 20½<sup>h</sup> Sharp wave in N.F. (+40). - 22<sup>d</sup> 11<sup>h</sup> to 11<sup>2</sup>/<sub>4</sub><sup>h</sup> Waves in Dec. (-3') and N.F. (-20). 22<sup>3</sup>/<sub>4</sub><sup>h</sup> to 23<sup>1</sup>/<sub>4</sub><sup>h</sup> Wave in Dec. (-3'). 23<sup>h</sup> to 23<sup>1</sup>/<sub>2</sub><sup>h</sup> Wave in N.F. (+27). - 23<sup>d</sup> 20½<sup>h</sup> to 21<sup>h</sup> Wave in Dec. (+3'). 21½<sup>h</sup> to 22<sup>h</sup> Decrease in Dec. (-7'). 21¾<sup>h</sup> to 22<sup>h</sup> Sharp increase in N.F. (+34). - $24^{d}$ $12\frac{1}{2}^{h}$ to $13\frac{1}{2}^{h}$ Wave in N.F. (-20). $13^{h}$ to $13\frac{3}{4}^{h}$ Wave in Dec. (-4'). - $25^{d}$ $0_{4}^{2h}$ to $1^{h}$ Sharp decrease in Dec. (-6'). $14_{4}^{1h}$ Sharp increase in Dec. (+5'). $14_{4}^{2h}$ to $16^{h}$ Wave in N.F. (-20). $25^{d}$ $23_{4}^{1h}$ to $26^{d}$ $1_{4}^{1h}$ Slow wave in Dec. (-5'). - $26^{d}$ $12_{4}^{3h}$ to $13_{4}^{1h}$ Wave in Dec. (+ 3'). - 28d 13h to 14½h Irregular wave in Dec. (-5'). 13½h to 14½h Domed wave in N.F. (+26). 14½h to 18½h Wave in V.F. (+30). 15½h to 17h Double wave in Dec. (+5', -16'), the second portion very steep. 16h to 17h Double wave in N.F. (-25, +50), the second movement very steep. - $29^{d}$ $19^{h}$ to $20^{h}$ Wave in N.F. (-21). $21^{h}$ to $23^{h}$ Truncated wave in N.F. (+34), with small wave superposed till $21\frac{1}{2}^{h}$ . $21\frac{1}{2}^{h}$ Sharp wave in Dec. (+3'). - 30<sup>d</sup> 12½<sup>h</sup> to 12¾<sup>h</sup> Wave in Dec. (+ 3'). 30<sup>d</sup> 22½<sup>h</sup> to 31<sup>d</sup> 0½<sup>h</sup> Irregular wave in Dec. (- 8'). 30<sup>d</sup> 23<sup>h</sup> to 31<sup>d</sup> 0½<sup>h</sup> Wave in N.F. (+ 38). - 31<sup>d</sup> 3<sup>h</sup> to 4<sup>h</sup> Irregular wave in Dec. (-4'). 4½<sup>h</sup> to 5½<sup>h</sup> Wave in Dec. (+7'). 4½<sup>h</sup> to 5<sup>h</sup> Increase in N.F. (+40). 6½<sup>h</sup> to 7<sup>h</sup> Increase in Dec. (+7'). 6½<sup>h</sup> to 8<sup>h</sup> Decrease in N.F. (-50), continued till 9½<sup>h</sup> by a triple-crested wave (-30). 8½<sup>h</sup> to 9½<sup>h</sup> Serrated wave in Dec. (-4'). 10<sup>h</sup> to 10½<sup>h</sup> Wave in Dec. (+4'). 11½<sup>h</sup> to 14½<sup>h</sup> Irregular double-crested wave in Dec. (+5'), followed till 15h by an irregular wave (+6'). 14h to 16½<sup>h</sup> Wave in V.F. (+17). 14½<sup>h</sup> to 15½<sup>h</sup> Wave in N.F. (-30). 19h to 20½<sup>h</sup> Irregular double wave in Dec. (-3',+3'). October 31<sup>d</sup> 23½<sup>h</sup> to November 1<sup>d</sup> 1<sup>h</sup> Wave in V.F. (-18). October 31<sup>d</sup> 23½<sup>h</sup> to November 1<sup>d</sup> 0½<sup>h</sup> Wave in Dec. (+8'). November - $I^{d}$ 20h to 21 $\frac{1}{2}^{h}$ Irregular double-crested wave in Dec. (- 5'). 20 $\frac{1}{2}^{h}$ to 21 $\frac{1}{2}^{h}$ Double-crested wave in N.F. (+ 30). - $2^{d}$ $15_{4}^{3h}$ to $17^{h}$ Wave in N.F. (-30). $16_{4}^{1h}$ to $17^{h}$ Wave in Dec. (-5'). $2^{d}$ $23_{4}^{1h}$ to $3^{d}$ $0_{2}^{1h}$ Double wave in Dec. (+3',-3'), the second portion truncated. - $4^{d}$ $22^{h}$ to $23\frac{1}{4}^{h}$ Irregular wave in N.F. (+24). - $10^{d}$ 20 $\frac{1}{4}^{h}$ to 21 $^{h}$ Domed wave in Dec. (-4'). 21 $\frac{1}{2}^{h}$ to 22 $\frac{1}{4}^{h}$ Wave in N.F. (+20). 21 $\frac{3}{4}^{h}$ to 22 $^{h}$ Decrease in Dec. (-5'). - III do $\frac{3}{4}^h$ to $3\frac{1}{2}^h$ Triple wave in Dec. (-6', +8', -6'). I $\frac{1}{2}^h$ to $3\frac{1}{4}^h$ Double wave in N.F. (-22, +24). $2^h$ to $3\frac{1}{2}^h$ Wave in V.F. (-12). $4^h$ to $6^h$ Very irregular double-crested wave in Dec. (+6'). Ioh to IIh Wave in Dec. (-5'). I2 $\frac{3}{4}^h$ to I4h Irregular double-crested wave in Dec. (+5'). I3h to I4 $\frac{3}{4}^h$ Wave in N.F. (-35). I5 $\frac{1}{2}^h$ to I6 $\frac{1}{4}^h$ Wave in N.F. (+20). I5 $\frac{1}{2}^h$ to 20h Wave in V.F. (+39).. I7 $\frac{3}{4}^h$ to 18 $\frac{1}{2}^h$ Double-crested wave in N.F. (-21), followed till 20 $\frac{1}{2}^h$ by a double wave (-38, +62), the second portion very irregular. I8 $\frac{1}{2}^h$ to 20 $\frac{3}{4}^h$ Sharp double wave in Dec. (+3', -18'), with small waves superposed on last movement. 20 $\frac{1}{2}^h$ to 22 $\frac{1}{4}^h$ Wave in V.F. (+12). 21 $\frac{1}{2}^h$ to 23 $\frac{1}{2}^h$ Sharp wave in Dec. (-10'), with double-crested wave (+5'), superposed from 21 $\frac{3}{4}^h$ to 23h. 21 $\frac{1}{2}^h$ to 21 $\frac{3}{4}^h$ Increase in N.F. (+25). 22h to 22 $\frac{1}{4}^h$ Wave in N.F. (+23). 22 $\frac{1}{4}^h$ to 12d o $\frac{1}{4}^h$ Irregular decrease in V.F. (-13). 23h to 23 $\frac{3}{4}^h$ Double-crested wave in N.F. (+22). I1d 23 $\frac{1}{4}^h$ to 12d o $\frac{1}{4}^h$ Irregular wave in V.F. (-15). - 12<sup>d</sup> 1½<sup>h</sup> Sharp increase in Dec. (+ 12'): slower decrease in N.F. (- 24). 1½<sup>h</sup> to 5½<sup>h</sup> Slow double wave in V.F. (- 13,+ 18). 4½<sup>h</sup> to 6½<sup>h</sup> Slightly truncated serrated wave in Dec. (+ 15'). 4½<sup>h</sup> to 5½<sup>h</sup> Sharp wave in N.F. (- 47). 6½<sup>h</sup> to 7½<sup>h</sup> Serrated wave in Dec. (+ 4'). 8h to 9h Serrated decrease in N.F. (- 40). 13<sup>h</sup> to 14½<sup>h</sup> Irregular truncated wave in Dec. (+ 6'). 13<sup>h</sup> to 14<sup>h</sup> Serrated truncated wave in N.F. (+ 20), followed till 14½<sup>h</sup> by a sharp increase (+ 50). 16¾<sup>h</sup> to 17<sup>h</sup> Very sharp decrease in Dec. (- 17'), followed till 18h by a sharp double-crested wave (+ 12'), followed till 19¼<sup>h</sup> by a double-crested wave (+ 6'). 17<sup>h</sup> Sharp increase in N.F. (+ 70), followed till 17¾<sup>h</sup> by an irregular partial return (- 45). 17¼<sup>h</sup> to 17½<sup>h</sup> Decrease in V.F. (- 12). 20<sup>h</sup> to 21½<sup>h</sup> Wave in N.F. (- 45'), steep at end, followed till 22½<sup>h</sup> by a triple wave (- 30, + 20, 20). 21h to 22¼<sup>h</sup> Triple wave in Dec. (+ 8, 6', + 6'). 21h to 21½<sup>h</sup> Decrease in V.F. (- 14), followed by small waves till 24h. 22¾<sup>h</sup> to 23½<sup>h</sup> Wave in Dec. (+ 6'). - 13<sup>d</sup> 2<sup>h</sup> to 5½<sup>h</sup> Irregular flat-crested wave in Dec. (+ 6'). 3<sup>h</sup> to 7<sup>h</sup> Slow irregular double wave in N.F. (- 25, + 30). 12½<sup>h</sup> to 13½<sup>h</sup> Truncated wave in N.F. (- 30). 16<sup>h</sup> to 19<sup>h</sup> Two successive waves in Dec. (- 10', 9'). 16<sup>h</sup> to 17¾<sup>h</sup> Irregular wave in N.F. (+ 47). 19¾<sup>h</sup> to 20½<sup>h</sup> Sharp waves in Dec. (+ 6') and N.F. (+ 30), decrease in V.F. (- 12). 21½<sup>h</sup> to 23<sup>h</sup> Irregular triple wave in Dec. (- 4', + 5', 3'): irregular wave in N.F. (+ 64), steep at commencement. 21¾<sup>h</sup> to 24<sup>h</sup> Wave in V.F. (- 24). - 14<sup>d</sup> 1½<sup>h</sup> to 2½<sup>h</sup> Wave in Dec. (+ 5'). 17½<sup>h</sup> to 18¾<sup>h</sup> Wave in N.F. (- 38). 18h to 19½<sup>h</sup> Two successive sharp waves in V.F. (+ 12, + 16). 18½<sup>h</sup> to 19½<sup>h</sup> Sharp wave in Dec. (- 15'). 19h to 19½<sup>h</sup> Double wave in N.F. (- 22, + 35), the intermediate portion very steep. 19¾<sup>h</sup> to 22h Domed wave in Dec. (- 9'), followed till 22½<sup>h</sup> by a wave (- 5'). 21½<sup>h</sup> to 22h Wave in N.F. (+ 21); serrated decrease in V.F. (- 12). 1918. November - I 5<sup>d</sup> $o_4^{3h}$ Sharp increase in Dec. (+5'). $5^h$ to $7_4^{1h}$ Wave in Dec. (+13'), steep at commencement. $5^h$ to $5_4^{3h}$ Wave in N.F. (-40). $5_4^{1h}$ to $6^h$ Decrease in V.F. (-13). $16_2^{1h}$ to $17_4^{1h}$ Wave in N.F. (-33). $16_4^{3h}$ to $18_4^{1h}$ Wave in Dec. (-20'), steep at commencement: serrated wave in V.F. (+15). $19_2^{1h}$ to $20_4^{1h}$ Wave in Dec. (+7'). $19_2^{1h}$ to $20^h$ Wave in N.F. (+28), followed till $20_4^{1h}$ by an increase (+30). $20_2^{1h}$ to $20_4^{3h}$ Decrease in Dec. (-6'), followed till $22_4^{1h}$ by a sharp triple-crested wave (+13'). $20_2^{1h}$ to $23^h$ Three successive waves in N.F. (+50, +42, +23). $21^h$ to $22_4^{1h}$ Irregular decrease in V.F. (-32), followed till $22_2^{1h}$ by an increase (+14). $22_4^{3h}$ Wave in Dec. (+6'). - 16<sup>d</sup> o<sub>2</sub><sup>th</sup> Sharp increase in Dec. (+ 5'). I<sub>3</sub><sup>th</sup> to 4<sub>4</sub><sup>th</sup> Irregular triple wave in Dec. (- 3',+ 3',- 4'). 9<sub>2</sub><sup>th</sup> to 11<sup>th</sup> Serrated truncated wave in Dec. (+ 5'). 14<sub>2</sub><sup>th</sup> to 16<sub>3</sub><sup>th</sup> Wave in V.F. (+ 12). 15<sup>th</sup> to 15<sub>3</sub><sup>th</sup> Wave in Dec. (- 6'). 15<sub>4</sub><sup>th</sup> to 16<sup>th</sup> Wave in N.F. (+ 30). 17<sub>2</sub><sup>th</sup> to 18<sub>2</sub><sup>th</sup> Triple-crested waves in Dec. (- 10') and N.F. (+ 40). 20<sub>2</sub><sup>th</sup> to 22<sup>th</sup> Waves in Dec. (- 10') and N.F. (+ 66): decrease in V.F. (- 22), followed till 17<sup>d</sup> 1<sup>th</sup> by a slow wave (+ 12). - $17^{\text{d}}$ oh to 1h Wave in Dec. (+7'). $14\frac{1}{2}^{\text{h}}$ to $15\frac{1}{4}^{\text{h}}$ Wave in N.F. (-30). $14\frac{3}{4}^{\text{h}}$ to $15\frac{1}{4}^{\text{h}}$ Decrease in Dec. (-7'). $17\frac{3}{4}^{\text{h}}$ to $18^{\text{h}}$ Wave in Dec. (-3'). $18^{\text{h}}$ to $18\frac{1}{2}^{\text{h}}$ Wave in N.F. (+25). $18\frac{1}{2}^{\text{h}}$ to $19^{\text{h}}$ Wave in Dec. (-3'). - 19<sup>d</sup> 17½h to 18½h Wave in N.F. (+ 21). 19<sup>h</sup> to 20¼h Double wave in Dec. (-6',+ 4'), the second portion sharp. 19¾h to 20¼h Sharp wave in N.F. (+ 56). 19¾h to 21ħ Wave in V.F. (-28). - $22^{\text{d}}$ $21\frac{1}{4}^{\text{h}}$ to $22^{\text{h}}$ Decrease in Dec. (-8'). - 23<sup>d</sup> $1^{\frac{3}{4}h}$ to $2^{\frac{3}{4}h}$ Wave in N.F. (+28). $2^h$ to $5^h$ Very irregular double wave in Dec. (-5', +7'). $3^{\frac{3}{4}h}$ to $4^{\frac{1}{4}h}$ Irregular decrease in V.F. (-13). $6^{\frac{1}{4}h}$ to $8^h$ Wave in N.F. (+53). $6^{\frac{1}{4}h}$ Wave in V.F. (-17). $7^h$ to $7^{\frac{3}{4}h}$ Wave in Dec. (-5'), followed till $9^{\frac{3}{4}h}$ by a double wave (-4', +5'). $8^{\frac{3}{4}h}$ to $9^h$ Decrease in N.F. (-35). $11^{\frac{1}{4}h}$ Three successive waves in Dec. (+10', +4', +5'). $11^{\frac{1}{4}h}$ to $13^{\frac{1}{4}h}$ Two successive waves in N.F. (-32, -27). $11^{\frac{1}{2}h}$ to $15^{\frac{1}{4}h}$ Irregular increase in V.F. (+44). $13^{\frac{1}{4}h}$ to $16^h$ Irregular triple wave in N.F. (+23, -20, +35). $15^h$ to $16^{\frac{1}{2}h}$ Irregular double wave in Dec. (-8', +7'). $19^{\frac{3}{4}h}$ to $20^h$ Wave in Dec. (+3'). - 24<sup>d</sup> $3\frac{1}{2}^{h}$ to $4\frac{1}{4}^{h}$ Domed wave in Dec. (+4'). $11^{h}$ to $11\frac{1}{4}^{h}$ Sharp increase in Dec. (+7'). $11\frac{1}{4}^{h}$ to $13\frac{1}{2}^{h}$ Wave in N.F. (-40). $12^{h}$ to $13\frac{1}{2}^{h}$ Irregular double wave in Dec. (+7', -5'). $14^{h}$ to $17\frac{1}{4}^{h}$ Wave in V.F. (+17). $15^{h}$ to $16^{h}$ Wave in N.F. (-30). $15\frac{1}{4}^{h}$ to $16\frac{1}{4}^{h}$ Wave in Dec. (-6'). $18^{h}$ to $20\frac{1}{4}^{h}$ Irregular domed wave in Dec. (-17'). $18^{h}$ to $21\frac{1}{4}^{h}$ Irregular triple wave in N.F. (-20, +40, +20). - $25^{d}$ $16\frac{1}{2}^{h}$ to $17\frac{1}{2}^{h}$ Domed wave in N.F. (-20). $17^{h}$ to $18\frac{1}{4}^{h}$ Wave in Dec. (-7'). - $27^{d}$ 3h to 4h Wave in Dec. (+ 4'), steep at commencement. - $28^{d}$ $22\frac{1}{2}^{h}$ to $23\frac{3}{4}^{h}$ Irregular wave in Dec. (- 10'). $22\frac{1}{2}^{h}$ to $23\frac{1}{4}^{h}$ Wave in N.F. (+ 30). - 29<sup>d</sup> 18<sup>h</sup> to 21<sup>h</sup> Four successive sharp irregular waves in Dec. (+ 10', + 10', + 7', + 5'), the first double-crested, the second triple-crested. 18<sup>h</sup> to 23½<sup>h</sup> Irregular triple-crested wave in V.F. (+ 70). 18½<sup>h</sup> to 18½<sup>h</sup> Irregular steep decrease in N.F. (- 80). 19<sup>h</sup> to 21<sup>h</sup> Two successive waves in N.F. (- 31, 37), the second triple-crested. 21½<sup>h</sup> Very sharp increase in N.F. (+ 32). 21½<sup>h</sup> to 21¾<sup>h</sup> Very sharp double wave in Dec. (+ 4', 3'), followed till 23<sup>h</sup> by very sharp movements (+ 8', 28', + 26' 20'). 21½<sup>h</sup> to 22<sup>h</sup> Very sharp triple-crested wave in N.F. (- 40), followed till 23<sup>h</sup> by a very sharp triple wave (45', + 90, -65). 23<sup>h</sup> to 23¾<sup>h</sup> Decrease in N.F. (- 50). 23¼<sup>h</sup> to 23¾<sup>h</sup> Increase in Dec. (+ 9'), followed till 30<sup>d</sup> o¼<sup>h</sup> by a decrease (- 5'). - 30<sup>d</sup> I<sup>h</sup> to I½<sup>h</sup> Wave in Dec. (+ 5'), followed till 2<sup>h</sup> by a very sharp increase (+ 19'), followed till 2½<sup>h</sup> by a slower decrease (- 8'). I<sup>h</sup> to 2<sup>h</sup> Double wave in N.F. (- 20, + 20), the second portion sharp. I¼<sup>h</sup> to I¾<sup>h</sup> Sharp wave in V.F. (- 12), followed till 3½<sup>h</sup> by a slower wave (- 16). 3<sup>h</sup> to 3¼<sup>h</sup> Decrease in Dec. (- 4'). I5<sup>h</sup> to I6½<sup>h</sup> Wave in N.F. (- 23). I7½<sup>h</sup> to I8½<sup>h</sup> Double-crested wave in Dec. (+ 5'). 20<sup>h</sup> to 21<sup>h</sup> Wave in N.F. (+ 38). 20¼<sup>h</sup> to 20¾<sup>h</sup> Sharp wave in Dec. (- 7'), followed till 22¾<sup>h</sup> by an irregular slow wave (- 5'). December - Id to 10½h Wave in Dec. (-3'), steep at end. II¾h to 13½h Double wave in Dec. (+4',-4'), the first portion triple-crested: double-crested wave in N.F. (-30). I4h to 21h Wave in V.F. (+42), with double-crested wave (+24) superposed from I5½h to I7½h. I4¾h to I5½h Sharp wave in Dec. (-5'), followed till I7½h by a sharp triple-crested wave (-26'). I5h to I5½h Sharp decrease in N.F. (-50), followed till I7½h by a wave (+60), with three sharp waves (+35,+35,+45), superposed at I6h, I6½h and I6¾h. I7½h Sharp decrease in Dec. (-9'), followed till I9¾h by a double wave (+5',-17'), the first portion domed, the second sharp. I7½h Sharp increase in N.F. (+24). I8½h to 20h Irregular double-crested wave in N.F. (+45). 20½h to 22h Waves in Dec. (-19') and N.F. (+40), the latter truncated. Id 23¼h to 2d Ih Double-crested wave in N.F. (+27). - 2<sup>d</sup> oh to 1<sup>h</sup> Increase in Dec. (+9'). 22<sup>h</sup> to 23<sup>h</sup> Wave in N.F. (+20), steep at commencement. - $3^{d}$ 11½h to 12h Truncated wave in Dec. (+ 3'). 14¼h to 18¼h Slow double-crested wave in N.F. (- 40). 16¼h to 18½h Slow wave in V.F. (+ 12). 16¾h to 17¾h Wave in Dec. (- 4'). 20h to 22¼h Irregular wave in Dec. (- 9'). 22h Sharp decrease in N.F. (- 30). - 4d 15h to 16h Wave in N.F. (-22). 1918. December - 7<sup>d</sup> 18½<sup>h</sup> to 20½<sup>h</sup> Irregular wave in Dec. (-20'), followed till 22<sup>h</sup> by a domed wave (-7'). 18½<sup>h</sup> to 20<sup>h</sup> Wave in V.F. (+13), followed till 24<sup>h</sup> by an irregular slow wave (+22). 18¾<sup>h</sup> to 19<sup>h</sup> wave in N.F. (+64). 22<sup>h</sup> to 22½<sup>h</sup> Wave in N.F. (+20). - 8d oh to 9d oh. See Plate IV. - $9^{d}$ $1\frac{1}{2}^{h}$ to $5\frac{1}{2}^{h}$ Irregular triple wave in N.F. (-20, +28, -35). $2^{h}$ to $4^{h}$ Serrated wave in Dec. (+8'). $3^{h}$ to $5^{h}$ Wave in V.F. (-15). $4\frac{1}{2}^{h}$ to $5^{h}$ Increase in Dec. (+6'). $9\frac{1}{2}^{h}$ to $10\frac{1}{4}^{h}$ Serrated wave in Dec. (+4'). $12\frac{1}{4}^{h}$ to $14^{h}$ Two successive irregular serrated waves in Dec. (+5', +5'). $13\frac{1}{4}^{h}$ to $14\frac{1}{4}^{h}$ Sharp wave in N.F. (-52). $17^{h}$ to $18^{h}$ Double wave in Dec. (+4', -3'), the first portion truncated, followed till $19\frac{1}{4}^{h}$ by two successive waves (-5', -6'), followed till $19\frac{3}{4}^{h}$ by a sharp decrease (-6'). $17\frac{3}{4}^{h}$ to $18\frac{1}{4}^{h}$ Wave in N.F. (+21). $19^{h}$ to $19\frac{1}{4}^{h}$ Increase in N.F. (+24), followed till $20\frac{1}{2}^{h}$ by a double wave (-24, +21), the second portion domed. $20\frac{1}{2}^{h}$ to $21\frac{1}{2}^{h}$ Truncated wave in Dec. (+6'). $22\frac{1}{2}^{h}$ to $23^{h}$ Wave in Dec. (-5'). $22\frac{3}{4}^{h}$ to $24^{h}$ Two successive waves in N.F. (+35, +23). $9^{d}$ $23\frac{1}{4}^{h}$ to $10^{d}$ $0\frac{1}{2}^{h}$ Wave in Dec. (+9'). $9^{d}$ $23\frac{1}{2}^{h}$ to $10^{d}$ $2\frac{1}{4}^{h}$ Wave in V.F. (-32). - 10<sup>d</sup> 8<sup>h</sup> to 9<sup>1</sup>/<sub>4</sub><sup>h</sup> Wave in Dec. (+ 5'). 9<sup>1</sup>/<sub>2</sub><sup>h</sup> to 10<sup>1</sup>/<sub>4</sub><sup>h</sup> Wave in N.F. (- 22). 12<sup>h</sup> to 14<sup>h</sup> Irregular wave in N.F. (+ 40). 12<sup>1</sup>/<sub>2</sub><sup>h</sup> to 14<sup>1</sup>/<sub>2</sub><sup>h</sup> Serrated wave in Dec. (+ 7'), followed till 16<sup>1</sup>/<sub>2</sub><sup>h</sup> by a double wave (+ 4', 10'), the first portion domed, the second sharp and double-crested. 14<sup>1</sup>/<sub>4</sub><sup>h</sup> to 16<sup>h</sup> Very irregular wave in N.F. (+ 33), followed at 16<sup>h</sup> by a sudden increase (+ 50), continued till 16<sup>3</sup>/<sub>4</sub><sup>h</sup> by sharp increase (+ 24) and decrease (- 45). 18<sup>h</sup> to 19<sup>h</sup> Truncated wave in Dec. (+ 4'), followed till 20<sup>h</sup> by a sharp irregular triple-crested wave (+ 7'). 19<sup>h</sup> to 19<sup>3</sup>/<sub>4</sub><sup>h</sup> Sharp wave in N.F. (+ 64), followed till 20<sup>1</sup>/<sub>4</sub><sup>h</sup> by a wave (+ 24). 19<sup>1</sup>/<sub>1</sub><sup>h</sup> to 21<sup>h</sup> Wave in V.F. (- 15). 23<sup>1</sup>/<sub>2</sub><sup>h</sup> to 24<sup>h</sup> Wave in Dec. (- 3'). - 11<sup>d</sup> oh to $0\frac{3}{4}$ h Decrease in V.F. (-14). 15<sup>h</sup> to 16¼h Irregular waves in Dec. (-7') and N.F. (+22). 18¾h to $20\frac{1}{4}$ h Sharp wave in Dec. (-14'). 19¼h to $20\frac{1}{4}$ h Irregular wave in N.F. (+42). $21\frac{3}{4}$ h to $22\frac{3}{4}$ h Wave in N.F. (+25). $22^h$ to $23\frac{3}{4}$ h Truncated wave in Dec. (-6'). $22^h$ to $22\frac{1}{4}$ h Decrease in V.F. (-12). - 12<sup>d</sup> 13½<sup>h</sup> to 15<sup>h</sup> Wave in N.F. (-28). 17½<sup>h</sup> to 18<sup>h</sup> Wave in N.F. (-23). 17½<sup>h</sup> to 18½<sup>h</sup> Wave in Dec. (-7). 20<sup>h</sup> to 21½<sup>h</sup> Two successive waves in Dec. (-5, -5), the first sharp, the second truncated. 20<sup>h</sup> to 20½<sup>h</sup> Sharp wave in N.F. (+33). - 13<sup>d</sup> 2<sup>h</sup> to 3<sup>h</sup> Waves in Dec. (+ 5') and N.F. (- 20). 163<sup>h</sup> to 173<sup>h</sup> Sharp Wave in Dec. (- 15'). 17<sup>h</sup> to 18<sup>h</sup> Truncated wave in N.F. (+ 33). 17<sup>h</sup> to 18½<sup>h</sup> Wave in V.F. (+ 15). 20<sup>h</sup> to 22<sup>h</sup> Wave in Dec. (- 13'), steep at commencement, with irregular return: wave in N.F. (+ 48). 223<sup>h</sup> to 23½<sup>h</sup> Sharp increase in N.F. (+ 55) and decrease (- 22): decrease in V.F. (- 12). - $14^{d}$ 21<sup>h</sup> to 22<sup>h</sup> Irregular wave in N.F. (+25). 21<sup>h</sup> to 23<sup>h</sup> Two successive waves in Dec. (-3', -4'). - $15^{d}$ $1\frac{1}{2}$ h to $3^{h}$ Wave in Dec. (+4'). - $17^{d}$ $3_{4}^{1h}$ to $4^{h}$ Wave in Dec. (+4'). $18^{h}$ to $19^{h}$ Wave in Dec. (-6'). - $18^{\text{d}}$ $21\frac{3}{4}^{\text{h}}$ Sharp increase in N.F. (+ 30). - 19<sup>d</sup> o<sup>h</sup> to 1<sup>h</sup> Wave in Dec. (+ 5'). 2<sup>h</sup> to 2<sup>3h</sup> Wave in Dec. (+ 3'). 11<sup>h</sup> to 12<sup>h</sup> Wave in Dec. (+ 4). 11<sup>1</sup>/<sub>2</sub>h to 15<sup>h</sup> Slow double-crested wave in N.F. (- 32). 12<sup>h</sup> to 12<sup>3h</sup> Increase in V.F. (+ 19). 14<sup>h</sup> to 14<sup>3h</sup> Irregular decrease in Dec. (- 8'). 16<sup>1</sup>/<sub>2</sub>h to 17<sup>1</sup>/<sub>2</sub>h Truncated wave in Dec. (+ 4'). 16<sup>1</sup>/<sub>2</sub>h to 17<sup>h</sup> Decrease in N.F. (- 40). 20<sup>h</sup> to 21<sup>h</sup> Sharp triple wave in Dec. (+ 3', 8', + 4'): sharp double wave in N.F. (- 36, + 28). 23<sup>h</sup> to 23<sup>1</sup>/<sub>4</sub>h Irregular sharp decrease in N.F. (- 30). - 20<sup>d</sup> $2\frac{1}{2}^{h}$ to $4^{h}$ Wave in Dec. (+5'). $16\frac{1}{2}^{h}$ to $17\frac{1}{4}^{h}$ Sharp wave in N.F. (-36). $16\frac{3}{4}^{h}$ to $17\frac{1}{2}^{h}$ Sharp double wave in Dec. (+3',-3'). $17\frac{3}{4}^{h}$ to $18^{h}$ Wave in N.F. (+20). $18\frac{1}{4}^{h}$ to $18\frac{3}{4}^{h}$ Wave in Dec. (-5'). $18\frac{1}{2}^{h}$ to $19^{h}$ Wave in N.F. (+24). $20^{h}$ to $20\frac{1}{2}^{h}$ Wave in N.F. (-23). $20\frac{1}{2}^{h}$ to $20\frac{3}{4}^{h}$ Wave in Dec. (-5'). $22^{h}$ to $23^{h}$ Truncated wave in Dec. (-5'), followed till $21^{d}$ $0\frac{1}{2}^{h}$ by an irregular wave (-6'). - 21<sup>d</sup> 2<sup>h</sup> to $2\frac{3}{4}$ Wave in Dec. (-3'). $18^h$ to $19\frac{1}{4}$ Wave in Dec. (-11'), followed till 20<sup>h</sup> by a small wave (-3'). $18\frac{1}{4}$ to $19\frac{1}{4}$ Truncated wave in N.F. (+40). - 22<sup>d</sup> 3<sup>h</sup> to 5<sup>h</sup> Double wave in Dec. (+4', -3'). $3_4^{3h}$ to 5<sup>h</sup> Wave in N.F. (+22). $20_4^{1h}$ to $21_4^{3h}$ Truncated wave in Dec. (-7'), with sharp wave (-5'), superposed from $21^h$ to $21_2^{1h}$ , $21^h$ to $22_4^{1h}$ sharp wave in N.F. (+53). - 23<sup>d</sup> $0^{1h}$ to $1^{3h}$ Wave in N.F. (-27). $0^{1h}$ to $1^h$ Wave in Dec. (+4'), followed till $3^{3h}$ by a triple wave (+6', -5', +7'). $2^{1h}$ to $3^{3h}$ Wave in N.F. (-23). $5^h$ to $6^{1h}$ Domed wave in N.F. (+21). $5^{3h}$ to $7^h$ Wave in Dec. (+5'). $16^{1h}$ to $17^h$ Irregular triple wave in Dec. (-4', +4', -3'). $21^h$ to $21^{1h}$ Sharp wave in Dec. (-8'), followed till $23^{1h}$ by a double wave (-5', +4'). $21^h$ to $21^{1h}$ Increase in N.F. (+26). $21^{1h}$ to $23^{1h}$ Irregular decrease in V.F. (-20). - $24^{\rm d}$ $13^{\rm h}$ to $14\frac{1}{4}^{\rm h}$ Wave in N.F. (-40). $13\frac{1}{2}^{\rm h}$ to $14\frac{1}{4}^{\rm h}$ Wave in Dec. (-5'). $17\frac{3}{4}^{\rm h}$ to $19^{\rm h}$ Wave in Dec. (-6'). $25^{\rm d}$ $3^{\rm h}$ to $26^{\rm d}$ $3^{\rm h}$ . See Plate IV. - 26<sup>d</sup> 3½<sup>h</sup> to 3¾<sup>h</sup> Decrease in Dec. (-5'). 13<sup>h</sup> to 13¼<sup>h</sup> Decrease in Dec. (-6'). 17<sup>h</sup> to 18¾<sup>h</sup> Double wave in N.F. (-20,+45), the first portion truncated. 17¼<sup>h</sup> to 19<sup>h</sup> Sharp wave in Dec. (-14'). 19¼<sup>h</sup> to 22¾<sup>h</sup> Double wave in V.F. (+13,-14). 19¾<sup>h</sup> to 20¼<sup>h</sup> Irregular decrease in N.F. (-40), followed till 20¾<sup>h</sup> by a sharp increase (+80). 20½<sup>h</sup> to 22½<sup>h</sup> Irregular steep wave in Dec. (-20), with double-crested wave (+7'), superposed from 20¾<sup>h</sup> to 21½<sup>h</sup>, followed till 22¾<sup>h</sup> by a sharp wave (-9'). 21½<sup>h</sup> to 21¼<sup>h</sup> Sharp wave in N.F. (+22). 21¾<sup>h</sup> to 22¼<sup>h</sup> Sharp decrease in N.F. (-100), and increase (+30). - $27^{\rm d} \circ_{4}^{3\rm h}$ to $2^{\rm h}$ Wave in Dec (-6'). - $31^d$ $13^h$ to $13^{\frac{1}{h}}$ Sharp wave in Dec. (+4'). $19^h$ to $20^{\frac{1}{h}}$ Waves in Dec. (-5') and N.F. (+23). ### EXPLANATION OF THE PLATES. The magnetic motions figured on the Plates are those for days of disturbance selected by the International Committee—March 7<sup>d</sup> 20<sup>h</sup> to 8<sup>d</sup> 20<sup>h</sup>; April 11<sup>d</sup> 5<sup>h</sup> to 12<sup>d</sup> 5<sup>h</sup>; May 16<sup>d</sup> 17<sup>h</sup> to 17<sup>d</sup> 17<sup>h</sup>; August 15<sup>d</sup> 15<sup>h</sup> to 16<sup>d</sup> 15<sup>h</sup>; September 21; October 16; December 8; December 25<sup>d</sup> 3<sup>h</sup> to 26<sup>d</sup> 3<sup>h</sup>. The time is Greenwich Civil Time (commencing at midnight, and counting the hours from o to 24). The magnetic declination, north force, and vertical force are indicated by the letters D., N., and V. respectively; the declination (west) is expressed in minutes of arc, the unit for north and vertical force is $\gamma$ (0.00001 C.G.S.), the corresponding scales being given on the sides of each diagram. Equal changes of amplitude in the several registers correspond nearly to equal changes of absolute magnetic force, 0.001 of a C.G.S. unit being represented by 0<sup>in</sup>.69=17.4 in the declination mm. curve, by 0<sup>in</sup>.69=17.5 in the north force curve, and by 0<sup>in</sup>.59=15.0 in the vertical force curve. Upward motion indicates increase of declination, north force, and vertical force. # MAGNETIC DISTURBANCES RECORDED AT THE ROYAL OBSERVATORY, GREENWICH, 1918. # MAGNETIC DISTURBANCES RECORDED AT THE ROYAL OBSERVATORY, GREENWICH, 1918. . ## MAGNETIC DISTURBANCES RECORDED AT THE ROYAL OBSERVATORY, GREENWICH, 1918. # MAGNETIC DISTURBANCES RECORDED AT THE ROYAL OBSERVATORY, GREENWICH, 1918. ROYAL OBSERVATORY, GREENWICH. ## RESULTS OF ## METEOROLOGICAL OBSERVATIONS. 1918. | | BARO-<br>METER. | | | | Temperat | URE. | | | | erence betw | | , t | | Temperat | URE. | ge No.<br>rface is<br>round. | | |------------------------------------|------------------------------------------------------------------------------|----------|--------------|-----------------|------------------------------------|-----------------------------------------------|-----------------------------------|-----------------------------------------|------------|-------------|--------|----------------------------------------|------------------------------|----------------------|--------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------| | MONTH<br>and<br>DAY, | Hourly<br>rrected<br>i to 32°<br>). | | | Of the Ai | r. | | Of<br>Evapo-<br>ration, | Of the<br>Dew<br>Point. | an | d Dew Poi | nt | Degree of Humidity (Saturation = 100). | Of Rad | liation. | Of the<br>Earth<br>3 ft. 2 ins. | ed in Gau<br>seiving sur<br>ove the Gr | Electricity. | | 1918. | Mean of 24 Hourly<br>Values (corrected<br>and reduced to 32°<br>Fahrenheit). | Highest. | Lowest | Daily<br>Range. | Mean<br>of 24<br>Hourly<br>Values. | Excess<br>above<br>Average<br>of<br>65 Years. | Mean<br>of 24<br>Hourly<br>Values | De-<br>duced<br>Mean<br>Daily<br>Value. | Mean. | Greatest. | Least. | Degree c<br>(Saturat | Highest<br>in Sun's<br>Rays. | Lowest on the Grass. | below<br>the<br>Surface<br>of the<br>Soil. | Rain collected in Gauge No.<br>6, whose receiving surfaceis<br>5 inches above the Ground. | | | Ton r | in. | 36·I | 0 | 0 | 0 | 0 | 0 | 0 | 3·6 | 0 | 0 | 86 | 0 | 0 | 0 | in.<br>0.008 | | | Jan. 1 | 30·044<br>30·186 | 39.8 | 31.4 | 4.7 | 33·7<br>34·9 | - 4·9<br>- 3·5 | 32.4 | 30·I | 3.7 | 5·7<br>7·5 | 0.0 | 86 | 44·9<br>36·9 | 30.2 | 40·52<br>40·40 | 0.000 | • • | | 3 | 30.271 | 34.5 | 26.0 | 8⋅5 | 31.9 | - 6.4 | 30.6 | 27.6 | 4.3 | 7.1 | 1.2 | 82 | 46.5 | 20.7 | 40.33 | 0.002 | •• | | 4 | 30.286 | 35.0 | 23.1 | 11.9 | 29.4 | - 8.9 | 28.3 | 24.6 | 4.8 | 5.5 | 0.0 | 82 | 42.2 | 19.1 | 40.22 | 0.000 | • • | | 5 | 30.158 | 38⋅1 | 35.0 | 3.1 | 36.6 | - I·6 | 34.4 | 31.5 | 5.4 | 8.8 | 3.6 | 81 | 39.7 | 31.7 | 39.97 | 0.000 | • • | | 6 | 29.579 | 38.5 | 29.9 | 8.6 | 35.3 | - 2.8 | 34.1 | 32.2 | 3.1 | 10.2 | 0.0 | 89 | 45·I | 26.9 | 39.78 | 0.203 | • • | | 7 | 29.191 | 36.9 | 26.3 | 10.6 | 34.0 | <b>-</b> 4.0 | 31.5 | 27·I | 6.9 | 13.6 | 1.5 | 75 | 47.7 | 21.0 | 39.69 | 0.003 | $\dots : \dots : wP$ | | 8 | 29.544 | 28.9 | 22.4 | 6.5 | 25.4 | - 12.5 | 24.3 | 18.6 | 6.8 | 8.4 | 1.4 | 74 | 40.9 | 16.4 | 39.65 | 0.050 | D | | 9 | 29.880 | 39.5 | 18.5 | 21.0 | 29.5 | - 8.4 | 27.7 | 21.7 | 7.8 | 7.6 | I.I | 72 | 40.0 | 13.9 | 39.45 | 0.014 | $\dots : \dots : wP$ | | 10 | 29.884 | 44.0 | 37.9 | 6∙1 | 41.0 | + 3.1 | 38.1 | 34.4 | 6.6 | 9.2 | 4.3 | 78 | 62.8 | 32.0 | 39.28 | 0.000 | wwP: wP: wP | | 11 | 29.787 | 42·I | 38.2 | 3.9 | 40.3 | + 2.4 | 38.2 | 35.5 | 4.8 | 8.0 | 1.8 | 83 | 46.9 | 33.0 | 39.15 | 0.020 | wP, wwP: wP: wP | | 12 | 29.504 | 41.1 | 35.2 | 5.9 | 38.9 | + 1.0 | 36.3 | 32.8 | 6∙1 | 9.5 | 3.8 | 80 | 53.0 | 29.9 | 39.17 | 0.000 | wP: wP: mP | | 13 | 29.619 | 37.5 | 29.1 | 8.4 | 33.7 | - 4.3 | 31.1 | 26.4 | 7:3 | 11.8 | 0.6 | 74 | 50.7 | 23.9 | 39.26 | 0.006 | mP | | 14 | 29.790 | 37.6 | 26.2 | 11.4 | 32.0 | - 6.0 | 29.7 | 24.4 | 7·6<br>3·0 | 6.7 | 0.0 | 72 | 47.1 | 28.0 | 39.13 | 0.030 | wP: wwP, wP: wP<br>wP, wwP: wwP: wP, wwP | | 15 | 29·261 | 50.3 | 32.5 | 17.0 | 40.4 | + 2.3 | 39.1 | 37.4 | 3.0 | 0.7 | 1.0 | 90 | 53.0 | 32.1 | 39 12 | 0 000 | • | | 16 | 29.525 | 35.4 | 30.1 | 5.3 | 33.1 | - 5.2 | 32.2 | 30.4 | 2.7 | 4.8 | 1.0 | 90 | 43.9 | 24.0 | 39.00 | 0.384 | wwP:wP:wP | | 17 | 29.727 | 44.7 | 31.1 | 13.6 | 34.2 | - 4.3 | 33.6 | 32.6 | 3·8 | 3.7 | 0.7 | 94<br>87 | 42.2 | 26.1 | 39.01 | 0.411 | wP:wwP:wwN,wwP<br>wwP:wwP;wwN | | 18 | 29:397 | 50.9 | 44.7 | 6.2 | 48.9 | + 10.3 | 47.1 | 45·I | 3.0 | 5.7 | 0.9 | 0/ | 57:3 | 42.2 | 30./3 | 0.250 | wwi.wwi.wwi,wwi | | 19 | 29.348 | 51.0 | 47:3 | 3.7 | 49.3 | + 10.6 | 46.7 | 43.9 | 5.4 | 9.8 | 1.7 | 82 | 58.0 | 43.0 | 39.07 | 0.285 | wwP: wwP, wP: wP | | 20 | 29.213 | 53.6 | 44·9<br>46·8 | 8.7 | 50.1 | + 11.3 | 46·5<br>46·1 | 42.7 | 7·4<br>6·8 | 12.6 | 3.8 | 77 | 55·2<br>85·2 | 36·7<br>38·5 | 39·97<br>40·63 | 0.000 | wwP : wwP : wP<br>wP, wwP : wP : wP | | 21 | 29.280 | 56.0 | 40.0 | 9.2 | 49.4 | + 10.6 | 40.1 | 42.6 | 0.0 | 11.5 | 3.0 | 77 | 05.2 | 30.5 | 4003 | 0.000 | | | 22 | 29.312 | 56.2 | 45.4 | 10.8 | 49.2 | + 10.4 | 47·1 | 44.8 | 4.4 | 9.4 | 1.9 | 86 | 84.3 | 40.1 | 41.18 | 0.095 | wP | | 23 | 29.714 | 52.0 | 42.2 | 9.8 | 47·6<br>50·8 | + 8.7 | 46·0<br>48·0 | 44.2 | 3.4 | 8.5 | 0.0 | 89<br>81 | 65·6<br>85·7 | 32·8<br>40·6 | 41.59 | 0.030 | $egin{array}{c} ext{wP} \ ext{wWP}: ext{wP} \end{array}$ | | 24 | 30.127 | 55.6 | 48.2 | 7.4 | 50.8 | ĺ ( | 40.0 | 45·I | 5.7 | 11.4 | 2 1 | 01 | 05 / | 400 | 42 10 | | | | 25 | 30.292 | 52.0 | 43.4 | 8.6 | 47.6 | + 8.5 | 46.0 | 44.2 | 3.4 | 5.9 | 1.7 | 89 | 77.0 | 36.2 | 42.42 | 0.000 | wP | | 26 | 30.234 | 47:9 | 40.7 | 7.2 | 45.4 | + 6.1 | | 42.4 | 3.0 | 5.5 | 2.4 | 89<br>87 | 65.c<br>83.9 | 35.9 | | 0.000 | wP<br>wP | | 27 | 30.195 | 52.8 | 37.5 | 15.3 | 43.6 | + 4·I | 42.0 | 40.1 | 3.2 | 9.3 | 0.0 | 0/ | 03.9 | 27.9 | 43.07 | 0.000 | W I | | 28 | 30.184 | 49.0 | 36.2 | 12.8 | 42.4 | + 2.8 | 40.9 | 39.1 | 3.3 | 7.9 | 0.9 | 89 | 77.0 | 26⋅1 | 43.10 | 0.004* | wP : wP, wwP : wP | | 29 | 30.189 | 51.5 | 36·3 | 15·2<br>21·4 | 41.6 | + I·9<br>- 0·2 | 37.8 | 38.9 | 2.7 | 9.2 | 0.2 | 91 | 82·1 | 26.2 | 43.00 | 0.009* | wwP : wP : wP<br>wP | | 30 | 30.238 | 51.5 | 30.1 | 21.4 | 39.5 | - 0.2 | 3/10 | 35.6 | 3.9 | 110 | | | 021 | 2,50 | 42 02 | 0 00, | | | 31 | 30.227 | 47.9 | 28.0 | 19.9 | 36.5 | - 3.3 | 34.8 | 32.4 | 4.1 | 11.3 | 0.0 | 86 | 74.4 | 21.8 | 42.49 | 0.001* | wP | | Means | 29.811 | 44.8 | 34.6 | 10.1 | 39.6 | + 1.0 | 37.7 | 34.8 | 4.7 | 8.6 | 1.4 | 82.8 | 58.6 | 29.1 | 40.22 | Sum<br>2·715 | | | umber of<br>olumn for<br>eference. | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | II | 12 | 13 | 14 | 15 | 16 | 17 | The values given in Columns 2, 3, 4, 13, and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29in 811, being oin o17 higher than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR. The highest in the month was $56^{\circ} \cdot 2$ on January 22; the lowest in the month was $18^{\circ} \cdot 5$ on January 9; and the range was $37^{\circ} \cdot 7$ . The mean of all the highest daily readings in the month was $44^{\circ}8^{\circ}$ , being $1^{\circ} \cdot 7$ higher than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was $34^{\circ} \cdot 6$ , being $0^{\circ} \cdot 9$ higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was $10^{\circ} \cdot 1$ , being $0^{\circ} \cdot 7$ greater than the average for the 65 years, 1841-1905. The mean for the month was $39^{\circ} \cdot 6$ , being $1^{\circ} \cdot 0$ higher than the average for the 65 years, 1841-1905. The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the photographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. <sup>\*</sup>Rainfall (Column 16). The amounts entered on January 28, 29, 30, 31 are derived from frost and dew. | 1 | bine. | | WIND AS DEDUC | ED FROM SELF-REGISTERING | ANEMOM | ETERS. | 1 | | | |--------------------------------------|-----------------------------|--------------------|--------------------------------------------|-----------------------------------------|---------------------------|-----------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------| | MONTH | f Sunsl | orizon. | | Osler's. | | | Robin-<br>son's. | Clouds | and Weather. | | and<br>DAY,<br>1918. | ration o | Sun above Horizon. | General Di | rection. | Pres<br>on<br>Squar | sure<br>the<br>e Foot. | l Move-<br>he Air. | | | | | Daily Duration of Sunshine. | Sun s | A.M. | P.M. | Greatest. | Mean of 24<br>Hourly<br>Measures. | Horizontal Move-<br>ment of the Air. | A.M. | Р.М. | | Jan. 1 | hours. 0·1 0·0 2·3 | 7.9<br>7.9<br>7.9 | NE : ENE<br>N : Calm W<br>N : NNE | NE : NNE<br>W : N<br>N : NNE | lbs.<br>5·3<br>1·8<br>2·1 | lbs.<br>0.55<br>0.05 | miles.<br>478<br>195<br>233 | IO, ocsn, ho-fr, w : IO, W 6, mrsh, hofr: f, hofr : f, sltsh 9 | 10 : 10, ocmr : 10<br>8, m : pcl,mrsh: 1<br>1 : 1, m, h, hofr | | 4<br>5<br>6 | 0·4<br>0·0<br>0·0 | 7·9<br>7·9<br>8·0 | Calm : W<br>WSW<br>Calm : SW | W : WSW<br>WSW : W<br>SW : W | 0·8<br>1·0 | 0·03<br>0·02<br>0·02 | 229<br>229<br>172 | o, sltf, hofr : 1, h 10 : 10, s : 10, s 10 : 8 : 7, cu, scu | ro, ocsltsn : IO : IO<br>IO, S : IO<br>IO, fqsltr: IO, r : IO,mr | | 7<br>8<br>9 | 3·0<br>3·4<br>0·0 | 8·0<br>8·0 | WSW: NW<br>NW: W: N<br>NW: W: SW | N:NNW:NW<br>N:NW:W<br>W | 2·4<br>7·0<br>5·4 | 0·16<br>0·70<br>0·39 | 311<br>477<br>508 | 10, ocmr: : 10<br>3 : vcl, sn, w: pcl<br>0, hofr : 9, sn | I : 0 : 0<br>I : I : 0, hofr<br>IO, W : IO, W | | 10<br>11<br>12 | 2·7<br>0·7<br>0·9 | 8·I<br>8·I<br>8·2 | W<br>WSW : W : N<br>WSW : W | W: WSW<br>NW: WSW: SW<br>WSW: W: WNW | 5.0<br>4.7<br>5.0 | 0.36 | 603<br>439<br>448 | 10, w : vcl, w : vcl, cun, w 2, w : 10, sltr. glm 10, w : pcl : 9 | vcl, thcl,w : 10, 0cmr, w vcl, cu : 2 : 3, w 10 : 10, 0csltr : 7 | | 13<br>14<br>15 | 3·6<br>0·0<br>0·0 | 8·2<br>8·2<br>8·2 | NW: W: WSW<br>Calm: NE: SE<br>SSW: SW: WSW | WNW : W<br>SSE : S : SSW<br>WSW : N : E | 3·8<br>2·3<br>7·I | 0.11 | 362<br>223<br>424 | o, h, hofr: o, h, hofr: o, h 10, sn : 10 : 10, n 10, r, m-r, w : 10, r, w | 1, cu : I : 9, sltsn 9, n, cu : 10 : 10 10, r, glm : 10, sn, sl, r | | 16<br>17<br>18 | 0·2<br>0·0<br>0·5 | 8·3<br>8·3<br>8·4 | E: NE: N<br>SSW: S: E<br>SSW: SW | NW: W: SW<br>E: ESE: SSW<br>SW | 1·5<br>0·9<br>6·2 | 0.05 | 284<br>214<br>508 | IO, r : IO, r, sl, sn IO : IO, r, sn : IO, thr,sn IO : IO, ocslt. r : IO, fqmr, w | 9, sn : 0 : 0, h, ho, f<br>10, r : 10, fqshs : 10, mr<br>10, ocmr, w : 10, ocsltr, w : 10, r | | 19<br>20<br>21 | 0·0<br>0·0<br>6·2 | 8·4<br>8·5<br>8·5 | SW : SSW<br>SSW : S<br>SSW : S | S:SSW<br>S:SSE:SSW<br>S:SSE | 4·4<br>6·2<br>4·5 | 0.60 | 372<br>474<br>339 | 10, r : 8, ocr : 10, ocsltr pcl, w : 10, ocsltr vcl : 2, thcl | IO, OCsltr: 10, thcl: 10, r IO, OCsltr: pcl.w, lu-ha: 2, w vcl: pcl, luha: 9, luha | | 22<br>23<br>24 | 3.9<br>1.1<br>3.2 | 8·6<br>8·6<br>8·7 | SSE : S<br>SSW : Calm SW<br>SSW : SW | SSW : S<br>SW : SSW<br>SW : SSW | 1·6<br>2·9<br>4·1 | 0.13 | 251<br>282<br>438 | 10, fqshs : 8 : vcl, s, n, cl, cu<br>8 : vcl, sltf : pcl, thcl, m<br>10, fqmr: 10, fqmr : pcl | | | 25<br>26<br>27 | 4·2<br>1·4<br>6·6 | 8·7<br>8·8<br>8·8 | SSW<br>SW:SSW<br>SW:Calm:S | SSW : SW<br>SSW : SW<br>S : SSW | | 0·10<br>0·17<br>0·04 | 286<br>299<br>192 | 10 : 10 : 9, n | 6 : 10 : 10<br>8 : 10, 0cmr : 9, n<br>0 : 0 | | 28<br>29<br>30 | 4·5<br>7·6<br>6·6 | 8·9<br>8·9<br>9·0 | S : SW<br>S : Calm<br>Calm : SE | SSW: S<br>SSW: Calm<br>SSE: S: Calm | 0.3 | 0.01 | 245<br>199<br>126 | o : 7 : 9, cun<br>o, f, hyd : : 0, m<br>thcl, hyd, hofr : f, hofr | pcl : o, m : o, h r : r, ci : thcl, m o : o, sltf | | 31 | 6.5 | 9.0 | Calm E | ESE : Calm | 0.3 | 0.00 | 127 | o, f, hofr: o, tkf, hofr: o, f | o : o, hofr | | Means | 2.3 | 8.4 | | | • • | 0.23 | 322 | | | | Number of<br>Column for<br>Reference | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | the average for the 65 years, 1841-1905. The mean Temperature of Evaporation for the month was $37^{\circ} \cdot 7$ , being $0^{\circ} \cdot 5$ higher than The mean Temperature of the Dew Point for the month was $34^{\circ} \cdot 8$ , being $0^{\circ} \cdot 7$ lower than The mean Degree of Humidity for the month was $82 \cdot 8$ , being $5 \cdot 2$ less than The mean Elastic force of Vapour for the month was $0^{\ln 2} \cdot 202$ , being $0^{\ln 2} \cdot 004$ less than The mean Weight of Vapour in a Cubic Foot of Air for the month was $2^{878} \cdot 4$ , being the same as The mean Weight of a Cubic Foot of Air for the month was 553 grains, being 1 grain less than The mean weight of Clear for the month was $610 \cdot 10^{10} \cdot 10^{10} \cdot 10^{10}$ . The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6·1. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0·270. The maximum daily amount of Sunshine was 7·6 hours on The highest reading of the Solar Radiation Thermometer was 85° 7 on January 24; and the lowest reading of the Terrestrial Radiation Thermometer was 13° 9 on January 9. The Proportions of Wind referred to the cardinal points were N. 4, E. 2, S. 12, W. 10. Three days were calm. The Greatest Pressure of the Wind in the month was 7'1 lbs. on the square foot on January 15. The mean daily Horizontal Movement of the Air for the month was 322 miles; the greatest daily value was 603 miles on January 10; and the least daily value was 126 miles on January 30. Rain (olin.005 or over) fell on 17 days in the month, amounting to 2<sup>in.</sup>715 as measured by gauge No. 6 partly sunk below the ground; being olin.834 greater than the average fall for the 65 years, 1841-1905. | | Baro-<br>meter. | | | | Temperat | URE. | | | | ference be | | h . | 1 | EMPERATU | JRE. | e No.<br>face is | | |-------------------------------|------------------------------------------------------------------------------|---------------------------|----------------------|----------------------|------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------|------------------------|-------------------------------------|---------------------------------------|----------------------------------------|------------------------------|----------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------| | MONTH<br>and<br>DAY, | Hourly<br>rrected<br>1 to 32° | | | Of the | Air. | | Of<br>Evapo-<br>ration. | Of the<br>Dew<br>Point. | aı | Air Tempe<br>ad Dew Po<br>Femperatu | oint | Degree of Humidity (Saturation = 100). | Of Rac | liation. | Of the<br>Earth<br>3 ft. 2 ins. | d in Gaug<br>eiving surf<br>ive the Gr | Electricity. | | 1918. | Mean of 24 Hourly<br>Values (corrected<br>and reduced to 32°<br>Fahrenheit). | Highest. | Lowest. | Daily<br>Range. | Mean<br>of 24<br>Hourly<br>Values. | Excess<br>above<br>Average<br>of<br>65 Years. | Mean<br>of 24<br>Hourly<br>Values. | De-<br>duced<br>Mean<br>Daily<br>Value. | Mean. | Greatest. | Least. | Degree of (Saturati | Highest<br>in Sun's<br>Rays. | Lowest on the Grass. | below<br>the<br>Surface<br>of the<br>Soil. | Rain collected in Gauge No.<br>6, whose receiving surface is<br>5 inches above the Ground. | | | Feb. 1 2 3 | in.<br>30·228<br>30·163<br>30·015 | 0<br>44.4<br>46.5<br>48.9 | 28·4<br>32·5<br>41·1 | 16.0<br>14.0<br>7.8 | 33·8<br>39·9<br>44·3 | - 5·8<br>+ 0·4<br>+ 4·8 | 33.0<br>39.3<br>42.5 | 31.6<br>38.5<br>40.4 | 0<br>2·2<br>1·4<br>3·9 | 6.5<br>3.7<br>5.3 | ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | 95 | 76°0<br>51°0<br>65°9 | 20·3<br>21·0<br>39·2 | 42·11<br>41·70<br>41·50 | in.<br>0.003*<br>0.093<br>0.048 | wwP, wP<br>wwP<br>wwP | | 4<br>5<br>6 | 29·914<br>29·878<br>29·806 | 48·1<br>50·5<br>51·0 | 41·9<br>44·1<br>40·1 | 6·2<br>6·4<br>10·9 | 46·0<br>46·9<br>46·6 | + 6·5<br>+ 7·3<br>+ 7·0 | 44·9<br>45·3<br>44·4 | 43.7<br>43.5<br>41.9 | 2·3<br>3·4<br>4·7 | 4·2<br>5·8<br>7·2 | 1.1 | 89 | 54·4<br>65·0<br>77·1 | 33.4<br>36.2<br>32.7 | 41.60<br>41.90<br>42.25 | 0.014<br>0.021<br>0.160 | wwP<br>wwP<br>wwP, wP | | 7<br>8<br>9 | 29·697<br>29·689<br>29·725 | 55·6<br>53·6<br>53·5 | 47·2<br>45·7<br>46·1 | 8·4<br>7·9<br>7·4 | 50·7<br>48·9<br>49·3 | + 11·2<br>+ 9·6<br>+ 10·2 | 48·9<br>46·4<br>46·4 | 47·0<br>43·7<br>43·3 | 3·7<br>5·2<br>6·○ | 5·5<br>12·3<br>9·9 | 2·5<br>0·0<br>2·7 | 88<br>83<br>80 | 77·1<br>86·1<br>82·1 | 45.0<br>39.0<br>39.4 | 42·56<br>43·00<br>43·40 | 0.000<br>0.128<br>0.040 | $\begin{array}{c} {\rm wwP} \\ {\rm wwP} \\ {\rm wwP: wP} \end{array}$ | | IO<br>II<br>I2 | 29·978<br>30·125<br>30·136 | 56·8<br>53·6<br>51·2 | 48·0<br>48·1<br>44·8 | 8·8<br>5·5<br>6·4 | 50·9<br>50·8<br>48·2 | + 12·0<br>+ 12·0<br>+ 9·4 | 48·0<br>47·9<br>46·2 | 45.0<br>44.9<br>44.0 | 5·9<br>5·9<br>4·2 | 9·7<br>8·0<br>7·5 | 4·I<br>3·I<br>2·I | 81<br>81<br>86 | 75·2<br>60·0<br>72·9 | 42·2<br>42·0<br>43·9 | 43·68<br>44·00<br>44·24 | 0.000 | $egin{array}{l} wwP:wP \ wP \ wP:wwP \end{array}$ | | 13<br>14<br>15 | 29·927<br>30·182<br>30·265 | 51·3<br>45·6<br>45·5 | 44·7<br>41·0<br>31·6 | 6·6<br>4·6<br>13·9 | 48.6<br>42.8<br>39.7 | + 9.6<br>+ 3.5<br>+ 0.3 | 47.0<br>41.4<br>37.8 | 45·2<br>39·7<br>35·3 | 3·4<br>3·1<br>4·4 | 5·7<br>6·7<br>7·4 | 0.3<br>1.1 | 89<br>89<br>85 | 58·5<br>55·1<br>77·7 | 43·7<br>39·1<br>22·8 | 44·53<br>44·71<br>44·79 | 0.048<br>0.000<br>0.000 | wwP: wP: wwP<br>wP, wwP: wP, wwP: wP<br>wP: wP: wP, mP | | 16<br>17<br>18 | 30·076<br>30·098<br>29·964 | 42·I<br>38·9<br>42·9 | 27·9<br>23·1<br>21·3 | 14·2<br>15·8<br>21·6 | 34·9<br>30·2<br>31·0 | - 4·6<br>- 9·4<br>- 8·5 | 31·2<br>28·0<br>28·7 | 25·2<br>21·3<br>22·5 | 9·7<br>8·9<br>8·5 | 16·0<br>12·9<br>13·3 | 4.0 | 68<br>68<br>69 | 89·6<br>79·7<br>77·1 | 17·4<br>14·0<br>16·1 | 44·62<br>43·97<br>43·52 | 0.000 | wP:sP,mP<br>:wwP:wwP<br>wwP:wwP:wP | | 19<br>20<br>21 | 29·948<br>29·886<br>29·979 | 43·3<br>48·2<br>48·8 | 23·2<br>33·0<br>36·3 | 20·I<br>15·2<br>12·5 | 31·3<br>42·2<br>42·9 | - 8·2<br>+ 2·7<br>+ 3·3 | 29·7<br>40·7<br>38·9 | 25.6<br>38.9<br>34.1 | 5·7<br>3·3<br>8·8 | 12·2<br>7·2<br>13·7 | 0.0 | 78<br>88<br>72 | 73·8<br>59·0<br>82·2 | 18·1<br>28·4<br>30·0 | 42·77<br>42·18<br>41·85 | 0.000<br>0.113<br>0.000 | wwP<br>wwP : wP<br>wwP, wP : wP | | 22<br>23<br>24 | 30·020<br>30·333<br>30·254 | 55·3<br>59·1<br>54·1 | 43·8<br>47·2<br>44·8 | 9·3<br>11·5 | 50·0<br>52·7<br>48·9 | + 10·3<br>+ 12·9<br>+ 8·9 | 47·5<br>48·7<br>44·8 | 44·8<br>44·7<br>40·4 | 5·2<br>8·0<br>8·5 | 6·4<br>10·8<br>12·2 | 2·I<br>3·2<br>2·8 | 83<br>75<br>72 | 72·5<br>86·8<br>86·7 | 39·6<br>40·0<br>38·5 | 41·90<br>42·20<br>42·80 | 0.000<br>0.000<br>0.011 | wP, wwP : wP<br>wP : mP<br>wP : wP : mP | | 25<br>26<br>27 | 30·403<br>30·416<br>30·013 | 46·5<br>49·8<br>50·0 | 30·9<br>30·1 | 16·4<br>18·9<br>10·1 | 41.7 | + 0.9<br>+ 1.5<br>+ 5.2 | 38·3<br>39·2<br>42·7 | 34·9<br>36·1<br>39·5 | 6·1<br>5·6<br>6·0 | 13·3<br>8·9<br>11·5 | 0.0<br>2.5<br>I.I | 79<br>81<br>80 | 84·2<br>61·0<br>83·0 | 24·5<br>24·8<br>32·4 | 43·23<br>43·45<br>43·30 | 0·243<br>0·000<br>0·005 | wN, wP: wP: mP<br>wP: wP: wP, wwP<br>wwP, wP: mP: mP | | 28 | 29.436 | 44.9 | 33.3 | 11.6 | 37.7 | - 2.6 | 35.3 | 32.0 | 5.7 | I I · 2 | | 81 | 78.9 | 27.7 | 43.30 | 0.053 | wP:mP,mN:mP | | Means | 30.020 | 49:3 | 37.9 | 11.4 | 43.5 | + 3.9 | 41.2 | 38.1 | 5.3 | 9·1 | 1·6 | 81.9 | 73.2 | 31.8 | 43.04 | Sum<br>0.983 | | | umber of olumn for Reference. | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the photographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Column 10 are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13, and 14, are derived from eye-readings of self-registering thermometers. \* Rainfall (Column 16). The amount entered on February 1st derived from fog and frost, The mean reading of the Barometer for the month was 3011.020, being 011.218, higher than the average for the 65 years, 1841-1905 ### TEMPERATURE OF THE AIR. The highest in the month was 59°·1 on February 23; the lowest in the month was 21°·3 on February 18; and the range was 37°·8. The mean of all the highest daily readings in the month was 49°·3, being 4°·1 higher than the average for the 65 years, 1841–1905. The mean of all the lowest daily readings in the months was 37°·9, being 3°·7 higher than the average for 65 years, 1841–1905. The mean of the daily ranges was 11°·4, being 0°·4 greater than the average for the 65 years, 1841–1905. The mean for the month was 43°·5, being 4°·0 higher than the average for the 65 years, 1841–1905. | | ine. | 1 | Wind as Deduc | ED FROM SELF-REGISTERING | ANEMO | METERS. | | | |--------------------------------------|-----------------------------|-----------------------------|-------------------------------------------|-----------------------------------------------|--------------------|-----------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Sunsh | Horizon. | | Osler's. | | | Robin-<br>scn's | Clouds and Weather. | | MONTH<br>and<br>DAY,<br>1918. | ration of | above Ho | Genera | l Direction. | or | essure<br>the<br>re Foot. | l Move-<br>he Air. | | | | Daily Duration of Sunshine. | Sun 8 | A.M. | P.M. | Greatest. | Mean of 24<br>Hourly<br>Measures. | Horizontal Move-<br>ment of the Air. | A.M. P.M. | | Feb. 1 2 3 | hours.<br>4.4<br>0.0 | hours.<br>9·I<br>9·I<br>9·2 | Calm: NE: E<br>ESE: SSE<br>Calm: SE | E : ESE<br>S<br>ESE : Calm : S | 1bs. 0·3 0·6 0·7 | lbs.<br>0.00<br>0.02<br>0.00 | miles.<br>123<br>162<br>149 | o, f, hofr: f, hofr: 10, f, hofr 9, hofr: 6: 10, r 10, ocsltr: 10, r, sltr 10, ocsltr: 9 | | 4<br>5<br>6 | 0·0<br>0·9<br>3·2 | 9·2<br>9·3<br>9·4 | S : SSW<br>S : SSW<br>SSW : SW | S<br>S:SSW<br>SW | 3·5<br>2·1<br>8·1 | 0·27<br>0·13<br>0·65 | 352<br>280<br>483 | 8 : 10 : 10, n, fqsltr 10, n : 10, fqr : 10, mr 10, r : 8 : 8 10 : 10 : 10 : 10, fqmr 7 : vcl : pcl 9, n, ocsltr : 10, ocsltr, w : 10, sltr, w | | 7<br>8<br>9 | 0·3<br>4·5<br>5·1 | 9·4<br>9·5<br>9·6 | SW<br>SSW : SW<br>SW | SW<br>SW<br>SW | 7·8<br>6·4<br>11·0 | 0.48 | | 10, fqsltr, w : 10 : 10,00cmr 10, ocmr, w : 10 : 9, n, mrsh 10, r, mr : 10, r : pcl, r pcl,w, sh : 0 : 1 1, w : pcl,thcl,w,sltsh:pcl,cu,ci,w vcl, stw : 10, mr, w : 10, r, w | | 10<br>11<br>12 | o.e<br>0.1<br>0.9 | 9·6<br>9·7<br>9·7 | SW<br>SW<br>SW | SW<br>SW<br>SW:SSW | 7·8<br>6·4<br>3·2 | 0·95<br>0·62<br>0·26 | 539 | vcl,mrsh, w : 9, w vcl, ci, cu, w : vcl, w vcl, w : vcl, w : 10, w 10, w : 10 10 : 9, cu, n : 10, mr : 10, ocmr | | 13<br>14<br>15 | 1·8<br>0·0 | 9·8<br>9·8<br>9·9 | SSW: SW: WSW<br>NNE: NE: ENE<br>Calm: ESE | W : NW : NNE<br>ESE : E<br>ESE : SE | I·5<br>I·4<br>I·1 | 0·14<br>0·06<br>0·04 | 313<br>220<br>160 | 10, lir : 10, n, ocmr 10 : 10, fqmr : 10, sltm 10 : 10, mrsh 10 : 10 8 : 10, n 7 : 0, hofr : 10 | | 16<br>17<br>18 | 8·6<br>9·0<br>8·7 | 10·1<br>10·0<br>10·0 | SSE : S<br>E : SE<br>Calm : ESE : S | SSE: SE: ESE<br>ESE: E: Calm<br>SSE: SE: Calm | 2·2<br>0·4<br>0·7 | / | 245<br>127<br>109 | Io, hofr : I, ci, s, hofr I, cis : I : o, hofr I, hofr : I, cis : I : o, hofr I, hofr, sltf : I, sltf : I, sltf : o, sltf, hofr | | 19<br>20<br>21 | 4·2<br>○·○<br>6·2 | 10.3 | Calm<br>SSW<br>W:WSW:SW | Calm: SSW<br>SSW: SW: W<br>WSW: SW | 0·4<br>5·0<br>4·4 | o·oo<br>o·37<br>o·48 | 100<br>384<br>475 | I, hofr : o, sltf, hofr vcl, f : o, sltf : o, sltf IO :IO, ocmr: IO, ocmr IO, mr : IO, ocsltr : IO, ocsltr : IO, ocsltr : O, sltf thcl : I : T, thcl, luha : O, w, luha | | 22<br>23<br>24 | 0·1<br>2·9<br>1·9 | 10.4 | SW<br>WSW: W: WNW<br>WSW: SW | WSW ·<br>W : WSW<br>WSW : SW | 8·3<br>4·1<br>4·5 | | 639<br>390<br>393 | Io, w : Io, n, sltr Io, n : Io, n Io : vcl : 9 : Io Io : 10 : 9, ocsltr : vcl : vcl, thcl | | 25<br>26<br>27 | | 10·6<br>10·6<br>10·7 | SW: N<br>SSW: SW<br>W: WNW: WSW | N: Calm: S<br>WSW<br>WSW: SW: W | 7·5<br>5·8<br>1·8 | 0·53<br>0·48<br>0·13 | 475 | 10, r, w : pcl, cu, cu, -n pcl : vcl, thcl, m, h, hofr vcl,thcl,hofr: 2, thcl : g 10 : 10, n 7 : pcl : vcl, n 10, n : 10, sltr : 9 | | 28 | 3.6 | 10.7 | W:WNW:WSW | Var.: N | 2.6 | 0.20 | 295 | 2, hyd : 2, cu, cun 9, ocsltsn : 9 : vcl | | Means | 2.8 | 9.9 | | | | 0.31 | 353 | | | Number of<br>Column for<br>Reference | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 26 | The mean Temperature of Evaporation for the month was 41°·2, being 3°·5 higher than The mean Temperature of the Dew Point for the month was 38°·1, being 2°·7 higher than The mean Degree of Humidity for the month was 81·9, being 3·6 less than The mean Elastic Force of Vapour for the month was oin-230, being oin-023 greater than The mean Weight of Vapour in a Cubic Foot of Air for the month was 2grs-7, being ogrs-3 greater than The mean Weight of a Cubic Foot of Air for the month was 553 grains, being the same as The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7·1. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0·286. The maximum daily amount of Sunshine was 9·0 hours on February 17. February 17. The highest reading of the Solar Radiation Thermometer was 89°.6 on February 16; and the lowest reading of the Terrestrial Radiation Thermometer was 14°.0 on February 17. The Proportions of Wind referred to the cardinal points were N. 1, E. 3, S. 11, W. 10. Three days were calm. The Greatest Pressure of the Wind in the month was 11.0 lbs. on the square foot on February 9. The mean daily Horizontal Movement of the Air for the month was 353 miles; the greatest daily value was 722 miles on February 9; and the least daily value was 100 miles on February 19. Rain (oln.005 or over) fell on 13 days in the month, amounting to oln.983 as measured by gauge No. 6 partly sunk below the ground; being oln.497 less than the average fall for the 65 years, 1841-1905. | | Baro-<br>meter. | | | | [EMPERAT | URE. | <u></u> | | | erence bety | | | | Temperat | TURE. | No.<br>ace is<br>ound. | | |--------------------------------------|------------------------------------------------------------------------------|----------------------|----------------------|---------------------------|------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------|----------------------|-------------------------------------|--------------------------|----------------------------------------|------------------------------|----------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------| | MONTH<br>and<br>DAY, | fourly<br>rected<br>to 32° | | ( | of the Air. | | | Of<br>Evapo-<br>ration. | Of the<br>Dew<br>Point. | ar | ir Temper<br>id Dew Po<br>emperatur | int | Humidity<br>n = 100). | Of Rac | liation. | Of the<br>Earth | in Gauge<br>ving surfa | | | 1918. | Mean of 24 Hourly<br>Values (corrected<br>and reduced to 32°<br>Fahrenheit). | Highest. | Lowest. | Daily<br>Range. | Mean<br>of 24<br>Hourly<br>Values. | Excess<br>above<br>Average<br>of<br>65 Years. | Mean<br>of 24<br>Hourly<br>Values. | De-<br>duced<br>Mean<br>Daily<br>Value. | Mean. | Greatest. | Least. | Degree of Humidity (Saturation = 100). | Highest<br>in Sun's<br>Rays. | Lowest on the Grass. | 3 ft. 2 ins.<br>below<br>the<br>Surface<br>of the<br>Soil. | Rain collected in Gauge No.<br>6, whose receiving surface is<br>5 inches above the Ground. | Electricity. | | Mar. 1 | in. 29.700 29.858 29.788 | 38·9<br>36·3 | 30.6<br>30.1<br>33.8 | 0<br>12:4<br>8:8 | 36·0<br>33·3 | - 4·4<br>- 7·1 | 32·4<br>30·I | 27·0<br>23·9 | 9.0<br>9.4<br>1.6 | 16.3 | 2.6<br>3.1 | 69<br>68 | 95·7<br>78·3 | 23.7 | 43·25<br>42·86 | in.<br>0.004<br>0.000 | wP:mP<br>wP:mP,wP | | 3<br>4<br>5<br>6 | 29·866<br>29·781<br>29·927 | 38·8<br>40·0<br>51·2 | 35·2<br>37·1<br>37·0 | 2·5<br>3·6<br>2·9<br>14·2 | 35.0<br>37.2<br>38.6<br>42.1 | - 5·5<br>- 3·5<br>- 2·3<br>+ 1·1 | 34·4<br>35·9<br>36·9<br>39·8 | 33·4<br>34·1<br>34·6<br>36·9 | 3·I<br>4·0<br>5·2 | 3·4<br>6·0<br>6·4<br>10·7 | 0·5<br>1·2<br>0·7<br>0·9 | 94<br>89<br>87<br>83 | 41·5<br>44·8<br>42·7<br>92·9 | 35·0<br>31·6<br>30·9 | 42·33<br>41·99<br>41·72<br>41·72 | 0.050<br>0.000<br>0.117<br>0.004* | wP, wwP: wwP, wwN: wwP wP, wwP: wP: wP, wwP wwP: wP wP | | 7<br>8<br>9 | 29·916<br>29·888<br>30·000 | 44·I<br>42·6<br>50·4 | 37·6<br>29·5<br>27·4 | 6·5<br>13·1<br>23·0 | 41·1<br>36·3<br>37·2 | + 0·I<br>- 4·8<br>- 3·8 | 39·3<br>34·2<br>34·9 | 37·0<br>31·1 | 4·1<br>5·2<br>5·5 | 6.5 | 1.8 | 86<br>82<br>81 | 62·3<br>89·7<br>91·8 | 31.3 | 41·70<br>41·77<br>41·87 | 0.000 | wP<br>wP<br>wP, wwP : wwP, wP : wP | | 10<br>11<br>12 | 30·016<br>29·971<br>29·896 | 59.0<br>61.9<br>62.6 | 29·I<br>37·I<br>42·6 | 29·9<br>24·8<br>20·0 | 41·1<br>48·2<br>50·7 | + 0·2<br>+ 7·2<br>+ 9·6 | 38·3<br>43·6<br>45·7 | 34·8<br>38·6<br>40·5 | 6·3<br>9·6<br>10·2 | 17·5<br>17·5<br>19·4 | 0.0<br>2.5<br>3.0 | 79<br>70<br>69 | 90.0 | 22·7<br>27·0<br>27·2 | 41·73<br>41·79<br>42·10 | 0.002*<br>0.000<br>0.000 | wP:wP:wP,mP<br>wP:wP,mP:sP<br>mP:mP,ssP | | 13<br>14<br>15 | 30·142<br>30·000<br>29·852 | 52·7<br>52·0<br>47·1 | 41·9<br>38·2<br>32·6 | 10·8<br>13·8<br>14·5 | 46·2<br>42·5<br>39·5 | + 4.9<br>+ 1.0<br>- 2.2 | 44·3<br>40·0<br>36·6 | 42·I<br>37·0<br>32·8 | 4·1<br>5·5<br>6·7 | 8·6<br>15·7<br>14·1 | 0·7<br>0·0<br>1·8 | 87<br>81<br>78 | 76·7<br>102·0<br>99·2 | 30·0<br>36·0<br>25·6 | 42·62<br>43·05<br>43·35 | 0.000<br>0.000 | mP, wP: mP<br>wP, mp: mP<br>wwP: mp, sP: ssP, sP | | 16<br>17<br>18 | 29·791<br>29·837<br>29·963 | 49·9<br>54·8<br>61·2 | 29·0<br>33·2<br>36·7 | 20·9<br>21·6<br>24·5 | 38·5<br>43·0<br>46·7 | - 3·4<br>+ 1·0<br>+ 4·7 | 35·6<br>41·0<br>43·7 | 31·7<br>38·6<br>40·3 | 6·8<br>4·4<br>6·4 | 9·7<br>15·6 | 0·4<br>0·0<br>0·0 | 77<br>84<br>80 | 89·0<br>99·4<br>109·9 | 17·0<br>20·9<br>24·5 | 43·42<br>43·21<br>43·20 | 0.000<br>0.001<br>0.003* | sP, mP : wP, mP : mP, sP<br>wwP : wP : mP<br>wP : mP, sP | | 19<br>20<br>21 | 29·808<br>30·094<br>30·309 | 52·9<br>59·0<br>60·7 | 36·1<br>41·8<br>37·9 | 16·8<br>17·2<br>22·8 | 44·5<br>50·0<br>47·9 | + 2·6<br>+ 8·1<br>+ 6·0 | 42·7<br>45·7<br>44·0 | 40·6<br>41·2<br>39·7 | 3·9<br>8·8<br>8·2 | 8·9<br>19·0<br>18·7 | 0·7<br>1·5<br>0·2 | 87<br>72<br>74 | 70·0<br>97·4<br>99·5 | 24·3<br>31·1<br>29·5 | 43·34<br>43·52<br>43·80 | 0.059<br>0.000<br>0.000 | sP, mP: mP: mP, wwP<br>wP, mP: sP, ssP: ssP, sP<br>mP, wwP: wP, sP: ssP, sP | | 22<br>23<br>24 | 30·303<br>30·227<br>30·087 | 66·5<br>65·9<br>65·2 | 37·I<br>34·2<br>33·9 | 29·4<br>31·7<br>31·3 | 51·1<br>50·5<br>48·3 | + 9·1<br>+ 8·3<br>+ 5·9 | 44·9<br>43·9<br>43·4 | 38·5<br>37·0<br>38·0 | 12·6<br>13·5<br>10·3 | 25·7<br>22·6<br>21·5 | 0·9<br>2·6<br>0·5 | 62<br>61<br>68 | 100·0<br>90·8<br>83·2 | 26·4<br>24·1<br>22·9 | 44·09<br>44·22<br>44·46 | o.000 | sP, mP: mP, ssP: mP<br>mP: mP, ssP: ssP<br>sP: sP, ssP: ssP | | 25<br>26<br>27 | 29·966<br>30·012<br>29·851 | 53·3<br>47·8<br>51·3 | 35·9<br>33·0<br>32·8 | 17·4<br>14·8<br>18·5 | 44·0<br>38·9<br>41·7 | + I·3<br>- 4·1<br>- I·6 | 40·1<br>35·7<br>39·0 | 35·5<br>31·5<br>35·7 | 8·5<br>7·4<br>6·0 | 16·1<br>14·3<br>14·4 | 3·7<br>0·8<br>0·7 | 72<br>75<br>80 | 105·8<br>91·0<br>75·5 | 26·0<br>20·0<br>23·0 | 44·56<br>44·48<br>44·37 | 0.000 | ssP, mP: sP, ssP: ssP<br>sP: mP,ssP: ssP, mP<br>mP: | | 28<br>29<br>30 | 29·354<br>29·325<br>29·302 | 50·0<br>53·1<br>48·9 | 39·8<br>40·3<br>33·2 | 10·2<br>12·8<br>15·7 | 45.3 | + 1.5<br>+ 1.2<br>- 1.7 | 43·3<br>41·7<br>41·7 | 41·1<br>37·5<br>40·4 | 4·I<br>7·8<br>2·4 | 8·9<br>14·6<br>6·8 | 0·0<br>1·8<br>0·4 | 86<br>75<br>91 | 75·8<br>98·3<br>65·0 | 32·9<br>35·8<br>26·0 | 44·19<br>44·20<br>44·20 | 0·055<br>0·214<br>0·372 | : wwP, wwN: mP<br>wwP: sP, mP: sP, mP<br>wP: wwP | | 31 | 29.101 | 54.6 | 41.1 | 13.5 | 47.4 | + 2.5 | 44.3 | 40.9 | 6.5 | 12.2 | 0.7 | 79 | 93.2 | 33.2 | 44.19 | 0.079 | wwP:wP:wP | | Means | <b>2</b> 9·869 | 52.1 | 35.3 | 16.8 | 42.9 | + 1.0 | 39.9 | 36.2 | 6.7 | 13.7 | 1.1 | 78.3 | 86.0 | 26.9 | 43.14 | Sum<br>0·969 | | | Number of<br>Column for<br>Reference | Î | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | II | I 2 | 13 | 14 | 15 | 16 | 17 | The values given in Columns 2, 3, 4, 13, and 14 are derived from eye-readings of self-registering thermometers. \*Rainfall (Column 16). The amounts entered on March 6, 10 and 18 are derived from dew, fog and frost. The mean reading of the Barometer for the month was 29in.869, being 0in.123 higher than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR. The highest in the month was $66^{\circ} \cdot 5$ on March 22; the lowest in the month was $27^{\circ} \cdot 4$ on March 9; and the range was $39^{\circ} \cdot 1$ . The mean of all the highest daily readings in the month was $52^{\circ} \cdot 1$ , being $2^{\circ} \cdot 3$ higher than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was $35^{\circ} \cdot 3$ , being $2^{\circ} \cdot 2$ h gher than the average for the 65 years, 1841-1905. The mean of the daily ranges was $16^{\circ} \cdot 8$ , being $2^{\circ} \cdot 1$ greater than the average for the 65 years, 1841-1905. The mean for the month was $42^{\circ} \cdot 9$ , being $1^{\circ} \cdot 0$ higher than the average for the 65 years, 1841-1905. The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Column 5 and 7) are deduced from the photographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8 and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon The readings in Column 15 are taken daily at noon. | | ne. | | Wind as Deduc | ED FROM SELF-REGISTERING | ANEMO | METERS. | | | | |--------------------------------------|-----------------------------|----------------------|-------------------------------------------|-------------------------------------------|----------------------------|-----------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------| | | Sunshi | izon. | · | Osler's. | | | Robin<br>son's | CLOUDS AN | ND WEATHER. | | MONTH<br>and<br>DAY,<br>1918. | ration of | above Horizon. | Genera | l Direction. | O | essure<br>n the<br>are Foot. | Move- | | | | 1910. | Daily Duration of Sunshine. | Sun a | A.M. | P.M. | Greatest. | Mean of 24<br>Hourly<br>Measures. | Horizontal Move-<br>ment of the Air. | A.M. | Р.М. | | Mar. 1 2 3 | 5.5<br>5.6<br>0.0 | 10.8 | N:NNE:NE<br>NNE:NE<br>NE | NNE : NE<br>NE<br>NNE : NE : ENE | lbs.<br>9·8<br>10·1<br>8·8 | lbs. | 612 | 3 : 10,sltr,sl : vcl, cun, w<br>o, hofr : 1 : vcl, w<br>10, ocsltsn, mr, w : 10, n, r, mr | vcl, w : 0<br>vcl, w : 9, w : 10<br>10, r : 10, fqr : 10, mr | | 4<br>5<br>6 | 0.0 | 11·1<br>11·1<br>11·0 | Calm: NE: N<br>NNE: ENE: E<br>E | N : NNE<br>E<br>E : ENE | 6.0 | 0.30 | 376 | 10, ocmr : 10<br>10, r, mr : 10, ocmr<br>6, hyd : 1, ci | 10 : 10<br>10 : vcl, sltsh : 6<br>1, cis : 10, ocmr : 10 | | 7<br>8<br>9 | 2.4 | 11.3 | ENE : E<br>ENE : NE<br>Calm : E | E:ENE<br>NE:E:ESE<br>E:ESE:Calm | 3.0 | 0·28<br>0·17<br>0·02 | 339<br>273<br>126 | IO, mrsh : IO<br>I, a : IO : IO, n, m-r, sltsn<br>2, hofr : f : o, h, f | 10 : vcl<br>3 : 1, hofr<br>o : o, f | | IO<br>II<br>I2 | 7.7 | 11·4<br>11·5<br>11·5 | Calm<br>Calm: SSW<br>SSE: S: SSW | Calm: SSW<br>SSW: S: SSE<br>SSW: Calm: N | 2.3 | | 245<br>204 | f, hofr : f : o, sltf<br>I : vcl, thcl : 8<br>10, h, thcl : 7, cu | o, h : pcl, h : o, h I : 2 I, m : I, sltf | | 13<br>14<br>15 | 6.2 | 11·6<br>11·7<br>11·7 | N : NNE<br>NNE : NE : ENE<br>NE : ENE : E | N:NNE:NE<br>E:ENE:NE<br>E:ENE:NE | 3.4 | 0·05<br>0·33<br>0·42 | 196<br>334<br>359 | 10 : 10<br>10 : 9,mrsh: 1, cu,ci<br>10, hyd : 1 | 9 : 10 : 10<br>7, s, n : 10, sltr : 10<br>vcl, cun : 10 : 9 | | 16<br>17<br>18 | 2.6 | 11.9<br>11.8 | NE : Calm<br>E : ENE<br>Calm : S : SSW | SSE : SE : E<br>E : Calm : SE<br>SSW | I • I | 0·00<br>0·06<br>0·15 | 201 | ro, hofr, sitf : I, hofr, f: I, m o : 9, sltsh : 10 o, hyd : vcl : 9, thcl, cts | 1, soha : I 7 : Io, sltsh : I, d 9, cun : 9, luha : vcl, thcl | | 19<br>20<br>21 | 8.4 | 12·0<br>12·1<br>12·1 | SSW : Calm<br>NW : NNW<br>SW | SW:W:NW<br>NNW:NW:SW<br>W:WSW | 2.1 | 0·07<br>0·20<br>0·04 | 290 | vcl,thcl,hofr: 10, sltr<br>10, hyd : 0 : 1<br>1 : 10, tkf :: 3, f | 10, ocsltr : 10, ocsltr I : vcl, thcl, f : r, sltf, thcl I, ci : 2, thcl : I | | 22<br>23<br>24 | 10.3 | 12·3<br>12·3 | WSW : W<br>Calm : W<br>Calm | W: NW: Calm<br>Calm: NW<br>Calm: W | 0.4 | 0.02<br>0.00<br>0.00 | | I : I, h o,sltm,hofr : o, h o,m,sltf,hofr : o, m | o, h, f : o, h, m<br>o, h : o, m<br>r, f : o, m : o, m, h | | 25<br>26<br>27 | 3.3 | 12·4<br>12·4<br>12·5 | NNE<br>N:NNE<br>SSW:SW:WSW | NNE : N<br>N : Calm : S<br>WSW : SW : SSW | 1.1 | 0·34<br>0·12<br>0·25 | 212 | o, m, d : 10 : 8<br>I : I : 8, cun<br>7, slthofr :10, cun | 9 : I<br>8 : 5 : 9<br>10, n : vcl, cu | | 28<br>29<br>30 | o.₀<br>3.8<br>o.₀ | 12·6<br>12·7<br>12·7 | SW: SSW<br>WSW: W: NW<br>SW: S: SSE | SSW: SW: WSW<br>WNW: W: WSW<br>S: SW | 8·0<br>8·9<br>2·4 | 0.55 | 505<br>485<br>233 | vcl : 10, ocmr : 10, sltr 10, t, l, r : 7, cun, ocsltr 7 : 10, r | 10, sltr : pcl : 7 10, n, ocsltr : 10 10, r : 2 | | 31 | 7.8 | 12.8 | S:SSW:SW | SSW : SW | 9.9 | 0.65 | 479 | 10, fqr : 8, ocmr, w | vcl, ocshs, $w$ : $p$ cl : $v$ cl | | Means | 4.4 | 11.8 | •• | | • • | 0.27 | 295 | | | | Number of<br>Column for<br>Reference | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | The mean Temperature of Evaporation for the month was 39° 9, being 0° 5 higher than The mean Temperature of the Dew Point for the month was 36° 2, being 0° 1 lower than The mean Degree of Humidity for the month was 78° 3, being 2° 2 less than The mean Elastic Force of Vapour for the month was 0<sup>in.</sup>214 being the same as The mean Weight of Vapour in a Cubic Foot of Air for the month was 2<sup>grs.</sup>5, being the same as The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 5° 5. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0° 371. The maximum daily amount of Sunshine was 10° 2 hours on March 22 March 23. The highest reading of the Solar Radiation Thermometer was 109° 9 on March 18; and the lowest reading of the Terrestrial Radiation Thermometer was 17° 0 on March 16. The Proportions of Wind referred to the cardinal points were N. 8, E. 7, S. 6, W. 6. Four days were calm. The Greatest Pressure of the Wind in the month was 10·1 lbs. on the square foot on March 2. The mean daily Horizontal Movement of the Air for the month was 295 miles; the greatest daily value was 612 miles on March 2; and the least daily value was 90 miles on March 24. Rain (olin.005 or over) fell on 8 days in the month, amounting to olin.969, as measured by gauge No. 6, partly sunk below the ground; being olins.551 less than the average fall for the 65 years, 1841-1905. | | Baro-<br>meter. | | | 1 | [EMPERATU | RE. | | | | rence betw<br>ir Tempera | | y ( | T | EMPERATUF | RE. | ge No.<br>face is<br>round. | | |--------------------------------------|------------------------------------------------------------------------------|----------------------|----------------------|------------------------|------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------|-------------------------|--------------------------|---------------------|----------------------------------------|------------------------------|----------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------| | MONTH and DAY, | Hourly<br>rrected<br>1 to 32° | | | Of the A | Air. | | Of<br>Evapo-<br>ration. | Of the<br>Dew<br>Point. | and | l Dew Poir<br>emperature | nt | Degree of Humidity (Saturation = 100). | Of Rac | liation. | Of the<br>Earth | in Gaugaving surve the Gr | Electricity. | | 1918. | Mean of 24 Hourly<br>Values (corrected<br>and reduced to 32°<br>Fabrenheit). | Highest. | Lowest. | Daily<br>Range. | Mean<br>of 24<br>Hourly<br>Values. | Excess<br>above<br>Average<br>of<br>65 Years. | Mean<br>of 24<br>Hourly<br>Values. | De-<br>duced<br>Mean<br>Daily<br>Value. | Меап. | Greatest. | Least. | Degree of<br>(Saturati | Highest<br>in Sun's<br>Rays. | Lowest<br>on the<br>Grass. | below<br>the<br>Surface<br>of the<br>Soil. | Rain collected in Gauge No.<br>6, whose receiving surface is<br>5 inches above the Ground. | | | Apr. 1 2 3 | in.<br>29·286<br>29·616<br>29·672 | 56·7<br>56·8<br>56·8 | 36.8<br>32.0 | ° 14.7<br>20.0<br>24.8 | 47.5<br>44.8<br>44.5 | + 2·2<br>- 0·9<br>- 1·5 | 44·3<br>41·5<br>41·0 | 40.8<br>37.7<br>37.0 | 6.7<br>7.1<br>7.5 | 12·4<br>15·1<br>16·4 | ° 1·7<br>○·7<br>○·0 | 78<br>76<br>74 | 103·9<br>111·9 | 34·2<br>28·3<br>24·1 | 44·37<br>44·53<br>44·70 | in.<br>○·○38<br>○·○25<br>○·○08 | wwP: wP: wP<br>wwP: mP: wP, wwP<br>wwP::. | | 4<br>5<br>6 | 29·615<br>29·825<br>29·722 | 50·9<br>54·0<br>51·5 | 41·4<br>37·0<br>37·7 | 9·5<br>17·0<br>13·8 | 46·4<br>43·0<br>45·0 | + 0·2<br>- 3·3<br>- 1·3 | 44·2<br>40·4<br>43·2 | 41·1<br>37·3<br>41·1 | 4·7<br>5·7<br>3·9 | 8·8<br>14·9<br>8·9 | I·I<br>0·2<br>0·0 | 85<br>80<br>86 | 72·0<br>100·8<br>67·8 | 38·3<br>28·1<br>29·0 | 44·70<br>44·80<br>45·01 | 0.040<br>0.000<br>0.274 | ··<br>·· | | 7<br>8<br>9 | 29·726<br>29·763<br>29·453 | 52·2<br>55·5<br>48·9 | 35·1<br>39·1<br>40·7 | 17·1<br>16·4<br>8·2 | 42·8<br>45·8<br>43·7 | - 3·5<br>- 0·3<br>- 2·3 | 40·3<br>43·2<br>43·2 | 37·3<br>40·2<br>42·6 | 5·5<br>5·6<br>1·1 | 12·9<br>15·2<br>4·8 | o·o<br>o·o<br>o·4 | 82<br>82<br>96 | 99·9<br>115·2<br>69·9 | 29·0<br>35·1<br>40·9 | 45·15<br>45·00<br>45·10 | 0.046<br>0.037<br>0.012 | | | 10<br>11<br>12 | 29·451<br>29·625<br>29·752 | 47.0<br>49.0<br>61.3 | 42·I<br>43·2<br>42·9 | 4·9<br>6·7<br>18·4 | 44·9<br>45·6<br>49·6 | - 1.0<br>- 0.2<br>+ 3.7 | 44·4<br>45·1<br>46·8 | 43·8<br>44·6<br>43·8 | 1 · 1<br>1 · 0<br>5 · 8 | 2·6<br>2·3<br>16·0 | 0·4<br>0·4<br>0·4 | 96<br>97<br>81 | 51·0<br>59·7<br>118·9 | 42·0<br>39·4<br>31·4 | 45·20<br>45·30<br>45·40 | 0·072<br>0·061<br>0·001 | · · · | | 13<br>14<br>15 | 29·730<br>29·806<br>29·787 | 51·7<br>46·9<br>48·8 | 35.9<br>36.8<br>33.2 | 15·8<br>10·1<br>15·6 | 43·6<br>41·2<br>39·9 | - 2·5<br>- 5·2<br>- 6·9 | 42·6<br>37·9<br>38·6 | 41·4<br>33·8<br>36·9 | 2·2<br>7·4<br>3·0 | 6·1<br>13·5<br>9·0 | 0·0<br>0·7<br>0·5 | 92<br>75<br>90 | 71·2<br>83·0<br>95·8 | 30·0<br>32·0<br>32·4 | 45.60<br>45.80<br>45.73 | 0·003<br>0·002<br>0·366 | <br><br> | | 16<br>17<br>18 | 29·790<br>29·868<br>29·889 | 41·1<br>44·7<br>45·0 | 32·2<br>41·1<br>33·0 | 8·9<br>3·6<br>12·0 | 37·7<br>42·7<br>40·1 | - 9·5<br>- 4·9<br>- 7·9 | 37·3<br>42·0<br>37·4 | 36·7<br>41·2<br>33·9 | 1·0<br>1·5<br>6·2 | 2·3<br>2·6<br>13·6 | 0·0<br>0·5<br>0·0 | 96<br>94<br>78 | 45.5<br>50.2<br>80.8 | 32·0<br>40·8<br>27·6 | 45·50<br>45·00<br>44·79 | 0·548<br>0·241<br>0·003 | <br><br> | | 19<br>20<br>21 | 29·741<br>29·652<br>29·585 | 46·8<br>44·1<br>44·5 | 32·I<br>33·5<br>35·0 | 14·7<br>10·6<br>9·5 | 36·6<br>37·1<br>38·9 | - 11·7<br>- 11·4<br>- 9·8 | 33·8<br>35·5<br>38·2 | 29·8<br>33·3<br>37·4 | 6·8<br>3·8<br>1·5 | 11·5<br>8·0<br>7·2 | 1·6<br>0·7<br>0·0 | 77<br>86<br>94 | 104·0<br>80·9<br>65·1 | 27·0<br>29·7<br>32·1 | 44·62<br>44·41<br>44·16 | 0.041<br>0.083<br>0.702 | <br> | | 22<br>23<br>24 | 29·720<br>29·839<br>29·888 | 54·9<br>49·2<br>54·4 | 37·3<br>40·6<br>36·2 | 17·6<br>8·6<br>18·2 | 45·3<br>44·0<br>45·2 | - 3·4<br>- 4·6<br>- 3·4 | 41.6<br>42.5<br>43.5 | 37·3<br>40·7<br>41·5 | 8·0<br>3·3<br>3·7 | 15.0<br>8.2<br>7.8 | ○·7<br>○·○<br>○·2 | 74<br>88<br>87 | 104·0<br>62·7<br>89·1 | 29·9<br>29·9<br>27·1 | 43·92<br>44·08<br>44·41 | 0.000<br>0.085<br>0.000 | ·•<br>·· | | 25<br>. 26<br>27 | 29·828<br>29·880<br>30·000 | 66.0<br>65.0<br>64.2 | 43·I<br>43·I<br>42·5 | 22·9<br>21·9<br>21·7 | 50·8<br>50·2<br>49·7 | | 48·4<br>47·3<br>45·9 | 45.9<br>44.2<br>41.9 | 4·9<br>6·0<br>7·8 | 12·6<br>15·9<br>23·2 | 0·4<br>0·0<br>0·4 | 84<br>81<br>74 | 115·8<br>108·1<br>113·1 | 39·3<br>34·8<br>32·1 | 44:75<br>45:05<br>45:72 | 0.044<br>0.000<br>0.000 | <br><br> | | 28<br>29<br>30 | 29·996<br>29·890<br>29·866 | 47.9<br>54.5<br>55.9 | 41·2<br>40·4<br>40·1 | 6·7<br>14·1<br>15·8 | 44·2<br>45·6<br>46·1 | - 4·6<br>- 3·4<br>- 3·0 | 42·6<br>43·1 | 41·4<br>39·2<br>39·7 | 2·8<br>6·4<br>6·4 | 4·2<br>10·7<br>10·6 | 1·5<br>1·8<br>2·5 | 90<br>79<br>79 | 54.0<br>101.1<br>97.5 | 37·1<br>36·2<br>35·9 | 46·12<br>46·46<br>46·45 | 0·114<br>0·000<br>0·000 | <br> | | Means | 29:742 | 52.2 | 38.2 | 14.0 | 44·I | - 3.2 | 42.0 | 39.5 | 4.6 | 10.4 | 0.6 | 84.4 | 87.1 | 32.9 | 45.06 | Sum<br>2·846 | | | Number of<br>Column for<br>Reference | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the photographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the co responding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8 and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13, and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29in.742, being oin.006 lower than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR. The highest in the month was $66^{\circ}$ on April 25; the lowest in the month was $32^{\circ}$ on April 3; and the range was $34^{\circ}$ o. The mean of all the highest daily readings in the month was $52^{\circ}$ 2, being $5^{\circ}$ o lower than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was $38^{\circ}$ 2 being $50^{\circ}$ 8 lower than the average for the 65 years, 1841-1905. The mean of the daily ranges was $14^{\circ}$ 0, being $4^{\circ}$ 2 less than the average for the 65 years, 1841-1905. The mean for the month was $44^{\circ}$ 1, being $3^{\circ}$ 2 lower than the average for the 65 years, 1841-1905. | | ine. | 1 | Wind as Deduc | ced from Self-Registering | ANEMOM | IETERS. | | | | |--------------------------------------|-----------------------------|------------------------|------------------------------------------|---------------------------------------|---------------------------|-----------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------| | MONTH | Sunsh | orizon. | | Osler's. | | | Robin-<br>son's | Clouds | S AND WEATHER. | | MONTH<br>and<br>DAY<br>1918. | ation of | Sun above Horizon. | General | Direction. | on | essure<br>the<br>re Foot. | Move-<br>ne Air. | | | | | Daily Duration of Sunshine. | Sun a | A.M. | P.M. | Greatest. | Mean of 24<br>Hourly<br>Measures. | Horizontal Move-<br>ment of the Air. | A.M. | P.M. | | Apr. 1 2 3 | hours. 3:3 7:4 7:0 | hours.<br>12.9<br>12.9 | SSW: SW: WSW<br>WSW: SW<br>Calm: SSW: SE | SW:W:NW<br>W:SW<br>S:SE:E | lbs.<br>3.0<br>4.7<br>3.0 | lbs.<br>0·28<br>0·16 | miles. 363 | pcl : 9, ocr : 8 pcl, hyd : 1 1, hyd, hofr : pcl, cu, cis | 9, r : 10 : 10, mr<br>9, cun, ocsltr : vcl : 0<br>8, cun : 10, ocmr : 10, mr | | 4<br>5<br>6 | 0.0<br>5.2<br>0.0 | 13·2<br>13·1 | E : ENE<br>NNE : N<br>SSW : SW | ENE: NE: NNE N: SSE: SSW SSW: SW: WSW | 3.6<br>1.0<br>4.3 | 0.11 | 392<br>222<br>362 | 10 : 10, n | 10, mr, r | | 7<br>8<br>9 | 4·4<br>5·5<br>0·0 | 13·2<br>13·3<br>13·4 | WSW: NW<br>N: NNE: NE<br>Calm: ESE | N:W:NW<br>NE:ESE<br>E:ENE | 2·0<br>1·2<br>1·6 | 0.08 | 212 | o : 7 : 8, sh, mr<br>10, ocr, mr : v-cl, cu<br>10, mr, m : 10, ocmr | 8, sh : 10, fqsltr : 10, sltr 9 : vcl : 10 | | IO<br>II<br>I2 | 0.0<br>0.0<br>7.8 | 13·4<br>13·5<br>13·5 | ENE : E<br>NNE : NE<br>Calm : SW : W | NNE : N<br>E : Calm<br>W : Calm | 2·5<br>0·5<br>0·6 | 0·18<br>0·03<br>0·02 | 149 | 10, ocmr : 10, ocmr<br>10, m : 10, r : 10, lir<br>10 : 10, sltr : 7 | 10, sltr : 10, mr<br>10, ocsltr : 10, ocr, m : 10, m<br>7 : 0, m | | 13<br>14<br>15 | o·o<br>o·8<br>o·6 | 13.7 | Calm : NE<br>NE<br>N : NNE | NNE : NE<br>NE : NNE<br>NNE : N | 4·0<br>8·0<br>7·1 | 0.30 | 596 | 10, f : 10, m 10, ocmr, w : 10, n, sltsh, w 10, sltr : 10, ocsltr | 10 : 10, ocmr<br>9, w : 9, w : vcl<br>10, r, ocmr : 10, r, sn | | 16<br>17<br>18 | | 13·9<br>13·9 | N : NNE<br>NNE : NE<br>NNE | N : NNE<br>NNE : NE<br>NNE : N | 2·0<br>2·5<br>7·0 | 0·21<br>0·25<br>0·76 | 368 | 10, r, sn : 10, r, sl 10, sltr : 10, ocmr, r 10, sltr : 10, fqmr, w | 10, mr : 10, mr : 10, r : 10, w : 8 : 0 | | 19<br>20<br>21 | | 14·0<br>14·1<br>14·1 | NNW : N<br>W : NW : N<br>SE : ESE | N:NW:SW<br>S:SW:Calm<br>SE:Calm | 5·5<br>0·8<br>5·6 | 0·40<br>0·00<br>0·27 | 143 | O : 9, oc., sltsn : 7, cun, ocsn IO, r : IO : IO, glm IO, r, ocsn : IO, r, sn, sl | vcl, cu, ocsn : vcl, ocsn, m : IO<br>vcl, ocglm,-sl : IO, ocr,-sl : IO, r, mr<br>IO, r, mr : IO, mr, r | | 22<br>23<br>24 | 7·7<br>0·0<br>2·1 | 14·3<br>14·3 | Calm: NE: N<br>W: N: Calm<br>Calm: N: NE | N: NNW<br>Calm: NE; E<br>NNE: N | 0.5 | 0.07<br>0.01<br>0.09 | | | pcl : 2, h : vcl, thcl 10, sltm : 10 : 9 | | 25<br>26<br>27 | | 14·4<br>14·5<br>14·5 | N:NNE<br>N<br>N | NNE : SE : N<br>N : NNE<br>N : NNE | | 0·14<br>0·05<br>0·24 | 198 | | 8,fqsltr,t: pcl, ocr,-h: 7<br>7 : 3 : o, hyd<br>vcl, cu : 3 : 7 | | 28<br>29<br>30 | ı ·6 | 14·6<br>14·7 | N : NNE<br>NNE<br>NNE : NE | N : NNE<br>NNE : N<br>ENE : NE | | 0·53<br>0·45<br>0·45 | 453 | | 10 : 10, sh : vcl<br>9 : vcl : pcl<br>10 : 10 : | | Means | 2.6 | 13.8 | | | | 0.25 | 292 | | | | Number of<br>Column for<br>Reference | 18 | 19 | 20 | 2 I | 22 | 23 | 24 | 25 | 26 | ``` The mean Temperature of Evaporation for the month was 42°·0, being 1°·9 lower than The mean Temperature of the Dew Point for the month was 39°·5, being 0°·6 lower than The mean Degree of Humidity for the month was 84·4, being 8·6 greater than The mean Elastic Force of Vapour for the month was 0<sup>in</sup>·242 being 0<sup>in</sup>·006 less than The mean Weight of Vapour in a Cubic Foot of Air for the month was 2grs 8, being 0gr. 1 less than The mean Weight of a Cubic Foot of Air for the month was 547 grains, being 4 grains greater than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 8·2. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0·192. The maximum daily amount of Sunshine was 7·8 hours on April 12. The highest reading of the Solar Radiation Thermometer was 110°·1 on April 2·1 and the lowest reading of the Solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest reading of the Solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest reading of the Solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest reading of the Solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest reading of the Solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest reading of the Solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest reading of the Solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest reading of the Solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest reading of the Solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest reading of the Solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest reading of the Solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest reading of the Solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest reading of the Solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest reading the solar Radiation Thermometer was 110°·1 on April 2·2 and the lowest ``` April 12. The highest reading of the Solar Radiation Thermometer was 119° 1 on April 3; and the lowest reading of the Terrestrial Radiation Thermometer was 24° 1 on April 3. The Proportions of Wind referred to the cardinal points were N. 15, E. 7, S. 2, W. 3. Three days were calm. The Greatest Pressure of the Wind in the month was 8.0 lbs. on the square foot on April 14. The mean daily Horizontal Movement of the Air for the month was 292 miles; the greatest daily value was 596 miles on April 14; and the least daily value was 111 miles on April 23. Rain (olin.005 or over) fell on 19 days in the month, amounting to 2lin.846 as measured by gauge No. 6 partly sunk below the ground; being 1 lin. 280 greater than the average fall for the 65 years, 1841–1905. | | BARO-<br>METER. | | | 5 | Гемрекат | JRE. | | | | rence bety | | >: | | Temperat | URE. | ge No.<br>face is<br>ound. | | |---------------------------------|------------------------------------------------------------------------------|-------------------------|----------------------|----------------------|-------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------|----------------------|-------------------------------------|------------------------|----------------------------------------|------------------------------|----------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------| | MONTH<br>and<br>DAY, | Hourly<br>rected<br>to 32° | | | Of the A | Air. | | Of<br>Evapo-<br>ration. | Of the<br>Dew<br>Point. | an | ir Temper<br>d Dew Poi<br>emperatur | nt | Degree of Humidity (Saturation = 100). | Of Rad | liation. | Of the<br>Earth<br>3 ft. 2 ins. | in Gaugeiving Surf | Electricity. | | 1918. | Mean of 24 Hourly<br>Values (corrected<br>and reduced to 32°<br>Fahrenheit). | Highest. | Lowest. | Daily<br>Range. | Mean<br>of 24<br>Hourly.<br>Values. | Excess<br>above<br>Average<br>of<br>65 Years. | Mean<br>of 24<br>Hourly<br>Values. | De-<br>duced<br>Mean<br>Daily<br>Value. | Mean. | Greatest. | Least. | Degree o | Highest<br>in Sun's<br>Rays. | Lowest<br>on the<br>Grass. | below<br>the<br>Surface<br>of the<br>Soil. | Rain collected in Gauge No.<br>6, whose receiving surface is<br>5 inches above the Ground. | | | May 1 2 3 | in.<br>30·071<br>30·127<br>29·886 | 49.8<br>54.0<br>59.4 | 41·2<br>40·3<br>39·4 | 8.6<br>13.7<br>20.0 | 44·2<br>47·3<br>49·6 | - 5·1<br>- 2·2<br>- 0·2 | 40.6<br>45.1<br>46.9 | 36·4<br>42·7<br>44·0 | 7.8<br>4.6<br>5.6 | 13.5<br>8.2<br>11.4 | 0<br>4.4<br>2.0<br>0.9 | 74<br>85<br>82 | 102·1<br>88·1<br>118·9 | 36·2<br>32·9<br>31·8 | 46.60<br>46.61<br>46.82 | in.<br>0.000<br>0.000<br>0.290 | | | 4<br>5<br>6 | 29·714<br>29·565<br>29·570 | 67·9<br>54·5<br>68·9 | 48·3<br>46·2<br>49·1 | 19·6<br>8·3<br>19·8 | 55·1<br>50·4<br>56·4 | + 5·1<br>+ 5·9 | 52·0<br>49·8<br>53·0 | 49.0<br>49.2<br>49.8 | 6·1<br>1·2<br>6·6 | 16·9<br>3·2<br>16·5 | 0·4<br>0·2<br>0·0 | 80<br>96<br>79 | 118·0<br>67·0<br>125·1 | 38·2<br>36·2<br>42·9 | 46·99<br>47·46<br>48·05 | 0·133<br>0·192<br>0·021 | <br> | | 7<br>8<br>9 | 29·550<br>29·618<br>29·672 | 55·9<br>68·0<br>67·7 | 45·9<br>45·3<br>43·2 | 10·0<br>22·7<br>24·5 | 50·4<br>54·6<br>54·2 | - 0·3<br>+ 3·6<br>+ 3·0 | 49.4<br>50.6<br>48.7 | 48·3<br>46·8<br>43·3 | 2·1<br>7·8<br>10·9 | 6·3<br>15·9<br>21·2 | 0.6<br>2.3<br>0.0 | 93<br>75<br>67 | 75·8<br>121·9<br>116·9 | 40·7<br>35·9<br>34·9 | 48·35<br>48·78<br>49·15 | o·347<br>o·000<br>o·000 | ·· | | 10<br>11<br>12 | 29·710<br>29·697<br>29·520 | 55·5<br>63·1<br>60·8 | 41·0<br>39·5<br>45·6 | 14·5<br>23·6<br>15·2 | 48·7<br>50·1<br>51·7 | - 2·8<br>- 1·7<br>- 0·4 | 46·1<br>47·8<br>47·6 | 43·3<br>45·4<br>43·4 | 5·4<br>4·7<br>8·3 | 10·3<br>11·9<br>16·4 | 0·9<br>0·0<br>1·7 | 82<br>85<br>74 | 115·9<br>125·6<br>110·9 | 31·9<br>28·8<br>37·4 | 49·50<br>49·90<br>50·15 | o·ooo<br>o·os9 | <br> | | 13<br>14<br>15 | 29·427<br>29·603<br>29·780 | 60·0<br>63·7<br>68·7 | 45·I<br>43·I<br>50·I | 14·9<br>20·6<br>18·6 | 50·1<br>51·8<br>57·7 | - 2·3<br>- 0·8<br>+ 4·9 | 48.0<br>48.8<br>54.4 | 45·8<br>45·8<br>51·4 | 4·3<br>6·0<br>6·3 | 9·4<br>14·8<br>16·2 | o.8<br>o.o<br>o.o | 85<br>80<br>80 | 97·1<br>115·0<br>121·9 | 36·4<br>35·0<br>38·6 | 50·49<br>50·57<br>50·59 | 0·212<br>0·000<br>0·000 | <br><br> | | 16<br>17<br>18 | 29·808<br>29·765<br>29·905 | 76·5<br>78·9<br>76·8 | 48·2<br>50·2<br>52·4 | 28·3<br>28·7<br>24·4 | 62·9<br>63·1<br>63·5 | + 9.9<br>+ 10.0<br>+ 10.2 | 56·0<br>58·9<br>58·7 | 50·1<br>55·3<br>54·7 | 7.8<br>8.8 | 23·7<br>19·0<br>22·1 | I ·4<br>○·○<br>○·○ | 63<br>76<br>74 | 137·0<br>128·9<br>123·2 | 37·8<br>41·0<br>43·1 | 50·98<br>51·70<br>52·55 | 0.000<br>0.096<br>0.000 | <br> | | 19<br>20<br>21 | 30·101<br>30·102<br>30·002 | 73.0<br>74.0<br>83.0 | 48·9<br>47·3<br>47·1 | 24·I<br>26·7<br>35·9 | 61.0<br>60.2<br>64.8 | + 7·5<br>+ 6·4<br>+ 10·6 | 55·5<br>53·7<br>57·6 | 50·8<br>48·0<br>51·6 | 10·2<br>12·2<br>13·2 | 19·7<br>26·0<br>28·4 | 0·6<br>0·4<br>0·6 | 69<br>64<br>62 | 133.6<br>137.8<br>142.1 | 38·9<br>36·6<br>38·0 | 53·25<br>53·97<br>54·65 | 0.000<br>0.000 | <br> | | 22<br>23<br>24 | 29·897<br>29·822<br>29·867 | 79·7<br>66·7<br>59·9 | 51·1<br>49·1<br>48·2 | 28·6<br>17·6<br>11·7 | 65·7<br>56·6<br>54·4 | + 11·1<br>+ 1·7<br>- 0·9 | 58·1<br>53·2<br>50·0 | 51·9<br>50·0<br>45·7 | 13·8<br>6·6<br>8·7 | 27·7<br>16·1<br>12·1 | 1·6<br>0·0<br>4·0 | 61<br>79<br>72 | 133·8<br>121·8<br>61·1 | 40·1<br>48·5<br>47·2 | 55·41<br>56·00<br>56·49 | 0·212<br>0·313<br>0·019 | · · · · · · · · · · · · · · · · · · · | | 25<br>26<br>27 | 29·951<br>29·989<br>30·156 | 71 ·0<br>61 ·7<br>68 ·0 | 54·6<br>51·5<br>43·4 | 16·4<br>10·2<br>24·6 | 60·6<br>55·3<br>55·8 | + 5·I<br>- 0·5<br>- 0·2 | 55.4<br>52.6<br>50.1 | 50·9<br>50·0<br>44·8 | 9·7<br>5·3<br>11·0 | 16·9<br>11·2<br>20·7 | 3·2<br>0·8<br>2·7 | 70<br>83<br>66 | 117·5<br>114·2<br>131·0 | 47.0<br>44.5<br>33.1 | 56·37<br>56·03<br>56·00 | 0.000<br>0.013 | ···<br>··· | | 28<br>29<br>30 | 30·225<br>30·270<br>30·237 | 67·9<br>67·2<br>74·7 | 41·2<br>43·4<br>40·4 | 26·7<br>23·8<br>34·3 | 54·3<br>54·8<br>58·3 | - 1.6<br>- 1.6 | 49·7<br>49·6<br>51·7 | 45·2<br>44·6<br>45·9 | 9·1<br>10·2<br>12·5 | 16·0<br>20·2<br>23·3 | 1·1<br>0·6<br>0·4 | 71<br>68<br>63 | 117·5<br>133·5<br>124·0 | 31·0<br>30·4<br>28·2 | 56·01<br>55·97<br>56·10 | 0.000<br>0.000 | <br> | | 31 | 30.285 | 71.9 | 46.1 | 25.8 | 59.7 | + 2.6 | 54·I | 49.1 | 10.6 | 18.3 | 0.8 | 68 | 136.8 | 33.5 | 56.40 | 0.000 | | | Means | 29.867 | 66.7 | 46.0 | 20.7 | 55.6 | + 2.5 | 51.4 | 47.5 | 8.1 | 16.6 | I •0 | 75.0 | 116.6 | 37.3 | 51.87 | 1.907 | | | Number of Column for Reference. | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ΙΙ | I 2 | 13 | 14 | 15 | 16 | 17 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the photographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at neon are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29in.867, being oin.073 higher than the average for the 65 years, 1841-1905. ### TEMPERATURE OF THE AIR. The highest in the month was 83° 0 on May 21; the lowest in the month was 39° 4 on May 3; and the range was 43° 6. The mean of all the highest daily readings in the month was 66° 7, being 2° 8 higher than the average for the 65 years, 1841–1905. The mean of all the lowest daily readings in the month was 46° 0, being 2° 3 higher than the average for the 65 years, 1841–1905. The mean of the daily ranges was 20° 7, being 0° 5 greater than the average for the 65 years, 1841–1905. The mean for the month was 55° 6, being 2° 6 higher than the average for the 65 years, 1841–1905. | | line. | | WIND AS DEDUC | CED FROM SELF-REGISTERING | ANEMO | METERS. | | | | | |--------------------------------------|-----------------------------|------------------------|----------------------------------------------------|---------------------------------------|-----------------------|-----------------------------------|--------------------------------------|-------------------------------------------------------------------------------|-----------------------------|------------------------------------------| | | Sunsh | rizon. | Os | sler's. | | | Robin-<br>son's | CLOUDS | AND WEATHER. | | | MONTH<br>and<br>DAY,<br>1918. | ration of | Sun above Horizon. | Genera | al Direction. | or | essure<br>the<br>re Foot. | al Move-<br>the Air. | | | | | | Daily Duration of Sunshine. | Sun | A.M. | P.M. | Greatest. | Mean of 24<br>Hourly<br>Measures. | Horizontal Move-<br>ment of the Air. | A.M. | Р | ·.M. | | May 1 | hours. | hours.<br>14.8<br>14.8 | NE : ENE : E<br>ENE : NE : E | E : ESE : ENE<br>E | lbs.<br>3 '4<br>2 · 0 | lbs. 0·30 0·15 | miles.<br>329<br>240 | 10 :10 : 9 | 9 : 10<br>10 : 3 | : IO<br>: O | | 3 | 1.9 | 14.9 | E : ENE | E: WSW | 6.3 | 0.40 | 347 | o : pcl : 9 | 8 : 9 | : 10, r | | 4 5 | 6·2 | 14.9 | WSW : W<br>Calm : NE | W: Var.: E<br>NNE: E: Calm | 1.0 | 0.08 | 178<br>152 | 10, r, ocmr : 10 : 7<br>9 : 9, hyd, f: 10, r | pcl : pcl : pcl : 10, slt. | : o, m, h<br>-r : 10, ocmr | | 6 | 5.1 | 15.0 | S:SW | SW : var. : E | 0.5 | 0.02 | | 10, r : vcl | 8, cun, n : 8 | : 9 | | 7<br>8 | 0·0<br>8·3 | 15.1 | NE : N<br>N : NNE | N<br>N : NE : Calm | 3·5<br>2·1 | 0.24 | 294<br>236 | 10, m, d : 10, r<br>8 : 10 : vcl, sltsh | 10, r : 9<br>7 : 1 | : vcl<br>: 1 | | 9 | 11.8 | 15.2 | Calm : N | N:NNE | 0.8 | 0.04 | 184 | o, hyd : 7 : 1, ci | 1, ci : 1 | : 0 | | 10<br>11 | 5.6 | 15.3 | NNE : N<br>NE : E<br>SW : NW : W | N : E<br>E : SW : S<br>W : WSW : SW | 0.8 | 0.08<br>0.03<br>0.26 | 200<br>140 | o, hyd : 8 : 8, cun<br>o, hyd : 10, m, mr: 10<br>10, sh : vcl : 10, sltr, t | | : 0 | | 12 | 7.5 | 15.3 | | | 5.3 | | 293 | | | ; I | | 13<br>14<br>15 | 3·8<br>6·1 | 15·4<br>15·4<br>15·5 | SW : S : SSW<br>SSW : SW<br>SSW : S | SSW: W<br>SSW<br>SSW:SSE | 2·8<br>3·0<br>1·5 | 0·25<br>0·26<br>0·18 | 255<br>298<br>212 | 6 : 10,r,mr : 10, r<br>o, hyd : 7<br>10 : 10, cun | | O<br>IO<br>: I,S | | 16<br>17<br>18 | 12·4<br>8·7<br>12·0 | 15·6<br>15·6<br>15·7 | SSE : Calm : ESE<br>Calm : NE : SE<br>SW : NNW : N | SE:S:Calm<br>E:SE:Calm<br>N:NNW:ENE | 1·8<br>5·1<br>0·8 | 0·10<br>0·04<br>0·08 | 127<br>107<br>155 | o : vclthcl : 9<br>o : 2 : 6, t<br>o, h, hyd : : o, h | r : 9, tsm, f : pcl 3 : vcl | o<br>: o, h<br>: 1, thcl | | 19<br>20<br>21 | 11·4<br>14·7<br>13·6 | 15·7<br>15·8<br>15·8 | Calm: NE: E<br>Calm: E<br>Calm: E: ESE | E<br>E : Calm<br>ESE : E : Calm | 1·4<br>2·3<br>1·5 | 0·09<br>0·15<br>0·07 | 148<br>191<br>137 | o, d, sltf : o<br>o, hyd : o<br>vcl, thcl, d, tkf : o | | : o, h<br>o | | 22<br>23<br>24 | 13.6<br>7.8 | 15·8<br>15·9<br>15·9 | Calm : E<br>SSW : SW<br>WSW : W | E : SW<br>SW<br>WNW : NW | 3·7<br>19·4<br>7·7 | 0·20<br>1·22<br>0·83 | 203<br>521<br>522 | o, hyd, sltm : o, h<br>10 : 7, slttsm: 9, sltsh, w<br>10, ocr, w : 10, ocr, w | 6, mrsh, w : 9, r, w | hy-r : 10, tsm<br>: 10, r, w<br>10, mrsh | | 25<br>26<br>27 | 2·0<br>0·1<br>11·4 | 16.0 | W : NW : N<br>W : N : NE<br>N : NNE | NW : W<br>NNE : N<br>NNE : ENE : Calm | | 0·09<br>0·23<br>0·19 | 181<br>243<br>209 | 10 : 9, m : 10,0cslt.r | 8 : 10<br>10 : ccl | : I<br>: I0 | | 28<br>29 | 5·1<br>10·4 | 16·1 | Calm: SW: N<br>NNE: NE | N: NNE<br>NE: E: Calm | 1.3 | 0.09 | 219<br>165 | 8, m : thcl, m : 8, cu<br>2, m : 10 : 3 | 8, cu : vcl<br>1 : o | : r<br>: o, h | | 30 | 13.1 | 16.1 | Calm : SW : NNW Calm : ENE | N: NE: Calm ENE: E: Calm | 1.6 | 0.02 | 107 | o, m, d : o, h : 2, h | 2, h : 1<br>1 : 0 | : 1, thcl<br>: 0 | | 31 | 14.8 | 16.2 | Caini . ENE | EIVE . E . Cami | - | | 170 | o, n | . 0 | . 0 | | Means | 7.0 | 15.5 | | •• | | 0.20 | 223 | | | | | Number of<br>Column for<br>Reference | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 2 | 6 | The mean Temperature of Evaporation for the month was 51°·4, being 2°·4 higher than The mean Temperature of the Dew Point for the month was 47°·5, being 2°·5 higher than The mean Degree of Humidity for the month was 75·0, being 0·8 greater than The mean Elastic Force of Vapour for the month was oin. 329, being oin.030 greater than The mean Weight of Vapour in a Cubic Foot of Air for the month was 3grs.7, being ogrs.3 greater than The mean Weight of a Cubic Foot of Air for the month was 536 grains, being 2 grains less than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 5·3. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0·454. The maximum daily amount of Sunshine was 14·8 hours on May 21. May 31. The highest reading of the Solar Radiation Thermometer was 142°·1 on May 21; and the lowest reading of the Terrestrial Radiation Thermometer was 28°·2 on May 30. The Proportions of Wind referred to the cardinal points were N. 8, E. 7, S. 5, W. 4. Seven days were calm. The Greatest Pressure of the Wind in the month was 19·4 lbs. on the square foot on May 23. The mean daily Horizontal Movement of the Air for the month was 223 miles; the greatest daily value was 522 miles on May 24; and the least daily value was 107 miles on May, 17, 30. Rain (oin-oo5 or over) fell on 12 days in the month, amounting to 110-907, as measured by gauge No. 6 partly sunk below the ground; being 010-008 less than the average | | BARO-<br>METER. | | | Te | MPERATURE | • | | | | erence bety | | <b>b</b> · | 7 | [emperatu | RE. | e No.<br>ace is<br>ound. | | |-------------------------------------|------------------------------------------------------------------------------|----------------------|--------------|-----------------|------------------------------------|-----------------------------------------------------|------------------------------------|-----------------------------------------|--------------------|-------------------------------------|-------------------|----------------------------------------|------------------------------|----------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|--------------| | MONTH<br>and<br>DAY, | Hourly<br>rected<br>i to 32° | | W1 1 2 | Of the A | ir. | | Of<br>Evapo-<br>ration. | Of the<br>Dew<br>Point. | an | ir Temper<br>d Dew Poi<br>emperatur | nt | Degree of Humidity (Saturation = 100). | Of Rac | liation. | Of the<br>Earth<br>3 ft. 2 ins. | l in Gaug<br>siving surf<br>ve the Gr | Electricity. | | 1918. | Mean of 24 Hourly<br>Values (corrected<br>and reduced to 32°<br>Fahrenheit). | Highest, | Lowest. | Daily<br>Range. | Mean<br>of 24<br>Hourly<br>Values. | Excess<br>above<br>Average<br>of<br>65 Years. | Mean<br>of 24<br>Hourly<br>Values. | De-<br>duced<br>Mean<br>Daily<br>Value. | Mean. | Greatest. | Least. | Degree of<br>(Saturatio | Highest<br>in Sun's<br>Rays. | Lowest on the Grass. | below<br>the<br>Surface<br>of the<br>Soil. | Rain collected in Gauge No.<br>6, whose receiving surface is<br>5 inches above the fround. | . * | | June 1 | in.<br>30·281 | 77.9 | 47.2 | 30.7 | 63.2 | + 5.8 | 56·5 | 51:0 | 0 12.2 | 23.9 | I .0 | 65 | 124.0 | 36.2 | 56.89 | in. | | | 3 | 30·178<br>30·066 | 79·7<br>67·9 | 46.9 | 32.8 | 65·0<br>57·8 | + 7·2<br>- 0·3 | 56·4<br>53·I | 49·3<br>48·8 | 15·7<br>9·0 | 26·9<br>15·4 | 0.8 | 57<br>72 | 133.9 | 31.3 | 57·37<br>57·85 | 0.000 | | | 4 | 30.086 | 66·1<br>67·2 | 43.9 | 22.2 | 54.1 | - 4.2 | 49.5 | 45.0 | 9.1 | 15.3 | 0.8 | 71 | 134.0 | 29.0 | 58·20<br>58·20 | 0.000 | | | 5<br>6 | 30.095 | 72.9 | 38.1 | 24·6<br>34·8 | 54·5<br>56·7 | - 1·6 | 49·1 | 44.5 | 14.7 | 26.0 | 0.9 | 58 | 139.1 | 26.0 | 58.17 | 0.000 | •• | | 7<br>8 | 30.065 | 65·2<br>71·1 | 44·4<br>48·1 | 20.8 | 56.5 | - I·7<br>+ I·2 | 51·2<br>52·0 | 46·3<br>45·6 | 10.2 | 19.2 | 2·I<br>5·4 | 68 | 95·2<br>132·9 | 29.2 | 58·15<br>58·32 | 0.003 | ··<br>·· | | 9 | 29.964 | 69.1 | 46.6 | 22.5 | 55.9 | - 2.1 | 50.5 | 45.4 | 10.5 | 18.8 | 3.0 | 68 | 125.0 | 34.0 | 58.38 | 0.022 | •• | | 11 | 29·816<br>30·040 | 67·2<br>73·8 | 47·0<br>50·1 | 20.2 | 55·4<br>60·5 | $\begin{array}{c c} - & 2.7 \\ + & 2.3 \end{array}$ | 50·2<br>55·0 | 45·3<br>50·2 | 10.3 | 18.8 | 2.3 | 69 | 135·0<br>134·1 | 40.0 | 58·39<br>58·31 | 0.030 | | | 12 | 30.067 | 71.6 | 50.8 | 20.8 | 60.5 | + 2.1 | 53.7 | 47.7 | 12.8 | 20.3 | 5.3 | 63 | 120.9 | 38.8 | 58.29 | 0.000 | •• | | 13 | 29·994<br>29·791<br>29·630 | 74.0<br>68.5<br>64.9 | 52·6<br>50·6 | 17.9 | 57·7<br>52·8 | + 3·6<br>- 1·0<br>- 6·0 | 57·I<br>54·6 | 52.8 | 9·3<br>5·9 | 12.4 | 3.6 | 72<br>81<br>66 | 115.5 | 44.9 | 58·49<br>58·70 | 0.000 | ••• | | 15 | 29.573 | 62.8 | 44.6 | 20.3 | 50.1 | _ 8·8 | 47·I | 41.4 | 8.6 | 16.4 | 2.0 | 73 | 135.0 | 27.8 | 58.70 | 0.000 | | | 17<br>18 | 29.650 | 64·4<br>61·9 | 37·I | 27·3<br>17·8 | 51.0 | <ul><li>8 · o</li><li>5 · 8</li></ul> | 47·I<br>49·2 | 43.0 | 8.₀<br>8.₄ | 17·1<br>16·1 | 0.0<br>I.3 | 75 73 | 112.5 | 26.0 | 58·30<br>57·80 | 0·150<br>0·154 | •• | | 19 | 29.521 | 68.8 | 50.6 | 18.2 | 56.9 | - 2.6 | 54.1 | 51.5 | 5.4 | 14.2 | 0.0 | 82 | 141.5 | 49.2 | 57.50 | 0.050 | •• | | 20<br>21 | 29.763 | 71.9 | 53·8<br>54·4 | 17.5 | 59·4<br>60·1 | - 0·5<br>- 0·2 | 55·0<br>54·9 | 50·3 | 8·3<br>9·8 | 20.4 | 0.8 | 74<br>70 | 137.9 | 50·1<br>48·0 | 57·45<br>57·50 | 0·012<br>0·006 | •• | | 22<br>23 | 29·802<br>30·001 | 68·0<br>67·4 | 49·4<br>45·0 | 18.6 | 58·4<br>55·0 | - 2·2<br>- 5·9 | 51·1<br>47·6 | 44·6<br>40·5 | 13·8<br>14·5 | 22.8 | 2·4<br>6·0 | 60<br>58 | 131·4<br>131·0 | 39·5<br>35·0 | 57·69<br>57·89 | 0.000 | | | 24 | 29.858 | 64.2 | 43.5 | 20.7 | 52.8 | - 8.4 | 48.2 | 43.6 | 9.2 | 18.8 | 0.4 | 71 | 123.4 | 29.9 | 57.95 | 0.038 | | | 25<br>26 | 29·823<br>29·872 | 67·2<br>66·5 | 40.0 | 27.2 | 52·1<br>54·7 | - 9·3<br>- 6·8 | 47·3<br>48·7 | 52·4<br>42·9 | 9·7<br>11·8 | 21·2<br>18·5 | 0·0<br>3·2 | 70<br>65 | 132·2<br>125·4 | 26·2<br>31·4 | 58·00<br>57·82 | 0.017 | •• | | 27 | 29.840 | 70.0 | 47.0 | 23.0 | | - 2.7 | 51.8 | 45.5 | 13.4 | 21.1 | 5.9 | 61 | 135.9 | 36.1 | 57.73 | 0.000 | | | 28<br>29<br>30 | 29·884<br>30·055 | 72·I<br>72·5<br>79·I | 52·2<br>47·2 | 19·9<br>25·3 | 59.5 | - I·I<br>- 2·I<br>+ I·0 | 55·2<br>54·9<br>55·1 | 50·6<br>50·8<br>48·8 | 9·9<br>8·7<br>13·7 | 17·5<br>22·4<br>24·3 | 3·6<br>0·0<br>0·6 | 70<br>73<br>61 | 133·5<br>146·9<br>131·1 | 44.0<br>34.0<br>32.0 | 57·78<br>58·16<br>58·61 | 0.000 | | | 30 | 29.995 | /91 | 44.0 | 32.1 | 02.5 | 1.0 | 33.1 | 40.0 | 13/ | 24 3 | | | 1311 | 32.0 | 50 01 | Sum | •• | | Means | 29.913 | 69.6 | 46.4 | 23.2 | 57.2 | - 2.2 | 51.7 | 47.0 | 10.6 | 19.7 | r ·8 | 68·I | 128.8 | 35.4 | 58.04 | 0.735 | •• | | lumber of<br>olumn for<br>deference | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the photographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13, and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29in.913, being oin.098 higher than the average for the 65 years, 1841-1905. The highest in the month was 79°·7 on June 2; the lowest in the month was 37°·1 on June 17; and the range was 42°·6. The mean of all the highest daily readings in the month was 69°·6, being 1°·1 lower than the average for the 65 years, 1841–1905. The mean of all the lowest daily readings in the month was 46°·4, being 3°·5 lower than the average for the 65 years, 1841–1905. The mean of the daily ranges was 23°·2, being 2°·4 greater than the average for the 65 years, 1841–1905. The mean for the month was 57°·2, being 2°·2 lower than the average for the 65 years, 1841–1905. | | ine. | | Wind as Deduct | ED FROM SELF-REGISTERING | ANEMON | METERS. | | | |--------------------------------------|------------------------------|--------------------------------|-----------------------------------------|------------------------------------------|---------------------------|-----------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Sunsh | orizon. | | Osler's. | | | Robin-<br>son's | CLOUDS AND WEATHER. | | MONTH<br>and<br>DAY,<br>1918. | Daily Duration of Sunshine. | above Horizon. | General | Direction. | or | essure<br>the<br>re Foot. | al Move-<br>the Air. | | | | Daily Du | Sun | A.M. | P.M. | Greatest. | Mean of 24<br>Hourly<br>Measures. | Horizontal Move-<br>ment of the Air. | A.M. P.M. | | June 1<br>2<br>3 | hours.<br>9.8<br>13.0<br>7.4 | hours.<br>16·2<br>16·2<br>16·3 | Calm: SW<br>Calm: ENE: NW<br>ENE: E: NE | N:NNE:NE<br>NNW:N:NE<br>NNE:N:ENE | lbs.<br>I·I<br>I·I<br>I·9 | 0.05 | miles.<br>128<br>133<br>210 | o, m : 8, m : r pcl : o : o o, d, sltm : o, h o : pcl : 8 vcl, d : 1, d : pcl : 0 : 2 : 2 | | 4<br>5<br>6 | 1·5<br>10·2<br>14·2 | 16.3 | NNE: N<br>E: NE: N<br>Calm: ESE: SE | NNE : ENE<br>NE : E : Calm<br>SE : E : S | 1·8<br>1·5<br>2·3 | 0·07<br>0·08<br>0·07 | 167<br>165<br>158 | 8 : 8 : 9, n 9 : 8 9 : 10 : pcl 8 : pcl : 0 2 : 1, s, cu | | 7<br>8<br>9 | 10.2 | 16·4<br>16·4<br>16·4 | S:SSW<br>NNW:N<br>SE:S:SSW | SSW:SW:NNW<br>N:NE:E<br>SW:WSW:W | 1·9<br>1·5<br>6·0 | 0.09 | 221<br>140<br>342 | pcl : 10 : 10, ocsltr 10, ocr : 10 : 8 7 : vcl : 1 10, shs : vcl, sh : vcl, sltshs | | 10<br>11<br>12 | 8·i<br>5·8 | 16·4<br>16·5<br>16·5 | SW:S:NNE<br>NNW:N<br>NNW:N | NNE : N<br>N : E : NNE<br>NNW : WNW : W | 6.0<br>2.0<br>1.6 | 0.15 | 343<br>207<br>195 | 8, ocr, mr : 10, ocmr : 10 9 : 1 0, h : 10 : 7, h 10 : 9 : 1 8 : pcl : 8 8, soha, h : 3 : vcl | | 13<br>14<br>15 | 3·8<br>1·9<br>12·2 | 16.5 | W : SW<br>SW<br>W : WSW | WSW : SW<br>SW : WSW : W<br>SW : W | 3·8<br>3·7<br>2·9 | 0.38 | 313<br>393<br>337 | 0 : 7 : 10, s 9 : 2 : 0 vcl : vcl : 10, mrsh : 10, mr : 10, r : 9, r 3, hyd : 2 : 8, cun 7 : pcl : 0 | | 16<br>17<br>18 | 8·1<br>6·7<br>5·2 | 16·5<br>16·6 | SSW: WSW: W Calm: NW: W Calm: SW | SW:S:Calm<br>Var.<br>SSW:S:SE | 2·5<br>1·6<br>5·4 | 0.08 | 144 | I, hyd : pcl : 8, cun I, hyd, sltm: 0, hyd sltm: 7, cun IO : I : 9, cu-n, ci 10, cun, s : 10, r 10, r IO, cun, s : 10, r 10, r IO, cun, s : | | 19<br>20<br>21 | 2·2<br>4·8<br>7·6 | 16·6<br>16·6 | E:SE:S<br>NNW:NW:W<br>W:NW | S:NNW<br>WSW:SW<br>WSW:SW | 2·5<br>4·5<br>4·5 | 0·08<br>0·38<br>0·47 | 160<br>340<br>394 | | | 22<br>23<br>24 | 11·2<br>12·3<br>4·2 | 16·6<br>16·6 | SW: WSW: W<br>W: WSW: NW<br>W: WSW: SW | W: WNW: NW<br>NW<br>W: NNW: NNE | 14·2<br>7·0<br>4·1 | 0.60 | 550<br>389<br>265 | thcl, hyd: 8, w : 8, w : 7, w, cun : 8, w : 3 | | 25<br>26<br>27 | 7.1 | 16·6<br>16·5<br>16·5 | NNW : W<br>NW : WNW : W | W: NNW<br>NW: SW<br>N: NW: W | 3.2 | 0.13 | 183<br>270 | , | | 28<br>29<br>3° | 12.4 | 16·5<br>16·5 | NW: W<br>N: NNE<br>Calm: ESE: NE | W: NW: N<br>N: ENE: ESE<br>NE: N: S | 1.6 | 0.05<br>0.11<br>0.02 | 167 | 10 : 10 : 9<br>10, hyd, m: pcl : pcl pcl : 0<br>0, m, h : 0, h | | Means | 7:5 | 16.5 | | | | 0.55 | 244 | | | Number of<br>Column for<br>Reference | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 26 | The mean Temperature of Evaporation for the month was 51°·7, being 3°·2 lower than The mean Temperature of the Dew Point for the month was 47°·0, being 3°·9 lower than The mean Degree of Humidity for the month was 68·1, being 5·5 less than The mean Elastic Force of Vapour for the month was oin 323, being oin 050 less than The mean Weight of Vapour in a Cubic Foot of Air for the month was 38° 6, being 08° 6 less than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6·5. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0·454. The maximum daily amount of Sunshine was 14·2 hours on June 6. June 6. The highest reading of the Solar Radiation Thermometer was 146° 9 on June 29; and the lowest reading of the Terrestrial Radiation Thermometer was 26° 0 on June 6, 17. The Proportions of Wind referred to the cardinal points were N. 8, E. 3, S. 5, W. 9. Five days were calm. The Greatest Pressure of the Wind in the month was 14·2 lbs. on the square foot on June 22. The mean daily Horizontal Movement of the Air for the month was 244 miles; the greatest daily value was 550 miles on June 22; and the least daily value was 102 miles on June 30. Rain (0in.005 or over) fell on 11 days in the month, amounting to 0in.735, as measured by gauge No. 6 partly sunk below the ground; being 1·303 less than the average fall for the 65 years, 1841-1905. | | BARO-<br>METER. | | | | Temperat | URE. | | | Dif<br>the | ference bet<br>Air Tempe | ween | Lty ( | 1 | Temperati | JRE. | ge No.<br>face is<br>round. | | |--------------------------------|------------------------------------------------------------------------------|----------------------|----------------------|----------------------|-----------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------|--------------------------|--------------------------|-------------------|----------------------------------------|------------------------------|----------------------------|---------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------| | MONTH<br>and<br>DAY, | fourly<br>rected<br>to 32° | | | Of the | Air. | | Of<br>Evapo-<br>ration. | Of the<br>Dew<br>Point. | a | nd Dew Po<br>Femperatu | oint | Humidit | Of Ra | adiation. | Of the<br>Earth | in Gaugiving sur | Electricity. | | 1918. | Mean of 24 Hourly<br>Values (corrected<br>and reduced to 32°<br>Fahrenheit). | Highest. | Lowest. | Daily<br>Range. | Mean<br>of 24<br>Hourly<br>Values | Excess<br>above<br>Average<br>of<br>65 Years. | Mean<br>of 24<br>Hourly<br>Values. | De-<br>duced<br>Mean<br>Daily<br>Value. | Mean. | Greatest. | Least. | Degree of Humidity (Saturation = 100). | Highest<br>in Sun's<br>Rays. | Lowest<br>on the<br>Grass. | 3 ft. 2 ins. below the Surface of the Soil. | Rain collected in Gauge No. 6, whose receiving surface is 5 inches above the Ground. | 2.000.000) | | July 1<br>2<br>3 | in. 29.898 30.049 30.243 | 82·0<br>68·6<br>70·4 | 50·7<br>51·4<br>47·6 | 31·3<br>17·2<br>22·8 | 65·2<br>60·6<br>58·3 | + 3·7<br>- 1·0<br>- 3·5 | 59·3<br>55·4<br>52·3 | 54·5<br>50·9<br>46·9 | 0<br>10·7<br>9·7<br>11·4 | 24.0<br>16.4<br>19.6 | 0.0<br>5.2<br>2.3 | 70 | 142·2<br>122·4<br>146·9 | 39·I<br>38·I<br>39·I | 59·01<br>59·46<br>59·81 | in. 0.000 0.000 | ::sP, wP<br>mP:sP:sP, mP<br>wP:sP, ssP:ssP, mP | | 4<br>5<br>6 | 30·230<br>30·068<br>29·978 | 76·9<br>76·8<br>73·5 | 47·3<br>59·1<br>57·4 | 29·6<br>17·7<br>16·1 | 61·9<br>65·5<br>63·6 | + 3.2 | 54·I<br>55·9<br>55·I | 47:4<br>48:1<br>48:0 | 14·5<br>17·4<br>15·6 | 28·7<br>31·2<br>24·0 | 1·3<br>6·6<br>7·7 | 53 | 147·5<br>149·1<br>137·0 | 33.0<br>45.6<br>42.7 | 60·25<br>60·30<br>60·85 | 0.000 | wwP, sP: sP: ssP, mP<br>mP, sP: ssP: ssP<br>ssP: sP: sP | | 7<br>8<br>9 | 29·968<br>29·696<br>29·518 | 78·5<br>81·5<br>73·1 | 54·7<br>52·2<br>48·7 | 23·8<br>29·3<br>24·4 | 64·6<br>66·8<br>60·9 | + 2·2<br>+ 4·4<br>- 1·5 | 57·4<br>59·0<br>53·3 | 51·4<br>52·7<br>46·7 | 13·2<br>14·1<br>14·2 | 24·7<br>27·9<br>25·4 | 3.0<br>2.0<br>5.1 | 62<br>61<br>60 | 138·9<br>138·5<br>156·9 | 39·9<br>40·5<br>34·3 | 61·25<br>61·60<br>61·76 | 0.000 | mP: mP: wP<br>wwP, mP: mP: sP<br>mP: mP, wwP | | 10<br>11<br>12 | 29·487<br>29·495<br>29·487 | 66·3<br>66·9 | 48·1<br>48·7<br>51·9 | 18·2<br>11·4<br>15·0 | 54·3<br>53·9<br>57·0 | - 8·2<br>- 8·8<br>- 5·9 | 51·5<br>52·3<br>54·2 | 48·8<br>50·7<br>51·6 | 5·5<br>3·2<br>5·4 | 14·3<br>5·9<br>16·0 | 0·0<br>I·2<br>0·2 | 81<br>89<br>82 | 125·5<br>101·5<br>126·6 | 34·3<br>39·3<br>44·2 | 61·90<br>61·70<br>61·20 | 0·498<br>1·950<br>0·307 | wwP: wP: mP, wwP<br>wP, wwP: wwN, wwP<br>wwP: wwP, wP: v, mP | | 13<br>14<br>15 | 29·713<br>29·648<br>29·726 | 72·0<br>68·9<br>76·1 | 50·2<br>47·5<br>56·9 | 21·8<br>21·4<br>19·2 | 58·9<br>58·0<br>64·2 | - 4·2<br>- 5·3<br>+ 0·8 | 55.0<br>56.4<br>60.9 | 51·5<br>55·0<br>58·2 | 7·4<br>3·0<br>6·0 | 17·1<br>6·7<br>13·2 | 0.0<br>0.6<br>0.4 | 77<br>89<br>81 | 133·0<br>101·2<br>137·0 | 40·9<br>36·1<br>51·9 | 60·30<br>60·30 | 0·162<br>0·120<br>0·000 | wP:mP:mP<br>wP:wwP:wP<br>wP:wP,wwP:wP | | 16<br>17<br>18 | 29·651<br>29·647<br>29·689 | 80·4<br>76·5<br>71·0 | 57·0<br>56·1<br>56·0 | 23·4<br>20·4<br>15·0 | 66·9<br>64·2<br>62·1 | + 3·5<br>+ 0·8<br>- 1·2 | 63·5<br>61·6<br>58·4 | 60·8<br>59·4<br>55·2 | 6·1<br>4·8<br>6·9 | 15·2<br>11·8<br>15·7 | 0·7<br>0·0<br>0·0 | 81<br>85<br>78 | 133·0<br>125·1<br>133·0 | 46·9<br>45·5<br>48·3 | 60·49<br>60·81<br>61·70 | 0·192<br>1·253<br>0·129 | wwP:wP,mP:mP<br>wwP:wP:wwP<br>wP:wP:wwP | | 19<br>20<br>21 | 29·867<br>29·622<br>29·681 | 67·9<br>72·9<br>73·8 | 54·9<br>57·5<br>55·4 | 13·0<br>15·4<br>18·4 | 61·1<br>62·8<br>62·5 | - 2·I<br>- 0·4<br>- 0·7 | 59·4<br>60·7<br>56·5 | 57·9<br>58·9<br>51·4 | 3·9<br>11·1 | 8·9<br>10·0<br>20·5 | 0·9<br>0·6<br>2·1 | 90<br>87<br>68 | 97·8<br>119·7<br>134·9 | 47·1<br>49·9<br>48·2 | 61.68<br>61.62<br>61.66 | 0·166<br>0·219<br>0·009 | wwP: wwP: wP<br>wP: wwP: wP<br>wwP: wP: mP, wP | | 22<br>23<br>24 | 29·672<br>29·404<br>29·643 | 68·1<br>71·1<br>74·1 | 54·2<br>56·5<br>53·4 | 13·9<br>14·6<br>20·7 | 60·0<br>61·7<br>59·4 | - 3·1<br>- 1·3<br>- 3·5 | 56·9<br>59·7<br>56·1 | 54·2<br>58·0<br>53·2 | 5·8<br>3·7<br>6·2 | 11·5<br>8·9<br>14·6 | I·2<br>0·0<br>0·2 | 81<br>88<br>81 | 100·2<br>107·7<br>142·6 | 47.0<br>50.3<br>47.7 | 61·49<br>61·60<br>61·61 | 0·090<br>0·539<br>0·826 | wP : mP : wwP<br>wP : wwP : wP<br>wP : v, wwP | | 25<br>26<br>27 | 29·743<br>29·608<br>29·716 | 70·2<br>66·0<br>67·1 | 53·1<br>53·0<br>49·6 | 17·1<br>13·0<br>17·5 | 58·8<br>57·2<br>58·3 | - 3.9<br>- 5.3<br>- 4.1 | 55·5<br>54·7<br>54·4 | 52·5<br>52·4<br>50·9 | 6·3<br>4·8<br>7·4 | 15·9<br>13·1<br>12·0 | o·6<br>o·4<br>o·4 | 80<br>84<br>76 | 136·8<br>113·9<br>129·4 | 46·0<br>45·3<br>40·9 | 61·80<br>61·60 | 0·353<br>0·501<br>0·027 | wwP: wwP, mP: wP, wwP<br>wP: wwP, wP<br>wwP: wP, mP. | | 28<br>29<br>30 | 29·985<br>30·005<br>29·943 | 70·9<br>77·9<br>76·4 | 47·2<br>51·7<br>52·9 | 23·7<br>26·2<br>23·5 | | - 3·2<br>+ 1·7<br>+ 2·3 | 55·3<br>59·5<br>60·5 | 51·9<br>55·8<br>57·1 | 7·2<br>8·2<br>7·5 | 15·8<br>18·9<br>15·1 | 0·0<br>0·2<br>0·0 | 77<br>75<br>77 | 105·9<br>119·8<br>107·2 | 37·9<br>43·1<br>42·6 | 61·30<br>61·26<br>61·30 | 0.000 | wwP, wP<br>wwP: wP: mP<br>wwP: wP, wwP | | 31 | 29.880 | 74.3 | 51.9 | 22.4 | 63.1 | + 0.9 | 59.1 | 55.7 | 7.4 | 15.1 | 0.0 | 77 | 131.6 | 40.9 | 61.48 | 0.000 | wwP:wP:wP | | Ieans | 29.773 | 72.6 | 52.7 | 19.9 | 61.3 | - I·4 | 56.9 | 53.2 | 8.3 | 16.7 | 1.4 | 75.5 | 127.2 | 42.6 | 61.08 | Sum<br>7·34I | | | mber of<br>lumn for<br>ference | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | II | 12 | 13 | 14 | 15 | 16 | 17 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the photographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13, and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29in.773, being oin.026 lower than the average for the 65 years, 1841-1905. #### TEMPERATURE OF THE AIR. The highest in the month was $82^{\circ}$ on July 1; the lowest in the month was $47^{\circ}$ on July 28; and the range was $34^{\circ}$ 8. The mean of all the highest daily readings in the month was $72^{\circ}$ 6, being $1^{\circ}$ 6 lower than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was $52^{\circ}$ 7, being $0^{\circ}$ 6 lower than average for the 65 years, 1841-1905. The mean of the daily ranges was $19^{\circ}$ 9, being $1^{\circ}$ 6 lower than the average for the 65 years, 1841-1905. The mean for the month was $61^{\circ}$ 3, being $1^{\circ}$ 4 lower than the average for the 65 years, 1841-1905. | | ine. | | WIND AS DEDUCE | ED FROM SELF-REGISTERING | ANEMON | ETERS. | <del></del> | | | |--------------------------------------|-----------------------------|----------------------|--------------------------------------|-------------------------------------------|---------------------------|-----------------------------------|--------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Sunsh | rizon. | | Osler's. | | | Robin<br>scn's | | ND WEATHER. | | MONTH<br>and<br>DAY,<br>1918. | ration of | Sun above Horizon. | Gener | al Direction. | or | essure<br>the<br>re Foot. | l Move-<br>he Air. | | 1 | | 19.00 | Daily Duration of Sunshine. | e unS | A.M. | Р.М. | Greatest. | Mean of 24<br>Hourly<br>Measures. | Horizontal Move-<br>ment of the Air. | A.M. | Р.М. | | July 1 2 3 | | | Calm: N: NNW<br>NNW: N<br>NNE: N | Var.<br>NNE : NE<br>N : NNE | lbs.<br>2·3<br>4·0<br>2·9 | 0.34 | miles.<br>131<br>314<br>283 | vcl, thcl, h : r, h, sltm<br>vcl, h : pcl, h | 7, cun : vcl : vcl, h 10 : 3 : 1 1 : 0 : 0 | | 4<br>5<br>6 | 13·2<br>3·8<br>5·7 | 16.4 | NNW: NNE<br>S:SW: NNW<br>W: WSW: NW | N:E:SE<br>N:WNW:W<br>NNW | | 0.15 | 231 | 10 :10 : 9 | 1, cu, ci : 10, s, n 7, ci, cu : 2 : 7 8 : 1 : 3 | | 7<br>8<br>9 | 4·I<br>8·4<br>II·I | | NNW : NW<br>Calm : SSW : S<br>W : SW | NW : S<br>S : SSW : SW<br>SW : SSW | 1·5<br>1·5<br>4·7 | 0.08<br>0.14<br>0.43 | 213 | | 8, cun : pcl : vcl, cis<br>9, thcl, soha : pcl : I<br>8, ci, cu, shs : 7 : I | | 10<br>11<br>12 | 0.4 | 16·3<br>16·2 | S:SSE<br>S:SSW<br>S:SSW | SSW:S<br>SW:W:S<br>SSW:SW | 3·6<br>5·3<br>10·2 | 0·31<br>0·47<br>0·48 | 291<br>371<br>370 | 2 : 8, r | 9, ocr : 9 : 9, r<br>10, fqhyshs,tsm: 2<br>8, shs : vcl, sh : I | | 13<br>14<br>15 | I · 2 | 16·2<br>16·1 | SW<br>S:SE:ESE<br>SSW | SW: WNW: SSW<br>SSE: SSW<br>SSW: S: SSE | 2.5 | 0·17<br>0·18<br>0·18 | 274<br>255<br>223 | | 8, r, mr : vcl : I<br>10, r, mr : 9 : vcl<br>8, mrsh : 7, sltsh : 9, n | | 16<br>17<br>18 | 7.1 | 16·1<br>16·1 | SE:S:SW<br>S:Calm:SE<br>SSW | SSW<br>E:W:S<br>SSW:SW | 2·I<br>4·5<br>I3·8 | 0·15<br>0·06<br>0·78 | 144 | 10, tsms : vcl : vcl, cun 0, m,hyd: 8, ocsltr : 10, sltsh 7 : vcl : 8, ocshs, w | | | 19<br>20<br>21 | 2·7<br>3·1<br>12·6 | | SSW:S<br>S:SE<br>S:WSW | SSW : SE<br>ESE : SSW : SW<br>WSW : SSW | 2·2<br>1·9<br>8·8 | 0·16<br>0·10<br>0·80 | 235<br>207<br>493 | 2, hyd : 6 : 10, r<br>vcl : vcl : 10, r, tsm<br>9 : 6 : 8, cun, ocshs | 10, r : 10, r : 10<br>10, r : 9 : 9<br>vcl, w : pcl | | 22<br>23<br>24 | 0·3<br>2·2<br>8·9 | 1 1 | SSW : S<br>SSE : SE : E<br>SW | SSW: S<br>WSW: SW<br>SW: WSW: SSW | 3·2<br>4·7<br>5·0 | 0.17 | 310<br>242<br>341 | 10 : 10, m, r : 10, r, mr | 10, s, n, ocsltr : 10, r : 10, mr,-sh 10, s, r, mr, m, h 8 : pcl 10, cun, ocshs, t : 10, fqhyshs,oct : 10, shs | | 25<br>26<br>27 | 4.0 | 15·7<br>15·7<br>15·6 | SSW : SW<br>SSW : SW<br>NW : NNW | SSW : SW<br>SSW : SW : W<br>NNW | 3.9 | 0·33<br>0·24<br>0·45 | 284 | vcl,hyd: pcl : vcl 10 : 9, ocshs 10 :10,ocmr: 9, cun, fqshs | vcl, shs, t : 9, t 10, r : 10, ocr, slttsm: 10, mr 8, cun, ocshs: 7, shs : 0 | | 28<br>29<br>30 | 7:4 | 15·6<br>15·5<br>15·5 | SW:W:NNW<br>SW:W<br>Calm:SW | NNW : W : SSW<br>W : N : Calm<br>Calm : E | o·6<br>o·6<br>o·3 | | 143<br>135<br>96 | thcl,d,m: $\circ$ , m : $7$ | 10 : 9, h : 9, thcl 8, cun : 8 : 1, h 9, thcl, h : 0, hyd, h | | 31 | 12.2 | 15.4 | Calm : E | E | 2.3 | 0.07 | 162 | o, hyd, m: r, h, m: o | o : r | | Means | 6.1 | 16.1 | •• | • • | | 0.25 | 259 | | | | Number of<br>Column for<br>Reference | 18 | 19 | 20 | 21 | 22 | 23 | 24. | 25 | 26 | The mean Temperature of the Dew Point for the month was 56°·9, being 1°·0 lower than The mean Temperature of the Dew Point for the month was 53°·2, being 0°·6 lower than The mean Degree of Humidity for the month was 75·5, being 2·7 greater than The mean Elastic Force of Vapour for the month was oin.406, being oin.009 less than The mean Weight of Vapour in a Cubic Foot of Air for the month was 48°s.5, being 08°s.1 less than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6·7. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0·378. The maximum daily amount of Sunshine was 13·2 hours on July 4. July 4. The highest reading of the Solar Radiation Thermometer was 156° 9 on July 9; and the lowest reading of the Terrestrial Radiation Thermometer was 32° 3 on July 3. The Proportions of Wind referred to the cardinal points were N. 5, E. 3, S. 13, W. 7. Three days were calm. The Greatest Pressure of the Wind in the month was 13.8 lbs. on the square foot on July 18. The mean daily Horizontal Novement of the Air for the month was 259 miles; the greatest daily value was 493 miles on July 21; and the least daily value was 96 miles on July 30. Rain (olim-1005 or over) fell on 17 days in the month, amounting to 7<sup>lin</sup>-341, as measured by gauge No. 6 partly sunk below the ground; being 4.942 greater than the average fall for the 65 years, 1841-1905. | | Baro-<br>meter. | | | Т | EMPERATU | RE. | | | | rence betw | | ×. | נ | [EMPERATU | JRE. | e No.<br>face is | | |---------------------------------------|------------------------------------------------------------------------------|----------------------|----------------------|----------------------|------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------|---------------------|--------------------------------------|-------------------|----------------------------------------|------------------------------|----------------------------|--------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------| | MONTH<br>and<br>DAY, | fourly<br>rected<br>to 32° | | | Of the | Air. | | Of<br>Evapo-<br>ration. | Of the<br>Dew<br>Point. | and | r Tempera<br>l Dew Poir<br>mperature | nt | Degree of Humidity (Saturation = 100). | Of Rad | iation. | Of the<br>Earth<br>3 ft. 2 ins. | in Gaugelving surve the Gro | Electricity. | | DAY,<br>1918. | Mean of 24 Hourly<br>Values (corrected<br>and reduced to 32°<br>Fahrenheit). | Highest. | Lowest. | Daily<br>Range. | Mean<br>of 24<br>Hourly<br>Values. | Excess<br>above<br>Average<br>of<br>65 Years. | Mean<br>of 24<br>Hourly<br>Values. | De-<br>duced<br>Mean<br>Daily<br>Value. | Mean. | Greatest. | Least. | Degree of<br>(Saturati | Highest<br>in Sun's<br>Rays. | Lowest<br>on the<br>Grass. | below<br>the<br>Surface<br>of the<br>Soil. | Rain collected in Gauge No. 6, whose receiving surface is 5 inches above the Ground. | | | Aug. 1 2 3 | 1n.<br>29·764<br>29·547<br>29·506 | 76°1<br>66∙0<br>68∙1 | 53.0<br>54.8<br>52.2 | 23·I<br>II·2<br>I5·9 | 63·4<br>60·7<br>59·2 | + 1·2<br>- 1·4<br>- 2·9 | 59.6<br>58.9<br>57.2 | 56·4<br>57·4<br>55·4 | 7.0<br>3.3<br>3.8 | 7·2<br>10·7 | °·4<br>°·2<br>°·2 | 78<br>89<br>88 | 136·1<br>98·9<br>108·8 | 44.9<br>48.3<br>45.4 | 61·71<br>61·90<br>62·17 | in.<br>0.000<br>0.223<br>0.140 | wwP: wP: wP<br>wwP: wP, wwP: wP<br>wwP: wwP, wP: wP | | 4<br>5<br>6 | 29·602<br>29·573<br>29·485 | 74·8<br>72·0<br>68·1 | 53·9<br>57·0<br>53·1 | 20·9<br>15·0<br>15·0 | 63·5<br>61·8<br>59·6 | + I·4<br>- 0·3<br>- 2·6 | 59·3<br>59·7<br>55·2 | 55·8<br>57·9<br>51·3 | 7·7<br>3·9<br>8·3 | 16·8<br>12·3<br>15·5 | o·o<br>o·8 | 76<br>87<br>74 | 123·5<br>122·7<br>130·4 | 43.0<br>54.3<br>44.3 | 62·12<br>62·10<br>62·21 | 0.000<br>0.027<br>0.040 | wwP: wP: wP<br>: wP: wwP<br>wwP, wP: wP, mP: mP,wwF | | 7<br>8<br>9 | 29·800<br>29·878<br>30·013 | 71·8<br>71·0<br>70·2 | 53·3<br>54·4<br>51·5 | 18·5<br>16·6<br>18·7 | 62·1<br>61·5<br>60·5 | - 0.8<br>- 0.8 | 59·I<br>57·4<br>55·2 | 56·5<br>53·9<br>50·6 | 5·6<br>7·6<br>9·9 | 18·1<br>18·1 | 0.0<br>0.0<br>1.4 | 82<br>76<br>70 | 121·0<br>129·7<br>121·0 | 44·1<br>46·7<br>43·9 | 62·28<br>62·22<br>62·20 | 0.002<br>0.003<br>0.000 | wwP: wwP: wwP, wP<br>wP: wwP, wP<br>wwP: mP: wP, wwP | | 10<br>11<br>12 | 30·139<br>30·067<br>30·003 | 72·8<br>77·2<br>77·8 | 48·0<br>49·5<br>54·2 | 24·8<br>27·7<br>23·6 | 61.6<br>63.2<br>65.6 | - 0·7<br>+ 0·8<br>+ 3·1 | 57·3<br>58·0<br>59·7 | 53·6<br>53·6<br>54·9 | 8·0<br>9·6<br>10·7 | 15·5<br>19·4<br>19·4 | 0·4<br>0·4<br>1·0 | 76<br>71<br>69 | 119·8<br>136·7<br>127·8 | 38·2<br>39·8<br>44·6 | 62·21<br>62·13<br>62·20 | 0.000<br>0.000 | wwP: wwP, mP: mP, wP<br>wwP: wP, wwP: wwP<br>wwP: wwP, mP: ssP, mP | | 13<br>14<br>15 | 30·123<br>29·953<br>29·919 | 75·1<br>78·0<br>74·1 | 53·8<br>52·0<br>54·0 | 21·3<br>26·0<br>20·1 | 64·5<br>65·3<br>63·4 | + 2.0<br>+ 2.8<br>+ 1.0 | 57·7<br>59·2<br>57·4 | 52·I<br>54·2<br>52·4 | 12·4<br>11·0 | 19·5<br>21·3<br>19·4 | 2·3<br>0·6<br>0·6 | 64<br>68<br>67 | 129·6<br>134·5<br>139·1 | 40·9<br>41·8<br>40·2 | 62·50<br>62·79<br>62·90 | 0.000<br>0.000 | sP, mp: mP, sP: ssP, wP<br>wwP: mP: sP, mP<br>wwP: sP: ssP, wP | | 16<br>17<br>18 | 29·867<br>29·825<br>29·863 | 77·1<br>70·0<br>73·1 | 47·9<br>54·3<br>55·8 | 29·2<br>15·7<br>17·3 | 63·1<br>60·7<br>64·1 | + 0.8<br>- 1.4<br>+ 2.2 | 55·7<br>57·2<br>58·0 | 49·5<br>54·2<br>52·9 | 13·6<br>6·5<br>11·2 | 21·2<br>10·6<br>18·7 | 0·6<br>2·3<br>2·5 | 61<br>80<br>67 | 137·2<br>122·5<br>133·5 | 35·2<br>45·9<br>46·1 | 63·19<br>63·20<br>63·31 | o·ooo<br>o·o₃7<br>o·ooo | wP: mP: ssP<br>mP, wP: mP, wwP<br>wwP: wP, mP: mP, sP | | 19<br>20<br>21 | 29·961<br>29·974<br>30·002 | 72·9<br>79·5<br>84·1 | 52·0<br>58·7<br>60·1 | 20·9<br>20·8<br>24·0 | 61·4<br>67·3<br>69·6 | - 0·3<br>+ 5·8<br>+ 8·3 | 57:4<br>63:7<br>65:1 | 53·9<br>60·9<br>61·6 | 7·5<br>6·4<br>8·0 | 18·2<br>15·7<br>18·4 | 0·4<br>0·0<br>0·0 | 77<br>80<br>75 | 135.0<br>131.6<br>141.2 | 43·0<br>53·0<br>50·9 | 63·20<br>63·13<br>63·36 | 0.000<br>0.000 | mP: mP, wwP<br>wwP, wP,: wP: mP, wP<br>wwP: wP, mP: mP, wP | | 22<br>23<br>24 | 29·793<br>29·872<br>29·834 | 89·8<br>69·9<br>74·1 | 63·2<br>55·1<br>51·6 | 26.6<br>14.8<br>22.5 | 75.0<br>61.8<br>61.5 | + 13·9<br>+ 0·9<br>+ 0·7 | 66·9<br>56·8<br>55·8 | 61.0<br>52.5<br>50.9 | 9·3<br>10·6 | 25·7<br>18·5<br>23·6 | 2·9<br>1·3<br>0·0 | 62<br>72<br>69 | 144·7<br>131·9<br>127·6 | 51·8<br>49·0<br>42·2 | 63·81<br>64·12<br>64·48 | 0.000<br>0.046<br>0.000 | wP: mP: sP<br>wP, mP: sP: wwP<br>wwP: sP: mP, wP | | 25<br>26<br>27 | 29·755<br>29·661<br>29·792 | 69·8<br>65·9<br>64·1 | 46·2<br>54·1<br>49·2 | 23.6<br>11.8<br>14.9 | 57·6<br>58·6<br>56·6 | - 3·I<br>- 2·I<br>- 4·0 | 54·2<br>56·3<br>54·8 | 51·1<br>54·2<br>53·2 | 6·5<br>4·4<br>3·4 | 9·9<br>11·3<br>98·4 | 0·0<br>0·0 | 79<br>85<br>88 | 98·0 | 34·6<br>44·9<br>39·1 | 64·40<br>64·09<br>63·78 | 0·200<br>0·130<br>0·133 | wwP: wP, mP: wwP<br>wwP: vP: mP<br>wP, wwP: mP: wwP | | 28<br>29<br>30 | 29·740<br>30·026<br>29·984 | 65·9<br>67·6<br>68·9 | 54·5<br>53·0<br>47·1 | 11·4<br>14·6<br>21·8 | 59·3<br>59·3<br>57·5 | - I·I<br>- I·0<br>2·6 | 56.6<br>54.2<br>54.0 | 54·2<br>49·6<br>50·8 | 5·1<br>9·7<br>6·7 | 10·9<br>17·5<br>15·2 | 1·1<br>2·9<br>0·0 | 84<br>70<br>78 | 107·0<br>114·8<br>123·8 | 42·0<br>40·0<br>34·I | 63·28<br>62·91<br>62·50 | 0.005<br>0.000<br>0.000 | wwP: mP, wP<br>wwP: mP: sP, mP<br>wP, wwP: mP: wP | | 31 | 29.674 | 66.9 | 52.2 | 14.7 | 58.6 | <u> </u> | 53.6 | 49.2 | 9.4 | 16.7 | 2.2 | 71 | 131.2 | 43.7 | 62.29 | 0.063 | wwP, mP:sP:mP | | Means | 29.839 | 72.7 | 53.2 | 19.5 | 62.2 | + 0.6 | 57.8 | 54.1 | 8.1 | 16.4 | 0.8 | 75.3 | 125.4 | 43.7 | 62.86 | 1.049 | | | Number of<br>Column for<br>Reference. | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the photographic records. The average temperature (Column 6) is deduced from the of years' observations, 1841–1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly photographic measures of the Dry-Bub and Wet-bulb Thermometers. The readings in Column 15 are tables deduced from the 24 hourly photographic measures of the Dry-Bub and Wet-bulb Thermometers. are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29in.839, being oin.056 higher than the average for the 65 years, 1841-1905. The highest in the month was $89^{\circ} \cdot 8$ on August 22; the lowest in the month was $46^{\circ} \cdot 2$ on August 25; and the range was $43^{\circ} \cdot 6$ . The mean of all the highest daily readings in the month was $72^{\circ} \cdot 7$ , being the same as the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was $53^{\circ} \cdot 2$ , being $0^{\circ} \cdot 2$ higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was $19^{\circ} \cdot 5$ , being $0^{\circ} \cdot 2$ less than the average for the 65 years, 1841-1905. The mean for the month was $62^{\circ} \cdot 2$ , being $0^{\circ} \cdot 6$ higher than the average for the 65 years, 1841-1905. | | ne. | | WIND AS DEDU | CED FROM SELF-REGISTERING | ANEMON | METERS. | | | | |--------------------------------------|-----------------------------|------------------------|--------------------------------------|--------------------------------------|---------------------------|-----------------------------------|--------------------------------------|------------------------------------|----------------------------------------------------------------------------| | | Sunshi | rizon. | | Osler's. | | | Robin<br>son's. | CLOUDS AN | ND WEATHER. | | MONTH<br>and<br>DAY,<br>1918. | Daily Duration of Sunshine. | Sun above Horizon. | General D | irection. | or | essure<br>the<br>re Foot. | l Move-<br>he Air. | | | | | Daily Du | Sun | A.M. | P.M. | Greatest. | Mean of 24<br>Hourly<br>Measures. | Horizontal Move-<br>ment of the Air. | A.M. | P.M. | | Aug. 1 2 3 | hours. 7.0 0.1 1.4 | hours.<br>15.4<br>15.3 | E<br>E : ENE<br>Calm | E<br>SE:SSW:Calm<br>E:SSW:S | lbs.<br>2·3<br>4·0<br>0·4 | 1 | | 10, sltsh :10, sh 1 | o, cl, ci,s, soha : 8, thcl : 10, n, sltr o, r : 10 : 10 o, ocshs,t: 7 : 5 | | 4<br>5<br>6 | 7·7<br>o·8<br>6·6 | 1 ) | SW:SSW<br>S:SSE<br>SSW:S | SSW : S<br>SSE : SE<br>WNW : W : S | 2·2<br>1·9<br>4·0 | 0.10 | 211 | IO, Mr : 10, ocsltr : 10, ocsltr I | 7 : 10, thcl, sltsh<br>20, ocsltr : 10, ocsltr, sh<br>8, sltsh : pcl : 0 | | 7<br>8<br>9 | 1·7<br>2·1<br>4·7 | 15·0<br>15·0 | W:WNW<br>SSE:S:SSW<br>SSW:WSW:W | Var. : SSE<br>SW : SSW<br>W : WNW | 1 · 2<br>3 · ○<br>3 · ○ | 0.24 | 288 | | 0 : 0<br>0 : 10<br>0 : pcl : 1, hyd | | 10<br>11<br>12 | 7.0<br>7.5<br>5.9 | | WNW:S<br>Calm:E:S<br>Calm:SE:SW | Calm: E: SE<br>SE: Calm<br>SW: W: NW | 0·5<br>0·7<br>1·9 | 0.02<br>0.02<br>0.10 | 112 | o, hyd : 9, ci,-cu | 9 : vcl, thcl<br>7 : 10<br>7 : vcl : vcl, sltsh | | 13<br>14<br>15 | 11.5 | 14·7<br>14·7<br>14·6 | NW : W : SW<br>S : SSE<br>SW : NW | W:S:Calm<br>S:SSW<br>SW:W:NW | 0·7<br>3·4<br>1·5 | 0.23 | 291 | o, hyd, sltm : o | 7 : vcl : o, h, hyd o : 1 2 : 1 | | 16<br>17<br>18 | 9.0<br>0.5<br>10.0 | 14.5 | N: NE<br>SW: SSW<br>SSW: SW: WSW | S:SW:NW<br>SW:SSW<br>SW:WSW:W | 1·2<br>4·1<br>4·7 | 0·07<br>0·28<br>0·45 | 320 | 10 : 10, ocmr | 8 : 8 : 10<br>o, ocsltr : 10, ocsltr : vcl<br>vcl : pcl : 1 | | 19<br>20<br>21 | 7·5<br>5·7<br>9·7 | 14·4<br>14·3<br>14·3 | SSW : SW<br>S : SSW : SW<br>S : SSW | SSW: S<br>SSW: S<br>SSW: S: SSE | 2·I<br>2·I<br>2·I | 0·18<br>0·22<br>0·15 | 285<br>293<br>249 | 10 :10 | o, n, ocmr : 10<br>o : o, hyd<br>1, cu : 1 | | 22<br>23<br>24 | 3·5<br>10·5 | 14·2<br>14·1<br>14·1 | SSE : S<br>W : NW : N<br>N : NW : SW | S:SW<br>N:NE<br>S | 3·I<br>I·8<br>I·2 | 0·26<br>0·18<br>0·05 | | vcl, thcl: ycl, thcl: 9, thcl | 1 : 1<br>9, cis : 9, ocsltr : 10, ocsltr<br>7, cun : pcl : 0 | | 25<br>26<br>27 | 3 .5 | 14·0<br>13·9<br>13·9 | S:SSE<br>S:SSW:SW<br>SSW:S | S:SE:SSE<br>SW:W<br>SSW:S | | | 298 | 10, ocsltr: 8 : 10, ocr | o, ocsltr: 10, fq,-shs: 9<br>o, ocshs: 10, sh: pcl<br>o, sltr: 10, sltr, r | | 28<br>29<br>30 | 7.5 | 13·8<br>13·8<br>13·7 | SSW:WSW:WNW<br>NW<br>NW:W:SSW | WNW : NW<br>NW : W<br>S : SSW | 3·5<br>1·8<br>3·7 | 0.10 | 221 | vcl : pcl : pcl IC | o, ocmr : pcl : o<br>o, cun : 10 : 8<br>9 : 9 : 10, mrsh | | 31 | 5.2 | 13.6 | SSW: WSW: W | W:WNW:WSW | 4.1 | 0.38 | 379 | ro : 9, cun | 8, cun : 9, r | | Means | 5.9 | 14.5 | | ., | • • | 0.16 | 237 | | | | Number of<br>Column for<br>Reference | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | The mean Temperature of Evaporation for the month was 57°·8, being 0°·3 higher than The mean Temperature of the Dew Point for the month was 54°·1, being 0°·1 higher than The mean Degree of Humidity for the month was 75°3, being 1·0 less than The mean Elastic Force of Vapour for the month was oin.419, being oin.001 greater than The mean Weight of Vapour in a Cubic Foot of Air for the month was 4grs.6, being the same as The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7·0. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0·403. The maximum daily amount of Sunshine was 12·8 hours on August 22. The highest reading of the Solar Radiation Thermometer was 144° 7 on August 22; and the lowest reading of the Terrestrial Radiation Thermometer was 34° 1 on August 30. The Proportions of Wind referred to the cardinal points were N. 2, E. 2, S. 14, W. 8. Five days were calm. The Greatest Pressure of the Wind in the month was 4.7 lbs. on the square foot on August 18. The mean daily Horizontal Movement of the Air for the month was 237 miles; the greatest daily value was 427 miles on August 18; and the least daily value was 64 miles on August 3. Rain (olin.005 or over) fell on 11 days in the month, amounting to 1in.049, as measured by gauge No. 6 partly sunk below the ground; being 1in.295 less than the average fall for the 65 years, 1841-1905. | | Baro-<br>meter. | | | | Temperati | URE. | | | | rence betw | | | Ti | MPERATUR | æ. | e No.<br>ace is<br>ound. | | |--------------------------------------|------------------------------------------------------------------------------|----------------------|----------------------|----------------------|------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------|---------------------------|-----------------------------------|-------------------|----------------------------------------|------------------------------|----------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------| | MONTH<br>and<br>DAY, | Hourly<br>rected<br>to 32° | | | Of the Ai | r. | - | Of<br>Evapo-<br>ration. | Of the<br>Dew<br>Point. | and | r Tempera<br>Dew Poi<br>mperature | nt | Degree of Humidity (Saturation = 100). | Of Rad | iation. | Of the<br>Earth<br>3 ft. 2 ins. | l in Gaugaiving surf | Electricity. | | 1918. | Mean of 24 Hourly<br>Values (corrected<br>and reduced to 32°<br>Fahrenheit). | Highest. | Lowest. | Daily<br>Range. | Mean<br>of 24<br>Hourly<br>Values. | Excess<br>above<br>Average<br>of<br>65 years. | Mean<br>of 24<br>Hourly<br>Values. | De-<br>duced<br>Mean<br>Daily<br>Value. | Mean. | Greatest. | Least. | Degree of<br>(Saturati | Highest<br>in Sun's<br>Rays. | Lowest<br>on the<br>Grass. | below<br>the<br>Surface<br>of the<br>Soil. | Rain collected in Gauge No.<br>6, whose receiving surface is<br>5 inches above the Ground. | | | Sept. 1<br>2<br>3 | in. 29.533 29.602 29.793 | 64·7<br>65·8<br>70·6 | 47·I<br>48·I<br>46·4 | 17.6<br>17.7<br>24.2 | 54·5<br>55·6<br>57·1 | - 5·3<br>- 4·1<br>- 2·5 | 48.7<br>50.1<br>51.4 | 43·I<br>44·9<br>46·2 | 0<br>11·4<br>10·7<br>10·9 | 21·4<br>18·7<br>21·8 | 3·2<br>3·2<br>1·1 | 66<br>67<br>67 | 117·2<br>123·2<br>124·2 | 38·9<br>39·8<br>36·1 | 62·12<br>61·93<br>61·70 | in. 0.000 0.000 0.000 | wwP: mP: mP<br>wP, wwP: mP: sP, mP<br>mP, sP: ssP, sP | | 4<br>5<br>6 | 29·723<br>29·717<br>29·818 | 68·2<br>67·9<br>72·0 | 51·6<br>57·0<br>56·9 | 16.6 | 58·7<br>59·4<br>61·9 | - 0.8<br>- 0.0<br>+ 2.7 | 55.0<br>58.2<br>60.2 | 51·7<br>57·2<br>58·8 | 7.0<br>2.2<br>3.1 | 15·7<br>8·5<br>11·5 | o.8<br>o.o<br>o.4 | 78<br>93<br>90 | 98·3<br>123·5<br>128·5 | 39·1<br>51·9<br>49·0 | 61·50<br>61·29<br>61·29 | 0·018<br>0·510<br>0·267 | mP:mP,wP<br>wwP:wP,mP:v,wwP<br>wwP:mP:mP,wwP | | 7<br>8<br>9 | 29·655<br>29·271<br>29·341 | 72·5<br>66·4<br>66·3 | 55·9<br>48·9<br>46·9 | 16·6<br>17·5<br>19·4 | 61.6<br>57.8<br>55.8 | + 2.6<br>- 1.0<br>- 2.8 | 59·4<br>54·3<br>51·7 | 57·5<br>51·2<br>47·8 | 4·I<br>6·6<br>8·○ | 13·9<br>14·8<br>18·3 | 0·4<br>I·2<br>0·2 | 8 <sub>7</sub><br>79<br>75 | 115.0<br>110.0<br>121.9 | 48·I<br>40·2<br>38·0 | 61·32<br>61·39<br>61·40 | 0·011<br>0·144<br>0·243 | wwP: wP, mP: mP, wwP<br>wwP: wP, wwP<br>wwP: mP: wwP | | 10<br>11<br>12 | 29·187<br>29·265<br>29·361 | 63·4<br>64·0<br>63·9 | 50·1<br>46·5<br>49·0 | 13·3<br>17·5<br>14·9 | 56·3<br>54·2<br>53·6 | - 2·I<br>- 3·9<br>- 4·4 | 51·2<br>49·8<br>49·8 | 46·4<br>44·5<br>46·1 | 9·9<br>9·7<br>7·5 | 16·2<br>17·3<br>17·0 | 4·9<br>3·0<br>1·2 | 69<br>70<br>76 | 120·9<br>126·2<br>118·4 | 40·9<br>37·4<br>40·6 | 61·00<br>60·70<br>60·55 | 0·008<br>0·022<br>0·026 | wwP, sP: mP, sP, wwP<br>wwP: wwP, sP: sP, mP<br>mP, wwP: sP, mP: wP, wwP | | 13<br>14<br>15 | 29·759<br>29·742<br>29·739 | 64·8<br>63·0<br>71·2 | 49·3<br>51·8<br>51·7 | 15·5<br>11·2 | 55.0<br>57.6<br>60.7 | - 2·8<br>- 0·1<br>+ 3·1 | 50·4<br>56·1 | 46·0<br>54·7<br>57·7 | 9·0<br>2·9<br>3·0 | 16·8<br>4·8<br>11·0 | 2·8<br>2·0<br>0·6 | 72<br>90<br>90 | 75.0<br>114.7 | 41·2<br>43·0<br>40·2 | 60·00<br> | 0·000<br>0·161<br>0·165 | wwP, wP: wP, sP: sP, wwP<br>wwP<br>wwP: wwP, wP: wP, wwP | | 16<br>17<br>18 | 29·558<br>29·500<br>29·596 | 68·8<br>71·5<br>70·5 | 50·0<br>58·8<br>56·1 | 18·8<br>12·7<br>14·4 | 59·6<br>63·7<br>61·4 | + 2·1<br>+ 6·5<br>+ 4·5 | 58·1<br>60·0<br>58·7 | 56·8<br>56·9<br>56·4 | 2·8<br>6·8<br>5·0 | 8.0<br>15.0<br>13.1 | o.o<br>o.8<br>o.o | 91<br>78<br>85 | 114·0<br>125·4<br>120·0 | 39·9<br>50·6<br>47·3 | | 0·010<br>0·041<br>0·241 | wwP: wP, wwP: wwP<br>wwP: wP, mP: sP, mP<br>wP, wwP: wP, mP: mP,wwP | | 19<br>20<br>21 | 29·629<br>29·849<br>29·643 | 63·0<br>63·2<br>65·2 | 48·4<br>44·8<br>49·3 | 14·6<br>18·4<br>15·9 | 55.6<br>52.8<br>56.5 | - 0.9<br>- 3.4<br>+ 0.6 | 51·2<br>48·1<br>52·4 | 47.0<br>43.4<br>48.6 | 8·6<br>9·4<br>7·9 | 18·7<br>17·2<br>15·2 | 0·8<br>2·8<br>2·1 | 73<br>71<br>75 | 117·9<br>115·9 | 41·2<br>38·0<br>44·1 | <br> | 0·339<br>0·136<br>0·033 | wwP: mP, sP: sP, mP<br>mP: sP: sP, mP<br>wP, wwP: wP, mP: mP, wP | | 22<br>23<br>24 | 29·208<br>29·200<br>29·661 | 58·4<br>62·5<br>63·2 | 48·1<br>45·6<br>42·2 | 10·3<br>16·9<br>21·0 | 54·9<br>52·4<br>51·9 | - 0·7<br>- 3·0<br>- 3·4 | 52·3<br>49·3<br>48·9 | 49·8<br>46·1<br>45·9 | 5·1<br>6·3<br>6·0 | 10·2<br>12·5<br>13·7 | 2·3<br>2·0 | 83<br>80<br>80 | 78·0<br>107·9<br>111·8 | 42·I<br>37·6<br>34·7 | <br> | 0·694<br>0·073<br>0·011 | wP, wwP: wP, mP: mP, wwF<br>wwP, wP: wP, mP: sP, mP<br>wP, wwP: mP: mP, wP | | 25<br>26<br>27 | 29·757<br>29·836<br>29·759 | 62·2<br>62·5<br>61·3 | 46·3<br>45·2<br>46·5 | 15·9<br>17·3<br>14·8 | | + 0.8<br>- 1.2<br>- 2.2 | 51·5<br>51·0<br>48·6 | 47·3<br>48·1<br>44·3 | 8·7<br>5·9<br>8·6 | 13·7<br>12·2<br>15·0 | 1.0<br>1.3 | 73<br>80<br>73 | 111.6<br>102.2<br>117.0 | 36·4<br>37·2<br>38·4 | <br> | 0·II2<br>0·000<br>0·000 | wwP: mP, sP: ssP, mP<br>wP: wP, wwP: wP<br>wP: wP, mP: sP, mP | | 28<br>29<br>30 | 29·619<br>29·538<br>29·617 | 58·7<br>50·2<br>51·0 | 40·9<br>38·2<br>40·5 | 17·8<br>12·0<br>10·5 | 44.0 | - 3·8<br>- 10·7<br>- 9·8 | 45.7<br>42.6<br>42.3 | 40·1<br>40·9<br>39·6 | 3·1<br>5·0 | 15·1<br>8·1<br>10·5 | 2·7<br>0·0<br>1·8 | 66<br>89<br>83 | 111·7<br>64·2<br>77·8 | 29·0<br>29·0<br>29·5 | | 0·144<br>0·970<br>0·103 | wP:sP,ssP:ssP,sP<br>mP:mP,vvN:vv<br>v:v,sP:mP | | Means | 29.583 | 64.6 | 48.6 | 16.0 | 55.7 | — I·5 | 52.2 | 48.8 | 6.9 | 14.1 | 1.5 | 78.3 | 110.7 | 40.0 | | Sum<br>4·482 | | | Number of<br>Column for<br>Reference | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the photographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13, and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 291n.583, being 01n.228 lower than the average for the 65 years, 1841-1905. #### TEMPERATURE OF THE AIR. The highest in the month was $72^{\circ} \cdot 5$ on September 7; the lowest in the month was $38^{\circ} \cdot 2$ on September 29; and the range was $34^{\circ} \cdot 3$ . The mean of all the highest daily readings in the month was $64^{\circ} \cdot 6$ , being $2^{\circ} \cdot 7$ lower than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 48°·6, being 0°·5 lower than the average for the 65 years, 1841-1905. The mean of the daily ranges was 16°0, being 2°2 less than the average for the 65 years, 1841-1905. The mean for the month was 55°.7, being 1°.6 lower than the average for the 65 years, 1841-1905. | | ne. | | Wind as Dedu | CED FROM SELF-REGISTERING | ANEMO | METERS. | | | |--------------------------------------|-------------------------------|--------------------------------|-----------------------------------------|---------------------------------------|---------------------------|-----------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Sunshi | rizon. | | Osler's. | | | Robin<br>son's | CLOUDS AND WEATHER. | | MONTH<br>and<br>DAY,<br>1918. | Daily Duration of Sunshine. | Sun above Horizon. | Genera | al Direction. | 0 | essure<br>n the<br>ire Foot. | d Move-<br>he Air. | | | | Daily Du | Sun | A.M. | P.M. | Greatest. | Mean of 24<br>Hourly<br>Measures. | Horizontal Move-<br>ment of the Air. | A.M. P.M. | | Sept.1 | hours.<br>11.5<br>7.0<br>11.2 | hours.<br>13.6<br>13.5<br>13.4 | W:WNW<br>WSW:W<br>WSW:W | W:WSW<br>W:WNW<br>W:SW | lbs.<br>6·7<br>6·2<br>I·9 | lbs.<br>0.60<br>0.56<br>0.21 | miles.<br>461<br>444<br>262 | pcl : o : pcl, cu 7, w : 2, w : vcl 3 : pcl : vcl, ocsltr vcl, ocsltr, w: vcl, w : o | | 4<br>5<br>6 | 0·4<br>1·7<br>4·0 | 13·4<br>13·3<br>13·2 | Calm: E: SE<br>ENE: E: ESE<br>ESE: Calm | S: E: ENE<br>E: ESE<br>SW: Calm | 2·5<br>3·2<br>0·8 | 0.06<br>0.20<br>0.01 | 239 | IO, sltsh : IO, ocsltr : IO, tsm | | 7<br>8<br>9 | 2·8<br>3·7<br>7·7 | 13·1<br>13·1 | SW:S:E<br>S:SSW<br>SW:WSW | SE:S:SSW<br>SW:WSW<br>SW:S | 1·9<br>8·0<br>7·7 | | 182<br>456<br>418 | | | IO<br>II<br>I2 | 7·5<br>4·8 | 12.9 | SW: WSW<br>SSW: SW: WSW<br>SW: WSW: W | WSW: SW<br>NW: W: WSW<br>W: WSW | 8·5<br>8·0 | 0·53<br>0·45 | 591<br>404<br>414 | 2, d : 8, sltsh : 7, w vcl, sh : pcl, ocw : vcl | | 13<br>14<br>15 | 4·6<br>o·o<br>4·3 | | WSW: W<br>SW: SSW: S<br>SW | W : SW<br>SSW : SW<br>SSW : S | 4.6<br>6.0<br>2.2 | 0·29<br>0·48<br>0·15 | 353<br>387<br>219 | 7 : I : 8 9 : 9 : 8 10, r, w : 10, r : 10, ocmr 7 : 2 : pcl, hyd | | 16<br>17<br>18 | - | 12·6<br>12·5<br>12·5 | Calm: SW<br>SE:S:SW<br>SSW:SW | SSW : S<br>SSW<br>SSW : SSE | 2·2<br>9·0<br>2·5 | | 209<br>430<br>221 | 10, r, mr : pcl : vcl, w 7, w : vcl : vcl | | 19<br>20<br>21 | 8.8 | 12·4<br>12·3 | SW : W : NW<br>WSW : W<br>SW | WSW<br>SW : SSW<br>SW : SSW | 6·5<br>4·9<br>6·2 | 0.45 | 464<br>402<br>498 | | | 22<br>23<br>24 | 0·1<br>6·2<br>6·1 | 12·1<br>12·1 | SSW : SW<br>SSW : SW<br>WSW : WNW | SSW : S<br>SW : W : WNW<br>SW : SSW | 6·2<br>3·0<br>3·6 | 0.31 | 338 | 10, r : 10, r,mr : 10, sltsl : 10, thcl : 10, sh : 8, ocr 10, ocr : 3 : pcl : 0, sltl : 0, sltl 0, hyd : 0, h : 8 : 10, r | | 25<br>26<br>27 | 2.8 | 12·0<br>11·9 | SW: WSW: WNW<br>WSW: SW<br>W: WSW | WNW : W : WSW<br>SW : WSW<br>WSW : SW | 7.6 | 0·41<br>0·48<br>0·29 | 414 | ro, ocr : 6, w 7 : r 2, hyd : 2 : 9 9, w : 9, ocsltr : 9 7, hyd : r : ycl : vcl : z | | 28<br>29<br>30 | ó·3 | 11·8<br>11·8<br>11·7 | SW:W:WNW<br>SW:Calm<br>N:NNW:NW | WNW: W: SW<br>SE: E: NE<br>NW: NNW: N | 5.5 | 0.19 | 256 | 10, shs, w : 7, w 7 : 1, hofr : 0, hofr 1, hyd, hofr : 10, soha, r 10, r : 10, r : 10, r 10, r, w, : 10, r : 10, ocsltr : 10, ocsltr : 0, slthofr | | Means | 5.4 | 12.6 | •• | ••• | •• | 0.42 | 355 | | | Number of<br>Column for<br>Reference | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | The mean Temperature of Evaporation for the month was 52°·2, being 1°·9 lower than The mean Temperature of the Dew Point for the month was 48°·8, being 2°·4 lower than The mean Degree of Humidity for the month was 78·3, being 1°·9 less than The mean Elastic Force of Vapour for the month was oim.345, being oim.032 less than The mean Weight of Vapour in a Cubic Foot of Air for the month was 32m·9, being ogres.3 less than The mean weight of a Cubic Foot of Air for the month was 53 grains, being 2 grains less than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6·9. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0·428. The maximum daily amount of Sunshine was 11·5 hours on September 1. September 1. The highest reading of the Solar Radiation Thermometer was 128° 5 on September 6; and the lowest reading of the Terrestrial Radiation Thermometer was 29° 0 on September 28 and 29. The Proportions of Wind referred to the cardinal points were N. 1, E. 2, S. 11, W. 14. Two days were calm. The Greatest Pressure of the Wind in the month was 10·2 lbs. on the square foot on September 10. The mean daily Horizontal Movement of the Air for the month was 355 miles; the greatest daily value was 591 miles on September 10, and the least daily value was 118 miles on September 6. Rain (olm-005 or over) fell on 24 days in the month, amounting to 4in-482, as measured by gauge No. 6 partly sunk below the ground; being 2in-334 greater than the average fall for the 65 years, 1841-1905. | | Baro-<br>meter. | | | | Temperat | URE. | | | | erence bet | | , x | | Temperatu | RE. | e No. | | |--------------------------------------|------------------------------------------------------------------------------|----------------------|----------------------|----------------------|------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------|---------------------------|-------------------------------------|-------------------|----------------------------------------|---------------------------------|------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------| | MONTH and DAY, | Hourly<br>rrected<br>d to 32°<br>). | | | Of the A | Air. | | Of<br>Evapo-<br>ration. | Of the<br>Dew<br>Point. | an | Air Temper<br>d Dew Po<br>emperatur | int | Degree of Humidity (Saturation = 100). | Of Ra | diation. | Of the<br>Earth<br>3 ft. 2 ins. | in Gaug<br>siving surf<br>ve the Gr | | | 1918. | Mean of 24 Hourly<br>Values ("orrected<br>and reduced to 32°<br>Fahrenheit). | Highest. | Lowest. | Daily<br>Range. | Mean<br>of 24<br>Hourly<br>Values. | Excess<br>above<br>Average<br>of<br>65 Years. | Mean<br>of 24<br>Hourly<br>Values. | De-<br>duced<br>Mean<br>Daily<br>Value. | Mean. | Greatest. | Least. | Degree o | Highest<br>in Sun's<br>Rays. | Lowest on the Grass. | below<br>the<br>Surface<br>of the<br>Soil. | Rain collected in Gauge No. 6, whose receiving surface is 5 inches above the Ground. | Electricity. | | Oct. I | in. 30.000 30.048 29.908 | 56·2<br>55·7<br>61·0 | 33.8<br>40.1<br>48.3 | 22·4<br>15·6 | 44.5 | - 9·6<br>- 4·8 | 41·1<br>47·1 | 37·2<br>45·1 | 7:3 | 13.6 | 1.4 | 87 | 97.0<br>75.7 | 23.0 | 0 | in.<br>0.000<br>0.001 | wwP::ssP, wwP | | 3<br>4<br>5<br>6 | 29·853<br>29·885<br>29·759 | 58·5<br>56·9<br>64·2 | 39·1<br>37·5<br>48·8 | 19·4<br>19·4<br>15·4 | 53·6<br>50·4<br>50·1<br>56·4 | + 0·3<br>- 2·6<br>- 2·7<br>+ 3·9 | 49.7<br>45.9<br>47.6<br>51.1 | 45·9<br>41·2<br>45·0<br>46·2 | 7·7<br>9·2<br>5·1<br>10·2 | 13·3<br>17·1<br>7·2<br>18·5 | 2.1 | 71 | 104·5<br>103·5<br>76·0<br>107·5 | 38·6<br>27·2<br>26·9<br>39·3 | | 0.000<br>0.001<br>0.038<br>0.040 | wwP: wwP, mP: mP, sP wP: mP, sP: ssP, mP wP, wwP wP, wwP: mP: mP, sP | | 7 8 9 | 29·704<br>29·773<br>29·867 | 58·3<br>56·1<br>57·3 | 45·I<br>38·9<br>37·9 | 13.2 | 51·0<br>46·0<br>48·5 | - I·3<br>- 6·0<br>- 3·I | 47·4<br>42·7<br>47·5 | 43·6<br>38·9<br>46·5 | 7:4<br>7:1<br>2:0 | 13·3<br>15·4<br>4·6 | 2.5 | 76<br>77<br>93 | 98·5<br>103·8<br>61·7 | 34·9<br>28·5<br>28·2 | | 0·II2<br>0·0I2<br>0·III | mP wP : mP, v : sP<br>mP : mP : wP<br>wP : wwP : | | 10<br>11<br>12 | 29·881<br>29·743<br>29·690 | 63·5<br>63·1<br>51·6 | 56·2<br>50·3<br>47·1 | 7:3<br>12:8<br>4:5 | 58·8<br>55·9<br>49·5 | + 7·5<br>+ 5·0<br>- 1·1 | 57·0<br>54·7<br>47·6 | 55·4<br>53·6<br>45·6 | 3·4<br>2·3<br>3·9 | 8·2<br>6·4<br>7·6 | 0.0 | 88<br>92<br>87 | 90·8<br>89·0<br>63·8 | 50·6<br>48·9<br>42·9 | | 0·003<br>0·217<br>0·012 | wwP<br>wwP<br>wwP: wP: wwP | | 13<br>14<br>15 | 29·879<br>29·741<br>29·612 | 53·8<br>56·8<br>54·7 | 37.0<br>34.9<br>46.0 | 16·8<br>21·9<br>8·7 | 46·7<br>46·2<br>50·3 | - 3·6<br>- 3·9<br>+ o·4 | 43.5<br>44.1<br>48.8 | 39·9<br>41·7<br>47·2 | 6·8<br>4·5<br>3·1 | 15·2<br>11·5<br>7·9 | 0·7<br>0·3<br>0·0 | 78<br>85<br>90 | 86·1<br>89·3<br>67·0 | 24·7<br>23·0<br>38·0 | •• | 0.008 | wwP: wwP, wP: mP, wwP<br>wwP: wwP, wP: wwP<br>wwP: wP: wP | | 16<br>17<br>18 | 29·554<br>29·599<br>29·746 | 52·4<br>54·1<br>50·1 | 39·5<br>36·3<br>30·8 | 12·9<br>17·8 | 47·3<br>46·1<br>40·6 | - 2·5<br>- 3·5<br>- 8·7 | 44·9<br>43·8<br>39·6 | 42·3<br>41·2<br>38·4 | 5.0<br>4.9<br>2.2 | 10·4<br>13·0<br>6·0 | 0.5 | 84<br>84<br>92 | 70·8<br>94·0<br>67·5 | 28·4<br>28·0<br>25·9 | • • • | o·ooo<br>o·ooo | wwP : wwP,— : wP, wwP<br>wwP : wP : wP, wwP<br>wwP | | 19<br>20<br>21 | 29·858<br>29·921<br>29·948 | 55·8<br>53·5<br>54·2 | 39·9<br>48·4<br>48·8 | 15·9<br>5·1<br>5·4 | 48·1<br>51·7<br>51·5 | - I·0<br>+ 2·9<br>+ 2·9 | 46·3<br>50·1 | 44·3<br>50·1<br>48·7 | 3·8<br>1·6<br>2·8 | 7·9<br>4·2<br>5·8 | 0·4<br>0·0<br>0·6 | 87<br>94<br>90 | 83·6<br>54·4<br>71·0 | 28·0<br>46·6<br>45·5 | | 0·180<br>0·213<br>0·051 | wwP, v : wwP, wP : wP<br>wwP<br>wwP | | 22<br>23<br>24 | 29·877<br>29·971<br>29·915 | 61.0<br>58.0<br>53.0 | 42·5<br>39·0<br>38·4 | 18·5<br>19·0<br>14·6 | 51·1<br>47·9<br>46·7 | + 2·8<br>- 0·2<br>- I·2 | 49·5<br>46·2<br>44·8 | 47·9<br>44·3<br>42·6 | 3·2<br>3·6<br>4·I | 9·7<br>11·0<br>9·1 | 0·2<br>0·0<br>0·7 | 89<br>88<br>87 | 99·6<br>83·7<br>81·0 | 30·I<br>26·8<br>28·2 | •• | 0.037<br>0.000<br>0.000 | wwP: wwP, wP: wP<br>wwP: wP, wwP: wwP<br>wwP: wwP, wP: wwP | | 25<br>26<br>27 | 29·730<br>29·795<br>29·906 | 51·2<br>51·6<br>59·5 | 37·4<br>36·0<br>40·8 | 13·8<br>15·6<br>18·7 | 45.7<br>44.8<br>51.2 | - 2·0<br>- 2·8<br>+ 3·7 | 44·I<br>42·4<br>49·6 | 42·3<br>39·6<br>48·0 | 3·4<br>5·2<br>3·2 | 6·1<br>13·9<br>7·6 | 0·5<br>0·0<br>0·0 | 88<br>82<br>89 | 61·9<br>83·6<br>85·0 | 28·4<br>26·4<br>35·0 | | 0·013<br>0·000<br>0·023 | wwP:wwP:wP<br>wP:wP;wP,wwP<br>wwP | | 28<br>29<br>30 | 30·066<br>30·150<br>29·894 | 57·8<br>57·9<br>60·6 | 50·2<br>49·9<br>46·0 | 7·6<br>8·0<br>14·6 | 53.4 | + 6·3<br>+ 6·1<br>+ 3·9 | 52·I<br>5I·3<br>48·8 | 50·5<br>49·2<br>46·4 | 3·2<br>4·2<br>4·7 | 6·2<br>7·9<br>15·3 | I·2<br>I·0<br>0·6 | 89<br>86<br>84 | 85·3<br>69·5<br>108·0 | 46·4<br>40·I<br>33·0 | | 0.010<br>0.000<br>0.000 | wwP<br>wwP : wwP : wP, wwP<br>wwP : wP, wwP | | 31 | 29.645 | 58.7 | 50.3 | 8.4 | 53.6 | + 6.5 | 52.1 | 50.6 | 3.0 | 6.9 | 0.0 | 89 | 88.5 | 43.1 | | 0.076 | wwP : wwP, wP : wwP | | Means | 29.836 | 56.7 | 42.4 | 14.3 | 49.7 | - 0.3 | 47.5 | 45.1 | 4.6 | 9.9 | o·7 | 84.8 | 83.9 | 33.7 | | Sum<br>1·333 | •• | | Number of<br>Column for<br>Reference | ĭ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | II | 12 | 13 | 14 | 15 | 16 | 17 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the photographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8), and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13, and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29in.836, being 0in.115 higher than the average for the 65 years 1841-1905. The highest in the month was $64^{\circ}\cdot 2$ on October 6; the lowest in the month was $30^{\circ}\cdot 8$ on October 18; and the range was $33^{\circ}\cdot 4$ . The mean of all the highest daily readings in the month was $56^{\circ}\cdot 7$ , being $0^{\circ}\cdot 8$ lower than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was $42^{\circ}\cdot 4$ , being $0^{\circ}\cdot 8$ lower than the average for the 65 years, 1841-1905. The mean of the daily ranges was 14°·3, being equal to the average for the 65 years, 1841–1905. The mean for the month was 49°·7, being 0°·3 lower than the average for the 65 years, 1841–1905. | | ne. | | Wind as Dedu | CED FROM SELF-REGISTERING | ANEMO | METERS. | | | |--------------------------------------|-----------------------------|----------------------|------------------------------------|--------------------------------------------|---------------------------|-----------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Sunsh | rizon. | | Osler's. | | | Robii<br>son's | CLOUDS AND WEATHER. | | MONTH<br>and<br>DAY,<br>1918. | ration of | Sun above Horizon. | General | Direction. | or | essure<br>a the<br>re Foot. | Move-<br>he Air. | | | | Daily Duration of Sunshine. | Sun a | A.M. | P.M. | Greatest. | Mean of 24<br>Hourly<br>Measures. | Horizontal ment of the | A.M. P.M. | | Oct. 1 2 3 | hours.<br>8·9<br>0·1<br>4·7 | 11.6 | Calm : W : NW<br>WSW<br>SW | WNW : W<br>SW<br>SW : SSW | lbs.<br>2·5<br>2·5<br>6·0 | lbs.<br>0·15<br>0·18 | miles | o, hofr : o, h, hofr: o, h<br>pcl : 7 : 10, fqsltr : 10, n, ocmr : 10, ocmr : 9 | | 4 5 6 | 8·0<br>0·0<br>6·0 | II·4<br>II·3<br>II·2 | SSW: WSW: NW<br>SW: SSW<br>SW: WSW | NW: W: SW<br>SW<br>WSW: SW | 3·2<br>8·6<br>7·7<br>8·2 | 0·29<br>0·60<br>0·99 | 315<br>465<br>580 | O : 9, sltsh : pcl, cu 3 : 10, ocmr : 10, cls, n, ocmr 10, ocmr, w : 10, W : 10, r, soha, w O : 8, W : 10, fqr,-mr, w pcl, cun : 3 : 0, h, sltf 10, cls, fqr, w : 10, ocr, mr, w : 10, n, w 7, cu, w : 1 pcl, cun : 0 : 0 | | 9 | 0.0 | II·1<br>II·0 | WSW<br>SW:S:SSW | W: WSW<br>SSW<br>SW: SSW | 3·5<br>5·2 | 0.22 | 365 | | | 11 | o·4<br>o·o | 10.9 | SSW : S<br>N | SW:N<br>N:NNW:NNE | 3·5<br>1·0 | 0.06 | 179 | 10 : 10, r : 9, cun 10, r, mr : 10, r : 10, r 10, r, mr : 10, mr : 9 | | 13<br>14<br>15 | 6·7<br>0·1<br>0·0 | 10·8<br>10·7 | N:NNW<br>Calm:S:SSW<br>Calm:W:N | NNW: SSW: Calm<br>SSW: S: Calm<br>N: NNE | 1·5<br>2·2<br>1·5 | 0.10 | 207 | | | 16<br>17<br>18 | 0.0<br>3.1<br>0.2 | 10·7<br>10·6<br>10·5 | N:NNW:W<br>Calm:N:NE<br>Calm | NNW: NW: WNW<br>NE: N: Calm<br>Calm: E: NE | 2·6<br>0·8<br>0·7 | 0.02 | 118 | vcl, m, f, hyd: : 10, s, cu, n, sltsh 10 : 10, mrsh : 8, cus f, hofr : 2, hofr, f: f 10, Cu, n : 10 : 10, ocmr 8, cun, ci, s : 2, f, hofr : f, hofr 5, cun, ci : pcl, m : vcl, thcl, sltf | | 19<br>20<br>21 | 2·5<br>0·0<br>0·0 | 10.4 | Calm : NNE<br>N : NNE<br>NE : NNE | NNE : N<br>N : NNE : NE<br>NE : E : Calm | 1·2<br>4·0<br>3·5 | 0·12<br>0·45<br>0·21 | 4Ó5 | 10, ocr,-mr : 10, n, fqr : 10, r, mr : 10, fqr : 10, n, ocmr : 10, ocr : 10, n, sltr | | 22<br>23<br>24 | 4·3<br>4·5<br>4·0 | 10·3<br>10·1 | Calm : S<br>Calm : NE<br>NE : NNE | S : Calm<br>E : NE<br>N : NNE : Calm | I · 2<br>2 · 0<br>I · 6 | 0.07 | | 10, ocmr: 10, r : 7, cu, cicu 7, ci, cicu: 1 : vcl, thcl, hyd 7, f : f : f 3 : 10, ocmr: 10, mr 8 : 8, m : 6 vcl, thcl, cis, cu: 3 : 9, sltf, hofr | | 25<br>26<br>27 | 0.0<br>6.3<br>0.1 | 10.0 | Calm: W<br>N: NE: Calm<br>S: SW | W:N<br>E:Calm:S<br>WSW:SW | 0.4 | 0.01 | 126 | thcl, sltf : 9, ocmr 10, n, r : 9, sltf : 10 10, sltr : 10, mr : 10, n 10, n, s : 10, sltf, hofr : 10, n, s : 10 | | 28<br>29<br>30 | 0·5<br>0·3<br>6·3 | 9·8<br>9·8 | SW : Calm<br>SW : W<br>SSE : SE | SW<br>SW:S:SE<br>SSE:S | 1·2<br>0·5<br>3·0 | 0.02 | 127 | | | 31 | 0.3 | 9.7 | SSW : SW | SSW : S | I .0 | 0.07 | 204 | 10, ocmr : 10, n, cu, sltsh ro, n, ocsltr : 10, mr : 10, r | | Means | 2.5 | 10.7 | | | • • | 0.31 | 255 | | | Number of<br>Column for<br>Reference | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 26 | The mean Temperature of Evaporation for the month was $47^{\circ}\cdot5$ , being $0^{\circ}\cdot4$ lower than The mean Temperature of the Dew Point for the month was $45^{\circ}\cdot1$ , being $0^{\circ}\cdot6$ lower than The mean Degree of Humidity for the month was $84\cdot8$ , being $0\cdot2$ less than The mean Elastic Force of Vapour for the month was $0^{in}\cdot30^{i}$ , being $0^{in}\cdot006$ less than The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{ers}\cdot5$ , being the same as The mean weight of a Cubic Foot of Air for the month was $54^{\circ}$ grains, being 2 grains greater than The mean proportion of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was $7\cdot2$ . The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0\cdot235$ . The maximum daily amount of Sunshine was $8\cdot9$ hours on October 1. October 1. The highest reading of the Solar Radiation Thermometer was 108° 0 on October 30; and the lowest reading of the Terrestrial Radiation Thermometer was 23° 0 on October 1 and 14. The Proportions of Wind referred to the cardinal points were N. 7, E. 2, S. 9, W. 8. Five days were calm. The Greatest Pressure of the Wind in the month was 8.6 lbs. on the square foot on October 5. The mean daily Horizontal Movement of the Air for the month was 255 miles; the greatest daily value was 580 miles on October 6; and the least daily value was 118 miles on October 17, 18. Rain (0<sup>10</sup>.005 or over) fellon 17 days in the month, amounting to 1<sup>10</sup>.333, as measured by gauge No. 6 partly sunk below the ground; being 1<sup>10</sup>.449 less than the average fall for the 65 years, 1841-1905. | | Baro-<br>meter. | | | 7 | EMPERATU | JRE. | | | | ence betw | | ).y | T | EMPERATU | RE. | ge No.<br>face is<br>cound. | | |--------------------------------------|------------------------------------------------------------------------------|----------------------|----------------------|----------------------|-------------------------------------|-----------------------------------------------|-----------------------------------|-----------------------------------------|-------------------|--------------------------------------|-------------------|----------------------------------------|------------------------------|----------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| | MONTH<br>and | ourly<br>ected<br>o 32° | | | Of the Ai | r. | | Of<br>Evapo-<br>ration. | Of the<br>Dew<br>Point. | and | r Tempera<br> Dew Poir<br>mperature | it | Degree of Humidity (Saturation = 100). | Ot Rad | iation. | Of the<br>Earth | d in Gaug<br>eiving sur<br>ove the Gr | Electricity. | | DAY,<br>1918. | Mean of 24 Hourly<br>Values (corrected<br>and reduced to 32°<br>Fahrenheit). | Highest. | Lowest. | Daily<br>Range. | Mean<br>of 24<br>Hourly.<br>Values. | Excess<br>above<br>Average<br>of<br>65 Years. | Mean<br>of 24<br>Hourly<br>Values | De-<br>duced<br>Mean<br>Daily<br>Value. | Mean. | Greatest. | Least. | Degree o<br>(Saturati | Highest<br>in Sun's<br>Rays. | Lowest<br>on the<br>Grass. | below<br>the<br>Surface<br>of the<br>Soil. | Rain collected in Gauge No.<br>6, whose receiving surface is<br>5 inches above the Ground. | | | Nov.I 2 3 | in.<br>29·499<br>29·299<br>29·429 | 57·4<br>58·5<br>46·2 | 50·1<br>46·2<br>37·7 | 7·3<br>12·3<br>8·5 | 53·9<br>52·9<br>44·I | + 6.9<br>+ 6.1<br>- 2.5 | 52·0<br>50·2<br>43·3 | 50·1<br>47·5<br>42·3 | 3.8<br>5.4<br>1.8 | 7.6<br>11.1<br>3.6 | 0·4<br>0·6<br>0·7 | 87<br>82<br>94 | 73.0<br>68.3<br>47.8 | 37.0<br>29.3 | •• | in.<br>0.001<br>0.110<br>0.528 | wwP<br>wwP: wP, wwP<br>wwP | | 4<br>5<br>6 | 29·467<br>29·554<br>29·985 | 54·5<br>55·1<br>47·1 | 35·7<br>44·6<br>41·1 | 18·8<br>10·5<br>6·0 | 46·0<br>50·9<br>44·I | - 0·4<br>+ 4·8<br>- 1·7 | 44·5<br>48·4<br>42·0 | 42·8<br>45·8<br>39·5 | 3·2<br>5·1<br>4·6 | 10·0<br>10·3<br>8·7 | 0·2<br>0·8<br>0·7 | 90<br>83<br>83 | 84·9<br>91·1<br>57·9 | 26·8<br>37·3<br>34·6 | <br> | 0·288<br>0·140<br>0·000 | wwP<br>wwP<br>wwP | | 7<br>8<br>9 | 30·013<br>29·773<br>30·250 | 50·5<br>49·6<br>51·8 | 36·2<br>35·6<br>29·8 | 14·3<br>14·0<br>22·0 | 41·1<br>45·5<br>41·2 | - 4·3<br>+ 0·5<br>- 3·4 | 39·6<br>42·8<br>38·0 | 37·7<br>39·7<br>34·0 | 3·4<br>5·8<br>7·2 | 10·6<br>10·1<br>12·9 | 0.0<br>2.6<br>2.1 | 88<br>81<br>76 | 63·7<br>66·1<br>83·7 | 26·1<br>24·7<br>19·4 | <br><br> | 0.000<br>0.135<br>0.000 | wwP<br>wwP<br>wwP: wP, wwP | | 10<br>11<br>12 | 30·264<br>30·133<br>30·299 | 54.0<br>54.4<br>49.5 | 38·7<br>44·9<br>34·7 | 15·3<br>9·5<br>14·8 | 47·3<br>49·4<br>42·3 | + 3.0<br>+ 5.4<br>- 1.4 | 44·8<br>47·7<br>40·2 | 42·I<br>45·9<br>37·6 | 5·2<br>3·5<br>4·7 | 9·5<br>7·0<br>8·9 | 0.9 | 83<br>89<br>84 | 73·6<br>65·2<br>76·0 | 28·5<br>43·5<br>24·2 | | 0·002*<br>0·170<br>0·000 | $egin{array}{c} \mathbf{w}\mathbf{w}\mathbf{P} \\ \mathbf{w}\mathbf{w}\mathbf{P} : \dots \\ \dots \end{array}$ | | 13<br>14<br>15 | 30·349<br>30·228<br>30·150 | 49·2<br>49·8<br>48·9 | 31·3<br>29·6<br>34·7 | 17·9<br>20·2<br>14·2 | 39·6<br>37·8<br>40·8 | - 3·9<br>- 5·5<br>- 2·3 | 38·1<br>36·5<br>38·8 | 36·1<br>34·8<br>36·3 | 3·5<br>3·0<br>4·5 | 9·6<br>9·6 | o.8<br>o.o<br>o.7 | 88<br>89<br>85 | 76·2<br>80·2<br>77·0 | 21·8<br>20·2<br>23·3 | | 0·000<br>0·000<br>0·002* | wwP::mP,wP<br>wP:wwP,wP:wP | | 16<br>17<br>18 | 30·084<br>29·990<br>30·085 | 43·8<br>41·0<br>43·5 | 33.0<br>35.4<br>35.9 | 10·8<br>5·6<br>7·6 | 38·3<br>38·1 | - 4·7<br>- 4·3<br>- 2·5 | 35·8<br>35·9<br>37·7 | 32·7<br>32·7<br>34·8 | 5·4<br>5·6<br>5·1 | 7·7<br>8·5<br>7·3 | 0·6<br>4·0<br>3·5 | 80<br>86 | 73·5<br>61·0<br>49·9 | 24·6<br>28·0<br>29·4 | •• | 0·002*<br>0·000<br>0·000 | $egin{array}{l} \mathbf{wP} \\ \mathbf{wP} \\ \mathbf{wP} \end{array}$ | | 19<br>20<br>21 | 30·206<br>30·207<br>30·050 | 42·I<br>38·8<br>45·9 | 34·8<br>31·1<br>31·6 | 7·3<br>7·7<br>14·3 | 38·7<br>35·7<br>37·0 | - 3.6<br>- 6.5<br>- 5.1 | 37·7<br>35·7<br>36·0 | 36·4<br>35·7<br>34·6 | 2·3<br>0·0<br>2·4 | 4·2<br>1·0<br>9·5 | 0·2<br>0·0<br>0·0 | 92<br>100<br>91 | 48·5<br>49·6<br>67·3 | 25·0<br>29·9<br>19·5 | <br> | 0·000<br>0·002*<br>0·004* | $egin{array}{c} \mathbf{wP} \\ \mathbf{wP} \\ \mathbf{wwP} : \mathbf{wP} : \mathbf{wP} \end{array}$ | | 22<br>23<br>24 | 29·750<br>29·756<br>29·672 | 46·1<br>52·0<br>52·7 | 29·4<br>36·7<br>44·1 | 16·7<br>15·3<br>8·6 | 36·9<br>42·6<br>47·2 | - 5·2<br>+ 0·6<br>+ 5·2 | 35·9<br>41·5<br>46·5 | 34·6<br>40·2<br>45·7 | 2·3<br>2·4<br>1·5 | 8·3<br>8·5<br>4·1 | o·o<br>o·o<br>o·4 | 92<br>91<br>95 | 74·1<br>77·7<br>61·8 | 17·4<br>21·1<br>38·9 | <br> | o·oo3*<br>o·oo6*<br>o·oo4 | wP<br>wP, wwP<br>wwP | | 25<br>26<br>27 | 29·585<br>29·614<br>29·634 | 48·9<br>47·9<br>50·2 | 39·5<br>32·0<br>39·2 | 9·4<br>15·9<br>11·0 | 45·9<br>41·5<br>43·8 | - 0.3 | 44·9<br>41·0<br>42·7 | 43.8 | 2·1<br>1·0<br>2·3 | 4·5<br>2·4<br>4·7 | 0·0<br>0·0<br>0·7 | 93<br>96<br>91 | 53·1<br>53·3<br>67·2 | 35·I<br>23·8<br>29·0 | <br> | o·168<br>o·092<br>o·000 | wwP<br>wwP<br>wwP | | 28<br>29<br>30 | 29·733<br>29·793<br>29·985 | 51.6<br>51.8<br>46.0 | 39·I<br>45·2<br>33·0 | 12·5<br>6·6<br>13·0 | 47.0<br>48.9<br>41.6 | + 5·5<br>+ 7·7<br>+ o·6 | 46·2<br>48·1<br>40·7 | 45·3<br>47·2<br>39·6 | 1·7<br>1·7<br>2·0 | 2·7<br>4·2<br>6·4 | o.6<br>o.o<br>o.o | 94<br>94<br>93 | 52·5<br>50·9<br>72·1 | 31·5<br>39·8<br>22·3 | | 0·283<br>0·045<br>0·002 | wwP<br><br> | | Means | 29.895 | 49.3 | 37.0 | 12.3 | 43.3 | - 0.3 | 41.8 | 39.9 | 3.4 | 7:4 | 0.7 | 88.4 | 66.6 | 28.5 | •• | 1 ·987 | | | Number of<br>olumn for<br>Reference. | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | II | 12 | 13 | 14 | 15 | 16 | 17 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the photographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree The average temperature (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8 and the Greatest and Least Differences (Column 11) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at neon Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. \* Rainfall (Column 16). The amounts entered on November 10, 15, 16, 20, 21, 22 and 23 are derived from dew, fog and frost. The mean reading of the Barometer for the month was 29in. 895, being oin. 137 higher than the average for the 65 years, 1841-1905. The highest in the month was 58°·5 on November 2; the lowest in the month was 29°·4 on November 22; and the range was 29°·1. The mean of all the highest daily readings in the month was 49°·3, being 0°·3 higher than the average for the 65 years, 1841–1905. The mean of all the lowest daily readings in the month was 37·0°, being 0°·9 lower than the average for the 65 years, 1841–1905. The mean of the daily ranges was 12°·3, being 1°·2 greater than the average for the 65 years, 1841–1905. The mean for the month was 43°·3, being 0°·2 lower than the average for the 65 years, 1841–1905. | | ine. | | WIND AS DEDU | ced from Self-Registering | ANEMO | METERS. | | | |--------------------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------|---------------------------|---------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Sunsh | rizon. | | Osler's. | | | Robin-<br>son's. | CLOUDS AND WEATHER. | | MONTH<br>and<br>DAY,<br>1918. | ration of | above Horizon. | General | Direction. | or | essure<br>the<br>re Foot. | l Move-<br>he Air. | | | | Daily Duration of Sunshine. | Sun a | A.M. | P.M. | Greatest. | Measures. | Horizontal Move-<br>ment of the Air. | A.M. P.M. | | Nov. 1 2 3 | hours. O·I O·O | hours.<br>9.6<br>9.6<br>9.5 | S : SE<br>SSE : S : SSW<br>Calm : N | ESE : SE : SSE<br>SW : Calm<br>N : NNW : W | lbs.<br>2·3<br>7·8<br>4·0 | lbs.<br>0·15<br>0·68 | 405 | 10, mrsh :10,n: 10, sltsh :9 :10 10, fqr,-mr :10, ocr,w:10, n 10, th. cl, sltsh :3 :10 10, sltr :10, r :vcl :0, m, hyc | | 4<br>5<br>6 | 2·9<br>3·3<br>o·o | 9·5<br>9·4<br>9·3 | SW:S:SSW<br>SW:WSW<br>Calm:N:NE | SSW : SW<br>SW<br>NNE : N | 10·2<br>1·1 | 0.64 | 412 | c, hofr : pcl : 8, cun 10, r : 10, r, w : 10, r, w : 10, r, w : 10, r, w : thcl thcl : 10 : 10, thcl,soha 10, n : vcl : 10 | | 7<br>8<br>9 | 3·1<br>1·7<br>7·8 | 9·3<br>9·2<br>9·2 | N : Var.<br>SSE : SSW : W<br>Calm : SW | Calm E : SSE<br>W : Calm<br>WSW : SW | 1·2<br>5·6<br>3·9 | 0.27 | 139<br>319<br>292 | 8 :10, r :10, r 3 :0 :0, h | | 10<br>11<br>12 | 2·6<br>0·0<br>4·8 | 9.0<br>9.1<br>9.1 | SW<br>SW:WSW<br>Calm:ENE | SW<br>WSW : NE<br>E | 4·8<br>3·9<br>1·6 | 0.27 | 382<br>315<br>176 | 10 : 9, r :10,cun,ocmr 10, r :10, r, glm :10 | | 13<br>14<br>15 | 1·7<br>4·2<br>6·9 | 9.0<br>8.9<br>8.9 | E : Calm<br>Calm : ESE<br>Calm : ESE | ESE : Calm<br>SE : Calm : E<br>ESE : E | 0·3<br>1·0<br>2·9 | 0.03 | 87<br>124<br>207 | o, hyd, hofr: tkf, hofr : 0, f pcl, cun, cu : 0 : 0, sltf | | 16<br>17<br>18 | 5.2<br>0.1<br>0.0 | 8·8<br>8·8<br>8·7 | E : ESE<br>ENE : NE<br>NE : N | E<br>ENE : NE<br>N : NNW : NW | | 0·26<br>0·21<br>0·15 | 243<br>244<br>183 | 10 : 10, n : 10 | | 19<br>20<br>21 | o.o<br>o.o<br>5.6 | 8·7<br>8·6<br>8·6 | NW:W:N<br>SW:S:E<br>Calm:ESE | N:NE:SSE<br>ESE:Calm<br>ESE:SE | 1 ·0<br>0 ·4<br>1 ·7 | , , | | g, hofr : 10, m : pclthcl pcl, thcl : 10, f : 10, f f : f f : f o : 0, hofr : 1, hofr | | 22<br>23<br>24 | 6·6<br>6·2<br>0·1 | 8·5<br>8·5<br>8·4 | Calm : SE<br>SSE : S<br>Calm : SSW | SE: Calm<br>SSW: Calm: S<br>S: Calm | 0.9 | 0.06<br>0.05<br>0.01 | 183 | I, sltf, hofr : I : I 0, hofr : 0, hofr, hyd Io, hofr : O : I, cicu I, ci, cu : I, f : IO Io, sltsh : IO, n, sh, mr : IO, ocmr : IO, ocmr : IO | | 25<br>26<br>27 | 1.9<br>0.0 | 8·4<br>8·3<br>8·3 | Calm: SW: W Calm: SE NW: W | NW: WNW: Calm<br>S:W:NW<br>W: WSW | 1.1 | | 145 | 10, ocmr : 10, n, sltsh 10, ocr : 10, mr, r : 10 0, hofr : 9, f : 10, f 10, sltr : 10, r : 10, r 8 : 7 : 10, s vcl, cu, s : 0, hofr : 0, hyd | | 28<br>29<br>30 | 0.0<br>0.0<br>4.2 | 8·2<br>8·2<br>8·2 | WSW : SW<br>WNW : E : Calm<br>N : E : SE | WSW: W<br>W: N<br>SE: Calm | 1·8<br>0·7<br>0·4 | 0.02 | 145 | pcl : 10, r : 10, r : 10, r : 10, r : 10, sltr, m : 10, mr, m : 10, mr m | | Means | 2.3 | 8.9 | | | •• | 0.17 | 225 | | | Number of<br>Column for<br>Reference | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | The mean Temperature of Evaporation for the month was 41°·8, being 0°·1 lower than The mean Temperature of the Dew Point for the month was 39°·9, being 0°·1 lower than The mean Degree of Humidity for the month was 88·4, being 1·1 greater than The mean Elastic Force of Vapour for the month was oin·246, being oin·001 less than The mean Weight of Vapour in a Cubic Foot of Air for the month was 2grs.8, being the same as The mean Weight of a Cubic Foot of Air for the month was 551 grains, being 3 grains greater than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6·3. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0·261. The maximum daily amount of Sunshine was 7·8 hours on November 0 November 9. The highest reading of the Solar Radiation Thermometer was 91°·1 on November 5; and the lowest reading of the Terrestrial Radiation Thermometer was 17°·4 on November 22. The Proportions of Wind referred to the cardinal points were N. 5, E. 5, S. 8, W. 6. Six days were calm. The Greatest Pressure of the Wind in the month was 10.5 lbs. on the square foot on November 5. The mean daily Horizontal Movement of the Air for the month was 225 miles; the greatest daily value was 480 miles on November 4; and the least daily value was 65 miles on November 20. Rain (0 to 05 or over) fell on 11 days in the month, amounting to 1th 1987, as measured by gauge No. 6 partly sunk below the ground; being 0 to 1th 65 years 1841-1005. average fall for the 65 years, 1841-1905. | | Baro-<br>meter. | | | TE | MPERATUR | Е. | | _ | Diffe | erence bety | veen | ķ.; | Т | EMPERATU | RE. | ge No.<br>face is<br>round. | | |--------------------------------------|------------------------------------------------------------------------------|----------|---------|-----------------|------------------------------------|------------------------------------------------------|------------------------------------|-----------------------------------------|------------|-------------|--------|----------------------------------------|------------------------------|----------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------| | MONTH<br>and<br>DAY, | Hourly<br>rrected<br>1 to 32° | | | Of the | Air. | | Of<br>Evapo-<br>ration. | Of the<br>Dew<br>Point. | an | d Dew Poi | nt | Degree of Humidity (Saturation = 100). | Of Rac | liation. | Of the<br>Earth<br>3 ft. 2 ins. | d in Gaugeiving surve the G | Electricity. | | 1918. | Mean of 24 Hourly<br>Values (corrected<br>and reduced to 32°<br>Fahrenheit). | Highest. | Lowest. | Daily<br>Range. | Mean<br>of 24<br>Hourly<br>Values. | Excess<br>above<br>Average<br>of<br>65 Years. | Mean<br>of 24<br>Hourly<br>Values. | De-<br>duced<br>Mean<br>Daily<br>Value. | Mean. | Greatest. | Least. | Degree o<br>(Saturati | Highest<br>in Sun's<br>Rays. | Lowest on the Grass. | below<br>the<br>Surface<br>of the<br>Soil. | Rain collected in Gauge No.<br>6, whose receiving surface is<br>5 inches above the Ground. | | | Dec. 1 | in. | 50.5 | 35.9 | 14.6 | 45.1 | + 4.2 | 44.3 | 43.4 | °<br>1.7 | o<br>4.4 | 0.2 | 94 | 56°9 | 28.9 | 0 | in.<br>0.078 | | | 2 | 29.922 | 54.4 | 50.5 | 3.9 | 52.0 | + 11.1 | 50.6 | 49.2 | 2.8 | 5.8 | 0.0 | 90 | 62.5 | 45.8 | | 0.100 | • | | 3 | 29.716 | 59.5 | 48.1 | 11.4 | 53.6 | + 12.5 | 52.2 | 50.8 | 2.8 | 6.8 | 0.0 | 90 | 73.1 | 37.2 | • • • | 0.046 | •• | | 4 | 29.882 | 55.4 | 50.7 | 4.7 | 52.7 | + 11.4 | 51.6 | 50.5 | 2.2 | 5.6 | 0.4 | 93 | 59.0 | 45.5 | | 0.054 | •• | | 5<br>6 | 29.854 | 52.9 | 50.2 | 2.7 | 51.5 | + 10.0 | 50·3<br>48·6 | 49.1 | 2.4 | 4.3 | 1.0 | 92 | 58.7 | 47.4 | • • • | 0.008 | • • | | 0 | 29.617 | 51.1 | 47.5 | 3.6 | 49.3 | + 7.8 | 40.0 | 47.9 | 1.4 | 2.5 | 0.3 | 95 | 53.0 | 47.5 | | 0.008 | • • | | 7 | 29.644 | 54.5 | 40.7 | 10.8 | 46.7 | + 5.4 | 45.8 | 44.8 | 1.9 | 6.0 | 0.0 | 94 | 67.5 | 30.4 | | 0.058 | •• | | 8 | 29.668 | 50.1 | 40.0 | 10.8 | 46.8 | + 5·8<br>+ 5·8 | 46.2 | 45.5 | 1.3 | 2·5<br>5·6 | 0.0 | 96 | 55.2 | 30.4 | | 0.034 | •• | | 9 | 29.853 | 50.0 | 39.2 | 10.9 | 46.4 | + 5.8 | 45.1 | 43.7 | 2.7 | 5.0 | 0.0 | 91 | 59.7 | 30.6 | '' | 0.090 | •• | | 10 | 29.745 | 51.3 | 41.0 | 10.3 | 47:3 | + 6.9 | 46.3 | 45.2 | 2.1 | 4.3 | 0.4 | 93 | 68.5 | 34.8 | | 0.251 | •• | | II | 29.738 | 51.1 | 40.3 | 10.8 | 46.8 | + 6.6 | 45.8 | 44.7 | 2·I | 3.4 | 0.4 | 93 | 60.9 | 34.4 | ٠. | 0.110 | •• | | 12 | 29.780 | 56.9 | 45.9 | 11.0 | 51.7 | + 11.4 | 50.2 | 48.7 | 3.0 | 5.4 | 1.0 | 90 | 62.5 | 41.8 | • • • | 0.082 | • • | | 13 | 29.914 | 58.2 | 52.0 | 6.2 | 55.8 | + 15.3 | 53.7 | 51.7 | 4.1 | 5.6 | 2.6 | 87 | 64.6 | 46.9 | | 0.000 | •• | | 14 | 30.079 | 55.5 | 47.6 | 7.9 | 52.4 | + 11.7 | 51.5 | 50·6<br>48·8 | 1.8 | 4.3 | 0.6 | 94 | 57.°<br>58.° | 43.0 | • • • | 0.134 | •• | | 15 | 30.008 | 53.2 | 47.6 | 5.6 | 51.0 | + 10.3 | 49.9 | 40.0 | 2.2 | 4.9 | | 92 | 500 | 43.9 | • • • | 0 100 | •• | | 16 | 29.787 | 51.0 | 41.9 | 9.1 | 46.8 | + 6⋅1 | 44.4 | 41.7 | 5.1 | 8⋅1 | 2.4 | 83 | 59·1 | 35.1 | | 0.033 | •• | | 17<br>18 | 29·820<br>29·286 | 43.9 | 34.3 | 9.6 | 41.4 | + 1.0 | 39.3 | 36·7<br>40·8 | 4.7 | 8.3 | 0.5 | 84 87 | 57.0 | 28.0 | • • • | 0.000 | •• | | 10 | 29.200 | 48.5 | 40.6 | 7.9 | 44.7 | + 4.7 | 42.9 | 40.0 | 3.9 | 6.5 | | 6/ | 54.9 | 35.0 | •• | 0 123 | •• | | 19 | 29.064 | 45.0 | 37.4 | 7.6 | 41.4 | + 1.0 | 38.5 | 34.8 | 6.6 | 10.5 | 3.2 | 79 | 60·1 | 32.0 | • • • | 0.006 | • • | | 20 | 29.454 | 41·I | 34.8 | 6·3 | 38·9<br>38·3 | - 0·I | 37.2 | 34.9 | 4.0 | 5·0<br>6·2 | I.O | 87 | 48·0<br>48·5 | 28.3 | •• | 0.000 | ···<br>:: | | 21 | 29.776 | 41.1 | 34.2 | 0.9 | 30.3 | - 0.4 | 36.5 | 34.1 | 4.2 | 0.2 | 10 | 05 | 40 3 | - | •• | 0 000 | | | 22 | 29:447 | 53.8 | 39.0 | 14.8 | 43.7 | + 5.3 | 42.4 | 40.8 | 2.9 | 7.1 | 0.3 | 90 | 51.1 | 36.8 | | 0.098 | | | 23 | 29.253 | 48.0 | 35.2 | 12·8<br>7·6 | 43.3 | + 5·I $-$ 2·3 | 40.2 | 36·5<br>31·6 | 6.8 | 15.0 | 2·I | 77 <br> 85 | 51.2 | 26.9 | • • • | 0.102 | ::sP, mP<br>mP:mP, sP:wP | | 24 | 29.516 | 39.7 | 32.1 | /.0 | 35.9 | - 2.3 | 34.2 | 31 0 | 4.3 | | 2.4 | 0, | 43.9 | 23.9 | • • • | 0 000 | III , IIII , DI . WI | | 25 | 29.705 | 39.6 | 29.4 | 10.3 | 34.9 | - 3.5 | 33.4 | 31.0 | 3.9 | 7.4 | 0.8 | 85 | 50.6 | 21.8 | • • • | 0.000 | wP, wwP: wwP, wP: wP | | 26 | 30.014 | | 28.5 | 8·9 | 34.4 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 32.9 | 30.4 | 4·0<br>3·6 | 7·7<br>7·8 | 0.0 | 85 | 54·0<br>56·5 | 20·5<br>36·0 | | 0.000<br>0.102 | wwP : wwP, sP : mP<br>wwP | | 27 | 29.701 | 52.0 | 43.1 | 8.9 | 47.1 | + 8.3 | 45.4 | 43.5 | 3.0 | / 10 | 0.0 | 00 | 30-3 | 30.0 | | 0105 | w w I | | 28 | 29.498 | 53.5 | 45.4 | 8.1 | | + 11.8 | 48.7 | 4.6.6 | 4.1 | 6.3 | 0.6 | 87 | 55.6 | 40.5 | | 0.139 | wwP | | 29 | 29.396 | 55.0 | 44.2 | 10.8 | | + 12.9 | 49.3 | 46.7 | 5.2 | 10·4<br>8·7 | 2.6 | 83 | 59.1 | 36.4 | • • • | 0.000 | wwP : wwP : wP, wwP<br>wwP : wwP, wP : wP, wwP | | 30 | 29.296 | 48·1 | 41.6 | 6.5 | 44.3 | + 5.4 | 41.9 | 39.1 | 5.2 | 0.7 | 2.0 | 02 | 59.8 | 32.8 | | 0.000 | wwr.wwr,wr.wr,wwi | | 31 | 29.473 | 42.9 | 35.3 | 7.6 | 40.9 | + 2.2 | 39.7 | 38.2 | 2.7 | 4·1 | I · I | 90 | 45.2 | 27.7 | • • | 0.085 | wwP | | Means | 29.675 | 49.8 | 41.1 | 8.7 | 46.1 | + 6.1 | 44.5 | 42.6 | 3.4 | 6.3 | 0.8 | 88.4 | 57.2 | 34.8 | | Sum<br>2.010 | | | Number of<br>Column for<br>Reference | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | II | 12 | 13 | 14 | 15 | 16 | 17 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the photographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13, and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29in.675, being oin.110 lower than the average for the 65 years, 1841-1905. The highest in the month was 59°·5 on December 3; the lowest in the month was 28°·5 on December 26; and the range was 31°·0. The mean of all the highest daily readings in the month was 49°·8, being 5°·6 higher than the average for the 65 years, 1841–1905. The mean of all the lowest daily readings in the month was 41°·1, being 6°·1 higher than the average for the 65 years, 1841–1905. The mean of the daily ranges was 8°·7, being 0°·5 less than the average for the 65 years 1841–1905. The mean for the month was 46°·1, being 6°·2 higher than the average for the 65 years, 1841–1905. | | ine, | | Wind as Deduci | ED FROM SELF-REGISTERING | Anemomi | ETERS. | | | |--------------------------------------|-----------------------------|--------------------|-------------------------------------|--------------------------------------------|---------------------------|-----------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Sunshi | rizon. | | Osler's. | | | Robin<br>son's | CLOUDS AND WEATHER. | | MONTH<br>and<br>DAY,<br>1918. | ration of | Sun above Horizon. | General | Direction. | on | ssure<br>the<br>re Foot. | l Move-<br>he Air. | | | | Daily Duration of Sunshine. | Sun | A.M. | P.M. | Greatest. | Mean of 24<br>Hourly<br>Measures. | Horizontal Move-<br>ment of the Air. | A.M. P.M. | | Dec. 1 2 3 | hours. 0.0 0.0 0.8 | 8·1<br>8·1<br>8·1 | Calm:S:SSW<br>SW:SSW<br>SW:WSW | SSW : SW<br>SSW : SW<br>W : SW | 1bs.<br>2·6<br>3·3<br>4·5 | lbs. 0·15 0·25 0·50 | | | | 4<br>5<br>6 | 0·0<br>0·0 | 8·0<br>8·0 | SW: WSW<br>SSW: SW<br>S: SSE | WSW : SW : SSW<br>SSW : SW<br>S : SSW | 4·5<br>2·6<br>2·3 | 0·20<br>0·20<br>0·15 | 300 | 10, ocmr : 10, s 10 : 10, sltr 10, mrsh : 10, mr : 10, mr : 10 10, sltr : 10 : 10 : 10, mrsh | | 7<br>8<br>9 | 5·3<br>o·o<br>1·7 | 8·0<br>7·9<br>7·9 | SW:W:WSW Calm:S WNW:W:WSW | SW : Calm<br>S : Calm<br>SW : SSW | I·2<br>I·0<br>2·6 | 0.04<br>0.06<br>0.13 | 193 | 10, ocsltr : 0, hyd : 0 t : 1 : 1, thcl, hofr 10, hyd : 10 : 10, r, mr : 10, mr : 10, mr : 10, sltsh 10, thclm : 1, m : pcl vcl, cun, s: 10, ocsltr: 10, ocsltr | | IO<br>II<br>I2 | 0·1<br>0·8 | 7·9<br>7·9<br>7·8 | SSW: SW<br>SW:S:SW<br>WSW:SW | SW : WSW : W<br>W : WSW<br>WSW : W | 5·2<br>1·5<br>6·2 | 0·37<br>0·15<br>0·58 | 270 | 10, mr : 10, r : 7, ocr vcl, r : vcl, fqr : vcl r : 0, cun, r. ocmr : 10, pluha ro, ocsltr vcl r : 10, thcl : 8 | | 13<br>14<br>15 | o.o<br>o.o | 7·8<br>7·8<br>7·8 | WSW: W<br>SW: WSW<br>Calm: SW | W:WSW:SW<br>WNW:W:Calm<br>SW:SSW | 6·0<br>3·6<br>3·2 | 0.20 | 267 | 10, ocmr : 10 | | 16<br>17<br>18 | 3·1<br>1·6<br>0·0 | 7·8<br>7·8<br>7·8 | SW:NW:W<br>WSW:W:NW<br>SSW:SW:WSW | W:WSW<br>NW:W:SW<br>SW:W:WNW | 4·8<br>2·8<br>11·0 | 0·55<br>0·28<br>0·61 | 330 | 10, ocmr: 10, ocmr: vcl, r 1, sltm: 1 10, ocr: 8, w: 8, s, cicu: 3, cu: 1: 3, cu, s, luha 2, cu: 2, luha: 9, m 10, s, n, ocr: 8, cun, w | | 19<br>20<br>21 | 4·8<br>0·4<br>0·1 | 7·8<br>7·8<br>7·8 | WSW: W<br>NNW: WNW: W<br>NW: W: WSW | WSW : W : WNW<br>N : NNW : NW<br>SW : Calm | 10·9<br>7·5<br>1·2 | 0·85<br>0·45<br>0·04 | | : pcl vcl, ci, cu, sh : 8, w : 10, slt,-sl,w vcl : vcl : vcl : 10, sltsh : r' slthofr : 7, cis, soha : 10 : 10, sltsh | | 22<br>23<br>24 | o·o<br>o·4<br>o·o | 7·8<br>7·8<br>7·7 | Calm : SE<br>WSW : W<br>WSW | S:SW:WSW<br>NNW:NW:W<br>W:WNW | 8·5<br>11·6<br>2·0 | 1.03 | | 8, w : 10, sh,-w : 9, n, ocr, w 10, cun, w : 0 : 0 | | 25<br>26<br>27 | 0·9<br>5·0<br>0·0 | 7·8<br>7·8<br>7·8 | W: WSW<br>N: WSW<br>SSW: SW: WSW | WNW: NW: N<br>SW: SSW<br>WSW: W: WNW | 4.0<br>3.3<br>7.5 | 0.08 | 248 | o, hofr : r, thcl, hofr: 8, n<br>o, hofr : : o, hofr<br>10, ocmr : : 10, mr : 10 : 1, ci<br>1, hofr : 1, hofr : 10<br>10, n : 10 | | 28<br>29<br>30 | 0·0<br>0·0<br>0·2 | 7·8<br>7·8<br>7·8 | SW: WSW: W<br>WSW: W<br>WSW: SW | W : WSW<br>WSW : W<br>SW : SSW | 5·9<br>8·9<br>3·0 | | 674 | 10 : 10, r, ocmr | | 31 | 0.0 | 7.8 | SW : Calm : N | N:NNE | 7.2 | 0.53 | 361 | 10 : 10, OCr : 10, n, ocmr, w 10 : vcl : 0 | | Means | 0.8 | 7.9 | •• | •• | | 0.37 | 372 | | | Number of<br>Column for<br>Reference | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | The mean Temperature of Evaporation for the month was 44°·5, being 6°·0 higher than The mean Temperature of the Dew Point for the month was 42°·6, being 5°·9 higher than The mean Degree of Humidity for the month was 88·4, being 0·2 less than The mean Elastic Force of Vapour for the month was oin·273, being oin·055 greater than The mean Weight of Vapour in a Cubic Foot of Air for the month was 3grs.2, being ogrs.6 greater than The mean weight of a Cubic Foot of Air for the month was 543 grains, being 9 grains less than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7·7. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0·106. The maximum daily amount of Sunshine was 5·3 hours on December 7. December 7. The highest reading of the Solar Radiation Thermometer was 73°1 on December 3; and the lowest reading of the Terrestrial Radiation Thermometer was 20°5 on The highest reading of the Solar School Proportions of Wind referred to the cardinal points were N. 2, E. 0, S. 11, W. 17. One day were calm. The Proportions of Wind referred to the cardinal points were N. 2, E. 0, S. 11, W. 17. One day were calm. The Greatest Pressure of the Wind in the month was 11.6 lbs. on the square foot on December 23; The mean daily Horizontal Movement of the Air for the month was 372 miles; the greatest daily value was 674 miles on December 29; and the least daily value was 189 miles on December 21. Rain (o<sup>in.</sup>005 or over) fell on 22 days in the month, amounting to 2<sup>in.</sup>010, as measured by gauge No. 6 partly sunk below the ground; being o<sup>in.</sup>183 greater than the average fell for the 65 years, 1841-1905. HIGHEST and LOWEST READINGS of the BAROMETER, reduced to 32° Fahrenheit, as extracted from the Photographic Records. | MAXIM | Α. | MINIM. | A. | MAXIMA | A. | MINIM | Α. | MAXIMA | <b>1.</b> | MINIM | Α. | |--------------------------------|----------|--------------------------------|------------------|--------------------------------|----------|--------------------------------|----------|--------------------------------|-----------|--------------------------------|---------| | Greenwich Civil<br>Time, 1918. | Reading. | Greenwich Civil<br>Time, 1918. | Reading | | January | | January | | May | | May | | September | | September | | | d. h. m. | in. | | | | 1. 5. 20 | 29.926 | 11. 8. 20 | 29.774 | 13. 15. 45 | 29.362 | 18. 11. 45 | 29.633 | 19. 5. 10 | 29.434 | | 3. 23. 30 | 30.385 | 7. 8. 0 | 29.162 | 16. 7. 55 | 29.834 | 17. 16. 55 | 29.723 | 20. 10. 0 | 29.933 | 21. 2. 30 | 29.631 | | 9. 8. 20 | 29.971 | 9. 15. 20 | 29.807 | 19. 23. 15 | 30.152 | 23. 6. 10 | 29.757 | 21. 10. 0 | 29.719 | 23. 2. 10 | 29.021 | | 10. 10. 30 | 29.932 | 11. 6. 30 | 29.770 | 23. 18. 20 | 29.884 | 24. 3. 30 | 29.799 | 24. 12. 20 | 29.723 | 25. 4. 0 | 29.565 | | II. I2. O | 29.855 | 12. 18. 5 | 29.410 | 25. 7. 35 | 29.995 | 26. 3. 45 | 29.898 | 25. 21. 45 | 29.976 | 26. 19. 30<br>28. 6. 0 | 29.706 | | 14. 9. 45 | 29.915 | 15. 6. 25 | 29.115 | 29. 8. 25 | 30.319 | 30. 17. 15 | 30.199 | 27. 9. 25 | 29.819 | | 29.519 | | 15. 19. 0 | 29.318 | 16. 4. 10 | 29.069 | | | _ | | 28. 22. 0 | 29.737 | 29. 21. 55 | 29102 | | 16. 22. 10 | 29.935 | 18. 14. 45 | 29.319 | June | | June | | • | | | | | 19. 11. 20 | 29.412 | 20. 15. 5 | 29.137 | I. 7. 20 | 30.320 | 3. 17. 0 | 30.033 | October | | October | | | 21. 10. 45 | 29.320 | 22. 3. 35 | 29.245 | 6. 9. 25 | 30.119 | 7. 16. 30 | 30.037 | 1. 23. 0 | 30·07 I | 4. 5. 0 | 29.726 | | 25. 9. 20 | 30.336 | 28. 5. 30 | 30.124 | 8. 11. 40 | 30.206 | 10. 4. 10 | 29.646 | 4. 22. 35 | 30.002 | 6. 7. 50 | 29.657 | | 30. 10. 30 | 30.273 | | | 12. 6. 35 | 30.109 | 16. 11. 45 | 29.557 | 6. 21. 25 | 29.913 | 7. 11. 5 | 29.598 | | | i | 15.1 | | 17. 21. 10 | 29.719 | 19. 4. 0 | 29.411 | 9. 2. 0 | 29.933 | 9. 15. 30 | 29.798 | | February | | February | 6 | 23. 15. 0 | 30.040 | 25. 16. 55 | 29.774 | 10. 10. 50 | 29.921 | 12. 3. 0 | 29.626 | | | 0 | 7. 2. 15 | 29.647 | 26. 9. 45 | 29.910 | 27. 11. 0 | 29.828 | 13. 20. 0 | 29.915 | 16. 15. 5 | 29.520 | | 7. 20. 15 | 29.738 | 8. 7. 0 | 29.641 | 29. 23. 40 | 30.103 | | | 20. 22. 15 | 29.987 | 22. 15. 35 | 29.840 | | II. 22. O | 30.200 | 13. 6. 0 | 29.871 | 7 1 | | 7 1 | | 23. 11. 0 | 30.007 | 25. 16 0. | 29.68 | | 15. 10. 30 | 30.309 | 16. 16. 0 | 29.996 | July | | July | 0-6 | 29. 11. 0 | 30.183 | | | | 17. 11. 15 | 30.144 | 18. 15. 40 | 29.876 | | | 1. 17. 10 | 29.856 | | | | | | 19. 22. 40 | 29.971 | 20. 21. 35 | 29.714 | 4. 7. 5 | 30.272 | 11. 8. 10 | 29.451 | November | | November | | | 21. 18. 25 | 30.071 | 22. 4. 40<br>25. 2. 30 | 29·927<br>30·090 | 11. 22. 25 | 29.570 | 12. 11. 0 | 29.417 | November | | 2. 5. 50 | 29.17 | | 23. 19. 40 | 30.402 | 28. 14. 50 | 29.322 | 13. 22. 5 | 29.776 | 14. 16. 30 | 29.568 | 3. 0. 20 | 29.508 | 3. 16. 40 | 29:370 | | 25. 23. 0 | ,00,0 | 20, 14. ) | 29 322 | 15. 11. 0 | 29.757 | 16. 7. 45<br>17. 18. 5 | 29.516 | 4. 9. 0 | 29.535 | 5. 1. 25 | 29.230 | | Morob | | March | | 17. 3. 20<br>19. 8. 25 | 29.731 | 20. 16. 40 | 29.496 | 7. 9. 45 | 30.087 | 8. 9. 35 | 29.590 | | March | 29.896 | | 20:745 | 21. 23. 35 | 29.772 | 23. 10. 20 | 29 490 | 9. 22. 10 | 30.341 | 11. 3. 50 | 30.09 | | 2. 9. 5<br>4. 8. 15 | 29.946 | 3. 13. 25<br>5. 2. 55 | 29·745<br>29·676 | 25. 14. 30 | 29.760 | 26. 17. 0 | 29.498 | 13. 9. 0 | 30.389 | 17. 14. 0 | 29.96 | | 6. 10. 10 | 29.961 | 8. 15. 40 | 29.855 | 28. 23. 55 | 30.023 | 20.17. 0 | 29 490 | 19. 18. 45 | 30.257 | 22. 15. 30 | 29.67 | | 9. 9. 10 | 30.038 | 12. 4. 0 | 29.829 | 20. 23. 33 | 30 023 | | | 23. 21. 0 | 29.817 | 25. 4. 25 | 29.554 | | 9. 9. 10<br>13. 11. 30 | 30.177 | 16. 5. 5 | 29°77I | Angust | | August | | <b>2</b> 6. 10. 0 | 29.665 | 26. 22. 0 | 29.52 | | 18. 11. 15 | 30.000 | 19. 16. 15 | 29.699 | August | | 3. 4. 0 | 29.481 | 28. 2. 5 | 29.790 | 28. 14. 25 | 29.67 | | 22. 0. 0 | 30.346 | 25. 4. 50 | 29.936 | 5. 0. 15 | 29.651 | 6. 0. 55 | 29.418 | 30. 23. 10 | 30.087 | | | | 26. 11. 20 | 30.034 | 29. 2. 55 | 29.159 | 10. 8. 5 | 30.159 | 12. 17. 0 | 29.977 | | | | | | 29. 22. 50 | 29.508 | 31. 9. 0 | 29.050 | 13. 9. 45 | 30.162 | 14. 18. 20 | 29.839 | December | | December | | | | , , | , | | 15. 9. 45 | 29.948 | 16. 17. 50 | 29.792 | December | | , | 29.637 | | April | | April | | 21. 9. 20 | 30.058 | 22. 17. 0 | 29.697 | 4. 21. 30 | 29.946 | 3. 6. 30<br>6. 13. 0 | , , , | | 3. 5. 40 | 29.716 | 4. 4. 20 | 29.553 | 23. 11. 0 | 29.920 | 26. 5. 0 | 29.578 | 7. 10. 20 | 29 940 | 8. 1. 15 | 29.55 | | 5. 21. 15 | 29.877 | 6. 16. 35 | 29.596 | 27. 8. 45 | 29.837 | 28. 2. 45 | 29.603 | 9. 10. 0 | 29.913 | 10. 13. 0 | 29.66 | | я́. 8. о́ | 29.854 | 10. 2. 25 | 29.377 | 29. 23. 25 | 30.066 | | , | 10. 23. 55 | 29.849 | 11. 9. 15 | 29.64 | | 14. 20. 30 | 29.845 | 15. 6. o | 29.770 | , | | | | 11. 23. 55 | 29.844 | 12. 14. 0 | 29.71 | | 17. 23. 0 | 29.916 | 21. 6. 5 | 29.538 | September | | September | | 14. 22. 0 | 30.177 | 16. 4. 10 | 29.69 | | 24. 0. 15 | 29.932 | 25. 16. 25 | 29.786 | * | | 1. 1. 30 | 29.509 | 16. 11. 0 | 29.850 | 17. 4. 0 | 29.75 | | 27. 23. 55 | 30.032 | 29. 17. 45 | 29.809 | 3. 10. 45 | 29.827 | 5. 4. 0 | 29.656 | 17. 16. 15 | 29.890 | 18. 18. 55 | 28.94 | | | - | | | 6. 10. 45 | 29.846 | 8. 13. 5 | 29.148 | 19. 11. 0 | 29.126 | 19. 19. 0 | 29.03 | | May | | May | | 9. 11. 0 | 29.437 | 9. 23. 30 | 29.034 | 21. 10. 20 | 29.859 | 23. 9. 25 | 29.06 | | 2. 10. 0 | 30.157 | 5. 19. 0 | 29:470 | 11. 0. 0 | 29.310 | 11. 8. 55 | 29.212 | 26. 9. 10 | 30.076 | 28. 8. 0 | 29.44 | | 6. 20. 0 | 29.620 | 7. 17. 40 | 29.496 | 14. 0. 35 | 29.859 | 14. 14. 0 | 29.669 | 28. 20. 0 | 29.524 | 29. 14. 0 | 29.35 | | 8. 23. 20 | 29.706 | 9. 18. 0 | 29.629 | 15. 12. 0 | 29.782 | 17. 3. 40 | 29.402 | 29. 23. 0 | 29.432 | 30. 22. 0 | 29.168 | The readings in the above table are accurate, but the times are occasionally liable to uncertainty, as the barometer will sometimes remain at its extreme reading without sensible change for a considerable interval of time. In such cases the time given is the middle of the stationary period. The time is expressed in civil reckoning, commencing at midnight and counting from oh to 24h. The height of the barometer cistern above mean sea level is 152 feet; no correction has been applied to the readings to reduce to sea level. ### HIGHEST and Lowest Readings of the Barometer in each Month for the Year 1918. | | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | |----------------------------|----------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | Highest<br>Lowest<br>Range | 29.069 | in.<br>30·636<br>29·322<br>1·314 | in.<br>30·346<br>29·050<br>1·296 | in.<br>30·032<br>29·155<br>0·877 | in.<br>30·319<br>29·362<br>0·957 | in.<br>30·320<br>29·411<br>· 0·909 | in.<br>30·272<br>29·302<br>0·970 | in.<br>30·162<br>29·418<br>0·744 | in.<br>29·976<br>29·021<br>0·955 | in.<br>30·183<br>29·526<br>0·657 | in.<br>30·389<br>29·174<br>1·215 | in.<br>30·177<br>28·942<br>1·235 | The highest reading in the year was 30in.636 on February 25. The lowest reading in the year was 28in.942 on December 18. The range of reading in the year was 1in.694. | MONTHIV | RESILTS | Ωf | METEOROLOGICAL | FIRMENTS | for | the | VEAR 19 | 12 | |---------|---------|----|----------------|----------|-----|-----|---------|----| TEMPERATURE OF THE AIR. | | | Mean Read | ing | | | | | 1 EMPERATU | RE OF T | ie Air. | | | | | | 34 | _ | ¥6 | Mean | |-----------------|-----------|--------------------|---------------|-----------------|---------------------|--------------|---------------------------|--------------------------------|------------------------|---------|--------------------------------|----------|---------------|----------------------------------------|----------------|----------------------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------------------| | Монтн,<br>1918. | | of the<br>Baromete | | Highest. | L | owest. | Range in<br>the<br>Month. | Mean of<br>all the<br>Highest. | Mean<br>all th<br>Lowe | e t | Mean of<br>he Daily<br>Ranges. | | nthly<br>ean. | Excess<br>Mean a<br>the Aver<br>65 Yea | bove<br>age of | Mear<br>Tempera<br>of<br>Evapora | ture | Mean<br>Temper-<br>ature of the<br>Dew Point. | Degree of Humidity. (Saturation = 100). | | | | in. | | 0 | | Ú | 0 | 0 | 0 | | 0 | | 0 | c | | 0 | | 0 | | | January | | 29.811 | | 56.2 | | 18.5 | 37.7 | 44.8 | 34 | 6 | 10.1 | 3 | 9.6 | + 1 | ۱٠٥ | 37 | 7 | 34.8 | 83.4 | | February | | 30.020 | 1 | 20.1 | - 1 | 21.3 | 37.8 | 49.3 | 37 | - 1 | 11.4 | 1 | 3.5 | | 3.9 | 41. | i | 38.1 | 81.9 | | March | | 29.860 | 1 | 66.5 | | 27.4 | 39.1 | 52·I | 35 | | 16.8 | 1 | 2.9 | - | 1.0 | 39. | [ | 36.2 | 78.3 | | April | | 29.742 | | 66.0 | - 1 | 32.0 | 34.0 | 52.2 | 38. | | 14.0 | 1 | 4·I | | 3.2 | 42.0 | | 39.5 | 84.4 | | May | | 29.867 | - 1 | 83.0 | | 39.4 | 43.6 | 66.7 | 46. | 1 | 20.7 | 1 | 5.6 | _ | 2.5 | 51. | ] | 47.5 | 75.0 | | June | | 29.913 | ; | 79.7 | | 37·I | 42.6 | 69.6 | 46. | 4 | 23.2 | 1 | 7.2 | - 2 | 2.2 | 51. | 7 | 47.0 | 68∙1 | | July | | 29.773 | ; | 82.0 | 4 | 17.2 | 34.8 | 72.6 | 52. | 7 | 19.9 | 6 | 1.3 | - 1 | 1.4 | 56. | 9 | 53.2 | 75.5 | | August | | 29.839 | ) | 89.8 | 4 | 16·2 | 43.6 | 72.7 | 53. | 2 | 19.5 | 6 | 2.2 | + 0 | 0.6 | 57 | 8 | 54·I | 75.3 | | September | | 29.583 | ; | 72.5 | 3 | 38.2 | 34.3 | 64.6 | 48. | 6 | 16.0 | 5 | 5.7 | 1 | 1.5 | 52. | 2 | 48.8 | 78.3 | | October | | 29.836 | - 1 | 64.2 | 3 | 30·8 | 33.4 | 56.7 | 42. | 4 | 14.3 | 4 | 9.7 | - 0 | .3 | 47 | 5 | 45·I | 84.8 | | November | | 29.895 | | 58.5 | | 9.4 | 29.1 | 49.3 | 37 | 0 | 12.3 | 4 | 3.3 | - 0 | 0.2 | 41. | 8 | 39.9 | 88.4 | | December | • • • • • | 29.675 | | 59.5 | 2 | 28.5 | 31.0 | 49.8 | 41. | I | 8.7 | 4 | 6∙1 | + 6 | .i | 44 | 5 | 42.6 | 88.4 | | Means | | 29.819 | 1 | Highest<br>89·8 | | owest<br>8.5 | AnnualRange 71.3 | 58.4 | 42. | 8 | 15.6 | 5 | 0.1 | + 0 | >.5 | 47 | I | 43.9 | 80.2 | | | | | } | | _1 | | F | RAIN. | | | | 1 | 1 | Wı | ND. | | | | | | | | Mean | Moon | | oon | | | | | | | F. | rom Osle | er's Anem | ometer | | | | | | | Mean | Weight | Mean<br>Weigh | Ter | ean<br>apera- | Mear | Number | <b>A</b> | <u> </u> | | | | | | ometer. | | | | From | | Month, | Elastic | Vapour | of a | N | re at<br>oon<br>the | Amou | | Amount<br>collected | | mh | of Hours | f Dear | .1 | V. | | | H | Mean | Robin-<br>son's | | 1918. | Force of | 1 - | Cubic | E | arth<br>. 2 in. | of | Rainy | in Gauge<br>No. 6,<br>whose | 1 | ишьег с | | | | each wh<br>Azimuth. | | eu | o mi | Daily | Anemo-<br>meter. | | 19101 | Vapour. | Cubic | Foot | belo | w the | Cloud | Days | receiving<br>Surface is | | | to din | ciciii i | omits of | | | | E Ca | Pressure | | | | • | Foot of | Air. | to | the<br>oil. | (0-10 | (oin.oo5 | 5 inches<br>above the | | | 1 | 1 | 1 | 1 | <u> </u> | 1 | ber o | on the | aily<br>sent | | | | Air. | | | | | or over). | Ground. | N. | N.E. | E. | S.E. | S. | s.w. | w. | N.W. | Number of Calm or<br>nearly Calm Hours. | Square<br>Foot. | Mean Daily<br>Horizontal<br>Movement<br>of the Air | | _ | in. | grs. | grs. | | 0 | | | in. | h | h | h | h | h | h | h | h | h<br>6- | lbs. | miles. | | January | 0.202 | 2.4 | 553 | 1 | 0.52 | 6.1 | 17 | 2.715 | 64 | 34 | 20 | 24 | 165 | 213 | 127 | 30 | 67<br>80 | | 322 | | February | 0.230 | 2.7 | 553 | - 1 | .04 | 7.1 | | 0·983<br>0·969 | 95 | 118 | 53 | 45<br>26 | 1 | 259 | 78 | 36 | 100 | J - J - | 353 | | April | 0.214 | 2.5 | 551 | | ·14<br>:·06 | 5·5<br>8·2 | 1 | 2.846 | 252 | 167 | 57 | 34 | 77 | 119 | 55<br>36 | 19 | 81 | , | 295 | | May | 0.329 | ! | 547<br>536 | - 1 | -87 | 5.3 | | 1.907 | 128 | 72 | 139 | 15 | 59 | 93 | 31 | 43 | 164 | 1 | 292 | | June | 0.329 | 3.7 | 536 | 1 - | 3.04 | 5 3<br>6·5 | | 0.735 | 126 | 49 | 44 | 12 | 53 | 119 | 120 | 81 | 116 | 1 | 244 | | July | 0.406 | 4.5 | 53°<br>528 | 1 - | .08 | 6.7 | 1 1 | 7.341 | 88 | 18 | 35 | 34 | 183 | 206 | 42 | 60 | 78 | I | 259 | | August | 0.419 | 4.6 | 528 | | .86 | 7.0 | | 1.049 | 16 | 11 | 35 | 36 | 237 | 149 | 72 | 78 | 110 | | 237 | | September | 0.345 | 3.9 | 531 | | | 6.9 | 1 1 | 4.482 | 18 | 3 | 36 | 17 | 101 | 304 | 169 | 29 | 43 | 1 | 355 | | October | 0.301 | 3.5 | 542 | 1 | | 7.2 | 17 | 1.333 | 125 | 58 | 16 | 12 | 98 | 198 | 92 | 35 | 110 | | 255 | | November | 0.246 | 2.8 | 551 | | | 6.3 | 1 ' 1 | 1.987 | 64 | 51 | 59 | 88 | 81 | 117 | 86 | 21 | 153 | 1 | 225 | | December | 0.273 | 3.5 | 543 | i | | 7.7 | 22 | 2.010 | 34 | 2 | 0 | 16 | 106 | 285 | 232 | 47 | 22 | 1 | 372 | | Sums | | | .: | | | •• | 182 | 28.357 | 1036 | 591 | 612 | 359 | 1290 | 2114 | 1140 | 494 | 1124 | | | | Means | 0.294 | 3.4 | 542 | | | 6.7 | | • • | | | | | | | | | | 0.26 | 286 | The greatest recorded pressure of the wind on the square foot in the year was 19.4 lbs. on May 23. The greatest recorded daily horizontal movement of the air in the year was 722 miles, on February 9. The least recorded daily horizontal movement of the air in the year was 64 miles, on August 3. | Hour, | | | | | | | 918. | | | | | | Year | |---------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------| | Greenwich<br>Civil Time. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | Mea | | Midnight | in.<br>29.809 | in. | in.<br>29.884 | in. 29.739 | in.<br>29.870 | in.<br>29·926 | in.<br>29.786 | in.<br>29.846 | in.<br>29.570 | in.<br>29.854 | in.<br>29.893 | in.<br>29.691 | in | | I ii | 29.803 | 30.030 | 29.882 | 29 735 | 29.867 | 29.922 | 29.784 | 29.844 | 29.565 | 29.851 | 29.888 | 29.684 | 29.8 | | 2 | 1 / | 30.025 | 29.876 | | 29.863 | 1 ' ' | 29.781 | 29.841 | 1 / | , , | 29.886 | | | | 2 | 29.797 | 1 5 | 29.869 | 29.731 | 29.860 | 29.919 | | | 29.560 | 29.843 | | 29.682 | 29.8 | | 3 | 29.791 | 30.017 | | 29.727 | 1 / | 29.916 | 29.777 | 29.838 | 29.557 | 29.835 | 29.883 | 29.678 | 29.8 | | 4 | 29.787 | 30.013 | 29.869 | 29.724 | 29.861 | 29.916 | 29.779 | 29.835 | 29.555 | 29.831 | 29.880 | 29.667 | 29.8 | | 5 | 29.783 | 30.014 | 29.868 | 29.726 | 29.864 | 29.918 | 29.781 | 29.839 | 29.555 | 29.829 | 29.882 | 29.659 | 29.8 | | 6 | 29.787 | 30.017 | 29.872 | 29.732 | 29.869 | 29.923 | 29.782 | 29.844 | 29.562 | 29.827 | 29.883 | 29.657 | 29.8 | | 7 | 29.796 | 30.023 | 29.877 | 29.739 | 29.874 | 29.927 | 29.782 | 29.850 | 29.574 | 29.833 | 29.889 | 29.660 | 29.8 | | 8 | 29.805 | 30.030 | 29.880 | 29.744 | 29.879 | 29.929 | 29.782 | 29.853 | 29.583 | 29.838 | 29.899 | 29.668 | 29.8 | | 9 | 29.820 | 30.037 | 29.881 | 29.747 | 29.880 | 29.928 | 29.778 | 29.854 | 29.595 | 29.841 | 29.902 | 29.673 | 29.8 | | 10 | 29.832 | 30.039 | 29.882 | 29.749 | 29.879 | 29.925 | 29.776 | 29.854 | 29.599 | 29.840 | 29.907 | 29.679 | 29.8 | | II | 29.836 | 30.040 | 29.877 | 29.746 | 29.876 | 29.921 | 29.773 | 29.850 | 29.597 | 29.838 | 29.904 | 29.677 | 29.8 | | Noon | 29.832 | 30.035 | 29.871 | 29.745 | 29.873 | 29.918 | 29.768 | 29.846 | | 29.833 | 29.895 | 29.670 | 29.8 | | | 29.823 | 1 | 29.860 | | 29.868 | | 1 ''' | 1 / - ' | 29.597 | | | 1 / ./. | | | I 3 11 | 1 / | 30.025 | , | 29.742 | | 29.912 | 29.764 | 29.842 | 29.596 | 29.828 | 29.888 | 29.664 | 29.8 | | 14 | 29.813 | 30.013 | 29.851 | 29.738 | 29.862 | 29.905 | 29.763 | 29.835 | 29.592 | 29.822 | 29.883 | 29.665 | 29.8 | | 15 | 29.811 | 30.006 | 29.848 | 29.733 | 29.855 | 29.901 | 29.759 | 29.828 | 29.587 | 29.818 | 29.882 | 29.668 | 29.8 | | 16 | 29.813 | 30.004 | 29.846 | 29.732 | 29.851 | 29.894 | 29.754 | 29.824 | 29.587 | 29.819 | 29.885 | 29.671 | 29.8 | | I 📆 | 29.816 | 30.005 | 29.849 | 29.734 | 29.849 | 29.890 | 29.753 | 29.821 | 29.588 | 29.824 | 29.893 | 29.673 | 29.8 | | 18 | 29.818 | 30.010 | 29.857 | 29.739 | 29.853 | 29.890 | 29.753 | 29.821 | 29.589 | 29.835 | 29.901 | 29.674 | 29.8 | | 19 | 29.821 | 30.012 | 29.862 | 29.748 | 29.859 | 29.894 | 29.760 | 29.824 | 29.595 | 29.840 | 29.905 | 29.679 | 29.8 | | 20 | 29.821 | 30.012 | 29.869 | 29.759 | 29.867 | 29.899 | 29.767 | 29.831 | 29.598 | 29.844 | ' ' ' | 29.688 | 29.8 | | | 29.819 | | 29.809 | . 51 | 1 1 - 1 | | 1 ' ' ' | | | | 29.909 | | - | | 21 | 1 / - / | 30.011 | / _ / | 29.764 | 29.876 | 29.909 | 29.778 | 29.835 | 29.596 | 29.848 | 29.912 | 29.691 | 29.8 | | 22 | 29.821 | 30.011 | 29.872 | 29.766 | 29.881 | 29.913 | 29.783 | 29.830 | 29.595 | 29.848 | 29.911 | 29.693 | 29.8 | | 23 | 29.820 | 30.010 | 29.874 | 29.768 | 29.882 | 29.914 | 29.785 | 29.835 | 29.592 | 29.845 | 29.911 | 29.690 | 29.8 | | 24 | 29.818 | 30.009 | 29.872 | 29.767 | 29.880 | 29.913 | 29.784 | 29.836 | 29.584 | 29.843 | 29.909 | 29.684 | 29.8 | | ∫oh23 <sup>h</sup> . | 29.811 | 30.020 | 29.869 | 29.742 | 29.867 | 29.913 | 29.773 | 29.839 | 29.583 | 29.836 | 29.895 | 29.675 | 29.8 | | $\begin{cases} \frac{0^{n}23^{n}.}{1^{h}24^{h}.} \end{cases}$ | 29.812 | 30.019 | 29.868 | 29.743 | 29.868 | 29.912 | 29.773 | 29.838 | 29.583 | 29.835 | 29.895 | 29.675 | 29.8 | | Number of Days employed | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | • | | MONTHLY M | EAN TEM | PERATURE | of the | Air at e | very Ho | ur of the | DAY. a | s deduce | d from tl | ае Риото | OGRAPHIC | RECORD | S. | | | | | | | | 19 | | | | | | | | | Hour,<br>Greenwich<br>Civil Time. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | Year<br>Mea | | | January. | reordary. | March. | April. | . way. □ | June. | o i | August. | o I | October. | o I | o I | | | Midnight | | 10.0 | | | 40.7 | | | <b>"</b> 8.0 | | | | | | | Midnight | 38.7 | 42.2 | 30.1 | 40.6 | 49·I | 51.5 | 56.0 | 58.0 | 52.7 | 46.9 | 42.0 | 45·I | 46. | | I µ | 38.3 | 41.9 | 38.5 | 40.3 | 48.6 | 50.2 | 55.2 | 57:3 | 52.4 | 46.6 | 41.8 | 45.2 | 46. | | 2 | 38.2 | 41.7 | 38.4 | 40.0 | 48.3 | 49.2 | 54.8 | 56.5 | 52.2 | 46.2 | 41.4 | 45.1 | 46. | | 3 | 38.0 | 41.6 | 37.9 | 39.8 | 48.0 | 48.4 | 54.4 | 55.9 | 51.8 | 46·1 | 41.0 | 45.0 | 45. | | 4 | 37.9 | 41.1 | 37.6 | 39.8 | 47.7 | 47.9 | 54.3 | 55.1 | 51.4 | 46.0 | 40.5 | 45.3 | 45.4 | | | 37.6 | 40.7 | 37.5 | 40.0 | 48.1 | 48.7 | 55.1 | 54.8 | 51.3 | 46.2 | 40.4 | 45.4 | 45 | | 5<br>6 | 37.6 | 40.7 | 37.6 | 40.3 | 50.0 | 51.2 | 56.9 | 56.1 | 51.3 | 46.5 | 40.6 | 45.4 | 46. | | 7 | 37.5 | 40.8 | 38.4 | 41.2 | 52.7 | 54.5 | 59.5 | 58·I | 52.6 | 47·I | 40.7 | 45.3 | 47.4 | | 7<br>8 | | 1 | | . 1 | | | | 61.1 | , | | | | | | | 37.4 | 41.0 | 40.4 | 42.7 | 55.6 | 57.7 | 61.4 | 3 | 54.7 | 48.3 | 41.1 | 45.3 | 48.0 | | 9 | 37.9 | 42.6 | 42.9 | 44.5 | 57.6 | 60.0 | 63.8 | 63.2 | 57.0 | 50.3 | 42.5 | 45.7 | 50. | | 10 | 39.0 | 44.2 | 45·I | 46.2 | 59.7 | 61.9 | 65.4 | 65.1 | 58.8 | 52.0 | 44.6 | 46.4 | 52.4 | | II | 40.7 | 45.8 | 47.2 | 47.4 | 61.5 | 63.3 | 66·1 | 67.2 | 59.9 | 53.6 | 46.2 | 47·I | 53. | | | | | | | 60.5 | | // | (0 | 60.9 | 54.6 | 47.4 | 47.6 | 54. | | Noon | 42·I | 46.9 | 48.5 | 48.3 | 62.5 | 64.0 | 66.9 | 68∙1 | 00.9 | | | | | | Noon | | | 48·5<br>49·7 | | | | | | | | | 47·8 | 77. | | Noon<br>13 <sup>h</sup> | 42.8 | 47.5 | 49.7 | 49·1 | 63.2 | 65.4 | 67.3 | 69.0 | 61.5 | 55.0 | 48.0 | 47·8<br>48·0 | | | Noon<br>13 <sup>h</sup><br>14 | 42·8<br>42·8 | 47·5<br>47·7 | 49·7<br>50·2 | 49·1<br>49·4 | 63·2<br>63·8 | 65·4<br>65·4 | 67·3<br>66·8 | 69·0<br>69·5 | 61·5<br>61·1 | 55·0<br>54·8 | 48·0<br>47·8 | 48.0 | 55.0 | | Noon<br>13 <sup>h</sup><br>14<br>15 | 42·8<br>42·8<br>42·4 | 47·5<br>47·7<br>47·5 | 49·7<br>50·2<br>49·8 | 49·1<br>49·4<br>48·9 | 63·2<br>63·8<br>63·8 | 65·4<br>65·4<br>64·6 | 67·3<br>66·8<br>67·5 | 69·0<br>69·5<br>69·3 | 61·5<br>61·1<br>61·1 | 55.0<br>54.8<br>54.3 | 48·0<br>47·8<br>47·1 | 48·0<br>47·7 | 55·0 | | Noon<br>13 <sup>h</sup><br>14<br>15<br>16 | 42·8<br>42·8<br>42·4<br>41·6 | 47·5<br>47·7<br>47·5<br>46·5 | 49·7<br>50·2<br>49·8<br>49·2 | 49·1<br>49·4<br>48·9<br>49·0 | 63·2<br>63·8<br>63·8<br>63·5 | 65·4<br>65·4<br>64·6<br>63·9 | 67·3<br>66·8<br>67·5<br>67·6 | 69·0<br>69·5<br>69·1 | 61·5<br>61·1<br>61·1<br>60·2 | 55.0<br>54.8<br>54.3<br>53.3 | 48.0<br>47.8<br>47.1<br>45.9 | 48·0<br>47·7<br>47·1 | 55°3<br>54°3 | | Noon<br>13 <sup>h</sup><br>14<br>15<br>16 | 42·8<br>42·8<br>42·4<br>41·6<br>40·6 | 47.5<br>47.7<br>47.5<br>46.5<br>45.0 | 49.7<br>50.2<br>49.8<br>49.2<br>48.0 | 49·1<br>49·4<br>48·9<br>49·0<br>48·5 | 63·2<br>63·8<br>63·8<br>63·5<br>62·5 | 65·4<br>65·4<br>64·6<br>63·9<br>63·5 | 67·3<br>66·8<br>67·5<br>67·6<br>66·8 | 69·0<br>69·5<br>69·3<br>69·1<br>67·8 | 61·5<br>61·1<br>61·1<br>60·2<br>58·8 | 55.0<br>54.8<br>54.3<br>53.3<br>51.9 | 48·0<br>47·8<br>47·1<br>45·9<br>44·8 | 48·0<br>47·7<br>47·1<br>46·7 | 55.0<br>55.0<br>54.0<br>53.0 | | Noon<br>13 <sup>h</sup><br>14<br>15<br>16<br>17 | 42·8<br>42·8<br>42·4<br>41·6 | 47.5<br>47.7<br>47.5<br>46.5<br>45.0<br>44.1 | 49.7<br>50.2<br>49.8<br>49.2<br>48.0<br>46.0 | 49·1<br>49·4<br>48·9<br>49·0<br>48·5<br>47·3 | 63·2<br>63·8<br>63·8<br>63·5<br>62·5<br>60·5 | 65·4<br>65·4<br>64·6<br>63·9<br>63·5<br>62·1 | 67·3<br>66·8<br>67·5<br>67·6<br>66·8<br>65·8 | 69.0<br>69.5<br>69.3<br>69.1<br>67.8<br>66.2 | 61·5<br>61·1<br>61·1<br>60·2<br>58·8<br>57·0 | 55.0<br>54.8<br>54.3<br>53.3<br>51.9<br>50.6 | 48.0<br>47.8<br>47.1<br>45.9 | 48.0<br>47.7<br>47.1<br>46.7<br>46.5 | 55.0<br>55.1<br>54.1<br>53.1<br>52.1 | | Noon<br>13 <sup>h</sup><br>14<br>15<br>16<br>17 | 42·8<br>42·8<br>42·4<br>41·6<br>40·6 | 47.5<br>47.7<br>47.5<br>46.5<br>45.0<br>44.1 | 49.7<br>50.2<br>49.8<br>49.2<br>48.0<br>46.0<br>44.2 | 49·1<br>49·4<br>48·9<br>49·0<br>48·5 | 63·2<br>63·8<br>63·8<br>63·5<br>62·5 | 65·4<br>65·4<br>64·6<br>63·9<br>63·5<br>62·1<br>60·4 | 67·3<br>66·8<br>67·5<br>67·6<br>66·8 | 69·0<br>69·5<br>69·3<br>69·1<br>67·8 | 61·5<br>61·1<br>61·1<br>60·2<br>58·8<br>57·0<br>55·4 | 55.0<br>54.8<br>54.3<br>53.3<br>51.9 | 48·0<br>47·8<br>47·1<br>45·9<br>44·8 | 48·0<br>47·7<br>47·1<br>46·7 | 55.0<br>55.3<br>54.7<br>53.7<br>52.1 | | Noon<br>13 <sup>h</sup><br>14<br>15<br>16<br>17<br>18 | 42.8<br>42.8<br>42.4<br>41.6<br>40.6<br>40.2<br>39.9 | 47.5<br>47.7<br>47.5<br>46.5<br>45.0<br>44.1<br>43.5 | 49.7<br>50.2<br>49.8<br>49.2<br>48.0<br>46.0<br>44.2 | 49.1<br>49.4<br>48.9<br>49.0<br>48.5<br>47.3<br>45.5 | 63·2<br>63·8<br>63·8<br>63·5<br>62·5<br>60·5<br>58·2 | 65·4<br>65·4<br>64·6<br>63·9<br>63·5<br>62·1<br>60·4 | 67·3<br>66·8<br>67·5<br>67·6<br>66·8<br>65·8 | 69.0<br>69.5<br>69.3<br>69.1<br>67.8<br>66.2 | 61·5<br>61·1<br>61·1<br>60·2<br>58·8<br>57·0<br>55·4 | 55.0<br>54.8<br>54.3<br>53.3<br>51.9<br>50.6<br>49.8 | 48.0<br>47.8<br>47.1<br>45.9<br>44.8<br>43.9<br>43.3 | 48·0<br>47·7<br>47·1<br>46·7<br>46·5<br>46·1 | 55.6<br>55.3<br>54.7<br>53.7<br>52.1<br>51.2 | | Noon 13 <sup>h</sup> 14 15 16 17 18 19 20 | 42·8<br>42·8<br>42·4<br>41·6<br>40·6<br>40·2<br>39·9<br>39·5 | 47.5<br>47.7<br>47.5<br>46.5<br>45.0<br>44.1<br>43.5<br>43.2 | 49.7<br>50.2<br>49.8<br>49.2<br>48.0<br>46.0<br>44.2<br>42.6 | 49·1<br>49·4<br>48·9<br>49·0<br>48·5<br>47·3<br>45·5<br>44·1 | 63·2<br>63·8<br>63·8<br>63·5<br>62·5<br>60·5<br>58·2<br>55·4 | 65·4<br>65·4<br>64·6<br>63·9<br>63·5<br>62·1<br>60·4<br>58·0 | 67·3<br>66·8<br>67·5<br>67·6<br>66·8<br>65·8<br>63·4<br>61·2 | 69·0<br>69·5<br>69·3<br>69·1<br>67·8<br>66·2<br>64·1<br>62·1 | 61·5<br>61·1<br>61·1<br>60·2<br>58·8<br>57·0<br>55·4<br>54·8 | 55 · 0<br>54 · 8<br>54 · 3<br>53 · 3<br>51 · 9<br>50 · 6<br>49 · 8<br>49 · 0 | 48.0<br>47.8<br>47.1<br>45.9<br>44.8<br>43.9<br>43.3<br>42.9 | 48·0<br>47·7<br>47·1<br>46·7<br>46·5<br>46·1<br>45·8 | 55.6<br>55.3<br>54.7<br>53.7<br>52.1<br>51.2 | | Noon 13 <sup>h</sup> 14 15 16 17 18 19 20 21 | 42.8<br>42.8<br>42.4<br>41.6<br>40.6<br>40.2<br>39.9<br>39.5<br>39.5 | 47·5<br>47·7<br>47·5<br>46·5<br>45·0<br>44·1<br>43·5<br>43·2<br>42·8 | 49·7<br>50·2<br>49·8<br>49·2<br>48·0<br>46·0<br>44·2<br>42·6<br>41·6 | 49·1<br>49·4<br>48·9<br>49·0<br>48·5<br>47·3<br>45·5<br>44·1<br>42·9 | 63·2<br>63·8<br>63·8<br>63·5<br>62·5<br>60·5<br>58·2<br>55·4<br>52·9 | 65:4<br>65:4<br>64:6<br>63:9<br>63:5<br>62:1<br>60:4<br>58:0<br>55:5 | 67·3<br>66·8<br>67·5<br>67·6<br>66·8<br>65·8<br>63·4<br>61·2<br>59·2 | 69·0<br>69·5<br>69·3<br>69·1<br>67·8<br>66·2<br>64·1<br>62·1<br>60·9 | 61·5<br>61·1<br>60·2<br>58·8<br>57·0<br>55·4<br>54·8<br>54·2 | 55.0<br>54.8<br>54.3<br>53.3<br>51.9<br>50.6<br>49.8<br>49.0<br>48.6 | 48 · 0<br>47 · 8<br>47 · 1<br>45 · 9<br>44 · 8<br>43 · 9<br>43 · 3<br>42 · 9<br>42 · 5 | 48·0<br>47·7<br>47·1<br>46·7<br>46·5<br>46·1<br>45·8<br>45·3 | 55.6<br>55.7<br>54.7<br>53.7<br>52.1<br>51.2<br>49.9<br>48.8 | | Noon 13 <sup>h</sup> 14 15 16 17 18 19 20 21 | 42.8<br>42.4<br>41.6<br>40.6<br>40.2<br>39.9<br>39.5<br>39.5<br>39.4 | 47·5<br>47·7<br>47·5<br>46·5<br>45·0<br>44·1<br>43·5<br>43·2<br>42·8<br>42·6 | 49.7<br>50.2<br>49.8<br>49.2<br>48.0<br>46.0<br>44.2<br>42.6<br>41.6<br>40.8 | 49·1<br>49·4<br>48·9<br>49·0<br>48·5<br>47·3<br>45·5<br>44·1<br>42·9<br>41·8 | 63·2<br>63·8<br>63·8<br>63·5<br>62·5<br>60·5<br>58·2<br>55·4<br>52·9<br>51·3 | 65:4<br>65:4<br>64:6<br>63:9<br>63:5<br>62:1<br>60:4<br>58:0<br>55:5<br>54:0 | 67·3<br>66·8<br>67·5<br>67·6<br>66·8<br>65·8<br>63·4<br>61·2<br>59·2<br>57·8 | 69·0<br>69·5<br>69·3<br>69·1<br>67·8<br>66·2<br>64·1<br>62·1<br>60·9<br>59·5 | 61·5<br>61·1<br>60·2<br>58·8<br>57·0<br>55·4<br>54·8<br>54·2<br>53·4 | 55 · 0<br>54 · 8<br>54 · 3<br>53 · 3<br>51 · 9<br>50 · 6<br>49 · 8<br>49 · 0<br>48 · 6<br>48 · 1 | 48.0<br>47.8<br>47.1<br>45.9<br>44.8<br>43.9<br>43.3<br>42.9<br>42.5<br>42.1 | 48·0<br>47·7<br>47·1<br>46·7<br>46·5<br>46·1<br>45·8<br>45·3<br>45·1 | 55.6<br>55.7<br>54.7<br>52.1<br>51.2<br>49.8<br>48.8 | | Noon 13 <sup>h</sup> 14 15 16 17 18 19 20 21 | 42.8<br>42.8<br>42.4<br>41.6<br>40.6<br>40.2<br>39.9<br>39.5<br>39.5 | 47·5<br>47·7<br>47·5<br>46·5<br>45·0<br>44·1<br>43·5<br>43·2<br>42·8 | 49·7<br>50·2<br>49·8<br>49·2<br>48·0<br>46·0<br>44·2<br>42·6<br>41·6 | 49·1<br>49·4<br>48·9<br>49·0<br>48·5<br>47·3<br>45·5<br>44·1<br>42·9 | 63·2<br>63·8<br>63·8<br>63·5<br>62·5<br>60·5<br>58·2<br>55·4<br>52·9 | 65:4<br>65:4<br>64:6<br>63:9<br>63:5<br>62:1<br>60:4<br>58:0<br>55:5 | 67·3<br>66·8<br>67·5<br>67·6<br>66·8<br>65·8<br>63·4<br>61·2<br>59·2 | 69·0<br>69·5<br>69·3<br>69·1<br>67·8<br>66·2<br>64·1<br>62·1<br>60·9 | 61·5<br>61·1<br>60·2<br>58·8<br>57·0<br>55·4<br>54·8<br>54·2 | 55.0<br>54.8<br>54.3<br>53.3<br>51.9<br>50.6<br>49.8<br>49.0<br>48.6 | 48 · 0<br>47 · 8<br>47 · 1<br>45 · 9<br>44 · 8<br>43 · 9<br>43 · 3<br>42 · 9<br>42 · 5 | 48·0<br>47·7<br>47·1<br>46·7<br>46·5<br>46·1<br>45·8<br>45·3 | 55:55:55:55:55:55:55:55:55:55:55:55:55: | | Noon 13 <sup>h</sup> 14 15 16 17 18 19 20 21 22 | 42.8<br>42.4<br>41.6<br>40.6<br>40.2<br>39.9<br>39.5<br>39.5<br>39.4<br>39.1 | 47·5<br>47·7<br>47·5<br>46·5<br>45·0<br>44·1<br>43·5<br>43·2<br>42·8<br>42·6<br>42·3 | 49.7<br>50.2<br>49.8<br>49.2<br>48.0<br>46.0<br>44.2<br>42.6<br>41.6<br>40.8<br>40.0 | 49·1<br>49·4<br>48·9<br>49·0<br>48·5<br>47·3<br>45·5<br>44·1<br>42·9<br>41·8<br>41·1 | 63·2<br>63·8<br>63·8<br>63·5<br>62·5<br>60·5<br>58·2<br>55·4<br>52·9<br>51·3<br>50·2 | 65:4<br>65:4<br>64:6<br>63:9<br>63:5<br>62:1<br>60:4<br>58:0<br>55:5<br>54:0<br>52:7 | 67·3<br>66·8<br>67·5<br>67·6<br>66·8<br>65·8<br>63·4<br>61·2<br>59·2<br>57·8<br>56·9 | 69·0<br>69·5<br>69·3<br>69·1<br>67·8<br>66·2<br>64·1<br>62·1<br>60·9<br>59·5<br>58·6 | 61·5<br>61·1<br>60·2<br>58·8<br>57·0<br>55·4<br>54·8<br>54·2<br>53·4<br>52·8 | 55 · 0<br>54 · 8<br>54 · 3<br>53 · 3<br>51 · 9<br>50 · 6<br>49 · 8<br>49 · 0<br>48 · 6<br>48 · 1<br>47 · 7 | 48.0<br>47.8<br>47.1<br>45.9<br>44.8<br>43.9<br>43.3<br>42.9<br>42.5<br>42.1<br>41.7 | 48·0<br>47·7<br>47·1<br>46·7<br>46·5<br>46·1<br>45·8<br>45·3<br>45·1<br>45·1 | 55.0<br>55.0<br>54.0<br>53.0<br>52.0<br>49.0<br>48.0<br>48.0 | | Noon 13 <sup>h</sup> 14 15 16 17 18 19 20 21 22 23 24 | 42.8<br>42.4<br>41.6<br>40.6<br>40.2<br>39.9<br>39.5<br>39.5<br>39.4<br>39.1<br>38.7 | 47·5<br>47·7<br>47·5<br>46·5<br>45·0<br>44·1<br>43·5<br>43·2<br>42·8<br>42·6<br>42·3<br>42·2 | 49.7<br>50.2<br>49.8<br>49.2<br>48.0<br>46.0<br>44.2<br>42.6<br>41.6<br>40.8<br>40.0<br>39.5 | 49·I<br>49·4<br>48·9<br>49·0<br>48·5<br>47·3<br>45·5<br>44·I<br>42·9<br>4I·8<br>4I·I<br>40·6 | 63·2<br>63·8<br>63·8<br>63·5<br>62·5<br>60·5<br>58·2<br>55·4<br>52·9<br>51·3<br>50·2<br>49·3 | 65:4<br>65:4<br>64:6<br>63:9<br>63:5<br>62:1<br>60:4<br>58:0<br>55:5<br>54:0<br>52:7<br>51:4 | 67·3<br>66·8<br>67·5<br>67·6<br>66·8<br>65·8<br>63·4<br>61·2<br>59·2<br>57·8<br>56·9<br>56·0 | 69·0<br>69·5<br>69·3<br>69·1<br>67·8<br>66·2<br>64·1<br>62·1<br>60·9<br>59·5<br>58·6<br>57·9 | 61·5<br>61·1<br>60·2<br>58·8<br>57·0<br>55·4<br>54·8<br>54·2<br>53·4<br>52·8<br>52·4 | 55 · 0<br>54 · 8<br>54 · 3<br>53 · 3<br>51 · 9<br>50 · 6<br>49 · 8<br>49 · 0<br>48 · 6<br>48 · 1<br>47 · 7<br>47 · 4 | 48.0<br>47.8<br>47.1<br>45.9<br>44.8<br>43.9<br>43.3<br>42.9<br>42.5<br>42.1<br>41.7<br>41.4 | 48·0<br>47·7<br>47·1<br>46·7<br>46·5<br>46·1<br>45·8<br>45·3<br>45·1<br>45·1<br>45·0 | 55°<br>55°<br>54°<br>53°<br>52°<br>51°<br>48°<br>48°<br>48°<br>46° | | Hour, Greenwich Civil Time. January Midnight Ih 36.8 2 36.8 3 36.7 4 36.6 5 36.4 6 36.2 7 36.2 8 36.1 9 36.5 10 37.4 II 38.6 Noon II 38.6 Noon II 39.7 37.6 II 37.6 II 37.6 II 37.6 II 37.6 | 40·3 40·1 40·0 39·8 39·2 39·1 39·1 39·2 39·4 40·6 41·7 42·5 43·2 43·8 43·9 | March. 37.5 37.1 37.0 36.6 36.4 36.1 36.3 37.0 38.6 40.1 41.5 42.7 43.5 44.1 | 39·6<br>39·4<br>39·1<br>38·8<br>38·9<br>39·0<br>39·4<br>40·0<br>41·3<br>42·6<br>43·4<br>44·2<br>44·9<br>45·3 | May. 47.7 47.3 47.0 46.8 46.4 46.7 48.3 50.3 51.9 53.1 54.4 55.2 55.6 55.6 | June. 48·5 47·8 47·0 46·3 46·1 46·8 48·6 50·5 52·1 53·3 54·0 54·6 54·9 55·7 | July. 54.0 53.3 52.9 52.6 52.6 53.4 54.9 56.5 57.4 58.6 59.1 59.7 59.8 | August. 55.9 55.4 54.9 54.4 53.9 53.7 54.5 56.1 57.4 58.4 59.2 60.1 60.3 | 50.9<br>50.7<br>50.5<br>50.3<br>50.1<br>50.0<br>50.0<br>50.0<br>51.9<br>53.1<br>53.8<br>54.3 | October. 45.6 45.4 45.1 45.0 45.0 45.1 45.5 45.9 46.8 48.3 49.2 49.9 50.3 | November. 40.9 40.7 40.4 39.9 39.5 39.6 39.7 39.7 40.1 41.2 42.8 44.0 44.8 | December. | Yearl Means 45·I 44·8 44·5 44·2 44·1 44·2 44·7 45·5 46·4 47·5 48·4 49·3 49·8 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------| | Midnight 1h 36.8 2 36.8 3 36.7 4 36.6 5 36.4 6 36.2 7 36.2 8 36.1 9 36.5 10 37.4 11 38.6 Noon 39.4 13h 39.7 14 39.7 15 39.4 16 39.1 17 38.5 18 38.2 19 38.0 20 37.7 21 37.6 | 40·3<br>40·1<br>40·0<br>39·8<br>39·2<br>39·1<br>39·1<br>39·2<br>39·4<br>40·6<br>41·7<br>42·5<br>43·8 | 37·5<br>37·1<br>37·0<br>36·6<br>36·4<br>36·1<br>36·3<br>37·0<br>38·6<br>40·1<br>41·5<br>42·7<br>43·5<br>44·1 | 39·6<br>39·4<br>39·1<br>38·8<br>38·9<br>39·0<br>39·4<br>40·0<br>41·3<br>42·6<br>43·4<br>44·2<br>44·9<br>45·3 | 47·7<br>47·3<br>47·9<br>46·8<br>46·4<br>46·7<br>48·3<br>55·3<br>55·9<br>53·1<br>54·4<br>55·2<br>55·6 | 48·5<br>47·8<br>47·0<br>46·3<br>46·1<br>46·8<br>48·6<br>50·5<br>52·1<br>53·3<br>54·0<br>54·6<br>54·9 | 54.0<br>53.3<br>52.9<br>52.6<br>52.6<br>53.4<br>54.9<br>56.5<br>57.4<br>58.6<br>59.1<br>59.7<br>59.8 | 55:9<br>55:4<br>54:9<br>54:4<br>53:9<br>53:7<br>54:5<br>56:1<br>57:4<br>58:4<br>59:2<br>60:1 | 50.9<br>50.7<br>50.5<br>50.3<br>50.0<br>50.0<br>50.0<br>50.9<br>51.9<br>53.1<br>53.8<br>54.3 | 45·6<br>45·4<br>45·1<br>45·0<br>45·1<br>45·5<br>45·9<br>46·8<br>48·3<br>49·2<br>49·9 | 40.9<br>40.7<br>40.4<br>39.9<br>39.5<br>39.6<br>39.7<br>39.7<br>40.1<br>41.2<br>42.8<br>44.0 | 43.7<br>43.9<br>43.6<br>43.6<br>43.9<br>44.2<br>44.1<br>44.0<br>44.4<br>45.0<br>45.5 | 45·I<br>44·8<br>44·5<br>44·2<br>44·1<br>44·2<br>44·7<br>45·5<br>46·4<br>47·5<br>48·4<br>49·3 | | 1h 36.8 2 36.8 3 36.7 4 36.6 5 36.4 6 36.2 7 36.2 8 36.1 9 36.5 10 37.4 11 38.6 Noon 39.4 13h 39.7 14 39.7 15 39.4 16 39.1 17 38.5 18 38.2 19 38.0 20 37.7 21 37.6 | 40·1<br>40·0<br>39·8<br>39·2<br>39·1<br>39·1<br>39·2<br>39·4<br>40·6<br>41·7<br>42·5<br>43·8 | 37·1<br>37·0<br>36·6<br>36·4<br>36·1<br>36·3<br>37·0<br>38·6<br>40·1<br>41·5<br>42·7<br>43·5<br>44·1 | 39:4<br>39:1<br>38:8<br>38:9<br>39:0<br>39:4<br>40:0<br>41:3<br>42:6<br>43:4<br>44:2<br>44:9<br>45:3 | 47·3<br>47·0<br>46·8<br>46·4<br>46·7<br>48·3<br>50·3<br>51·9<br>53·1<br>54·4<br>55·2<br>55·6 | 47·8<br>47·0<br>46·3<br>46·1<br>46·8<br>48·6<br>50·5<br>52·1<br>53·3<br>54·0<br>54·6<br>54·9 | 53·3<br>52·9<br>52·6<br>52·6<br>53·4<br>54·9<br>56·5<br>57·4<br>58·6<br>59·1<br>59·7<br>59·8 | 55:4<br>54:9<br>54:4<br>53:9<br>53:7<br>54:5<br>56:1<br>57:4<br>58:4<br>59:2<br>60:1 | 50·7<br>50·5<br>50·3<br>50·0<br>50·0<br>50·0<br>50·0<br>50·9<br>51·9<br>53·1<br>53·8<br>54·3 | 45·4<br>45·1<br>45·0<br>45·0<br>45·1<br>45·5<br>45·9<br>46·8<br>48·3<br>49·2<br>49·9 | 40·7<br>40·4<br>39·9<br>39·5<br>39·6<br>39·7<br>39·7<br>40·1<br>41·2<br>42·8<br>44·0 | 43.9<br>43.6<br>43.6<br>43.9<br>44.2<br>44.1<br>44.0<br>44.4<br>45.0<br>45.5 | 44.8<br>44.5<br>44.1<br>44.1<br>44.2<br>44.7<br>45.5<br>46.4<br>47.5<br>48.4<br>49.3 | | 2 36.8 3 36.7 4 36.6 5 36.4 6 36.2 7 36.2 8 36.1 9 36.5 10 37.4 11 38.6 Noon 39.4 13 <sup>h</sup> 39.7 14 39.7 15 39.4 16 39.1 17 38.5 18 38.2 19 38.0 20 37.7 21 37.6 | 40·0<br>39·8<br>39·2<br>39·1<br>39·1<br>39·2<br>39·4<br>40·6<br>41·7<br>42·5<br>43·8 | 37.0<br>36.6<br>36.4<br>36.1<br>36.3<br>37.0<br>38.6<br>40.1<br>41.5<br>42.7<br>43.5<br>44.1 | 39·I<br>38·8<br>38·9<br>39·0<br>39·4<br>40·0<br>41·3<br>42·6<br>43·4<br>44·2<br>44·9<br>45·3 | 47.0<br>46.8<br>46.4<br>46.7<br>48.3<br>50.3<br>51.9<br>53.1<br>54.4<br>55.2<br>55.6 | 47.0<br>46.3<br>46.1<br>46.8<br>48.6<br>50.5<br>52.1<br>53.3<br>54.0<br>54.6<br>54.9 | 52·9<br>52·6<br>52·6<br>53·4<br>54·9<br>56·5<br>57·4<br>58·6<br>59·1<br>59·7<br>59·8 | 54·9<br>54·4<br>53·9<br>53·7<br>54·5<br>56·1<br>57·4<br>58·4<br>59·2<br>60·1 | 50·5<br>50·3<br>50·0<br>50·0<br>50·0<br>50·0<br>53·1<br>53·8<br>54·3 | 45·I<br>45·0<br>45·0<br>45·I<br>45·5<br>45·9<br>46·8<br>48·3<br>49·2<br>49·9 | 40·4<br>39·9<br>39·5<br>39·6<br>39·7<br>39·7<br>40·1<br>41·2<br>42·8<br>44·0 | 43.6<br>43.6<br>43.9<br>44.2<br>44.1<br>44.0<br>44.4<br>45.0<br>45.5 | 44·5<br>44·1<br>44·2<br>44·7<br>45·5<br>46·4<br>47·5<br>48·4 | | 3 36.7<br>4 36.6<br>5 36.4<br>6 36.2<br>7 36.2<br>8 36.1<br>9 36.5<br>10 37.4<br>11 38.6<br>Noon 39.4<br>13.h 39.7<br>14 39.7<br>15 39.4<br>16 39.1<br>17 38.5<br>18 38.2<br>19 38.0<br>20 37.7<br>21 37.6 | 39·8<br>39·2<br>39·1<br>39·1<br>39·2<br>39·4<br>40·6<br>41·7<br>42·5<br>43·8 | 36.6<br>36.4<br>36.1<br>36.3<br>37.0<br>38.6<br>40.1<br>41.5<br>42.7<br>43.5<br>44.1 | 38·8<br>38·9<br>39·0<br>39·4<br>40·0<br>41·3<br>42·6<br>43·4<br>44·2<br>44·9<br>45·3 | 46·8<br>46·4<br>46·7<br>48·3<br>50·3<br>51·9<br>53·1<br>54·4<br>55·2<br>55·6 | 46·3<br>46·1<br>46·8<br>48·6<br>50·5<br>52·1<br>53·3<br>54·0<br>54·6<br>54·9 | 52.6<br>52.6<br>53.4<br>54.9<br>56.5<br>57.4<br>58.6<br>59.1<br>59.7<br>59.8 | 54·4<br>53·9<br>53·7<br>54·5<br>56·1<br>57·4<br>58·4<br>59·2<br>60·1 | 50·3<br>50·0<br>50·0<br>50·0<br>50·0<br>53·1<br>53·8<br>54·3 | 45.0<br>45.1<br>45.5<br>45.9<br>46.8<br>48.3<br>49.2<br>49.9 | 39.9<br>39.5<br>39.6<br>39.7<br>39.7<br>40.1<br>41.2<br>42.8<br>44.0 | 43.6<br>43.9<br>44.2<br>44.1<br>44.0<br>44.4<br>45.0<br>45.5 | 44·2<br>44·2<br>44·3<br>44·3<br>45·9<br>46·4<br>47·9<br>48·4<br>49·3 | | 4 36.6 5 36.4 6 36.2 7 36.2 8 36.1 9 36.5 10 37.4 11 38.6 Noon 39.4 13.h 39.7 14 39.7 15 39.4 16 39.1 17 38.5 18 38.2 19 38.0 20 37.7 21 37.6 | 39·2<br>39·1<br>39·1<br>39·2<br>39·4<br>40·6<br>41·7<br>42·5<br>43·8 | 36·4<br>36·1<br>36·3<br>37·0<br>38·6<br>40·1<br>41·5<br>42·7<br>43·5<br>44·1 | 38·9<br>39·0<br>39·4<br>40·0<br>41·3<br>42·6<br>43·4<br>44·2<br>44·9<br>45·3 | 46·4<br>46·7<br>48·3<br>50·3<br>51·9<br>53·1<br>54·4<br>55·2<br>55·6 | 46·1<br>46·8<br>48·6<br>50·5<br>52·1<br>53·3<br>54·0<br>54·6<br>54·9 | 52·6<br>53·4<br>54·9<br>56·5<br>57·4<br>58·6<br>59·1<br>59·7<br>59·8 | 53.9<br>53.7<br>54.5<br>56.1<br>57.4<br>58.4<br>59.2<br>60.1 | 50·1<br>50·0<br>50·0<br>50·9<br>51·9<br>53·1<br>53·8<br>54·3 | 45·0<br>45·1<br>45·5<br>45·9<br>46·8<br>48·3<br>49·2<br>49·9 | 39.5<br>39.6<br>39.7<br>39.7<br>40.1<br>41.2<br>42.8<br>44.0 | 43.9<br>44.2<br>44.1<br>44.0<br>44.4<br>45.0<br>45.5 | 44·2<br>44·2<br>44·7<br>45·5<br>46·4<br>47·5<br>48·4 | | 5 36.4<br>6 36.2<br>7 36.2<br>8 36.1<br>9 36.5<br>10 37.4<br>11 38.6<br>Noon 39.4<br>13.h 39.7<br>14 39.7<br>15 39.4<br>16 39.1<br>17 38.5<br>18 38.2<br>19 38.0<br>20 37.7<br>21 37.6 | 39·1<br>39·2<br>39·4<br>40·6<br>41·7<br>42·5<br>43·8 | 36·1<br>36·3<br>37·0<br>38·6<br>40·1<br>41·5<br>42·7<br>43·5<br>44·1 | 39.0<br>39.4<br>40.0<br>41.3<br>42.6<br>43.4<br>44.2<br>44.9<br>45.3 | 46·7<br>48·3<br>50·3<br>51·9<br>53·1<br>54·4<br>55·2<br>55·6 | 46.8<br>48.6<br>50.5<br>52.1<br>53.3<br>54.0<br>54.6<br>54.9 | 53·4<br>54·9<br>56·5<br>57·4<br>58·6<br>59·1<br>59·7<br>59·8 | 53.7<br>54.5<br>56.1<br>57.4<br>58.4<br>59.2<br>60.1 | 50·0<br>50·0<br>50·9<br>51·9<br>53·1<br>53·8<br>54·3 | 45·1<br>45·5<br>45·9<br>46·8<br>48·3<br>49·2<br>49·9 | 39.6<br>39.7<br>39.7<br>40.1<br>41.2<br>42.8<br>44.0 | 44·2<br>44·1<br>44·0<br>44·4<br>45·0<br>45·5 | 44.3<br>44.5<br>45.5<br>46.4<br>47.5<br>48.4<br>49.3 | | 6 36·2 7 36·2 8 36·1 9 36·5 10 37·4 11 38·6 Noon 39·4 13 <sup>h</sup> 39·7 14 39·7 15 39·4 16 39·1 17 38·5 18 38·2 19 38·0 20 37·7 21 37·6 | 39·I<br>39·2<br>39·4<br>40·6<br>4I·7<br>42·5<br>43·2<br>43·8 | 36·3<br>37·0<br>38·6<br>40·1<br>41·5<br>42·7<br>43·5<br>44·1 | 39·4<br>40·0<br>41·3<br>42·6<br>43·4<br>44·2<br>44·9<br>45·3 | 48·3<br>50·3<br>51·9<br>53·1<br>54·4<br>55·2<br>55·6 | 48.6<br>50.5<br>52.1<br>53.3<br>54.0<br>54.6<br>54.9 | 54·9<br>56·5<br>57·4<br>58·6<br>59·1<br>59·7<br>59·8 | 54.5<br>56.1<br>57.4<br>58.4<br>59.2<br>60.1 | 50·0<br>50·9<br>51·9<br>53·8<br>54·3 | 45.5<br>45.9<br>46.8<br>48.3<br>49.2<br>49.9 | 39.7<br>39.7<br>40.1<br>41.2<br>42.8<br>44.0 | 44·2<br>44·1<br>44·0<br>44·4<br>45·0<br>45·5 | 44.7<br>45.5<br>46.4<br>47.5<br>48.4<br>49.3 | | 7 | 39·2<br>39·4<br>40·6<br>41·7<br>42·5<br>43·2<br>43·8 | 37.0<br>38.6<br>40.1<br>41.5<br>42.7<br>43.5<br>44.1 | 39·4<br>40·0<br>41·3<br>42·6<br>43·4<br>44·2<br>44·9<br>45·3 | 50·3<br>51·9<br>53·1<br>54·4<br>55·2<br>55·6 | 50·5<br>52·1<br>53·3<br>54·0<br>54·6<br>54·9 | 56·5<br>57·4<br>58·6<br>59·1<br>59·7<br>59·8 | 54.5<br>56.1<br>57.4<br>58.4<br>59.2<br>60.1 | 50·9<br>51·9<br>53·8<br>54·3 | 45.5<br>45.9<br>46.8<br>48.3<br>49.2<br>49.9 | 39.7<br>39.7<br>40.1<br>41.2<br>42.8<br>44.0 | 44·2<br>44·1<br>44·0<br>44·4<br>45·0<br>45·5 | 45.5<br>46.4<br>47.5<br>48.4<br>49.3 | | 8 36·1 9 36·5 10 37·4 11 38·6 Noon 39·4 13 <sup>h</sup> 39·7 14 39·7 15 39·4 16 39·1 17 38·5 18 38·2 19 38·0 20 37·7 21 37·6 | 39.4<br>40.6<br>41.7<br>42.5<br>43.2<br>43.8 | 38.6<br>40.1<br>41.5<br>42.7<br>43.5<br>44.1 | 40·0<br>41·3<br>42·6<br>43·4<br>44·2<br>44·9<br>45·3 | 51·9<br>53·1<br>54·4<br>55·2<br>55·6 | 52·I<br>53·3<br>54·0<br>54·6<br>54·9 | 57:4<br>58:6<br>59:1<br>59:7<br>59:8 | 56·1<br>57·4<br>58·4<br>59·2<br>60·1 | 51·9<br>53·1<br>53·8<br>54·3 | 45.9<br>46.8<br>48.3<br>49.2<br>49.9 | 40·I<br>41·2<br>42·8<br>44·0 | 44.0<br>44.4<br>45.0<br>45.5 | 45.5<br>46.4<br>47.5<br>48.4<br>49.3 | | 9 36·5 10 37·4 11 38·6 Noon 39·4 13 <sup>h</sup> 39·7 14 39·7 15 39·4 16 39·1 17 38·5 18 38·2 19 38·0 20 37·7 21 37·6 | 40.6<br>41.7<br>42.5<br>43.2<br>43.8 | 40·I<br>41·5<br>42·7<br>43·5<br>44·I | 42.6<br>43.4<br>44.2<br>44.9<br>45.3 | 53·I<br>54·4<br>55·2<br>55·6 | 53·3<br>54·6<br>54·9 | 58·6<br>59·1<br>59·8 | 58·4<br>59·2<br>60·1 | 53·8<br>54·3 | 46.8<br>48.3<br>49.2<br>49.9 | 40·I<br>41·2<br>42·8<br>44·0 | 44.0<br>44.4<br>45.0<br>45.5 | 46·4<br>47·5<br>48·4<br>49·3 | | 10 37.4 11 38.6 Noon 39.4 13 <sup>h</sup> 39.7 14 39.7 15 39.4 16 39.1 17 38.5 18 38.2 19 38.0 20 37.7 21 37.6 | 40.6<br>41.7<br>42.5<br>43.2<br>43.8 | 41·5<br>42·7<br>43·5<br>44·1 | 43·4<br>44·2<br>44·9<br>45·3 | 54·4<br>55·2<br>55·6 | 54.0<br>54.6<br>54.9 | 58·6<br>59·1<br>59·8 | 58·4<br>59·2<br>60·1 | 53·8<br>54·3 | 48·3<br>49·2<br>49·9 | 42.8 | 44·4<br>45·0<br>45·5 | 47:5<br>48:4<br>49:3 | | 10 37.4 11 38.6 Noon 39.4 13 <sup>h</sup> 39.7 14 39.7 15 39.4 16 39.1 17 38.5 18 38.2 19 38.0 20 37.7 21 37.6 | 42·5<br>43·2<br>43·8 | 41·5<br>42·7<br>43·5<br>44·1 | 43·4<br>44·2<br>44·9<br>45·3 | 54·4<br>55·2<br>55·6 | 54.0<br>54.6<br>54.9 | 59·7<br>59·8 | 59·2<br>60·1 | 53·8<br>54·3 | 49·2<br>49·9 | 44.0 | 45.0<br>45.5 | 48·2 | | 11 38.6 Noon 39.4 13 <sup>h</sup> 39.7 14 39.7 15 39.4 16 39.1 17 38.5 18 38.2 19 38.0 20 37.7 21 37.6 | 42·5<br>43·2<br>43·8 | 42·7<br>43·5<br>44·1 | 44·2<br>44·9<br>45·3 | 55·2<br>55·6 | 54·6<br>54·9 | 59·7<br>59·8 | | 54.3 | 49.9 | 44.0 | 45.5 | 49 | | Noon 13 <sup>h</sup> 39.7 14 39.7 15 39.4 16 39.1 17 38.5 18 38.2 19 38.0 20 37.7 21 37.6 | 43·2<br>43·8 | 43·5<br>44·I | 44·9<br>45·3 | 55.6 | 54.9 | 59.8 | 60.3 | | | | 15.8 | 40.5 | | 13h 39.7 14 39.7 15 39.4 16 39.1 17 38.5 18 38.2 19 38.0 20 37.7 21 37.6 | 43.8 | 44.1 | 45.3 | 55.6 | | | | | <b>1</b> ∪ 1 | 1 44 0 1 | 45.0 | 47 | | 14 39.7 15 39.4 16 39.1 17 38.5 18 38.2 19 38.0 20 37.7 21 37.6 | | 1 | | ) ) | | 60.2 | 60.7 | 54.7 | 50.4 | 45·I | 45.9 | 50.1 | | 15 39 4<br>16 39 1<br>17 38 5<br>18 38 2<br>19 38 0<br>20 37 7<br>21 37 6 | | | 45.4 | 55.9 | 55.6 | 59.9 | 61.1 | 54.9 | 50.2 | 44.9 | 46.0 | <b>τ</b> ο·1 | | 16 39 · I 17 38 · 5 18 38 · 2 19 38 · 0 20 37 · 7 21 37 · 6 | 43.8 | 44.0 | 45.1 | 55.6 | 55.6 | 60.3 | 61.0 | 54.5 | ς́ο∙2 | 44.5 | 45.5 | ₹o• | | 17 38·5<br>18 38·2<br>19 38·0<br>20 37·7<br>21 37·6 | 43.1 | 43.7 | 45.0 | 55.4 | 55.4 | 60.2 | 61.0 | 54.1 | 49.7 | 43.6 | 45·I | 49.6 | | 18 38·2<br>19 38·0<br>20 37·7<br>21 37·6 | 42.5 | 42.9 | 44.5 | 54.9 | 55.2 | 59.6 | 60.5 | 53.3 | 48.9 | 42.9 | 44.8 | 49.0 | | 19 38.0<br>20 37.7<br>21 37.6 | 42.0 | 41.8 | 44.0 | 53.9 | 54.6 | 59.3 | 59.9 | 52.7 | 48.3 | 42.2 | 44.6 | 48.5 | | 20 37·7<br>21 37·6 | 41.6 | 40.8 | 43.0 | 52.7 | 54.0 | 58·1 | 59.0 | 52.0 | 47.8 | 41.8 | 44.4 | 47.8 | | 21 37.6 | 41.3 | 39.8 | 42.1 | 51.5 | 52.8 | 57.2 | 58.3 | 51.0 | 47.3 | 41.5 | 44.2 | 47.1 | | | 41.0 | 39.2 | 41.3 | 50.3 | 51.7 | 56·I | 57·6 | 51.6 | 47.0 | 41.2 | 43.8 | 46. | | | 40.8 | 38.8 | 40.5 | 49.2 | 50.6 | 55.3 | 56.8 | 51.2 | 46.6 | 40.9 | 43.7 | 46.0 | | 23 37.4 | 40.4 | 38.2 | 40.0 | 48.5 | 49.5 | 54.8 | 56.3 | 50.8 | 46.4 | 40.6 | 43.6 | 45.5 | | 24 37·I | 40.3 | 37.8 | 39.5 | 48.0 | 48.7 | 54.1 | 55.8 | 50.5 | 46.1 | 40.3 | 43.7 | 45.2 | | $\begin{cases} o^{h} - 23^{h} & 37.7 \\ \hline 1^{h} - 24^{h} & 37.7 \end{cases}$ | 41.2 | 39.9 | 41.9 | 51.4 | 51.7 | 56.9 | 57.8 | 52.2 | 47.5 | 41.8 | 44.5 | 47.0 | | $\begin{cases} \frac{1^{h}-24^{h}}{37\cdot7} \end{cases}$ | 41.2 | 39.9 | 41.9 | 51.4 | 51.7 | 56.9 | 57·8 | 52.1 | 47.5 | 41.7 | 44.5 | 47.0 | Monthly Mean Temperature of the Dew Point at every Hour of the Day, as deduced by Glaisher's Tables from the corresponding Air and Evaporation Temperatures. | Hour, | | | | | | 19 | 18. | | | | | | Yearl | |--------------------------|----------|-----------|--------|--------|-------|--------------|-------|---------|------------|--------------|-----------|-----------|-------| | Greenwich<br>Civil Time. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | Mean | | | 1 0 | | 0 | ٥ | 0 | ٥ | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | | Midnight | 34.9 | 38.0 | 35.4 | 38.4 | 46.2 | 45.7 | 52.1 | 54.0 | 49·I | 44.2 | 39.6 | 42·I | 43:3 | | I µ | 34.8 | 37.9 | 35.2 | 38.3 | 45.9 | 45.3 | 51.5 | 53.7 | 49.0 | 44·I | 39.4 | 42.4 | 43. | | 2 | 34.9 | 37.9 | 35.1 | 37.9 | 45.6 | 44.6 | 51.1 | 53.5 | 48.8 | 43.9 | 39.2 | 41.8 | 42. | | 3 | 34.9 | 37.5 | 34.9 | 37.5 | 45.5 | 44.0 | 50.8 | 53.0 | 48.8 | 43.8 | 38.5 | 42.0 | 42. | | 4 | 34.9 | 36.8 | 34.8 | 37.7 | 45.0 | 44.1 | 50.9 | 52.7 | 48.8 | 43.9 | 38.3 | 42.3 | 42. | | 5 | 34.8 | 37.1 | 34.2 | 37.7 | 45.2 | 44.8 | 51.8 | 52.6 | 48.7 | 43.9 | 38.6 | 42.8 | 42. | | 6 | 34.3 | 37·I | 34.5 | 38.3 | 46.5 | 45.9 | 53.1 | 53.0 | 48.7 | 44.4 | 38.6 | 42.8 | 43. | | 7 | 34.4 | 37.2 | 35.1 | 38.5 | 47.9 | 46.6 | 53.9 | 53.8 | 49.2 | 44.6 | 38.5 | 42.7 | 43. | | 8 | 34.3 | 37.4 | 36.3 | 39.6 | 48.4 | 47.0 | 53.9 | 54.2 | 49.2 | 45.2 | 38.8 | 42.5 | 43. | | 9 | 34.6 | 38.2 | 36.7 | 40.4 | 49.0 | 47.4 | 54.2 | 54.4 | 49.5 | 46.2 | 39.6 | 42.9 | 44. | | 10 | 35.3 | 38.7 | 37.3 | 40.2 | 49.7 | 47.2 | 54.0 | 54.4 | 49.4 | 46.3 | 40.7 | 43.5 | 44. | | ΙΙ | 35.9 | 38.7 | 37.7 | 40.6 | 49.8 | 47.3 | 54.5 | 54.4 | 49.3 | 46.3 | 41.5 | 43.7 | 45. | | Noon | 36.1 | 39.0 | 38·1 | 41.2 | 49.7 | 47:3 | 54.1 | 54.2 | 49.3 | 46.2 | 42.0 | 43.8 | 45. | | 13 <sup>h</sup> | 36.0 | 39.7 | 38·I | 41.2 | 49.2 | 47.8 | 54.6 | 54.3 | 48.8 | 46.0 | 41.9 | 43.8 | 45. | | 14 | 36.0 | 39.7 | 37.6 | 41.1 | 49.4 | 47.6 | 54.4 | 54.6 | 49.5 | 45.8 | 41.8 | 43.8 | 45. | | 15 | 35.7 | 39.7 | 37.8 | 41.0 | 48.8 | 48.2 | 54.6 | 54.6 | 48.8 | 46.2 | 41.6 | 43·I | 45. | | 16 | 36.0 | 39.3 | 37.8 | 40.7 | 48.6 | 48.3 | 54.3 | 54.7 | 48.7 | <b>4</b> 6∙1 | 41.0 | 42.9 | 44. | | 17 | 35.8 | 39.6 | 37.3 | 40.2 | 4.8.4 | 48.2 | 53.8 | 54.7 | 48.4 | 45.9 | 40.7 | 42.6 | 44. | | 18 | 35.6 | 39.5 | 37.0 | 40.3 | 48.1 | 48.2 | 54.0 | 54.8 | 48.7 | 45.9 | 40.2 | 42.5 | 44. | | 19 | 35.5 | 39.4 | 36.8 | 40·I | 47.8 | 48.4 | 53.7 | 54.7 | 48.7 | 45.7 | 40.0 | 42.5 | 44 | | 20 | 35.4 | 39.0 | 36.4 | 39.7 | 47.8 | 48·I | 53.7 | 55·1 | 49·I | 45.4 | 39.8 | 42.1 | 44. | | 21 | 35.1 | 38.8 | 36.2 | 39.4 | 47.7 | <b>4</b> 8∙1 | 53.3 | 54.8 | 49·I | 45.2 | 39.6 | 42.2 | 44. | | 22 | 35.3 | 38.7 | 36.3 | 38.9 | 47.0 | 47.3 | 52.1 | 54.4 | 49.0 | 45.0 | 39.5 | 42·I | 43. | | 23 | 35.2 | 38.1 | 35.9 | 38.6 | 46.7 | 46.3 | 52.9 | 54.3 | 48.8 | 45.0 | 39.2 | 41.9 | 43. | | 24 | 34.9 | 38.0 | 35.6 | 38.1 | 46.6 | 45.9 | 52.3 | 53.9 | 48.6 | 44.7 | 38.9 | 42.2 | 43. | | ∫oh23 <sup>h</sup> . | 35.5 | 38.5 | 36.4 | 39.5 | 47.7 | 46.8 | 53.3 | 54.1 | 49.0 | 45.5 | 39.9 | 42.7 | 44. | | { <del></del> | 35.2 | 38.5 | 36.4 | 39.5 | 47.7 | 46.8 | 53.3 | 54.1 | 49.0 | 45.2 | 39.9 | 42.7 | 44. | Monthly Mean Degree of Humidity (Saturation=100) at every Hour of the Day, as deduced by Glaisher's Tables from the corresponding Air and Evaporation Temperatures. | Hour,<br>Greenwich | | | | | | 19 | 18. | | | | | | Year | |-------------------------------------------|----------|-----------|-----------|--------|------------|-------|-------|------------|------------|------------|-----------|-----------|----------------| | Civil Time. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | Mean | | Midnight | 87 | 86 | 87 | 92 | 90 | 82 | 87 | 86 | 88 | 91 | 91 | 89 | 88 | | I h | 88 | 87 | 88 | 93 | 91 | 84 | 88 | 88 | 88 | 92 | 92 | 90 | 89 | | 2 | 88 | 87 | 88 | 93 | 91 | 85 | 88 | 89 | 88 | 92 | 92 | 89 | 89 | | 3 | 89 | 87 | 89 | 92 | 92 | 85 | 88 | 90 | 89 | 92 | 91 | 89 | 89 | | 4 | 89 | 85 | 9ó | 93 | 91 | 87 | 88 | 92 | 91 | 93 | 92 | 9ó | 9ó | | | 90 | 87 | <b>88</b> | 92 | 90 | 87 | 89 | 92 | 91 | 92 | 94 | 91 | 90 | | 5<br>6 | 88 | 87 | 89 | 93 | <b>8</b> 8 | 82 | 87 | <b>8</b> 9 | 91 | 93 | 93 | 91 | <b>8</b> 9 | | 7 | 89 | 87 | 88 | 91 | 84 | 75 | 83 | 83 | 89 | 92 | 92 | 91 | 8 <sub>7</sub> | | 8 | 89 | 87 | 86 | 89 | 77 | 68 | 77 | 78 | 8 í | 90 | 92 | 90 | 84 | | 9 | 88 | 85 | 79 | 86 | 73 | 63 | 72 | 73 | 76 | <b>8</b> 6 | 90 | 90 | 8c | | 10 | 87 | 8 r | 74 | 8 r | 69 | 58 | 67 | 69 | 71 | 8 r | 87 | 90 | 76 | | I I | 84. | 77 | 70 | 78 | 66 | 57 | 66 | 64 | 68 | 76 | 85 | 89 | 73 | | Noon | 80 | 75 | 67 | 77 | 63 | 55 | 64 | 61 | 66 | 73 | 82 | 88 | 71 | | 13 <sup>h</sup> | 77 | 75 | 64 | 74 | 61 | 53 | 64 | 59 | 64 | 72 | 80 | 87 | 69 | | 14 | 77 | 75 | 62 | 73 | 59 | 52 | 64 | 58 | 66 | 7 I | 81 | 86 | 69 | | 15 | 78 | 75 | 63 | 74 | 58 | 56 | 63 | 59 | 64 | 74 | 82 | 85 | 69 | | 16 | 8 r | 77 | 65 | 73 | 59 | 57 | 62 | 60 | 66 | 77 | 84 | 86 | 7 Í | | 17 | 84 | 81 | 66 | 73 | 60 | 58 | 63 | 63 | 69 | 80 | 86 | 87 | 72 | | 18 | 84 | 83 | 72 | 77 | 64 | 60 | 66 | 67 | 74 | 84 | 86 | 87 | 75 | | 19 | 85 | 85 | 75 | 82 | 69 | 64 | 7 I | 72 | 79 | 87 | 88 | 88 | 79 | | 20 | 86 | 85 | 79 | 84 | 76 | 70 | 77 | 78 | 81 | 88 | 89 | 88 | 82 | | 21 | 85 | 86 | 82 | 87 | 83 | 77 | 82 | 81 | 82 | 89 | 90 | 89 | 84 | | 22 | 86 | 86 | 85 | 90 | 86 | 78 | 84 | 84 | 85 | 90 | 91 | 89 | 86 | | 23 | 86 | 86 | 86 | 91 | 88 | 79 | 86 | 85 | 87 | 91 | 92 | 89 | 87 | | 24 | 87 | 86 | 86 | 91 | 91 | 82 | 88 | 86 | 87 | 91 | 92 | 90 | 88 | | $\int \circ^{\mathbf{h}23^{\mathbf{h}}}.$ | 85 | 83 | 78 | 84 | 76 | 70 | 76 | 76 | 79 | 85 | 88 | 89 | 81 | | l <sup>h</sup> 24 <sup>h</sup> . | 85 | 83 | 78 | 84 | 76 | 70 | 76 | 76 | 79 | 85 | 88 | 89 | 81 | Total Amount of Sunshine registered in each Hour of the Day in each Month as derived from the Records of the Campbell-Stokes Self-Registering Instrument for the Year 1918. | Month, | | | | | | Register | ed Durat | tion of Su | ınshine iı | n the Ho | ur ending | <b>;</b> . | | | | | Total Registered Duration of | Corre-<br>sponding<br>aggregate<br>period | Proportion<br>of | itude of | |--------------|----------------|------|----------------|-------|-------|----------|----------|------------|------------|----------|-----------|------------|-------|-------|------|------|------------------------------|-------------------------------------------|------------------|--------------------------------| | 1918. | 5 <sup>h</sup> | 6ћ | 7 <sup>h</sup> | 8h | дħ | 10p | 11h | Noon. | 13h | 14h | 15h | 16h | 17h | 18p | 19h | 20h | | during which<br>the Sun was | | Mean Altitude<br>the Sun at No | | | h | h | h | h | h | h | h | h h | h | h | h | h | h | h | h | h | h | h | | 0 | | January | | | | | 1.8 | 6.5 | 8.6 | 11.6 | 12.5 | 12.8 | 10.8 | 5.3 | | | | | 69.9 | 259.0 | 0.270 | 18 | | February | | | | 3.4 | 7.8 | 11.2 | 10.9 | 9.6 | 10.2 | 9.0 | 9.4 | 6.3 | 1.3 | | | | 79·I | 276.9 | 0.286 | 26 | | March | | | 0.9 | 7.3 | 10.3 | 13.2 | 16.2 | 15.0 | 16.5 | 18.1 | 15.3 | 14.1 | 8.1 | 0.5 | | | 135.5 | 365.6 | 0.371 | 37 | | April | | | 0.6 | 3.7 | 6.0 | 6⋅8 | 8.6 | 8.3 | 8.8 | 9.5 | 6.9 | 8.5 | 7.0 | 3.9 | 0.6 | | 79.2 | 413.4 | 0.192 | 48 | | May | I ·2 | 8·1 | 12.4 | 12.6 | 14.0 | 15.1 | 18.7 | 18.2 | 19.0 | 18.4 | 17.9 | 17.5 | 18.1 | 14.8 | 10.7 | 1.7 | 218.4 | 481.2 | 0.454 | 57 | | June | 5.5 | 14.5 | 15.2 | 18.1 | 16.7 | 18.4 | 17.2 | 15.4 | 15.1 | 16.5 | 15.8 | 11.4 | 13.7 | 14.6 | 12.7 | 3.6 | 224.4 | 494·I | 0.454 | 62 | | July | 3.6 | 9.2 | 14.4 | 15.7 | 16.9 | 16.0 | 12.6 | 13.1 | 12.7 | 10.6 | 13.7 | 14.0 | 13.4 | 11.5 | 9.2 | 1 .4 | 188.0 | 497.6 | 0.378 | 60 | | August | 0.3 | 6∙1 | 12.4 | 12.8 | 13.6 | 15.6 | 17.2 | 15.9 | 16.8 | 16.1 | 13.3 | 14.1 | 12.2 | 10.0 | 5.1 | | 181.5 | 450.7 | 0.403 | 52 | | September | | 0.2 | 6.6 | 11.9 | 16.0 | 17.5 | 16.6 | 16.0 | 15.9 | 15.2 | 15.6 | 13.8 | 11.3 | 5.5 | | | 162.0 | 378.9 | 0.428 | 41 | | October | | | | 1.9 | 3.8 | 7.1 | 10.0 | 11.8 | 12.0 | I I · 2 | 9.7 | 7.9 | 2 · 2 | • • • | | | 77.6 | 330.3 | 0.235 | 30 | | November | | | | 0.1 | 3.7 | 7.8 | 10.6 | 11.5 | 10.9 | 10.5 | 8.9 | 5.1 | 0.3 | | | | 69.4 | 265.8 | 0.261 | 20 | | December | • • | • • | • • | • • • | 0.1 | 3.4 | 4.5 | 3.4 | 4.9 | 5.7 | 3.7 | 0.4 | •• | • • | •• | • • | 25.8 | 243.8 | 0.106 | 16 | | For the Year | 10.6 | 38.1 | 62.5 | 87.5 | 110.7 | 138.6 | 151.4 | 149.8 | 155.3 | 153.6 | 141.0 | 118.4 | 87.6 | 60.8 | 38.3 | 6.7 | 1510.8 | 4457.3 | 0.339 | | The hours are reckoned from "apparent" midnight. | | ReA | DINGS | | | | | | | | | n the MAG | | | | | | | YEAR | 1918. | | | |------------------|---------------|---------------|----------------|--------------|-----------------|--------------|--------------|--------------|--------------------|--------------|------------------|---------------|---------------|--------------|---------------------|--------------|----------------|----------------|------------------------|--------------|------| | Days | | | Bulb Th | | | | | | hermome<br>the Gro | | Days | | Dry<br>4 f | Bulb Th | ermomet<br>the Grou | ers,<br>nd. | | | et Bulb I<br>ft. above | | | | of the<br>Month. | Maxi-<br>mum. | Mini-<br>mum. | 9 <sub>p</sub> | Noon. | 15 <sup>h</sup> | 21h | 9h | Noon. | 15h | 21h | of the<br>Month. | Maxi-<br>mum. | Mini-<br>mum. | 9h | Noon. | 15h | 21h | 9h | Noon. | 15h | 21h | | | | | | JA | NUARY | 7. | | | | | | | | | MAR | СН. | | | | | 1 | | d<br>I | 35.8 | ° 1 | 32.9 | 33.8 | 33.7 | 35.8 | 31.8 | 31.8 | 32.3 | 34:5 | d | 43.0 | 32.3 | 36°5 | 40.7 | 40.8 | 32.8 | 32.9 | 34.8 | 33.9 | 30.6 | | 2 | 39.8 | 28.9 | 30.1 | 34.6 | 35.7 | 36.0 | 29.5 | 32.0 | 34.8 | 34.9 | 2 | 38.9 | 30.1 | 32.6 | 36.8 | 36.7 | 33.4 | 29.8 | 31.1 | 30.3 | 31.3 | | 3 | 35.7 | 28·i | 31.5 | 33.7 | 32.9 | 28.7 | 30.1 | 31.6 | 31.6 | 27·I | 3 | 36.3 | 33.3 | 34.5 | 34.7 | 36.3 | 36.3 | 33.2 | 34.5 | 35.7 | 35.7 | | 4 | 34.5 | 23.1 | 24.5 | 30.7 | 34.3 | 34.5 | 24.0 | 28.8 | 32.0 | 32.4 | 4 | 38.8 | 35.2 | 36.7 | 37.6 | 37.8 | 38.5 | 34.7 | 35.1 | 36.4 | 37.8 | | 5<br>6 | 38·I | 34.3 | 36.3 | 37·7<br>36·7 | 38.1 | 36.5 | 34.8 | 35.8 | 35.7 | 33.3 | 5 6 | 40.0 | 37.1 | 37·6<br>42·6 | 37.7 | 38.7 | 38.7 | 35.8 | 35.9 | 44.7 | 37.9 | | 7 | 38.0 | 29 9<br>28·9 | 36.6 | 35.7 | 37·4<br>34·1 | 37.7 | 29·5<br>34·8 | 34.3 | 29.7 | 27.3 | 7 | 44.1 | 39.0 | 40.5 | 42.7 | 42.5 | 40.4 | 39.4 | 41.1 | 40.2 | 37.9 | | 8 | 29.2 | 23.1 | 25.6 | 25.7 | 25.3 | 23.8 | 23.8 | 22.8 | 20.9 | 22.3 | 8 | 42.6 | 31.6 | 36∙1 | 37.7 | 41.7 | 31.6 | 33.8 | 35.5 | 37.5 | 30.0 | | 9 | 39.4 | 18.5 | 22.5 | 30.4 | 37.4 | 39.4 | 20.5 | 28.7 | 35.1 | 36.6 | 9 | 50.4 | 27.4 | 33.7 | 46.1 | 48.7 | 37.3 | 32.9 | 40.8 | 42.0 | 36.6 | | 11 | 44.0<br>42.1 | 37·9<br>38·2 | 40·I<br>40·7 | 43.7 | 39.5 | 39.9 | 37.6 | 39.9 | 39.6 | 38.1 | 11 | 59.0 | 37.1 | 31.9 | 46.6 | 58.7 | 43.6 | 31·7<br>46·6 | 43.5 | 48.8 | 42.6 | | 12 | 41.1 | 35.2 | 36.7 | 40.5 | 40.4 | 38.5 | 34.6 | 36.8 | 37.1 | 36.7 | 12 | 62.6 | 42.6 | 51.5 | 59.7 | 61.4 | 46.8 | 47.5 | 52.3 | 50.7 | 42.1 | | 13 | 38.5 | 29.1 | 30.8 | 36.8 | 37.0 | 34.1 | 29.2 | 32.5 | 32.7 | 31.4 | 13 | 52.7 | 41.9 | 45.5 | 50.6 | 51.7 | 43.6 | 43.5 | 47.0 | 47.9 | 42.6 | | 14 | 37.6 | 26.2 | 26.8 | 29.5 | 33.0 | 37.4 | 24.4 | 27.1 | 31.4 | 34.4 | 14 | 52.0 | 38.2 | 44.6 | 50.6 | 43.7 | 39.5 | 38.9 | 43.5 | 40.6 | 38.3 | | 15<br>16 | 50.3 | 32·7 | 48.4 | 46·I<br>34·6 | 38·6<br>35·4 | 32.7 | 45·7<br>32·9 | 33.3 | 36.8 | 32.6 | 15 | 49.9 | 36.9 | 41·8<br>35·6 | 44.5 | 41.7 | 36.1 | 32.4 | 38.9 | 36.7 | 34.2 | | 17 | 35.4 | 30.5 | 32.8 | 33.7 | 33.7 | 39.5 | 32.2 | 33.6 | 33.6 | 38.9 | 17 | 54.8 | 33.5 | 40.6 | 49.9 | 52.6 | 43.0 | 39.3 | 46.4 | 48.1 | 42.6 | | 18 | 50.9 | 39.2 | 48.5 | 50.5 | 50.6 | 49.6 | 46∙1 | 48.4 | 48.0 | 48·i | 18 | 61.2 | 36.7 | 50.6 | 55.7 | 55.5 | 45.2 | 47.7 | 48.7 | 49.5 | 42.9 | | 19 | 51.0 | 47:3 | 47.8 | 50.6 | 50.6 | 48.5 | 46.8 | 47.8 | 46.6 | 45.2 | 19 | 52.9 | 36.1 | 44·I<br>48·6 | 49.4 | 51.5 | 46.2 | 43.0 | 46.7 | 47.2 | 45.6 | | 20<br>21 | 53.6 | 44·9<br>46·8 | 48·3<br>47·6 | 49·8<br>54·5 | 52.5 | 52·5<br>48·5 | 45.8 | 47.0 | 47.2 | 46.8 | 20<br>21 | 59.0 | 37.9 | 40.7 | 55.8 | 58·3 | 48.7 | 45.5 | 49.0 | 50.7 | 44.6 | | 22 | 56.2 | 45.4 | 48.7 | 52.6 | 50.8 | 49.2 | 47.0 | 49.7 | 48.0 | 47.9 | 22 | 66.5 | 37.1 | 48.9 | 60.8 | 65.6 | 52.8 | 45.8 | 50.8 | 51.6 | 44.9 | | 23 | 52.0 | 42.2 | 44.4 | 51.4 | 49.6 | 48.7 | 44·1 | 48.0 | 46.9 | 46.9 | 23 | 65.9 | 34.2 | 53.2 | 61.9 | 65.7 | 46.0 | 45.9 | 51.8 | 53.7 | 42·I | | 24 | 55.6 | 48.2 | 51.5 | 54.2 | 53.2 | 50.5 | 48.9 | 49.4 | 48.4 | 46.8 | 24 | 65.2 | 33.9 | 49.5 | 58.8 | 63.9 | 44.5 | 44.5 | 52.2 | 53.8 | 41.7 | | 25<br>26 | 52.0 | 43.4 | 44·4<br>46·0 | 49·8<br>45·7 | 51·6<br>45·5 | 47.6 | 43.6 | 47·7<br>44·6 | 48.9 | 46.5 | 25<br>26 | 53.3 | 33.2 | 45.5 | 51.6 | 47.5 | 38.6 | 42·7<br> 37·8 | 38.7 | 40.6 | 36.0 | | 20<br>27 | 47·9<br>52·8 | 42·9<br>37·5 | 38.8 | 50.4 | 51.5 | 39.7 | 38.7 | 47.0 | 47.7 | 38.9 | 27 | 51.3 | 32.8 | 43·I | 46·I | 49.9 | 39.7 | 41.1 | 42.9 | 43.8 | 38⋅1 | | 28 | 49.0 | 36.2 | 44.2 | 47.6 | 47.8 | 40.8 | 42.8 | 44.9 | 44.8 | 39.0 | 28 | 50.0 | 39.8 | 45.7 | 47.1 | 45.9 | 44·I | 44.3 | 45.3 | 45.0 | 41.3 | | 29 | 51.5 | 36.3 | 39.3 | 49.7 | 49.8 | 37.7 | 38.8 | 46.2 | 46.1 | 37.3 | 29 | 23.1 | 40.3 | 45.8 | 50·1<br>46·8 | 45.8 | 45.9 | 41.9 | 42.9 | 43·I | 41.8 | | 30 | 51.5 | 30·I<br>28·0 | 33.5 | 48·8<br>45·6 | 50·4<br>47·3 | 36.5 | 31.8 | 45·9<br>41·9 | 45.6 | 34.9 | 30<br>31 | 48·9<br>54·6 | 33.5 | 46.8 | 52.0 | 46.8 | 43.0 | 43.8 | 45.8 | 46.3 | 42.7 | | 31 | 47.9 | | | ——— | T/ J | | | T- 7 | | | J- | | | 173 | l | | ļ- <del></del> | | ļ- <del>'</del> | ļ . | | | Means | 44.7 | 34.6 | 37.9 | 42·1<br>Febr | 42·4 | 39.5 | 36.5 | 39.4 | 39.4 | 37.6 | Means | 52.1 | 35.7 | 42.9 | 48·5 | 49.8 | 141.6 | 40.1 | 43.5 | 44.0 | 39.2 | | | 1 | | | 1 DDR | 011111 | | | | | | | | 0 | | | 1 0 | 0 | 11 0 | T . | 0 | | | I<br>q | 44.4 | 28.4 | 31.6 | 36.9 | 42.5 | 33.6 | 31.0 | 36∙1 | 40.7 | 32.7 | I | 56.7 | 43.8 | 50.9 | 50.4 | 47:4 | 47.5 | 46.4 | 45.7 | 45.2 | 43.7 | | 2 | 46.5 | 30.1 | 37.5 | 42.8 | 46·I | 43.6 | 36.8 | 41.9 | 45.1 | 42.9 | 2 | 56.8 | 36.8 | 45.9 | 52.6 | 52.2 | 41.6 | 43.2 | 45·I | 46.9 | 39.1 | | 3 | 48.9 | 41.1 | 41·8<br>46·5 | 47·7<br>47·6 | 48·4<br>47·6 | 43·6<br>46·9 | 41.1 | 45·2<br>46·2 | 45·8<br>46·3 | 46.0 | 3<br>4 | 56·8<br>50·9 | 32·0<br>43·8 | 47·8<br>46·3 | 54·6<br>50·6 | 54·8<br>49·4 | 45.0 | 44·0<br>44·9 | 46.3 | 47·I<br>46·0 | 43.7 | | 4 | 48·1<br>50·5 | 41.9 | 45.8 | 49.0 | 47.6 | 46.2 | 44.7 | 46.4 | 45.8 | 44.8 | 5 | 54.0 | 37.3 | 40.7 | 45.9 | 52.5 | 40.4 | 39.5 | 42.8 | 46.5 | 39.8 | | 6 | 51.0 | 40·I | 45.6 | 49.8 | 49.5 | 48.4 | 44.0 | 46.7 | 46∙1 | 45.8 | 6 | 51.5 | 37.0 | 49.3 | 50.5 | 47.0 | 42.7 | 47.6 | 49.6 | 45.8 | 40.8 | | 7 | 55.6 | 47.2 | 50.7 | 54.1 | 52.8 | 51.6 | 49.5 | 51.7 | 50.0 | 48.8 | 7 | 52.2 | 35.1 | 44.6 | 47.6 | 49.5 | 43.6 | 41.7 | 43.6 | 42.9 | 41.6 | | 8 | 53.6 | 46.0 | 49.5 | 50·8<br>51·6 | 51.7 | 46·6<br>51·2 | 47.9 | 45·9<br>46·9 | 46·0<br>47·7 | 43·7<br>47·9 | 8 | 55·5<br>48·9 | 39·I<br>40·7 | 46·1<br>43·7 | 51·6<br>48·4 | 52.0 | 42.7 | 43.5 | 45.5 | 45.0 | 42.3 | | 9<br>10 | 53.5 | 45·7<br>48·0 | 49.0<br>52.4 | 53.3 | 53.9 | 49.5 | 45.9 | 49.6 | 49.9 | 46.2 | 9<br>10 | 47.0 | 42·I | 45.2 | 46.6 | 46.5 | 42.5 | 44.9 | 46.0 | 45.7 | 43.4 | | 11 | 53.6 | 48.1 | 50.8 | 52.6 | 52.6 | 50.9 | 47.4 | 48.9 | 50.0 | 49.3 | 11 | 49.0 | 42·I | 44.5 | 46.4 | 48.6 | 45.8 | 44.5 | 45.9 | 47.6 | 45.7 | | 12 | 51.2 | 44.8 | 47.6 | 48.4 | 50.7 | 45.5 | 45.8 | 45.4 | 47.5 | 44.5 | 12 | 61.3 | 42.9 | 50.5 | 57.5 | 59.8 | 45.4 | 47.8 | 50.7 | 51.6 | 45.1 | | 13 | 51.3 | 45·3<br>41·6 | 47.6 | 50·2 | 50.8 | 47·6<br>41·6 | 46.3 | 47·7<br>41·9 | 47.9 | 46·I<br>40·8 | 13 | 51·7<br>46·9 | 35.9 | 48.5 | 49.1 | 45.6 | 39.5 | 46·7<br>37·4 | 46·9<br>37·7 | 43.8 | 35.7 | | 14<br>15 | 47·8<br>45·5 | 31.6 | 39.6 | 43.6 | 43.7 | 34.9 | 38.1 | 40.8 | 40.6 | 33.8 | 15 | 48.8 | 36.8 | 43.5 | 43.7 | 42.6 | 36.9 | 41.6 | 41.9 | 41.5 | 36.6 | | 16 | 42·I | 29.3 | 34.5 | 39.7 | 40.7 | 30.1 | 30.9 | 33.7 | 33.7 | 28.0 | 16 | 41.0 | 32.2 | 35.5 | 39.6 | 40.6 | 40.7 | 35.0 | 38.9 | 40.6 | 40.7 | | 17 | 38.9 | 23.1 | 30.5 | 36.7 | 38.6 | 27.5 | 29.0 | 31.8 | 32.9 | 26.2 | 17 | 44.7 | 40.7 | 42.9 | 43.6 | 44.5 | 42.5 | 42.3 | 43.1 | 43.3 | 41.8 | | 18 | 42.9 | 21.3 | 30.1 | 41.5 | 39.6 | 29.4 | 28.8 | 36·6<br>37·1 | 36.2 | 27.8 | 18 | 45.0 | 34·8<br>32·1 | 42·4<br>37·7 | 44.1 | 39.5 | 34.8 | 41·4<br>34·2 | 39·8<br>37·6 | 35.9 | 32.7 | | 19<br>20 | 43.3 | 23.2 | 25.6 | 41.3 | 46.6 | 46.9 | 40·I | 43.8 | 44.4 | 46.0 | 20 | 44.1 | 33.5 | 37.5 | 38.9 | 38.1 | 36.7 | 35.3 | 36.4 | 36.1 | 36.0 | | 21 | 48.8 | 36.3 | 39.5 | 45.6 | 46.6 | 42.5 | 36.5 | 39.1 | 40.1 | 39.5 | 21 | 44.5 | 35.0 | 38.2 | 40.4 | 43.5 | 39.3 | 37.4 | 39.4 | 40.8 | 38.8 | | 22 | 55.3 | 42.2 | 48.6 | 52.4 | 53.6 | 51.7 | 47.7 | 49.9 | 50.3 | 49.1 | 22 | 54.9 | 37:3 | 44.1 | 51.6 | 54.1 | 44.6 | 41.8 | 44.8 | 46.6 | 41.3 | | 23 | 59·I | 47.2 | 52.7 | 57.5 | 58.1 | 50.6 | 49.8 | 51·6<br>46·1 | 52·4<br>46·6 | 45·9<br>43·8 | 23<br>24 | 49·2<br>54·4 | 40·6<br>36·2 | 41.9 | 44·8<br>52·4 | 48.3 | 46·3<br>44·6 | 41.4 | 43.7 | 46.6 | 44.7 | | 24<br>35 | 54·I | 33·6 | 49.6 | 51·6<br>44·2 | 45.9 | 33·6 | 36.9 | 39.4 | 40·I | 32.8 | 25 | 66.0 | 43·I | 47.9 | 59.7 | 59.9 | 49.5 | 46.4 | 54.7 | 54.6 | 43.9 | | 25<br>26 | 46.5 | 30.1 | 40.5 | 43.2 | 49.3 | 48.3 | 37.8 | 40.4 | 44.7 | 45.9 | 26 | 65.0 | 43.1 | 45.9 | 51.4 | 60.6 | 51.5 | 44.9 | 49.0 | 53.3 | 49.0 | | 27 | 50.0 | 39.9 | 43.4 | 47.7 | 47.6 | 45.5 | 39.8 | 42.3 | 42.8 | 44.6 | 27 | 64.2 | 42.5 | 45.8 | 54.1 | 63.5 | 46.8 | 44.8 | 49.8 | 53.0 | 44.5 | | 28 | 45.7 | 33.6 | 37.6 | 40.8 | 36.8 | 35.5 | 34.8 | 35.8 | 35.4 | 33.6 | 28<br>29 | 47.9 | 42.0<br>41.2 | 43.8 | 45.7 | 47.6 | 42.7 | 42.9 | 44.3 | 45.8 | 41.6 | | | | | | | | | | | | | 30 | 55.9 | 40.1 | 11 | 53.2 | 48.8 | 44.0 | 44.9 | 48.1 | 46.5 | 40.6 | | | | | | | | | | | 0 | | | - | | | | ļ | <del> </del> | | | | | | Means | 49.4 | 37.8 | 42.6 | 46.9 | 47.5 | 42.8 | 140.6 | 43.2 | 43.8 | 41.0 | Means | 52.2 | 38.6 | 44.5 | 48.3 | 48.9 | 42.9 | 42.6 | 44.9 | 45.1 | 41.3 | | | | | (The | e readii | ngs of | | | | | | ND in the nometers app | | | | | | | | ed. | | | |----------------|------------------|---------------|----------------|--------------------|--------------|--------------|----------------|------------------------|--------------|--------------|------------------------|---------------|----------------|------------------------|--------------|---------------|--------------|--------------|------------------------|--------------|--------------| | Days<br>of the | | | | hermome<br>the Gro | | | | et Bulb T<br>ft. above | | | Days<br>of the | | | y Bulb Ti<br>ft. above | | | | | et Bulb T<br>ft. above | | | | Month. | Maxi-<br>mum. | Mini-<br>mum. | 9 <sup>p</sup> | Noon. | 15h | 21h | 9 <sup>h</sup> | Noon. | 15h | 21h | Month. | Maxi-<br>mum. | Mini-<br>mum. | 9h | Noon. | 15h | 21h | 9 <b>h</b> | Noon. | 15h | 21h | | | | | | M | AY. | | | | | | | | | | | JULY | • | | | | | | đ<br>I | 49.8 | 0 | 46.8 | 46.6 | 46.6 | 42.7 | 41.6 | 17.6 | 0 | 0 | d | 82.0 | 60.5 | 68.8 | 76.2 | 0 | 60.0 | 62.5 | 64.8 | 64.4 | 58.8 | | 2 | 54.0 | 41.2 | 49.7 | 52.2 | 53.3 | 42.7 | 47.2 | 41.6 | 40.9 | 40.7 | I 2 | 68.6 | 50·7<br>54·8 | 64.3 | 65.2 | 77.4 | 57.3 | 62.5 | 59.8 | 59.6 | 52.5 | | 3 | 59.4 | 39.4 | 53.5 | 57·I | 57.6 | 50.7 | 49.9 | 52.0 | 51.9 | 47.9 | 3 | 70.4 | 47.6 | 58.8 | 65.8 | 69.0 | 56.9 | 52.7 | 55.6 | 57.7 | 51.9 | | 4 | 67.9 | 49.1 | 52.1 | 60.8 | 64.7 | 51.6 | 50.3 | 54.7 | 56·i | 50.7 | 4 | 76.9 | 47.3 | 61.6 | 71.8 | 7.6∙1 | 60.6 | 54.8 | 59.0 | 59.4 | 55.1 | | 5 | 54.5 | 46.2 | 53.2 | 53.8 | 51.8 | 20.1 | 51.8 | 52.5 | 51.7 | 49.8 | 5 | 76.8 | 58.8 | 66.1 | 69.7 | 73.0 | 64.4 | 57.5 | 58.9 | 58.9 | 51.9 | | 6 | 68.9 | 49.1 | 58.5 | 65.8 | 61.8 | 54.3 | 53.6 | 57.4 | 55.4 | 52.7 | 6 | 73.5 | 57.4 | 61.1 | 66.1 | 71.2 | 60.7 | 55.2 | 56.9 | 59.8 | 55·7<br>58·0 | | 7<br>8 | 55·9<br>68·0 | 47.0<br>45.3 | 48·1 | 50·8<br>63·4 | 53.8 | 48·3 | 47·8<br>49·0 | 49·9 | 58.4 | 46·8<br>48·7 | 8 | 78·5<br>81·5 | 54·7<br>52·2 | 64·7<br>74·4 | 74.6 | 74.5 | 63.6 | 59.3 | 58.9 | 61.9 | 57.0 | | 9 | 67.7 | 43.2 | 55·I | 63.5 | 65.7 | 53.4 | 49.9 | 53.9 | 53.9 | 47.3 | 9 | 73.1 | 54.3 | 63.7 | 68.7 | 66.5 | 55.0 | 54.0 | 56.8 | 55.7 | 49.9 | | 10 | 55.5 | 41.0 | 48.5 | 52.1 | 51.5 | 49.9 | 45.1 | 47.8 | 47.8 | 48.1 | 10 | 66.3 | 48.7 | 56.8 | 61.2 | 59.4 | 50.5 | 54.6 | 54.1 | 55.7 | 48.8 | | 11 | 63.1 | 39.5 | 44.3 | 54.3 | 62.6 | 52.4 | 44·I | 51.5 | 56.6 | 49.7 | 11 | 60.1 | 48.1 | 54.3 | 56.2 | 54.6 | 54.6 | 5.3.7 | 55.0 | 53.7 | 53.3 | | I 2 | 60.8 | 46.2 | 53.6 | 48.4 | 58.9 | 50.8 | 49.4 | 45.8 | 50.7 | 46.3 | I 2 | 66.9 | 21.9 | 61.0 | 64.4 | 22.I | 54.7 | 58.0 | 56.9 | 53.7 | 52.4 | | 13 | 63.7 | 45.1 | 49.6 | 55.8 | 56.6 | 48.4 | 49·0<br>48·8 | 53:5 | 21.9 | 47.6 | 13 | 72·0<br>68·9 | 50.2 | 63.8 | 68·3<br>59·6 | 66.1 | 57.6 | 57·9<br>56·4 | 59.6 | 60.4 | 54.3 | | 14<br>15 | 68.7 | 43·1<br>51·0 | 57.6 | 57·4<br>64·7 | 65.7 | 51.9 | 54.9 | 59.9 | 53.5 | 50.6 | 14<br>15 | 76.1 | 47·5<br>56·9 | 57·2<br>62·6 | 68.6 | 73.6 | 63.9 | 60.2 | 62.8 | 66.7 | 59.9 | | 16 | 76.5 | 48.2 | 68.5 | 74.5 | 74.7 | 58.7 | 59.9 | 62.3 | 61.5 | 55.8 | 16 | 80.4 | 59.8 | 71.4 | 75.8 | 71.0 | 64.2 | 65.9 | 67.8 | 65.7 | 60.8 | | 17 | 78.9 | 50.2 | 69.6 | 76.5 | 65.3 | 60.2 | 62.8 | 65.7 | 62.8 | 58.0 | 17 | 76.5 | 56·1 | 66.2 | 72·I | 71.1 | 59.9 | 63.3 | 66.6 | 66.7 | 58.8 | | 18 | 76.8 | 54.4 | 66.4 | 71.5 | 75.5 | 58.1 | 60.9 | 63.0 | 65.5 | 54.7 | 18 | 71.0 | 57.4 | 62.5 | 67.1 | 68.6 | 58.6 | 59.1 | 60.3 | 61.1 | 55.6 | | 19<br>20 | 73.0 | 48.9 | 66·1 | 71.7 | 71.6 | 56.7 | 59.1 | 62·8<br>60·7 | 61.4 | 52.3 | 19<br>20 | 67.9 | 54.9 | 65·8<br>72·6 | 62.3 | 61.4 | 61.3 | 61.5 | 61.6 | 61·2<br>59·8 | 60·9<br>59·8 | | 21 | 74.0<br>83.0 | 47 4<br>47 I | 71.9 | 80.8 | 73·6<br>82·0 | 53·6<br>58·9 | 63.8 | 66.8 | 59·6<br>65·6 | 51.6 | 21 | 72.9 | 57·5<br>56·9 | 62.6 | 62.7 | 70.3 | 60.3 | 55.1 | 55.5 | 58.3 | 57.0 | | 22 | 79.7 | 51.1 | 74.7 | 79.2 | 77.6 | 60.5 | 62.8 | 64.5 | 60.8 | 59.0 | 22 | 68·I | 54.5 | 64.4 | 64.0 | 64.8 | 57.5 | 58.6 | 58.7 | 58.9 | 55.8 | | 23 | 66.7 | 49.1 | 62.2 | 61.1 | 57.9 | 50.2 | 59.7 | 54.8 | 48.8 | 48.0 | 23 | 71.1 | 56.4 | 59.6 | 62.2 | 66.9 | 61.7 | 59.3 | 60.8 | 64.7 | 58.6 | | 24 | 59.9 | 48.2 | 51.5 | 54.7 | 58.6 | 58.4 | 47.7 | 49.8 | 53·I | 53.2 | 24 | 74.1 | 53.4 | 65.5 | 68.4 | 61.6 | 56.1 | 58.3 | 61.8 | 58.8 | 54.7 | | 25 | 71.0 | 54.6 | 58.6 | 64.4 | 67.9 | 57.4 | 54.6 | 58.5 | 58.5 | 53.8 | 25 | 70.2 | 53.1 | 63.6 | 66.6 | 59.7 | 55.6 | 56.9 | 58.3 | 57.5 | 53.4 | | 26<br>27 | 68.5 | 53·I<br>47·5 | 54.6 | 55.4<br>64.1 | 59·5<br>63·0 | 53·9<br>47·8 | 54.1 | 53.0 | 54·0<br>53·6 | 50·7<br>44·6 | 26<br>27 | 66·0 | 53·0<br>53·6 | 58.2 | 63.5 | 57.6 | 54·5<br>56·4 | 56.2 | 56·2<br>56·6 | 56·6<br>54·8 | 53·9 | | 28 | 67.9 | 41.2 | 59·6<br>58·5 | 62.9 | 63.2 | 53.7 | 53.9 | 55.8 | 55.3 | 49.3 | . 28 | 70.0 | 47.2 | 61.4 | 64.6 | 67.7 | 58.9 | 56.7 | 57.8 | 59.2 | 57.6 | | 29 | 67.2 | 16.9 | 52.8 | 61.7 | 65.7 | 48.7 | 49.8 | 52.7 | 53.9 | 47.6 | 29 | 77.9 | 51.7 | 70.4 | 72.2 | 75.6 | 63.1 | 62.6 | 61.7 | 63.9 | 60.8 | | 30 | 74.7 | 40.4 | 64.2 | 69.4 | 73.0 | 57.4 | 54.7 | 58.8 | 58.9 | 54.0 | 30 | 76.4 | 52.9 | 69.6 | 70.2 | 74.4 | 61.3 | 62.0 | 63.2 | 64.8 | 59.7 | | 31 | 71.9 | 46.1 | 66.3 | 70.4 | 70.5 | 54.5 | 58.3 | 60.7 | 60.9 | 51.7 | 31 | 74.3 | 51.9 | 64.5 | 72.9 | 73.9 | 59.5 | 60.9 | 65.1 | 65.1 | 57.8 | | Means | 66.7 | 46.6 | 57.6 | | 63.8<br>JNE. | 52.9 | 1 53.1 | 55.6 | 55.6 | 50.3 | Means | 72.6 | 53.3 | 63.8 | 66·9<br>A | 67·5<br>UGUS1 | 59.2 | 58.6 | 59.8 | 60.3 | 56.1 | | d | ! 0 ! | 0 | . 0 | ٥ | o NE. | 0 | ) | 0 | | 0 | d | 0 | 0 | | 0 | | 0 | 0 | | | | | I | 77:9 | 47.2 | 66.7 | 74.6 | 77:3 | 20.1 | 58.7 | 62.9 | | 56∙1 | I | 76·I | 53.0 | 67·I | 74.2 | 70.7 | 61.5 | 62.4 | 65.9 | 62.9 | 58.4 | | 2 | 79.7 | 46.9 | 68·I | 72.6 | 78.5 | 67.7 | 58.7 | 60.9 | 61.8 | 59.6 | 2 | 66.0 | 58.8 | 62.6 | 61.4 | 63.8 | 58.8 | 59.7 | 60.0 | 61.3 | 57.9 | | 3 | - 69∙0<br>- 66∙1 | 43.9 | 63·6<br>55·5 | 64·1<br>59·8 | 63·6<br>59·5 | 51·6<br>54·7 | 57 ° 6 | 57·0 | 55·8<br>52·7 | 49·6<br>51·3 | 3 | 68·1<br>74·8 | 53.9 | 59·1 | 64·8<br>69·6 | 63·4<br>72·6 | 59·0<br>63·4 | 58.6 | 59·8<br>61·0 | 59·2<br>63·3 | 57·6<br>60·6 | | 4<br>5 | 67.2 | 44.7 | 57.9 | 61.2 | 64.5 | 50.8 | 52.9 | 52.0 | 53.8 | 46.7 | 5 | 72.0 | 57.0 | 61.5 | 66.0 | 66.9 | 61.2 | 60.2 | 61.7 | 62.1 | 60.0 | | 6 | 72.9 | 38·I | 64.5 | 69.5 | 67.7 | 56.5 | 53.7 | 55.6 | 56.7 | 48.2 | 6 | 68⋅1 | 53.1 | 59.3 | 61.9 | 65.9 | 58.2 | 53.6 | 55.6 | 57.8 | 54.8 | | 7 | 65.2 | 44.4 | 60.6 | 62.8 | 60.5 | 56.4 | 50.5 | 54.7 | 56.0 | 55.0 | 7 | 71.8 | 53.3 | 60.8 | 66.1 | 68.6 | 60.6 | 58.8 | 60.8 | 62.3 | 59·I | | 8 | 71.1 | 48.1 | 60.8 | 67.0 | 68.2 | 56.6 | 53.2 | 55.1 | 54.9 | 53.2 | 8 | 71.0 | 54.4 | 63.4 | 68.5 | 67.1 | 59.7 | 61.5 | 59.9 | 58.0 | 55.6 | | 9<br>10 | 69.1 | 46.6 | 62·6<br>53·4 | 68·5<br>63·5 | 56·9<br>63·8 | 52·1<br>54·8 | 54·1<br>48·8 | 58.0 | 52·8<br>53·6 | 46.7 | 9 | 70.2 | 51·5<br>48·0 | 62.2 | 65·2<br>69·1 | 66·4<br>71·6 | 60·8<br>60·6 | 56.0<br>58.8 | 56·8<br>60·6 | 57·4<br>63·5 | 55·3<br>57·9 | | 11 | 73.8 | 47·0 | 61.5 | 70·I | 70.0 | 57.9 | 56.3 | 58.5 | 59.0 | 55.5 | 11 | 77.2 | 49.5 | 63.0 | 73.6 | 76·I | 62.5 | 58.5 | 63.3 | 65.2 | 59·I | | 12 | 71.6 | 50.8 | 59.9 | 65.7 | 67.2 | 60.8 | 53.8 | 56.9 | 57.0 | 54.7 | I 2 | 77.8 | 54.2 | 66.9 | 74.6 | 73.5 | 68·i | 61.1 | 63.0 | 62.7 | 62.2 | | 13 | 74.0 | 52.6 | 63.0 | 66.6 | 69.5 | 60.5 | 57.9 | 59.8 | 61.8 | 56.3 | 13 | 75.1 | 53.8 | 66.6 | 68.9 | 70.6 | 60.2 | 59.7 | 58.9 | 59.6 | 57.0 | | 14 | 68.5 | 52.4 | 61.8 | 62.7 | 59.8 | 53.0 | 56.6 | 56.9 | 58.6 | 51.6 | 14 | 78.0 | 52.0 | 69.4 | 75.2 | 75.8 | 63.6 | 60.5 | 63.3 | 64.5 | 59.6 | | 15 | 64·9<br>62·8 | 44.6 | 54·I | 56.2 | 62·8<br>52·8 | 50.6 | 47.5 | 47.7 | 50.9 | 44.9 | 15<br>16 | 74·I | 55.1 | 65.7 | 70.6 | 72.7 | 57·6<br>64·6 | 58·7<br>56·7 | 59·6<br>61·0 | 60·7 | 54·6<br>56·6 | | 16<br>17 | 64.4 | 37.1 | 57·7<br>59·3 | 57.0 | 60.7 | 46·6<br>51·0 | 49.9 | 48·9<br>50·8 | 49·6<br>52·6 | 43.9 | 17 | 77.1 | 47·9 <br>54·3 | 61.1 | 71·4<br>59·8 | 73·4<br>65·3 | 60.5 | 56.9 | 58.5 | 59.6 | 59.2 | | 18 | 61.9 | 44.1 | 29·I | 58.0 | 58.7 | 50.8 | 51.5 | 49.9 | 50.6 | 49.9 | 18 | 73.1 | 59.0 | 68.3 | 67.7 | 69.1 | 60.5 | 61.7 | 59.3 | 58.9 | 53.8 | | 19 | 68∙8 | 50.4 | 58·8 | 62.6 | 57.4 | 57.5 | 54.7 | 56.6 | 55.0 | 55.3 | 19 | 72.9 | 52.0 | 61.6 | 70.6 | 67.6 | 63.0 | 55.9 | 59.9 | 61.3 | 62.0 | | 20 | 72.9 | 53.8 | 64.6 | 67.2 | 59.8 | 57.5 | 57.0 | 57.5 | 56.0 | 56.0 | 20 | 79.5 | 58.7 | 64.7 | 70.2 | 77.7 | 65.1 | 62.4 | 65.0 | 68.9 | 63.6 | | 21 | 71.9 | 54.4 | 61.3 | 66.6 | 62.5 | 59.8 | 53.4 | 53.8 | 55.9 | 57.2 | 21 | 84.1 | 60.1 | 65.5 | 79.2 | 82.6 | 67.3 | 62.8 | 69.8 | 71.8 | 64.4 | | 22 | 68·0<br>67·4 | 51.8 | 60.2 | 63.7 | 64·8<br>64·6 | 54.6 | 52·9<br>48·0 | 52.0 | 52.3 | 46.6 | 22 | 89.8 | 63.2 | 77·9<br>63·4 | 87·1<br>67·8 | 88·2<br>66·3 | 70·0<br>56·5 | 68·8<br>56·6 | 72·8<br>58·0 | 73·I | 63·6<br>54·6 | | 23<br>24 | 64.2 | 45·0<br>45·9 | 54.6 | 59.6 | 60.0 | 54·4<br>49·4 | 50.8 | 49.5 | 50.2 | 47.3 | 23<br>24 | 74.1 | 55.9 | 61.8 | 70.6 | 69.9 | 59.0 | 54.9 | 59.7 | 58.1 | 55.4 | | 25 | 67.2 | 40.0 | 56.7 | 61.4 | 65.7 | 48·I | 51.4 | 52.0 | 53.7 | 46.6 | 25 | 69.8 | 46.2 | 64.7 | 68·I | 63.7 | 56.2 | 59.3 | 59.2 | 56·I | 55.2 | | 26 | 66.5 | 43.0 | 55.6 | 59.9 | 62.6 | 56.4 | 48.5 | 51.6 | 52.9 | 51.7 | 26 | 65.9 | 54.6 | 59.3 | 58.6 | 61.9 | 58.5 | 56.7 | 56.8 | 58.9 | 54.7 | | 27 | 70.0 | 47.0 | 57.4 | 65.2 | 67.3 | 62.2 | 51.0 | 55.2 | 57.4 | 54.8 | 27 | 64.1 | 49.2 | 59.4 | 62.2 | 60.7 | 56.9 | 55.6 | 57.9 | 57.6 | 56.3 | | 28 | 72·I | 52.2 | 59.6 | 63.1 | 69.2 | 60.4 | 55.0 | 56.8 | 59.2 | 56.1 | 28 | 65.9 | 56.1 | 58.5 | 60.6 | 62.9 | 56.4 | 57.8 | 57:3 | 57.6 | 53.4 | | 29<br>20 | 72.5 | 51.9 | 68·6 | 67.7 | 67.5 | 52·6<br>60·8 | 55.5 | 58·9<br>61·4 | 57·8<br>62·3 | 50·9<br>56·6 | 29<br>20 | 67.6<br>68.9 | 53.0 | 58.6 | 64.9 | 64.3 | 60.4 | 52.7 | 56.8 | 56·2<br>58·7 | 55·6<br>58·2 | | 30 | 79.1 | 44.0 | 1,00.0 | 74.4 | 75.1 | 00.0 | 57.9 | 01.4 | 02.3 | 50.0 | 30 | 66.9 | 47·I | 55·I | 62.0 | 65.0 | 60.7 | 51.9 | 55.7 | - | 50.8 | | J | | I | - | i | l | | il. | i | | | 3 I | 00.0 | 55.1 | 59·I | 61.6 | 61.8 | 55.1 | 52.3 | 52.8 | 53.7 | 500 | | | 1 | | Bulb Th | ermomet | ers, | the ma | We | t Bulb T | hermome | eters, | mometers ap | pply to | Dry | Bulb Th | ermomet | ers, | ng 21h) | | t Bulb T | | | |--------------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Days<br>of the<br>Month. | Maxi- | | t. above t | | nd. | T | 4 1 | t. above | the Grou | ind. | Days<br>of the<br>Month. | Maxi- | | ft. above | | nd. | 1 | 4 1 | t. above | | and. | | | mum. | mum. | 9h | Noon. | 15h | 21h | 9h | Noon. | 15h | 21h | Month. | mum. | mum. | 9h | Noon. | 15h | 21 h | 9ћ | Noon. | 15h | 21h | | d | T . 1 | | | | EMBER | | 1 | 1 | 1 | | | 1 | ı | Į! | i | EMBER | Ī | (( | ! | | <del></del> | | I | 64.7 | 47·1 | 54.0 | 59.1 | 62.5 | 52.6 | 47·8 | 50.0 | 50.7 | 48·7 | d<br>I | 57.4 | 50.1 | 53.8 | 55.5 | 55.8 | 53.1 | 52.5 | 53.6 | 52.7 | 50.9 | | 2 | 65.8 | 48∙1 | 58.5 | 60.1 | 62.9 | 54.6 | 52.8 | 52.3 | 53.8 | 50.1 | 2 | 58.5 | 46.5 | 56.6 | 56.7 | 54.6 | 47.3 | 52.9 | 51.4 | 49.7 | 45.1 | | 3 | 70.6 | 46.4 | 58·6<br>58·4 | 64.5 | 68·2<br>66·8 | 55.6 | 53.2 | 54.7 | 58.0 | 50.3 | 3 | 47:3 | 40.3 | 45.8 | 45.5 | 43.6 | 40.8 | 44.9 | 44.7 | 42.9 | 39.8 | | 4<br>5 | 67.9 | 51·6<br>57·0 | 60.7 | 65.6 | 61.6 | 58.7 | 55.7 | 60.3 | 58.8 | 57.6 | 4<br>1 5 | 54·5 | 35·7<br>46·1 | 46.1 | 53.2 | 48.8 | 46.5 | 44.2 | 48·7<br>47·8 | 46.8 | 50·6<br>45·I | | 6 | 72.0 | 56.9 | 59.9 | 71.3 | 69.8 | 59.6 | .59.5 | 64.9 | 64.7 | 58.8 | 6 | 47.1 | 41.1 | 44.2 | 46.8 | 45.9 | 42.8 | 42.7 | 42.8 | 42.2 | 40.9 | | 7 | 72.5 | 55.9 | 63.5 | 65.4 | 69.6 | 60.6 | 61.6 | 61.2 | 62.8 | 58.9 | 7 | 50.5 | 36.2 | 38.2 | 42.6 | 49.5 | 38⋅1 | 37.2 | 40.8 | 45.4 | 36.8 | | 8<br>9 | 66·4<br>66·3 | 51·3<br>46·9 | 59·3<br>58·6 | 64.4 | 61.4 | 56.1 | 57.7 | 59.3 | 54.8 | 47.6 | 8<br>9 | 49.6 | 36.9 | 48.7 | 46.1 | 47.7 | 39.7 | 47.7 | 44.1 | 42.8 | 36.8 | | 10 | $\frac{63.4}{63.4}$ | 52.0 | 58.3 | 60.7 | 59.9 | 52.4 | 52.9 | 54.9 | 54·7<br>52·6 | 55.3 | 10 | 54.0 | 38.7 | 40·4<br>47·1 | 20.2 | 50.4 | 50.2 | 35·0<br>45·7 | 44.6 | 44.6 | 40.3 | | II | 64.0 | 46.5 | 56.6 | 60·I | 61.9 | 53.1 | 52.7 | 51.6 | 53.7 | 48.9 | 11 | 54.4 | 44.9 | 50.7 | 52.5 | 52.5 | 45.6 | 49.2 | 50.7 | 51.6 | 45.0 | | I 2 | 63.9 | 49.0 | 54.8 | 58.6 | 58.4 | 52.8 | 50.0 | 51.9 | 21.9 | 50.0 | I 2 | 49.5 | 34.7 | 39.2 | 48.5 | 46.9 | 41.6 | 37.6 | 44.3 | 43.7 | 38.8 | | 13<br>14 | 64.8 | 49.3 | 55·6<br>56·6 | 58.6 | 59.7 | 55.2 | 50.5 | 58.5 | 52·3 | 51.3 | 13 | 49.8 | 31.3 | 38·2<br>32·6 | 48.0 | 46.8 | 38.3 | 37.7 | 44.3 | 43.7 | 36.9 | | 15 | 71.2 | 53.6 | 61.9 | 59.4 | 66.3 | 53.8 | 61.0 | 61.7 | 61.8 | 53.6 | 14 | 48.9 | 34.7 | 41.0 | 47.8 | 46.1 | 37·2<br>40·6 | 39.3 | 44.0 | 42.6 | 38.6 | | 16 | 68.8 | 50.0 | 64.6 | 64.7 | 66.6 | 61.5 | 60.8 | 62.2 | 63.1 | 60.7 | 16 | 43.8 | 33.0 | 37.7 | 42.5 | 41.1 | 39.4 | 35.7 | 39.5 | 38.3 | 36.8 | | 17 | 71.5 | 59.2 | 64.6 | 69.9 | 69.6 | 60.7 | 60.4 | 62.9 | 61.6 | 57.9 | 17 | 41.0 | 35.4 | 38.2 | 40.5 | 39.9 | 38.6 | 35.8 | 37.0 | 37.4 | 35.8 | | 19<br>18 | 70.5 | 56·1 | 53.3 | 65·3<br>59·7 | 57.8 | 59.2 | 59·2<br>48·9 | 50.3 | 50.9 | 58·8<br>47·0 | 10 | 43.5 | 37.8 | 39.4 | 42.7 | 42.7 | 37.8 | 37.9 | 39.8 | 39.7 | 35.8 | | 20 | 63.2 | 44.8 | 54.7 | 50.6 | 58.9 | 53.7 | 49.0 | 52.3 | 50.8 | 49.7 | 20 | 38.8 | 31.1 | 31.5 | 36.4 | 37.0 | 37.7 | 31.5 | 36.4 | 39.6 | 37.7 | | 21 | 65.2 | 49.3 | 57.6 | 63.4 | 60.5 | 57.4 | 53.1 | 56.6 | 53.4 | 53.7 | 21 | 45.9 | 33.3 | 35.3 | 43.6 | 43.3 | 34.8 | 35.3 | 40.8 | 39.8 | 34.4 | | 22 | 58.4 | 49.6 | 54.9 | 57.0 | 56.6 | 49.6 | 53.7 | 52.7 | 52.8 | 48.6 | 22 | 46.1 | 29.4 | 37.3 | 45.0 | 44.2 | 35.4 | 36.7 | 42.2 | 41.8 | 35.0 | | 23<br>24 | 62.5 | 48·I<br>42·2 | 54.5 | 56.8 | 56.5 | 53.4 | 50.1 | 52.8 | 51.1 | 46.8 | 23<br>24 | 52·0<br>52·7 | 43.1 | 40.6 | 50.1 | 49.0 | 43.5 | 46.8 | 47·8<br>49·0 | 46.7 | 43.4 | | 25 | 62.2 | 49.5 | 56.6 | 60.6 | 59.6 | 49.6 | 50.2 | 51.8 | 50.7 | 47·I | 25 | 48.9 | 44.4 | 45.6 | 48.6 | 47.2 | 44.7 | 44.9 | 46.8 | 45.8 | 44.2 | | 26 | 62.5 | 45.2 | 56.3 | 58.6 | 59.6 | 58.2 | 50.9 | 53.3 | 55.2 | 56.6 | 26 | 47.2 | 32.0 | 36.4 | 44.6 | 46.6 | 47·I | 36.3 | 43.7 | 45.9 | 47.0 | | 27 | 61.3 | 46.5 | 53.8 | 60.4 | 57.2 | 49.9 | 49.3 | 51.3 | 50.0 | 45.7 | 27 | 50.2 | 39.9 | 41.6 | 47.1 | 47:4 | 41.3 | 41.0 | 45.6 | 45.4 | 39.8 | | 28<br>29 | 58.7 | 43·9<br>38·2 | 52·I<br>48·5 | 57·4<br>47·6 | 57.0 | 44.3 | 45.3 | 47.9 | 46.8 | 47.3 | 28<br>29 | 51.8 | 39.1 | 45.4<br>47.1 | 50.5 | 51.5 | 51·4<br>46·4 | 44·8<br>47·0 | 49.8 | 50.7 | 50.8 | | 30 | 51.0 | 41.6 | 43.5 | 48.3 | 48.7 | 44.0 | 41.4 | 44.7 | 44.6 | 41;4 | 30 | 46.4 | 33.2 | 40.7 | 44.5 | 43.6 | 35.4 | 40.1 | 42.3 | 41.7 | 34.8 | | Means | 64.6 | 49:3 | 57.0 | 60·9 | | 54.2 | 53.1 | 54.7 | 54.5 | 51.6 | Means | 49.3 | 37.4 | | 47·4 | | 42.5 | 41.2 | 44.8 | 44.5 | 41.2 | | | · | | 1 | 1 | | ı İ | | | | | d | | ! | | DECE | MBER. | 1 1 | ı I | | | <del></del> | | · I | 56.2 | 33.8 | 44.3 | 52.4 | 54.3 | 45.9 | 41.3 | 46.2 | 46.7 | 43.2 | I | 50.0 | 33.0 | 44.5 | 46.5 | 48.8 | 50.0 | 43.3 | 46.0 | 48°·1 | 49.7 | | 2 | 55.7 | 40·I | 51·I | 52.7 | 54.1 | 52.0 | 47.9 | 50.6 | 21.3 | 50.0 | 2 | 54.4 | 49.4 | 52.7 | 52.7 | 52.8 | 52.6 | 49.6 | 51.0 | 51.6 | 51.3 | | 3 | 61.0 | 49.6 | 22.1 | 57.4 | 59.2 | 50.2 | 51.4 | 51·4<br>48·6 | 52.3 | 48.0 | 3 | 59.5 | 48.1 | 55.0 | 58.6 | 56.5 | 49.0 | 53.8 | 55.2 | 53.8 | 48 8 | | 4 | 58·5<br>56·9 | 42·4<br>37·5 | 52.9 | 55.9 | 56·2<br>55·5 | 42·5<br>54·4 | 46.9 | 52.9 | 47·4<br>53·7 | 40·6<br>51·7 | 4 5 | 55.4 | 48·4<br>50·2 | 55.0 | 53.7 | 52.5 | 50.7 | 54·0<br>49·6 | 50.9 | 49.7 | 50.2 | | 5<br>6 | 64.2 | 50.4 | 57.4 | 62.8 | 62.4 | 50.6 | 55.6 | 54.3 | 52.4 | 46.3 | 6 | 51.5 | 47.5 | 48.4 | 48.5 | 48.5 | 49.6 | 48.0 | 48.0 | 47.7 | 48.8 | | 7 | 58.3 | 46.7 | 52.8 | 51.2 | 56.2 | 47.2 | 51.6 | 48.7 | 50.9 | 42.8 | 7 | 51.5 | 40.7 | 44.4 | 47:3 | 47.9 | 41.0 | 44.0 | 46.4 | 45.7 | 41.0 | | 8 | 56.1 | 38.9 | 46.8 | 52.1 | 52.1 | 43.1 | 43.6 | 46.6 | 44.9 | 40·9<br>56·7 | 8 | 20.1 | 40.0 | 47·I | 49.6 | 49.1 | 49·I | 46.5 | 48.7 | 48.9 | 48.9 | | 9<br>10 | 57·3<br>63·5 | 37·9<br>56·2 | 47·7 | 51.8 | 52·8<br>60·6 | 57·2<br>58·6 | 46·1<br>57·1 | 49·8<br>57·6 | 51·7<br>58·7 | 57.0 | 9 | 20.1 | 39·2<br>42·1 | 48.9 | 48·5<br>50·8 | 47.7 | 49.1 | 39·9<br>48·4 | 45.8 | 45·9<br>46·5 | 47.6 | | 11 | 63.1 | 50.3 | 59.2 | 61.6 | 56.5 | 50.6 | 57.8 | 58.7 | 54.9 | 50.0 | 11 | 21.1 | 40.3 | 48.7 | 50.5 | 49.8 | 47.4 | 48.0 | 48.6 | 48.8 | 46.3 | | I 2 | 51.6 | 48.0 | 50.1 | 50.7 | 20.1 | 48.2 | 47.7 | 47.7 | 48.1 | 46.2 | 12 | 56.9 | 45.9 | 53.7 | 55.6 | 55.7 | 50.4 | 53.0 | 54.0 | 53.0 | 48.3 | | 13 | 53.8 | 38.5 | 48.1 | 52.7 | 51.5 | 39·9<br>48·6 | 44·8<br>46·1 | 45.9 | 44·7<br>48·3 | 39·3<br>48·2 | 13<br>14 | 58.2 | 50·1 | 56.6 | 57.4 | 56.4 | 55.3 | 54.6 | 54.6 | 53.9 | 53.5 | | 14<br>15 | 56·8<br>54·7 | 34·9<br>49·1 | 49.3 | 54.6 | 54.0 | 49.5 | 48.4 | 49.8 | 49.8 | 47.5 | 15 | 53.2 | 47.6 | 54.6 | 53.0 | 52.5 | 48·1<br>51·6 | 53.8 | 52·7<br>51·0 | 50·8<br>50·8 | 47·9<br>49·0 | | 16 | 52.4 | 39.5 | 48·I | 21.3 | 50.6 | 48.6 | 46.6 | 47.2 | 46.7 | 45.9 | 16 | 51.9 | 42.3 | 46.9 | 45.4 | 45.8 | 42.6 | 43.7 | 42.8 | 42.0 | 40.3 | | 17 | 54·I | 38.4 | 47.2 | 52.5 | 51.8 | 39.4 | 45.4 | 46.7 | 46.0 | 39.0 | 17 | 43.9 | 34.3 | 41.7 | 43.5 | 42.0 | 37.9 | 39.8 | 40.4 | 39.0 | 36.8 | | 18 | 50.1 | 30.8 | 37.2 | 47.3 | 49.3 | 43.5 | 36·7<br>46·8 | 45.6 | 46·1 | 42·8<br>47·7 | 18 | 48.5 | 37·4<br>38·0 | 43·5<br>38·0 | 46.2 | 47.8 | 41.9 | 40.8 | 44.3 | 44.8 | 40.5 | | 19<br>20 | 55.8 | 39·9<br>48·4 | 47·6<br>52·8 | 52.6 | 54·0<br>52·6 | 49·6<br>52·5 | 51.8 | 49·5<br>51·6 | 49.9 | 51.6 | 19<br>20 | 45.0 | 34.8 | 36.7 | 39.9 | 42.5 | 43·7<br>41·1 | 35·6<br>36·1 | 38·4<br>38·3 | 39·6<br>38·6 | 39.0 | | 21 | 54.5 | 49.3 | 52.5 | 53.4 | 52.9 | 49.5 | 50.7 | 50.8 | 50.8 | 48.9 | 2 I | 41.1 | 34.2 | 34.2 | 39.0 | 39.1 | 38.5 | 33.5 | 36.7 | 37.1 | 36.9 | | 22 | 61.0 | 43.9 | 55.6 | 59.8 | 57.5 | 44.8 | 54.2 | 55.0 | 53.5 | 44.8 | 22 | 53.8 | 38.0 | 40.3 | 41·I | 43.6 | 51.8 | 39.7 | 40.7 | 43.3 | 48·I | | 23 | 58.0 | 39.0 | 44.6 | 56.4 | 56.6 | 47.5 | 44.6 | 51·4<br>47·7 | 51·3<br>47·6 | 46·8<br>39·9 | 23<br>24 | 39.7 | 37·5 | 45.7 | 37.9 | 42.9 | 37.8 | 42.9 | 41.8 | 36.7 | 34.8 | | 24<br>25 | 53.0 | 40·1<br>37·4 | 44·2<br>45·1 | 51·5<br>49·6 | 50.4 | 50.1 | 43.4 | 46.7 | 47.6 | 48·3 | 24<br>25 | 39.6 | 29.4 | 34·9<br>32·1 | 37.6 | 39·7<br>39·4 | 35.3 | 33.7 | 32.1<br>32.9 | 37·2<br>36·6 | 35.0 | | 25<br>26 | 51.6 | 37.0 | 45.5 | 50.8 | 49.4 | 37.5 | 43.6 | 44.5 | 44.0 | 37.0 | 26 | 38.8 | 28.5 | 29.1 | 36.5 | 37.7 | 37.7 | 28.3 | 34.0 | 35.2 | 35.7 | | 27 | 59.5 | 36.0 | 51.4 | 57.6 | 57.8 | 52.9 | 50.6 | 53.8 | 54.6 | 51.9 | 27 | 52.0 | 37.6 | 48.8 | 52.0 | 51.6 | 45.0 | 48.3 | 51.0 | 50.0 | 43.3 | | 28 | 57.8 | 50.2 | 54.3 | 56.4 | 56.9 | 54.2 | 52.6 | 53·3<br>52·5 | 54·4<br>53·5 | 52·4<br>50·3 | 28<br>29 | 53.5 | 44.2 | 52.6 | 53.3 | 53.5 | 50.1 | 50.7 | 51.1 | 51.0 | 49.8 | | 29<br>20 | 57·9<br>60·6 | 49·9<br>46·0 | 53.0 | 56·5<br>59·6 | 56.9 | 50.5 | 49.8 | 51.6 | 49.4 | 48.9 | 29<br>30 | 48.1 | 45·I<br>41·6 | 53·5 | 54·6<br>47·1 | 54·9<br>46·7 | 45.2 | 51·8<br>41·4 | 52·2<br>43·6 | 51·0<br>42·7 | 43.0 | | 30<br>31 | 58.7 | 50.3 | 53.5 | 57.2 | 54.3 | 54.8 | 51.3 | 53.7 | 52.9 | 53.7 | 31 | 43.2 | 38.1 | 41.4 | 40.6 | 41.7 | 38.3 | 40.8 | 39.4 | 40.0 | 36.8 | | Means | 56.7 | 42.9 | 50.3 | 54.6 | 54.3 | 48.6 | 48.3 | 50.3 | 50.2 | 47.0 | Means | 50.0 | 40.8 | 45.7 | 47.6 | 47.7 | 45.3 | 44.4 | 45.8 | 45.5 | 43.8 | | AMOUNT of | RAIN | COLLECTED | in each | MONTH | of the | VEAD | 1012 | |-----------|-------|-----------|---------|-------|--------|--------|------| | AMOUNT OF | IXAIN | COLLECTED | in each | MUNIH | or the | I P.AR | 1910 | | | | | | | | Monthly A | mount of Ra | ain collected | in each Ga | uge. | | | | | Height of<br>Sur | Receiving face. | |----------------------------------------------------------------------------|------------------------|--------------|--------------|--------------|--------------|----------------|--------------|---------------|---------------|---------------------------|--------------|--------------|--------------|---------------|-------------------------|-----------------------------| | Gauges partly sunk<br>in the Ground<br>the Magnetic Pavilion<br>Enclosure. | Number<br>of<br>Gauge. | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | Sums. | Above<br>the<br>Ground. | Above<br>Mean Sea<br>Level, | | auges part<br>in the Gr<br>nagneti<br>Enclosu | 6 | in.<br>2·715 | in.<br>0.983 | in.<br>0·969 | in.<br>2·846 | in.<br>1 · 907 | in.<br>0.735 | in.<br>7·341 | in.<br>1 ·049 | in.<br>4·4 <sup>8</sup> 2 | in.<br>1·333 | in.<br>1·987 | in.<br>2.010 | in.<br>28·357 | ft. in. | ft. in.<br>149 6 | | in th | 8 | 2.764 | 0.993 | 0.958 | 2.803 | 1.910 | 0.700 | 7.391 | I ·020 | 4.470 | 1.300 | 1.981 | 1.999 | 28.289 | 1 0 | 150 1 | | Number of<br>Rainy Days<br>(o <sup>in</sup> .005 or over). | } · · | 17 | 13 | 8 | 19 | I 2 | 11 | 17 | 11 | 24 | 17 | II | 22 | 182 | | • • | Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest Hourly Measures as derived from the Records of Robinson's Anemometer. | Hour ending. | | 1918. | | | | | | | | | | | Mean fo | |-----------------------------------------------------------------------------------|----------|-----------|--------|---------|--------|---------|--------|---------|------------|----------|-----------|-----------|---------| | | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | Year | | h | miles. | I | 13.4 | 13.9 | 10.8 | 10.7 | 7:5 | 8.5 | 10.1 | 9.1 | 12.7 | 9.4 | 8.7 | 14.4 | 10.8 | | 2 | 14.0 | 14.0 | 10.8 | 10.4 | 7.7 | 8.1 | 9.7 | 8.6 | 12.9 | 9.6 | 9.0 | 15.3 | 10.8 | | 3 | 14.4 | 14.4 | 11.3 | 11.0 | 8.1 | 8.8 | 9.4 | 8.6 | 12.1 | 8.9 | 9.0 | 14.4 | 10.9 | | 4 | 13.9 | 14.1 | 11.1 | 11.1 | 7.2 | 7.9 | 9.0 | 8.2 | 11.7 | 8.9 | 8.4 | 15.1 | 10.6 | | 5 | 13.5 | 14.3 | 11.0 | I I · 2 | 7.3 | 7.8 | 8.8 | 8.0 | 12.1 | 9.1 | 8.5 | 16.1 | 10.6 | | 6 | 12.5 | 13.7 | 11.4 | 11.2 | 7.7 | 7.6 | 9.3 | 7.9 | 12.0 | 8.9 | 8.7 | 16.1 | 10.6 | | 7 | 13.0 | 13.5 | 12.0 | 12.0 | 8.7 | ·9·2 | 10.0 | 8.9 | 12.3 | 9.8 | 8.8 | 16.5 | I I ·2 | | 8 | 13.0 | 13.5 | I 2·7 | 12.4 | 8.9 | 10.2 | 10.8 | 9.1 | 14.2 | 10.3 | 8·1 | 16.5 | 11·6 | | 9 | 12.6 | 14.3 | 12.8 | 12.6 | 10.0 | 11.0 | 11.1 | 9.0 | 14.6 | 11.5 | 8.7 | 15.8 | 12.0 | | IÓ | 12.6 | 15.3 | 13.0 | 12.7 | 10.3 | 10.3 | 11.6 | 9.3 | 15.5 | 11.6 | 9.1 | 15.9 | 12.3 | | 11 | 13.0 | 15.1 | 12.7 | 12.3 | 10.4 | 11.2 | 12.3 | 9.7 | 15.9 | 13.1 | 9.4 | 15.2 | 12.5 | | Noon | 13.2 | 14.1 | 12.9 | 12.0 | 11.0 | 11.5 | 12.1 | 10.3 | 16.2 | 13.2 | 9.4 | 15.5 | 12.6 | | 13 <sup>h</sup> | 13.8 | 15.5 | 13.6 | 13.7 | 10.5 | 11.3 | 13.1 | 11.8 | 19.1 | 11.9 | 9.9 | 16.7 | 13.4 | | 14 | 14.0 | 16.9 | 14.9 | 14.2 | 11.0 | 11.8 | 13.0 | 11.7 | 18.7 | 12.7 | 11.5 | 17.0 | 13.9 | | 15 | 14.0 | 16.2 | 15.9 | 13.9 | 11.4 | 12.3 | 12.7 | 11.9 | 18.5 | 12.4 | 11.6 | 16.0 | 13.9 | | 16 | 13.4 | 15.4 | 14.9 | 13.6 | 11.7 | 12.4 | 12.4 | 11.4 | 19.4 | 11.7 | 10.3 | 15.3 | 13.5 | | 17 | 12.5 | 15.7 | 13.7 | 14.5 | 11.4 | 12.0 | 12.7 | 11.8 | 18.2 | 10.7 | 10.5 | 16.1 | 13.3 | | 18 | 12.6 | 14.9 | 13.7 | 13.6 | 11.1 | 12.8 | 11.6 | 11.8 | 16.8 | 10.9 | 10.1 | 16.1 | 13.0 | | 19 | 12.3 | 14.3 | 12.1 | 11.7 | 9.4 | 1 I · I | 10.5 | 10.7 | 14.1 | 10.1 | 9.2 | 15.1 | 11.7 | | 20 | 12.5 | 14.4 | 11.4 | 11.8 | 9.5 | 11.1 | 10.4 | 9.9 | 13.1 | 10.3 | 9.5 | 15.5 | 11.6 | | 21 | 14.5 | 14.9 | 0.11 | 12.6 | 9.3 | 10.0 | 10.5 | 10.4 | 14.1 | 10.4 | 10.1 | 15.1 | 11.9 | | 22 | 14.9 | 15.1 | 10.7 | 11.4 | 8.0 | 9.3 | 9.4 | 10.0 | 14.2 | 10.0 | 9.1 | 14.7 | 11.4 | | 23 | 13.8 | 14.6 | 10.6 | 10.9 | 7.6 | 8.8 | 9.5 | 9.3 | 13.2 | 9.7 | 8.2 | 13.7 | 10.8 | | Midnight | 14.0 | 14.7 | 10.2 | 10.2 | 7.8 | 8.7 | 9.1 | 9.2 | 13.3 | 9.5 | 8.8 | 13.6 | 10.8 | | Ieans | 13.4 | 14.7 | 12.3 | 12.2 | 9.3 | 10.3 | 10.8 | 9.9 | 14.8 | 10.6 | 9.4 | 15.5 | 11.9 | | Greatest (I) | 37 | 39 | 35 | 31 | 37 | 34 | 34 | 28 | 33 | 33 | 38 | 37 | ••• | | $\begin{array}{ccc} \text{Hourly} & & \\ \text{Jleasures} & & \\ \end{array} (2)$ | 29 | 30 | 27 | 25 | 29 | 27 | 27 | 23 | 26 | 26 | 29 | 29 | | <sup>(1)</sup> Deduced from the motion of the cups by the formula V=3v; (2) ,, ,, ,, ,, ,, ,, ,, V=2v+4; where v is the hourly motion of the cups in miles. See Introduction. . •